1
|
Chen J, Chen J, Yu C, Xia K, Yang B, Wang R, Li Y, Shi K, Zhang Y, Xu H, Zhang X, Wang J, Chen Q, Liang C. Metabolic reprogramming: a new option for the treatment of spinal cord injury. Neural Regen Res 2025; 20:1042-1057. [PMID: 38989936 PMCID: PMC11438339 DOI: 10.4103/nrr.nrr-d-23-01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/27/2024] [Indexed: 07/12/2024] Open
Abstract
Spinal cord injuries impose a notably economic burden on society, mainly because of the severe after-effects they cause. Despite the ongoing development of various therapies for spinal cord injuries, their effectiveness remains unsatisfactory. However, a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming. In this review, we explore the metabolic changes that occur during spinal cord injuries, their consequences, and the therapeutic tools available for metabolic reprogramming. Normal spinal cord metabolism is characterized by independent cellular metabolism and intercellular metabolic coupling. However, spinal cord injury results in metabolic disorders that include disturbances in glucose metabolism, lipid metabolism, and mitochondrial dysfunction. These metabolic disturbances lead to corresponding pathological changes, including the failure of axonal regeneration, the accumulation of scarring, and the activation of microglia. To rescue spinal cord injury at the metabolic level, potential metabolic reprogramming approaches have emerged, including replenishing metabolic substrates, reconstituting metabolic couplings, and targeting mitochondrial therapies to alter cell fate. The available evidence suggests that metabolic reprogramming holds great promise as a next-generation approach for the treatment of spinal cord injury. To further advance the metabolic treatment of the spinal cord injury, future efforts should focus on a deeper understanding of neurometabolism, the development of more advanced metabolomics technologies, and the design of highly effective metabolic interventions.
Collapse
Affiliation(s)
- Jiangjie Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jinyang Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Chao Yu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Kaishun Xia
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Biao Yang
- Qiandongnan Prefecture People's Hospital, Kaili, Guizhou Province, China
| | - Ronghao Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yi Li
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Kesi Shi
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yuang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Haibin Xu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Xuesong Zhang
- Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jingkai Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Qixin Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Chengzhen Liang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Tao J, Zhou J, Xu L, Yang J, Mu X, Fan X. Conductive, injectable hydrogel equipped with tetramethylpyrazine regulates ferritinophagy and promotes spinal cord injury repair. Int J Biol Macromol 2024; 283:137887. [PMID: 39571843 DOI: 10.1016/j.ijbiomac.2024.137887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Up to now, the clinical treatment of spinal cord injury (SCI) to recover the locomotion function, sensory function, and autonomic function of patients is a global medical challenge. In this study, based on the excellent effects of Tetramethylpyrazine (TMP) on regulating pathological micro-environment, we designed a new injectable conductive hydrogel consists of water-soluble polypyrrole (Ppy), agar, and TMP. The TMP@PA hydrogel has excellent physicochemical properties, bio-safety, and drug release ability, which can be injected into lesions in situ without secondary injury for SCI. Our in vivo and in vitro experiments have demonstrated that the TMP@PA hydrogel can not only fill the spinal cord cavity to reconstruct the electrical conduction pathway but also release TMP continuously to inhibit ferroptosis by regulating nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy regulated by Yes-Associated Protein (YAP) to promote SCI repair. Collectively, TMP@PA hydrogel may be an effective tissue engineering scaffold to treat SCI with highly promising clinical applications.
Collapse
Affiliation(s)
- Jingwei Tao
- Center for Orthopedic Surgery, Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Jingya Zhou
- Capital Medical University Affiliated Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lin Xu
- Center for Orthopedic Surgery, Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jizhou Yang
- Center for Orthopedic Surgery, Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohong Mu
- Center for Orthopedic Surgery, Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, China.
| | - Xiao Fan
- Qingdao Municipal Hospital, Qingdao, China.
| |
Collapse
|
3
|
Su H, Luo H, Wang Y, Zhao Q, Zhang Q, Zhu Y, Pan L, Liu Y, Yang C, Yin Y, Tan B. Myelin repair of spinal cord injury in adult mice induced by treadmill training upregulated peroxisome proliferator-activated receptor gamma coactivator 1 alpha. Glia 2024; 72:607-624. [PMID: 38031815 DOI: 10.1002/glia.24493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Growing evidence has proven the efficacy of physical exercise in remyelination and motor function performance after spinal cord injury (SCI). However, the molecular mechanisms of treadmill training on myelin repair and functional recovery after SCI have not yet been fully studied. Here, we explored the effect of treadmill training on upregulating peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α)-mediated myelin repair and functional recovery in a mouse model of thoracic T10 contusion injury. A 4-week treadmill training scheme was conducted on mice with SCI. The expression levels of oligodendrogenesis-related protein and PGC1α were detected by immunofluorescence, RNA fluorescence in situ hybridization and western blotting. Transmission electron microscopy (TEM) was used to observe myelin structure. The Basso Mouse Scale (BMS) and CatWalk automated gait analysis system were used for motor function recovery evaluation. Motor evoked potentials (MEPs) were also identified. In addition, adeno-associated virus (AAV)-mediated PGC1α knockdown in OLs was used to further unravel the role of PGC1α in exercise-induced remyelination. We found that treadmill training boosts oligodendrocyte precursor cells (OPCs) proliferation, potentiates oligodendrocytes (OLs) maturation, and increases myelin-related protein and myelin sheath thickness, thus impelling myelin repair and hindlimb functional performance as well as the speed and amplitude of nerve conduction after SCI. Additionally, downregulating PGC1α through AAV attenuated these positive effects of treadmill training. Collectively, our results suggest that treadmill training enhances remyelination and functional recovery by upregulating PGC1α, which should provide a step forward in the understanding of the effects of physical exercise on myelin repair.
Collapse
Affiliation(s)
- Hong Su
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haodong Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunhang Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Zhao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Zhu
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of Special Environment War Wound Prevention and Treatment, Institute of Surgery Research, Army Medical Center of PLA, Chongqing, China
| | - Lu Pan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Liu
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of Special Environment War Wound Prevention and Treatment, Institute of Surgery Research, Army Medical Center of PLA, Chongqing, China
| | - Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of Special Environment War Wound Prevention and Treatment, Institute of Surgery Research, Army Medical Center of PLA, Chongqing, China
| | - Ying Yin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Botao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Feng F, Xu DQ, Yue SJ, Chen YY, Tang YP. Neuroprotection by tetramethylpyrazine and its synthesized analogues for central nervous system diseases: a review. Mol Biol Rep 2024; 51:159. [PMID: 38252346 DOI: 10.1007/s11033-023-09068-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/24/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Due to the global increase in aging populations and changes in modern lifestyles, the prevalence of neurodegenerative diseases, cerebrovascular disorders, neuropsychiatrcic conditions, and related ailments is rising, placing an increasing burden on the global public health system. MATERIALS AND METHODS All studies on tetramethylpyrazine (TMP) and its derivatives were obtained from reputable sources such as PubMed, Elsevier, Library Genesis, and Google Scholar. Comprehensive data on TMP and its derivatives was meticulously compiled. RESULTS This comprehensive analysis explains the neuroprotective effects demonstrated by TMP and its derivatives in diseases of the central nervous system. These compounds exert their influence on various targets and signaling pathways, playing crucial roles in the development of various central nervous system diseases. Their multifaceted mechanisms include inhibiting oxidative damage, inflammation, cell apoptosis, calcium overload, glutamate excitotoxicity, and acetylcholinesterase activity. CONCLUSION This review provides a brief summary of the most recent advancements in research on TMP and its derivatives in the context of central nervous system diseases. It involves synthesizing analogs of TMP and evaluating their effectiveness in models of central nervous system diseases. The ultimate goal is to facilitate the practical application of TMP and its derivatives in the future treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Fan Feng
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China.
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China.
| |
Collapse
|
5
|
Hao Z, Yin C, Wang X, Huo Z, Zhang G, Jiang D, An M. Tetramethylpyrazine promotes angiogenesis and nerve regeneration and nerve defect repair in rats with spinal cord injury. Heliyon 2023; 9:e21549. [PMID: 38027809 PMCID: PMC10656251 DOI: 10.1016/j.heliyon.2023.e21549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/25/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Objective This study evaluated the regulatory effect of Tetramethylpyrazine (TMP) on the spinal cord injury (SCI) rat model and clarified the neuroprotective mechanism of TMP on SCI. Methods An SCI rat model was generated and treated with TMP injections for two weeks. miR-497-5p and EGFL7 expression changes were evaluated, motor function recovery after SCI was assessed by BBB score test and footprint analysis, lesions of rat spinal cord were assessed by HE staining and TUNEL staining; angiogenesis was assessed by immunoblotting for CD31; inflammatory factor levels were detected by ELISA. EGFL7 was verified as a target of miR-497-5p by bioinformatics website analysis and luciferase reporter gene assay. H2O2-injured neurons were cultured in vitro to explore the effect of TMP. Results After SCI, miR-497-5p was upregulated while EGFL7 was downregulated in rats. TMP inhibited apoptosis and promoted angiogenesis, nerve regeneration, and repair of nerve defects by reducing miR-497-5p and increasing EGFL7 expression. miR-497-5p targeted EGFL7. In addition, TMP hindered neuronal inflammation and apoptosis induced by H2O2in vitro. Conclusion TMP promotes angiogenesis by downregulating miR-497-5p to target EGFL7, and promotes nerve regeneration and repair of nerve defects in rats with SCI.
Collapse
Affiliation(s)
- ZengTao Hao
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| | - Chao Yin
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| | - XiaoLong Wang
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| | - ZhiQi Huo
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| | - GuoRong Zhang
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| | - Dong Jiang
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| | - Min An
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| |
Collapse
|
6
|
Guo P, Lu Q, Hu S, Yang Y, Wang X, Yang X, Wang X. Daucosterol confers protection against T-2 toxin induced blood-brain barrier toxicity through the PGC-1α-mediated defensive response in vitro and in vivo. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132262. [PMID: 37604032 DOI: 10.1016/j.jhazmat.2023.132262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
T-2 toxin is a common environmental pollutant and contaminant in food and animal feed that represents a great challenge to human and animal' health throughout the world. Using natural compounds to prevent the detrimental effects of T-2 toxin represents an attractive strategy. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a critical regulator in various cellular processes. Recently, PGC-1α activation has been reported to confer protection against neurological injuries. We aimed to identify a potent PGC-1α activator from plants as a chemopreventive compound and to demonstrate the efficacy of the compound in attenuating T-2 toxin-induced blood-brain barrier (BBB) toxicity. We identified daucosterol, which binds directly to the 71-74 (-1100 to -1000 bp) position of the second promoter of human PGC-1α by hydrogen bonding. An in vitro and in vivo T-2 toxin induced BBB injury model revealed that this compound can protect against this injury by increasing transepithelial/transendothelial electrical resistance, reducing sodium fluorescein (NaF) infiltration and increasing the expression of tight junction-related proteins (zonula occludens-1 (ZO-1), occludin (OCLN), claudin-5 (CLDN5)) expression. In conclusion, we identified daucosterol as representing a novel of PGC-1α activators and illustrated the mechanism of specific binding site. Furthermore, we have demonstrated the feasibility of using natural compounds targeting PGC-1α as a therapeutic approach to protect humans from environmental insults that may occur daily such as lipopolysaccharide.
Collapse
Affiliation(s)
- Pu Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Siyi Hu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yaqin Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinru Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei 430070, China.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
7
|
Li G, Sng KS, Shu B, Wang YJ, Yao M, Cui XJ. Effects of tetramethylpyrazine treatment in a rat model of spinal cord injury: A systematic review and meta-analysis. Eur J Pharmacol 2023; 945:175524. [PMID: 36803629 DOI: 10.1016/j.ejphar.2023.175524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/24/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023]
Abstract
Spinal cord injury (SCI) is a serious disabling condition that leads to the loss of motor, sensory, and excretory functions, seriously affecting the quality of life of patients and imposing a heavy burden on the patient's family and society. There is currently a lack of effective treatments for SCI. However, a large number of experimental studies have shown beneficial effects of tetramethylpyrazine (TMP). We performed a meta-analysis to systematically evaluate the effects of TMP on neurological and motor function recovery in rats with acute SCI. English (PubMed, Web of Science, and EMbase) and Chinese (CNKI, Wanfang, VIP, and CBM) databases were searched for literature related to TMP treatment in rats with SCI published until October 2022. Two researchers independently read the included studies, extracted the data, and evaluated their quality. A total of 29 studies were included, and a risk of bias assessment revealed that the methodological quality of the included studies was low. The results of the meta-analysis showed that the Basso, Beattie, and Bresnahan (BBB; n = 429, pooled mean difference [MD] = 3.44, 95% confidence interval [CI] = 2.67 to 4.22, p < 0.00001) and inclined plane test (n = 133, pooled MD = 5.60, 95% CI = 3.78 to 7.41, p < 0.00001) scores of rats treated with TMP were significantly higher than those in the control group at 14 days after SCI. TMP treatment also resulted in a significant reduction in malondialdehyde (MDA; n = 128, pooled MD = -2.03, 95% CI = -3.47 to -0.58, p < 0.00001) and increased superoxide dismutase (SOD; n = 128, pooled MD = 5.02, 95% CI = 2.39 to 7.65, p < 0.00001). Subgroup analysis indicated that different doses of TMP did not improve the BBB scale and inclined plane test angles. In conclusion, this review showed that TMP can improve SCI outcomes; however, in view of the limitations of the included studies, larger and high-quality studies are required for verification.
Collapse
Affiliation(s)
- Gan Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Kim Sia Sng
- Department of Chinese Medicine, Centre for Complementary and Alternative Medicine, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Bing Shu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
8
|
Liu C, Liu Y, Ma B, Zhou M, Zhao X, Fu X, Kan S, Hu W, Zhu R. Mitochondrial regulatory mechanisms in spinal cord injury: A narrative review. Medicine (Baltimore) 2022; 101:e31930. [PMID: 36401438 PMCID: PMC9678589 DOI: 10.1097/md.0000000000031930] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Spinal cord injury is a severe central nervous system injury that results in the permanent loss of motor, sensory, and autonomic functions below the level of injury with limited recovery. The pathological process of spinal cord injury includes primary and secondary injuries, characterized by a progressive cascade. Secondary injury impairs the ability of the mitochondria to maintain homeostasis and leads to calcium overload, excitotoxicity, and oxidative stress, further exacerbating the injury. The defective mitochondrial function observed in these pathologies accelerates neuronal cell death and inhibits regeneration. Treatment of spinal cord injury by preserving mitochondrial biological function is a promising, although still underexplored, therapeutic strategy. This review aimed to explore mitochondrial-based therapeutic advances after spinal cord injury. Specifically, it briefly describes the characteristics of spinal cord injury. It then broadly discusses the drugs used to protect the mitochondria (e.g., cyclosporine A, acetyl-L-carnitine, and alpha-tocopherol), phenomena associated with mitochondrial damage processes (e.g., mitophagy, ferroptosis, and cuproptosis), mitochondrial transplantation for nerve cell regeneration, and innovative mitochondrial combined protection therapy.
Collapse
Affiliation(s)
- Chengjiang Liu
- Department of Spine Surgery, Tianjin Union Medical Center Tianjin, Tianjin, China
| | - Yidong Liu
- Department of Spine Surgery, Tianjin Union Medical Center Tianjin, Tianjin, China
| | - Boyuan Ma
- Department of Spine Surgery, Tianjin Union Medical Center Tianjin, Tianjin, China
| | - Mengmeng Zhou
- Department of Spine Surgery, Tianjin Union Medical Center Tianjin, Tianjin, China
| | - Xinyan Zhao
- Department of Spine Surgery, Tianjin Union Medical Center Tianjin, Tianjin, China
| | - Xuanhao Fu
- Department of Spine Surgery, Tianjin Union Medical Center Tianjin, Tianjin, China
| | - Shunli Kan
- Department of Spine Surgery, Tianjin Union Medical Center Tianjin, Tianjin, China
| | - Wei Hu
- Department of Spine Surgery, Tianjin Union Medical Center Tianjin, Tianjin, China
| | - Rusen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center Tianjin, Tianjin, China
- *Correspondence: Rusen Zhu, Department of Spine Surgery, Tianjin Union Medical Center190jieyuan Road, Honggiao District, Tianjin 300121, China (e-mail: )
| |
Collapse
|
9
|
Zhu Z, Wang X, Song Z, Zuo X, Ma Y, Zhang Z, Ju C, Liang Z, Li K, Hu X, Wang Z. Photobiomodulation promotes repair following spinal cord injury by restoring neuronal mitochondrial bioenergetics via AMPK/PGC-1α/TFAM pathway. Front Pharmacol 2022; 13:991421. [PMID: 36172183 PMCID: PMC9512226 DOI: 10.3389/fphar.2022.991421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Insufficient neuronal mitochondrial bioenergetics supply occurs after spinal cord injury (SCI), leading to neuronal apoptosis and impaired motor function. Previous reports have shown that photobiomodulation (PBM) could reduce neuronal apoptosis and promote functional recovery, but the underlying mechanism remains unclear. Therefore, we aimed to investigate whether PBM improved prognosis by promoting neuronal mitochondrial bioenergetics after SCI. Methods: Sprague Dawley rats were randomly divided into four groups: a Sham group, an SCI group, an SCI + PBM group and an SCI + PBM + Compound C group. After SCI model was established, PBM and Compound C (an AMPK inhibitor) injection were carried out. The level of neuron apoptosis, the recovery of motor function and mitochondrial function were observed at different times (7, 14, and 28 days). The AMPK/PGC-1α/TFAM pathway was hypothesized to be a potential target through which PBM could affect neuronal mitochondrial bioenergetics. In vitro, ventral spinal cord 4.1 (VSC4.1) cells were irradiated with PBM and cotreated with Compound C after oxygen and glucose deprivation (OGD). Results: PBM promoted the recovery of mitochondrial respiratory chain complex activity, increased ATP production, alleviated neuronal apoptosis and reversed motor dysfunction after SCI. The activation of the AMPK/PGC-1α/TFAM pathway after SCI were facilitated by PBM but inhibited by Compound C. Equally important, PBM could inhibit OGD-induced VSC4.1 cell apoptosis by increasing ATP production whereas these changes could be abolished by Compound C. Conclusion: PBM activated AMPK/PGC-1α/TFAM pathway to restore mitochondrial bioenergetics and exerted neuroprotective effects after SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xueyu Hu
- *Correspondence: Zhe Wang, ; Xueyu Hu,
| | - Zhe Wang
- *Correspondence: Zhe Wang, ; Xueyu Hu,
| |
Collapse
|
10
|
Kaizu X, Ying W, Mei-fang W, Li-ming L. 1,25-dihydroxyvitamin D 3 ameliorates high glucose-mediated proliferation, migration, and MCP-1 secretion of vascular smooth muscle cells by inhibiting MAPK phosphorylation. J Int Med Res 2022. [PMCID: PMC9478726 DOI: 10.1177/03000605221121973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives To explore the impacts of 1,25-dihydroxyvitamin D3
(1,25(OH)2D3) on the proliferation,
migration, and monocyte chemoattractant protein-1 (MCP-1)
secretion of vascular smooth muscle cells (VSMCs) in a high
glucose environment and its possible mechanism. Methods We extracted VSMCs from the thoracic aorta of a male Sprague–Dawley
rats before culturing them in a 25-mM glucose-containing medium
in the presence or absence of 1,25(OH)2D3
(10−9 –10−7 M). Cell proliferation
was determined by bromodeoxyuridine incorporation assays.
Subsequently, cell migratory capacity was examined by performing
a transwell assay. An enzyme-linked immunosorbent assay was
conducted to assess MCP-1 levels. Protein levels of matrix
metalloproteinase-9 (MMP-9), mitogen-activated protein kinases
(MAPKs), cyclin D1, and phosphorylated MAPKs were determined by
immunoblotting. Results 1,25(OH)2D3 significantly suppressed the
proliferation, migration, and MCP-1 secretion of VSMCs mediated
by high glucose in a dose-dependent manner, diminished the
enhanced protein expression of MMP-9 and cyclin D1, and
attenuated MAPK phosphorylation. The p38 inhibitor SB203580 and
ERK1/2 inhibitor PD98059 suppressed high glucose-mediated
upregulation of MMP-9 and cyclin D1 protein expression and MCP-1
secretion, respectively. Conclusions 1,25(OH)2D3 ameliorates high glucose-mediated
proliferation, migration, and MCP-1 secretion of VSMCs by
inhibiting MAPK phosphorylation, implying a potential
therapeutic approach using 1,25(OH)2D3 for
diabetic macrovascular complications.
Collapse
Affiliation(s)
- Xu Kaizu
- Department of Cardiology, Affiliated Hospital of Putian University, The Third Clinical Medical College of Fujian Medical University, Putian, China
| | - Wu Ying
- Department of Cardiology, Affiliated Hospital of Putian University, The Third Clinical Medical College of Fujian Medical University, Putian, China
| | - Wu Mei-fang
- Department of Cardiology, Affiliated Hospital of Putian University, The Third Clinical Medical College of Fujian Medical University, Putian, China
| | - Lin Li-ming
- Department of Cardiology, Affiliated Hospital of Putian University, The Third Clinical Medical College of Fujian Medical University, Putian, China
| |
Collapse
|
11
|
Bukhari SNA, Yogesh R. An Overview of Tetramethylpyrazine (Ligustrazine) and its Derivatives as
Potent Anti-Alzheimer’s Disease Agents. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220405232333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Tetramethylpyrazine (TMP), or ligustrazine, is an alkaloid isolated from the Chinese herb
Ligusticum wallichii. It is known for its broad-spectrum medicinal properties against several diseases, and
various studies have shown that it can modulate diverse biological targets and signaling pathways to produce
neuroprotective effects, especially against Alzheimer’s disease (AD). This has attracted significant
research attention evaluating TMP as a potent multitarget anti-AD agent. This review compiles the results
of studies assessing the neuroprotective mechanisms exerted by TMP as well as its derivatives prepared
using a multi-target-directed ligand strategy to explore its multitarget modulating properties. The present
review also highlights the work done on the design, synthesis, structure-activity relationships, and mechanisms
of some potent TMP derivatives that have shown promising anti-AD activities. These derivatives
were designed, synthesized, and evaluated to develop anti-AD molecules with enhanced biological and
pharmacokinetic activities compared to TMP. This review article paves the way for the exploration and
development of TMP and TMP derivatives as an effective treatment for AD.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
| | - Ruchika Yogesh
- 22 A3, DS Tower 1, Sukhumvit Soi 33, Khlong Tan Nuea, Wattana, Bangkok 10110, Thailand
| |
Collapse
|
12
|
[Advances of the role of mitochondrial dysfunction in the spinal cord injury and its relevant treatments]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:902-907. [PMID: 35848189 PMCID: PMC9288914 DOI: 10.7507/1002-1892.202203081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To review the advances of the role of mitochondrial dysfunction in the spinal cord injury (SCI) and its relevant treatments. METHODS Focusing on various mechanisms of mitochondrial dysfunction, recent relevant literature at home and abroad was identified to summarize the therapeutic strategies for SCI. RESULTS Mitochondrial dysfunction is mainly manifested in abnormalities in mitochondrial energy metabolism, mitochondrial oxidative stress, mitochondrial-mediated apoptosis, mitophagy, mitochondrial permeability transition, and mitochondrial biogenesis, playing a vital role in the development of SCI. Drug that enhanced mitochondrial function have been proved beneficial for the treatment of SCI. CONCLUSION Mitochondrial dysfunction can serve as a potential therapeutic target for SCI, providing ideas and basis for the development of SCI therapeutic candidates in the future.
Collapse
|
13
|
Tetramethylpyrazine Attenuates Cognitive Impairment Via Suppressing Oxidative Stress, Neuroinflammation, and Apoptosis in Type 2 Diabetic Rats. Neurochem Res 2022; 47:2431-2444. [PMID: 35665448 DOI: 10.1007/s11064-022-03640-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Cognitive dysfunction is an important complication observed in type 2 diabetes mellitus (T2DM) patients. Tetramethylpyrazine (TMP) is known to exhibit anti-diabetic and neuroprotective properties. Therefore, the present study aimed to investigate the possible therapeutic effects of TMP against type 2 diabetes-associated cognitive impairment in rats. High-fat diet (HFD) followed by a low dose of streptozotocin (35 mg/kg) was used to induce diabetes in Sprague-Dawley rats. TMP (20, 40, and 80 mg/kg) and Pioglitazone (10 mg/kg) were administered for 4 weeks. The Morris water maze (MWM) and novel objective recognition task (NOR) tests were used to assess memory function. Fasting blood glucose (FBG), lipid profile, HOMA-IR, glycosylated hemoglobin (HbA1c), and glucose tolerance were measured. Acetylcholinesterase (AChE) and choline acetytransferase (ChAT) activity, acetylcholine (ACh) levels, oxidative stress, apoptotic (Bcl-2, Bax, caspase-3), and inflammatory markers (TNF-α, IL-1β, and NF-kβ) were assessed. BDNF, p-AKT, and p-CREB levels were also measured. In the present work, we observed that treatment of diabetic rats with TMP alleviated learning and memory deficits, improved insulin sensitivity, and attenuated hyperglycemia and dyslipidemia. Furthermore, treatment with TMP increased BDNF, p-Akt, and p-CREB levels, normalized cholinergic dysfunction, and suppressed oxidative, inflammatory, and apoptotic markers in the hippocampus. Collectively, our results suggest that the TMP may be an effective neuroprotective agent in alleviating type 2 diabetes-associated cognitive deficits.
Collapse
|
14
|
Tetramethylpyrazine: A review on its mechanisms and functions. Biomed Pharmacother 2022; 150:113005. [PMID: 35483189 DOI: 10.1016/j.biopha.2022.113005] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Ligusticum chuanxiong Hort (known as Chuanxiong in China, CX) is one of the most widely used and long-standing medicinal herbs in China. Tetramethylpyrazine (TMP) is an alkaloid and one of the active components of CX. Over the past few decades, TMP has been proven to possess several pharmacological properties. It has been used to treat a variety of diseases with excellent therapeutic effects. Here, the pharmacological characteristics and molecular mechanism of TMP in recent years are reviewed, with an emphasis on the signal-regulation mechanism of TMP. This review shows that TMP has many physiological functions, including anti-oxidant, anti-inflammatory, and anti-apoptosis properties; autophagy regulation; vasodilation; angiogenesis regulation; mitochondrial damage suppression; endothelial protection; reduction of proliferation and migration of vascular smooth muscle cells; and neuroprotection. At present, TMP is used in treating cardiovascular, nervous, and digestive system conditions, cancer, and other conditions and has achieved good curative effects. The therapeutic mechanism of TMP involves multiple targets, multiple pathways, and bidirectional regulation. TMP is, thus, a promising drug with great research potential.
Collapse
|
15
|
Slater PG, Domínguez-Romero ME, Villarreal M, Eisner V, Larraín J. Mitochondrial function in spinal cord injury and regeneration. Cell Mol Life Sci 2022; 79:239. [PMID: 35416520 PMCID: PMC11072423 DOI: 10.1007/s00018-022-04261-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022]
Abstract
Many people around the world suffer from some form of paralysis caused by spinal cord injury (SCI), which has an impact on quality and life expectancy. The spinal cord is part of the central nervous system (CNS), which in mammals is unable to regenerate, and to date, there is a lack of full functional recovery therapies for SCI. These injuries start with a rapid and mechanical insult, followed by a secondary phase leading progressively to greater damage. This secondary phase can be potentially modifiable through targeted therapies. The growing literature, derived from mammalian and regenerative model studies, supports a leading role for mitochondria in every cellular response after SCI: mitochondrial dysfunction is the common event of different triggers leading to cell death, cellular metabolism regulates the immune response, mitochondrial number and localization correlate with axon regenerative capacity, while mitochondrial abundance and substrate utilization regulate neural stem progenitor cells self-renewal and differentiation. Herein, we present a comprehensive review of the cellular responses during the secondary phase of SCI, the mitochondrial contribution to each of them, as well as evidence of mitochondrial involvement in spinal cord regeneration, suggesting that a more in-depth study of mitochondrial function and regulation is needed to identify potential targets for SCI therapeutic intervention.
Collapse
Affiliation(s)
- Paula G Slater
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile.
| | - Miguel E Domínguez-Romero
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Maximiliano Villarreal
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Verónica Eisner
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Juan Larraín
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| |
Collapse
|
16
|
Covering the Role of PGC-1α in the Nervous System. Cells 2021; 11:cells11010111. [PMID: 35011673 PMCID: PMC8750669 DOI: 10.3390/cells11010111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
The peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a well-known transcriptional coactivator involved in mitochondrial biogenesis. PGC-1α is implicated in the pathophysiology of many neurodegenerative disorders; therefore, a deep understanding of its functioning in the nervous system may lead to the development of new therapeutic strategies. The central nervous system (CNS)-specific isoforms of PGC-1α have been recently identified, and many functions of PGC-1α are assigned to the particular cell types of the central nervous system. In the mice CNS, deficiency of PGC-1α disturbed viability and functioning of interneurons and dopaminergic neurons, followed by alterations in inhibitory signaling and behavioral dysfunction. Furthermore, in the ALS rodent model, PGC-1α protects upper motoneurons from neurodegeneration. PGC-1α is engaged in the generation of neuromuscular junctions by lower motoneurons, protection of photoreceptors, and reduction in oxidative stress in sensory neurons. Furthermore, in the glial cells, PGC-1α is essential for the maturation and proliferation of astrocytes, myelination by oligodendrocytes, and mitophagy and autophagy of microglia. PGC-1α is also necessary for synaptogenesis in the developing brain and the generation and maintenance of synapses in postnatal life. This review provides an outlook of recent studies on the role of PGC-1α in various cells in the central nervous system.
Collapse
|
17
|
Zhang H, Huang Z, Guo M, Meng L, Piao M, Zhang M, Yu H. Effect of combination therapy with neural stem cell transplantation and teramethylpyrazine in rats following acute spinal cord injury. Neuroreport 2021; 32:1311-1319. [PMID: 34554935 DOI: 10.1097/wnr.0000000000001725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This study was to explore the effects of teramethylpyrazine (TMP) administered in conjunction with neural stem cell transplantation on motor function, pathological lesions and the Janus kinase (JAK)2/signal transducer and activator of transcription 3 signal transduction pathway in rats following acute spinal cord injury (SCI). METHODS Female Sprague-Dawley rats were randomly divided into sham, model, neural stem cells (NSCs) and NSCs+TMP groups. Motor function was evaluated using the Basso, Beattie, Bresnahan scale. Spinal cord neuropathies and neuron apoptosis were observed by HE and TUNEL staining. The brain-derived neurotrophic factor (BDNF), Nogo-A, JAK2 and p-JAK2 protein levels were measured by western blot analysis. RESULTS NSCs+TMP significantly improved rat motor function, attenuated impaired spinal cords, and decreased cellular apoptosis, compared with NSCs therapy alone (P < 0.05). In addition, expression of BDNF protein was significantly higher in NSCs+TMP rats compared with other groups regardless of time postinjury (P < 0.05). The highest expression levels of Nogo-A protein were observed in the model group. The expression of p-JAK2 in the NSCs+TMP group was relatively lower than the model and NSCs groups (P < 0.05). CONCLUSIONS In rats with SCI, NSCs+TMP effectively improved motor function and offered spinal cord protection by increasing BDNF and decreasing Nogo-A levels, as well as inhibiting the JAK2/STAT3 signal transduction pathway, suggesting that TMP could be a useful agent in NSCs transplantation in the treatment of SCI.
Collapse
Affiliation(s)
- Haocong Zhang
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang
| | - Zijun Huang
- The Second Clinical College of Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Mingming Guo
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang
| | - Lingzhi Meng
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang
| | - Meihui Piao
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang
| | - Meng Zhang
- The Second Clinical College of Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Hailong Yu
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang
| |
Collapse
|
18
|
Li J, Wei J, Wan Y, Du X, Bai X, Li C, Lin Y, Liu Z, Zhou M, Zhong Z. TAT-modified tetramethylpyrazine-loaded nanoparticles for targeted treatment of spinal cord injury. J Control Release 2021; 335:103-116. [PMID: 34015402 DOI: 10.1016/j.jconrel.2021.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Tetramethylpyrazine (TMP) has been effectively used for treating spinal cord injury (SCI) due to its anti-inflammatory, antioxidant, and neuroprotective activity. However, its clinical application is limited due to poor water solubility and insufficient spinal cord targeting through the traditional dosage forms. Given that intravascular neutrophils are quickly recruited to the injury site as part of the inflammatory response in SCI, we conjugated the cell-penetrating HIV trans-activator of transcription (TAT) peptide to human serum albumin nanoparticles (NPs) to make a TMP delivery system (TAT-TMP-NPs) that could be internalized by neutrophils and delivered to SCI lesions. Results found that in SCI rats TAT-TMP-NPs promoted the recovery of locomotor function and the lesion area, while reducing the levels of inflammatory cytokines and oxidative stress-related factors. Safety evaluation and in vivo small-animal imaging showed that the cell-penetrating peptide TAT could enhance the uptake of TAT-TMP-NPs by neutrophils without being toxic to the body. TAT-TMP-NPs may overcome the poor water solubility and low bioavailability of TMP, showing promise for the clinical treatment of SCI.
Collapse
Affiliation(s)
- Jian Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; College of Pharmacy, Xi'an Medical University, Xi'an 710021, PR China
| | - Jun Wei
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yujie Wan
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xingjie Du
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaosheng Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhongbing Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
19
|
Simmons EC, Scholpa NE, Schnellmann RG. FDA-approved 5-HT 1F receptor agonist lasmiditan induces mitochondrial biogenesis and enhances locomotor and blood-spinal cord barrier recovery after spinal cord injury. Exp Neurol 2021; 341:113720. [PMID: 33848513 DOI: 10.1016/j.expneurol.2021.113720] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022]
Abstract
Vascular and mitochondrial dysfunction are well-established consequences of spinal cord injury (SCI). Evidence suggests mitigating these dysfunctions may be an effective approach in treating SCI. The goal of this study was to elucidate if mitochondrial biogenesis (MB) induction with a new, selective and FDA-approved 5-hydroxytryptamine receptor 1F (5-HT1F) receptor agonist, lasmiditan, can stimulate locomotor recovery and restoration of the blood-spinal cord barrier (BSCB) after SCI. Female C57BL/6 J mice were subjected to moderate SCI using a force-controlled impactor-induced contusion model followed by daily administration of lasmiditan (0.1 mg/kg, i.p.) beginning 1 h after injury. In the naïve spinal cord, electron microscopy revealed increased mitochondrial density and mitochondrial area, as well as enhanced mitochondrial DNA content. FCCP-uncoupled oxygen consumption rate (OCR), a functional marker of MB, was also increased in the naïve spinal cord following lasmiditan treatment. We observed disrupted mitochondrial DNA content, PGC-1α levels and FCCP-OCR in the injury site 3d after SCI. Lasmiditan treatment attenuated, and in some cases restored these deficits. Lasmiditan treatment also resulted in increased locomotor capability as early as 7d post-SCI, with treated mice reaching a Basso-Mouse Scale score of 3.3 by 21d, while vehicle-treated mice exhibited a score of 2.0. Integrity of the BSCB was assessed using Evans Blue dye extravasation. While SCI increased dye extravasation at 3d and 7d, dye accumulation in the spinal cord of lasmiditan-treated mice was attenuated 7d post-SCI, suggesting accelerated BSCB recovery. Finally, lasmiditan treatment resulted in decreased lesion volume and spared myelinated tissue 7d post-SCI. Collectively, these data reveal that 5-HT1F receptor agonist-induced MB using the FDA-approved drug lasmiditan may be an effective therapeutic strategy for the treatment of SCI.
Collapse
Affiliation(s)
- Epiphani C Simmons
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States of America; Department of Neurosciences, College of Medicine, University of Arizona, Tucson, AZ, United States of America.
| | - Natalie E Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States of America; Southern Arizona VA Health Care System, Tucson, AZ, United States of America.
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States of America; Department of Neurosciences, College of Medicine, University of Arizona, Tucson, AZ, United States of America; College of Pharmacy, University of Arizona, Tucson, AZ, United States of America; Southern Arizona VA Health Care System, Tucson, AZ, United States of America; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States of America; Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States of America.
| |
Collapse
|
20
|
UTX/KDM6A deletion promotes the recovery of spinal cord injury by epigenetically triggering intrinsic neural regeneration. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 20:337-349. [PMID: 33553483 PMCID: PMC7820127 DOI: 10.1016/j.omtm.2020.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Interrupted axons that fail to regenerate mainly cause poor recovery after spinal cord injury (SCI). How neurons epigenetically respond to injury determines the intrinsic growth ability of axons. However, the mechanism underlying epigenetic regulation of axonal regeneration post-SCI remains largely unknown. In this study, we elucidated the role of the epigenetic regulatory network involving ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX)/microRNA-24 (miR-24)/NeuroD1 in axonal regeneration and functional recovery in mice following SCI. Our results showed that UTX was significantly increased post-SCI and repressed axonal regeneration in vitro. However, downregulation of UTX remarkably promoted axonal regeneration. Furthermore, miR-24 was increased post-SCI and positively regulated by UTX. miR-24 also inhibited axonal regeneration. Chromatin immunoprecipitation (ChIP) indicated that UTX binds to the miR-24 promoter and regulates miR-24 expression. Genome sequencing and bioinformatics analysis suggested that NeuroD1 is a potential downstream target of UTX/miR-24. A dual-luciferase reporter assay indicated that miR-24 binds to NeuroD1; moreover, it represses axonal regeneration by negatively regulating the expression of NeuroD1 via modulation of microtubule stability. UTX deletion in vivo prominently promoted axonal regeneration and improved functional recovery post-SCI, and silencing NeuroD1 restored UTX function. Our findings indicate that UTX could be a potential target in SCI.
Collapse
|
21
|
Lu Y, Yang J, Wang X, Ma Z, Li S, Liu Z, Fan X. Research progress in use of traditional Chinese medicine for treatment of spinal cord injury. Biomed Pharmacother 2020; 127:110136. [PMID: 32335299 DOI: 10.1016/j.biopha.2020.110136] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious central nervous system disorder caused by trauma that has gradually become a major challenge in clinical medical research. As an important branch of worldwide medical research, traditional Chinese medicine (TCM) is rapidly moving towards a path of reform and innovation. Therefore, this paper systematically reviews research related to existing TCM treatments for SCI, with the aims of identifying deficits and shortcomings within the field, and proposing feasible alternative prospects. METHODS All data and conclusions in this paper were obtained from articles published by peers in relevant fields. PubMed, SciFinder, Google Scholar, Web of Science, and CNKI databases were searched for relevant articles. Results regarding TCM for SCI were identified and retrieved, then manually classified and selected for inclusion in this review. RESULTS The literature search identified a total of 652 articles regarding TCM for SCI. Twenty-eight treatments (16 active ingredients, nine herbs, and three compound prescriptions) were selected from these articles; the treatments have been used for the prevention and treatment of SCI. In general, these treatments involved antioxidative, anti-inflammatory, neuroprotective, and/or antiapoptotic effects of TCM compounds. CONCLUSIONS This paper showed that TCM treatments can serve as promising auxiliary therapies for functional recovery of patients with SCI. These findings will contribute to the development of diversified treatments for SCI.
Collapse
Affiliation(s)
- Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuexi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Sheng Li
- Lanzhou First People's Hospital, Lanzhou, Gansu 730000, China
| | - Zhaoyang Liu
- Department of Medical Imaging, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Xuegong Fan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
22
|
Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases. Exp Neurol 2020; 329:113309. [PMID: 32289315 DOI: 10.1016/j.expneurol.2020.113309] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 12/27/2022]
Abstract
Central nervous system (CNS) diseases, both traumatic and neurodegenerative, are characterized by impaired mitochondrial bioenergetics and often disturbed mitochondrial dynamics. The dysregulation observed in these pathologies leads to defective respiratory chain function and reduced ATP production, thereby promoting neuronal death. As such, attenuation of mitochondrial dysfunction through induction of mitochondrial biogenesis (MB) is a promising, though still underexplored, therapeutic strategy. MB is a multifaceted process involving the integration of highly regulated transcriptional events, lipid membrane and protein synthesis/assembly and replication of mtDNA. Several nuclear transcription factors promote the expression of genes involved in oxidative phosphorylation, mitochondrial import and export systems, antioxidant defense and mitochondrial gene transcription. Of these, the nuclear-encoded peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is the most commonly studied and is widely accepted as the 'master regulator' of MB. Several recent preclinical studies document that reestablishment of mitochondrial homeostasis through increased MB results in inhibited injury progression and increased functional recovery. This perspective will briefly review the role of mitochondrial dysfunction in the propagation of CNS diseases, while also describing current research strategies that mediate mitochondrial dysfunction and compounds that induce MB for the treatment of acute and chronic neuropathologies.
Collapse
|
23
|
Mohaghegh Shalmani L, Valian N, Pournajaf S, Abbaszadeh F, Dargahi L, Jorjani M. Combination therapy with astaxanthin and epidermal neural crest stem cells improves motor impairments and activates mitochondrial biogenesis in a rat model of spinal cord injury. Mitochondrion 2020; 52:125-134. [PMID: 32151747 DOI: 10.1016/j.mito.2020.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/23/2020] [Accepted: 03/04/2020] [Indexed: 12/26/2022]
Abstract
Spinal cord injury (SCI), a multifactorial disease, can lead to irreversible motor and sensory disabilities. Cell therapy in combination with pharmacological agents can be a promising approach to attenuate SCI damages. Epidermal neural crest stem cells (EPI-NCSCs) extracted from bulge hair follicle in adults are attractive candidates due to the possibility of autologous transplantation. This study evaluated the effect of EPI-NCSCs combined with astaxanthin (Ast), a potent antioxidant, on damages induced by SCI. Male rats were treated with Ast (0.2 mM) and EPI-NCSCs (106/10 μl PBS) alone and combined together after SCI contusion. Motor function was assessed by Basso, Beattie and Bresnahan (BBB) test on days 1, 3, 7, 14, 21, 28, 35 and 42 post-injury. Motor neurons number and myelin level were evaluated on days 14 and 42 using Nissl and Luxol Fast Blue staining. The gene expression of mitochondrial biogenesis involved factors (PGC1α, NRF1 and TFAM) was measured by qPCR. All treatments improved motor function, with the highest BBB score in Ast + Cell compared to Ast and Cell. Decreased motor neurons number and myelin level following SCI, were increased by Ast, Cell and Ast + Cell, but combination therapy significantly had a better effect. We observed reduction in PGC1α, NRF1, and TFAM expression in spinal tissue after SCI, and treatment with Cell and Ast + Cell significantly restored NRF1 and TFAM mRNA levels. These results suggested that Ast in combination with EPI-NCSCs has better effects on behavioral dysfunction, motor neuron loss and demyelination after SCI. These protective effects may be attributed to mitochondrial biogenesis activation.
Collapse
Affiliation(s)
- Leila Mohaghegh Shalmani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safura Pournajaf
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Jorjani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Simmons EC, Scholpa NE, Cleveland KH, Schnellmann RG. 5-hydroxytryptamine 1F Receptor Agonist Induces Mitochondrial Biogenesis and Promotes Recovery from Spinal Cord Injury. J Pharmacol Exp Ther 2020; 372:216-223. [PMID: 31776207 PMCID: PMC6978694 DOI: 10.1124/jpet.119.262410] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
Spinal cord injury (SCI) is characterized by vascular disruption leading to ischemia, decreased oxygen delivery, and loss of mitochondrial homeostasis. This mitochondrial dysfunction results in loss of cellular functions, calcium overload, and oxidative stress. Pharmacological induction of mitochondrial biogenesis (MB) may be an effective approach to treat SCI. LY344864, a 5-hydroxytryptamine 1F (5-HT1F) receptor agonist, is a potent inducer of MB in multiple organ systems. To assess the efficacy of LY344864-induced MB on recovery post-SCI, female mice were subjected to moderate force-controlled impactor-induced contusion SCI followed by daily LY344864 administration for 21 days. Decreased mitochondrial DNA and protein content was present in the injury site 3 days post-SCI. LY344864 treatment beginning 1 h after injury attenuated these decreases, indicating MB. Additionally, injured mice treated with LY344864 displayed decreased Evan's Blue dye accumulation in the spinal cord compared with vehicle-treated mice 7 days after injury, suggesting restoration of vascular integrity. LY344864 also increased locomotor capability, with treated mice reaching a Basso-Mouse Scale score of 3.4 by 21 days, whereas vehicle-treated mice exhibited a score of 1.9. Importantly, knockout of the 5-HT1F receptor blocked LY344864-induced recovery. Remarkably, a similar degree of locomotor restoration was observed when treatment initiation was delayed until 8 h after injury. Furthermore, cross-sectional analysis of the spinal cord 21 days after injury revealed decreased lesion volume with delayed LY344864 treatment initiation, emphasizing the potential clinical applicability of this therapeutic approach. These data provide evidence that induction of MB via 5-HT1F receptor agonism may be a promising strategy for the treatment of SCI. SIGNIFICANCE STATEMENT: Treatment with LY344864 induces mitochondrial biogenesis in both the naive and injured mouse spinal cord. In addition, treatment with LY344864 beginning after impactor-induced contusion spinal cord injury improves mitochondrial homeostasis, blood-spinal cord barrier integrity, and locomotor function within 7 days. Importantly, similar locomotor results are observed whether treatment is initiated at 1 h after injury or 8 h after injury. These data indicate the potential for pharmacological induction of mitochondrial biogenesis through a 5-hydroxytryptamine 1F agonist as a novel therapeutic approach for spinal cord injury.
Collapse
Affiliation(s)
- Epiphani C Simmons
- Department of Pharmacology and Toxicology, College of Pharmacy (E.C.S., N.E.S., K.H.C., R.G.S.), Department of Neurosciences, College of Medicine (E.C.S., R.G.S.), Southwest Environmental Health Science Center (R.G.S.), and Center for Innovation in Brain Science (R.G.S.), University of Arizona, Tucson, Arizona; and Southern Arizona VA Health Care System, Tucson, Arizona (R.G.S.)
| | - Natalie E Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy (E.C.S., N.E.S., K.H.C., R.G.S.), Department of Neurosciences, College of Medicine (E.C.S., R.G.S.), Southwest Environmental Health Science Center (R.G.S.), and Center for Innovation in Brain Science (R.G.S.), University of Arizona, Tucson, Arizona; and Southern Arizona VA Health Care System, Tucson, Arizona (R.G.S.)
| | - Kristan H Cleveland
- Department of Pharmacology and Toxicology, College of Pharmacy (E.C.S., N.E.S., K.H.C., R.G.S.), Department of Neurosciences, College of Medicine (E.C.S., R.G.S.), Southwest Environmental Health Science Center (R.G.S.), and Center for Innovation in Brain Science (R.G.S.), University of Arizona, Tucson, Arizona; and Southern Arizona VA Health Care System, Tucson, Arizona (R.G.S.)
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy (E.C.S., N.E.S., K.H.C., R.G.S.), Department of Neurosciences, College of Medicine (E.C.S., R.G.S.), Southwest Environmental Health Science Center (R.G.S.), and Center for Innovation in Brain Science (R.G.S.), University of Arizona, Tucson, Arizona; and Southern Arizona VA Health Care System, Tucson, Arizona (R.G.S.)
| |
Collapse
|
25
|
The Importance of Natural Antioxidants in the Treatment of Spinal Cord Injury in Animal Models: An Overview. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3642491. [PMID: 32676138 PMCID: PMC7336207 DOI: 10.1155/2019/3642491] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023]
Abstract
Patients with spinal cord injury (SCI) face devastating health, social, and financial consequences, as well as their families and caregivers. Reducing the levels of reactive oxygen species (ROS) and oxidative stress are essential strategies for SCI treatment. Some compounds from traditional medicine could be useful to decrease ROS generated after SCI. This review is aimed at highlighting the importance of some natural compounds with antioxidant capacity used in traditional medicine to treat traumatic SCI. An electronic search of published articles describing animal models of SCI treated with natural compounds from traditional medicine was conducted using the following terms: Spinal Cord Injuries (MeSH terms) AND Models, Animal (MeSH terms) AND [Reactive Oxygen Species (MeSH terms) AND/OR Oxidative Stress (MeSH term)] AND Medicine, Traditional (MeSH terms). Articles reported from 2010 to 2018 were included. The results were further screened by title and abstract for studies performed in rats, mice, and nonhuman primates. The effects of these natural compounds are discussed, including their antioxidant, anti-inflammatory, and antiapoptotic properties. Moreover, the antioxidant properties of natural compounds were emphasized since oxidative stress has a fundamental role in the generation and progression of several pathologies of the nervous system. The use of these compounds diminishes toxic effects due to their high antioxidant capacity. These compounds have been tested in animal models with promising results; however, no clinical studies have been conducted in humans. Further research of these natural compounds is crucial to a better understanding of their effects in patients with SCI.
Collapse
|
26
|
Chen Y, Xu R. Context-sensitive network analysis identifies food metabolites associated with Alzheimer's disease: an exploratory study. BMC Med Genomics 2019; 12:17. [PMID: 30704467 PMCID: PMC6357669 DOI: 10.1186/s12920-018-0459-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Diet plays an important role in Alzheimer's disease (AD) initiation, progression and outcomes. Previous studies have shown individual food-derived substances may have neuroprotective or neurotoxic effects. However, few works systematically investigate the role of food and food-derived metabolites on the development and progression of AD. METHODS In this study, we systematically investigated 7569 metabolites and identified AD-associated food metabolites using a novel network-based approach. We constructed a context-sensitive network to integrate heterogeneous chemical and genetic data, and to model context-specific inter-relationships among foods, metabolites, human genes and AD. RESULTS Our metabolite prioritization algorithm ranked 59 known AD-associated food metabolites within top 4.9%, which is significantly higher than random expectation. Interestingly, a few top-ranked food metabolites were specifically enriched in herbs and spices. Pathway enrichment analysis shows that these top-ranked herb-and-spice metabolites share many common pathways with AD, including the amyloid processing pathway, which is considered as a hallmark in AD-affected brains and has pathological roles in AD development. CONCLUSIONS Our study represents the first unbiased systems approach to characterizing the effects of food and food-derived metabolites in AD pathogenesis. Our ranking approach prioritizes the known AD-associated food metabolites, and identifies interesting relationships between AD and the food group "herbs and spices". Overall, our study provides intriguing evidence for the role of diet, as an important environmental factor, in AD etiology.
Collapse
Affiliation(s)
- Yang Chen
- Department of Population and Quantitative Health Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Rong Xu
- Department of Population and Quantitative Health Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
27
|
Scholpa NE, Williams H, Wang W, Corum D, Narang A, Tomlinson S, Sullivan PG, Rabchevsky AG, Schnellmann RG. Pharmacological Stimulation of Mitochondrial Biogenesis Using the Food and Drug Administration-Approved β 2-Adrenoreceptor Agonist Formoterol for the Treatment of Spinal Cord Injury. J Neurotrauma 2018; 36:962-972. [PMID: 30280980 DOI: 10.1089/neu.2018.5669] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A hallmark of the progressive cascade of damage referred to as secondary spinal cord injury (SCI) is vascular disruption resulting in decreased oxygen delivery and loss of mitochondria homeostasis. While therapeutics targeting restoration of single facets of mitochondrial function have proven largely ineffective clinically post-SCI, comprehensively addressing mitochondrial function via pharmacological stimulation of mitochondrial biogenesis (MB) is an underexplored strategy. This study examined the effects of formoterol, a mitochondrial biogenic Food and Drug Administration-approved selective and potent β2-adrenoreceptor (ADRB2) agonist, on recovery from SCI in mice. Female C57BL/6 mice underwent moderate SCI using a force-controlled impactor-induced contusion model, followed by daily formoterol intraperitoneal administration (0.1 mg/kg) beginning 1 h post-SCI. The SCI resulted in decreased mitochondrial protein expression, including PGC-1α, in the injury and peri-injury sites as early as 3 days post-injury. Formoterol treatment attenuated this decrease in PGC-1α, indicating enhanced MB, and restored downstream mitochondrial protein expression to that of controls by 15 days. Formoterol-treated mice also exhibited less histological damage than vehicle-treated mice 3 days after injury-namely, decreased lesion volume and increased white and gray matter sparing in regions rostral and caudal to the injury epicenter. Importantly, locomotor capability of formoterol-treated mice was greater than vehicle-treated mice by 7 days, reaching a Basso Mouse Scale score two points greater than that of vehicle-treated SCI mice by 15 days. Interestingly, similar locomotor restoration was observed when initiation of treatment was delayed until 8 h post-injury. These data provide evidence of ADRB2-mediated MB as a therapeutic approach for the management of SCI.
Collapse
Affiliation(s)
- Natalie E Scholpa
- 1 Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona.,2 Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Hannah Williams
- 3 Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center, Lexington, Kentucky
| | - Wenxue Wang
- 4 Neuroscience Institute, Medical University of South Carolina, Charleston, South Carolina.,5 Ralph H. Johnsons Veteran Affairs Medical Center, Charleston, South Carolina
| | - Daniel Corum
- 2 Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Aarti Narang
- 4 Neuroscience Institute, Medical University of South Carolina, Charleston, South Carolina.,5 Ralph H. Johnsons Veteran Affairs Medical Center, Charleston, South Carolina
| | - Stephen Tomlinson
- 4 Neuroscience Institute, Medical University of South Carolina, Charleston, South Carolina.,5 Ralph H. Johnsons Veteran Affairs Medical Center, Charleston, South Carolina.,6 Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Patrick G Sullivan
- 7 Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center, Lexington, Kentucky
| | - Alexander G Rabchevsky
- 3 Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center, Lexington, Kentucky
| | - Rick G Schnellmann
- 1 Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona.,8 Southern Arizona VA Health Care System, Tucson, Arizona.,9 Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona.,10 Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona
| |
Collapse
|
28
|
Liu Y, Li X, Jiang S, Ge Q. Tetramethylpyrazine protects against high glucose-induced vascular smooth muscle cell injury through inhibiting the phosphorylation of JNK, p38MAPK, and ERK. J Int Med Res 2018; 46:3318-3326. [PMID: 29996693 PMCID: PMC6134667 DOI: 10.1177/0300060518781705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objectives High glucose-induced alterations in vascular smooth muscle cell behavior have not been fully characterized. We explored the protective mechanism of tetramethylpyrazine (TMP) on rat smooth muscle cell injury induced by high glucose via the mitogen-activated protein kinase (MAPK) signaling pathway. Methods Vascular smooth muscle cells (VSMCs) isolated from rat thoracic aortas were divided into control, high glucose (HG), and pre-hatching TMP groups. The effect of different glucose concentrations on cell viability and on the migration activity of VSMC cells was examined using MTT analysis and the wound scratch assay, respectively. Superoxide dismutase (SOD) and malondialdehyde (MDA) levels were measured using enzyme-linked immunoassays. The levels of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38MAPK, and MAPK phosphorylation were assessed by western blotting. Results Cell proliferation was remarkably increased by increased glucose concentrations. Compared with the HG group, the migratory ability of VSMC cells was reduced in the presence of TMP. TMP also decreased the MDA content in the supernatant, but significantly increased the SOD activity. Western blotting showed that TMP inhibited the phosphorylation of JNK, p38MAPK, and ERK. Conclusions TMP appears to protect against HG-induced VSMC injury through inhibiting reactive oxygen species overproduction, and p38MAPK/JNK/ERK phosphorylation.
Collapse
Affiliation(s)
- Yutao Liu
- 1 Department of Pharmacy, Yantaishan Hospital, Yantai, Shandong, China
| | - Xu Li
- 2 Department of Pharmacy, Yantai Hospital of Infectious Diseases, Yantai, Shandong, China
| | - Shanling Jiang
- 3 Department of Pharmacy, The Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Quanli Ge
- 1 Department of Pharmacy, Yantaishan Hospital, Yantai, Shandong, China
| |
Collapse
|
29
|
Shao Z, Wu P, Wang X, Jin M, Liu S, Ma X, Shi H. Tetramethylpyrazine Protects Against Early Brain Injury and Inhibits the PERK/Akt Pathway in a Rat Model of Subarachnoid Hemorrhage. Neurochem Res 2018; 43:1650-1659. [PMID: 29951731 DOI: 10.1007/s11064-018-2581-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/25/2022]
Abstract
Neuronal apoptosis is a potentially fatal pathological process that occurs in early brain injury (EBI) after subarachnoid hemorrhage (SAH). There is an urgent need to identify effective therapeutics to alleviate neuronal apoptosis. Tetramethylpyrazine (TMP), as an important component of the Chinese traditional medicinal herb Ligusticum wallichii, has been widely used in China to treat cerebral ischemic injury and confer neuroprotection. In the present work, we investigate whether TMP can reduce EBI following SAH in rats, specifically via inactivating the PERK/Akt signaling cascade. One hundred twenty-five male Sprague-Dawley rats were used in the present study. TMP was administered by intravenous (i.v.) injection, and the Akt inhibitor MK2206 was injected intracerebroventricularly (i.c.v.). SAH grade, neurological scores, and brain water content were measured 24 h after SAH. Neuronal apoptosis was visualized by Fluoro-Jade C (FJC) staining. Western blotting was used to measure the levels of PERK, p-PERK, eIF2α, p-eIF2α, Akt, p-Akt, Bcl-2, Bax, and cleaved caspase-3. Our results showed that TMP effectively reduced neuronal apoptosis and improved neurobehavioral deficits 24 h after SAH. Administration of TMP reduced the abundance of p-PERK and p-eIF2α. In addition, TMP increased the p-Akt level and the Bcl-2/Bax ratio and decreased the level of cleaved caspase-3. The selective Akt inhibitor MK2206 abolished the anti-apoptotic effect of TMP at 24 h after SAH. Collectively, these results indicate that Akt-related anti-apoptosis through the PERK pathway is a major, potent mechanism of EBI. Further investigation of this pathway may provide a basis for the development of TMP as a clinical treatment.
Collapse
Affiliation(s)
- Zhengkai Shao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Xuefeng Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Meishan Jin
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Shuang Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Xudong Ma
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
30
|
Gao L, Xu W, Fan S, Li T, Zhao T, Ying G, Zheng J, Li J, Zhang Z, Yan F, Zhu Y, Chen G. MANF attenuates neuronal apoptosis and promotes behavioral recovery via Akt/MDM-2/p53 pathway after traumatic spinal cord injury in rats. Biofactors 2018; 44:369-386. [PMID: 29797541 DOI: 10.1002/biof.1433] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/31/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
Abstract
The aim of this study was to investigate the potential effect and mechanism of action of MANF in attenuating neuronal apoptosis following t-SCI. A clip compressive model was used to induce a crush injury of the spinal cord in a total of 230 rats. The Basso, Beattie, and Bresnahan (BBB) score, spinal cord water content, and blood spinal cord barrier (BSCB) permeability were evaluated. The expression levels of MANF and its downstream proteins were examined by western blotting. Immunofluorescence staining of MANF, NeuN, GFAP, Iba-1, cleaved caspase-3, and TUNEL staining were also performed. Cells were counted in six randomly selected fields in the gray matter regions of the sections from two spinal cord sites (2 mm rostral and caudal to the epicenter of the injury) per sample. A cell-based mechanical injury model was also conducted using SH-SY5Y cells. Cell apoptosis and viability were assessed by flow cytometry, an MTT assay, and trypan blue staining. Subcellular structures were observed by transmission electron microscopy. MANF was mainly expressed in neurons. The expression levels of MANF, and its downstream target, p-Akt, were gradually increased and after t-SCI. Treatment with MANF increased Bcl-2 and decreased Bax and CC-3 levels; these effects were reversed on treatment with MK2206. The BBB score, spinal cord water content, and BSCB destruction were also ameliorated by MANF treatment. MANF decreases neuronal apoptosis and improves neurological function through Akt/MDM-2/p53 pathway after t-SCI. Therefore, MANF might be a potential treatment for patients with t-SCI.© 2018 BioFactors, 2018.
Collapse
Affiliation(s)
- Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuangbo Fan
- Department of Neurosurgery, Ningbo Zhenhai Longsai Hospital, Zhenhai District, Ningbo, Zhejiang, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tengfei Zhao
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guangyu Ying
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhongyuan Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongjian Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
Fang M, Mei X, Yao H, Zhang T, Zhang T, Lu N, Liu Y, Xu W, Wan C. β-elemene enhances anticancer and anti-metastatic effects of osteosarcoma of ligustrazine in vitro and in vivo. Oncol Lett 2018; 15:3957-3964. [PMID: 29467906 DOI: 10.3892/ol.2018.7788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 09/27/2017] [Indexed: 02/05/2023] Open
Abstract
The present study aimed to determine the anticancer effects of the combination of β-elemene and ligustrazine in vitro as well as in in vivo. Following evaluation using an MTT assay, β-elemene, ligustrazine and the β-elemene-ligustrazine combination treatments all exhibited the capacity to inhibit the growth of OS-732 cells, with inhibitory rates of 43.3, 54.4, and 75.0%, respectively. Using a flow cytometry assay, it was determined that the β-elemene-ligustrazine combination possessed the highest apoptotic rate (30.6%). Furthermore, β-elemene-ligustrazine combination treatment resulted in the highest downregulation of G protein-coupled receptor 124, vascular endothelial growth factor, matrix metallopeptidase (MMP)-2 and MMP-9 mRNA, and protein expression levels. In addition, the combined treatment led to an increase in the mRNA and protein expression of endostatin, TIMP metallopeptidase inhibitor (TIMP)-1 and TIMP-2 in OS-732 cells. Additionally, β-elemene-ligustrazine caused a decrease in nuclear factor-κB, interleukin-8, C-X-C motif chemokine receptor 4 and urokinase-type plasminogen activator mRNA expression, as well as an increase in caspase-3, caspase-8, and caspase-9 mRNA expression. In vivo, the β-elemene-ligustrazine combination was able to reduce the weight and the bulk of the tumor in BALB/c-nu/nu nude mice compared with any other group. All the results described above regarding changes to mRNA and protein expression were further confirmed in vivo in the tumor tissue of mice. The results of the present study have suggested that the combination of β-elemene-ligustrazine exhibits greater anticancer effects compared with β-elemene- or ligustrazine-alone treatment.
Collapse
Affiliation(s)
- Min Fang
- Department of Trauma, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Xiaolong Mei
- Department of Trauma, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Hui Yao
- Department of Trauma, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Tao Zhang
- Department of Trauma, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Tao Zhang
- Department of Trauma, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Na Lu
- Department of Trauma, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Yanshi Liu
- Department of Clinical Medicine, Tianjin Medical University, Tianjin 300270, P.R. China
| | - Wenyue Xu
- Department of Ultrasonography, Tianjin Liulin Hospital, Tianjin 300222, P.R. China
| | - Chunyou Wan
- Department of Trauma, Tianjin Hospital, Tianjin 300211, P.R. China
| |
Collapse
|
32
|
Scholpa NE, Schnellmann RG. Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target. J Pharmacol Exp Ther 2017; 363:303-313. [PMID: 28935700 PMCID: PMC5676296 DOI: 10.1124/jpet.117.244806] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) is characterized by an initial trauma followed by a progressive cascade of damage referred to as secondary injury. A hallmark of secondary injury is vascular disruption leading to vasoconstriction and decreased oxygen delivery, which directly reduces the ability of mitochondria to maintain homeostasis and leads to loss of ATP-dependent cellular functions, calcium overload, excitotoxicity, and oxidative stress, further exacerbating injury. Restoration of mitochondria dysfunction during the acute phases of secondary injury after SCI represents a potentially effective therapeutic strategy. This review discusses the past and present pharmacological options for the treatment of SCI as well as current research on mitochondria-targeted approaches. Increased antioxidant activity, inhibition of the mitochondrial permeability transition, alternate energy sources, and manipulation of mitochondrial morphology are among the strategies under investigation. Unfortunately, many of these tactics address single aspects of mitochondrial dysfunction, ultimately proving largely ineffective. Therefore, this review also examines the unexplored therapeutic efficacy of pharmacological enhancement of mitochondrial biogenesis, which has the potential to more comprehensively improve mitochondrial function after SCI.
Collapse
Affiliation(s)
- Natalie E Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (N.E.S., R.G.S.); and Southern Arizona VA Health Care System, Tucson, Arizona (R.G.S.)
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (N.E.S., R.G.S.); and Southern Arizona VA Health Care System, Tucson, Arizona (R.G.S.)
| |
Collapse
|
33
|
Fan Y, Wu Y. Tetramethylpyrazine alleviates neural apoptosis in injured spinal cord via the downregulation of miR-214-3p. Biomed Pharmacother 2017; 94:827-833. [PMID: 28802236 DOI: 10.1016/j.biopha.2017.07.162] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To evaluate the regulation effect of tetramethylpyrazine on microRNA-214-3p (miR-214-3p) in the spinal cord injury (SCI) rats model and to elucidate the neuroprotective effect and its mechanism of tetramethylpyrazine after SCI. METHODS Ten Sprague-Dawley rats were used to establish the SCI rats model, and the expression levels of miR-214-3p and Bcl2l2 were detected by qRT-PCR and Western blotting at 7 days post-SCI. BBB scoring test was performed to evaluate the motor functional recovery at 21 days post-SCI. Twenty-five SCI rats were randomly assigned to five groups: SCI negative control (NC) group, tetramethylpyrazine (TMP) group, miR-214-3p agomir group, TMP/agomir group and the sham group. The rats were given a two-week injection treatment with or without TMP. The expression levels of miR-214-3p, Bcl2l2, Bax and caspase 3 were measured by qRT-PCR and Western blotting at 7 days after injection. Terminal deoxynucleotidyl transferase (TdT) -mediated dUTP Nick-End Labeling (TUNEL) assay was performed to detect cell apoptosis in vivo. Luciferase activity was measured to verify the miR-214-3p target site in the 3'-UTR of Bcl2l2 mRNA. TMP treatment was also performed to injure primary cultured neuron cells and cell apoptosis in vitro was determined by flow cytometry. RESULTS MiR-214-3p was up-regulated while anti-apoptotic protein Bcl2l2 was downregulated post-SCI. TMP inhibited the apoptosis in vivo via decreasing the levels of miR-214-3p and increasing the expression level of Bcl2l2. A potential target site of miR-214-3p in the 3'UTR of Bcl2l2 mRNA was identified and validated by luciferase reporter assay. Furthermore, TMP could effectively inhibit neuron cells apoptosis in vitro. CONCLUSIONS TMP alleviated neural apoptosis in injured spinal cord via down-regulation of miR-214-3p.
Collapse
Affiliation(s)
- Yuanzhi Fan
- Department of Acupuncture, Tuina and Traumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yaochi Wu
- Department of Acupuncture, Tuina and Traumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
34
|
Jia RB, Guo WL, Zhou WB, Jiang YJ, Zhu FF, Chen JH, Li Y, Liu B, Chen SJ, Chen JC, Ni L, Rao PF, Lv XC. Screening and identification ofMonacusstrain with high TMP production and statistical optimization of its culture medium composition and liquid state fermentation conditions using response surface methodology (RSM). BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1335176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Rui-Bo Jia
- College of Food Science, Department of Food Nutrition, Fujian Agriculture and Forestry University, Fuzhou, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei-Ling Guo
- College of Food Science, Department of Food Nutrition, Fujian Agriculture and Forestry University, Fuzhou, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wen-Bin Zhou
- College of Food Science, Department of Food Nutrition, Fujian Agriculture and Forestry University, Fuzhou, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya-Jun Jiang
- College of Food Science, Department of Food Nutrition, Fujian Agriculture and Forestry University, Fuzhou, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng-Feng Zhu
- College of Food Science, Department of Food Nutrition, Fujian Agriculture and Forestry University, Fuzhou, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing-Hao Chen
- College of Food Science, Department of Food Nutrition, Fujian Agriculture and Forestry University, Fuzhou, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Li
- College of Food Science, Department of Food Nutrition, Fujian Agriculture and Forestry University, Fuzhou, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bin Liu
- College of Food Science, Department of Food Nutrition, Fujian Agriculture and Forestry University, Fuzhou, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shao-Jun Chen
- College of Food Science, Department of Food Nutrition, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Cheng Chen
- College of Food Science, Department of Food Nutrition, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Ni
- College of Biological Science and Technology, Department of Food Science and Engineering, Fuzhou University, Fuzhou, China
| | - Ping-Fan Rao
- College of Biological Science and Technology, Department of Food Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xu-Cong Lv
- College of Food Science, Department of Food Nutrition, Fujian Agriculture and Forestry University, Fuzhou, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Biological Science and Technology, Department of Food Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
35
|
Lentivirus-mediated PGC-1α overexpression protects against traumatic spinal cord injury in rats. Neuroscience 2016; 328:40-9. [DOI: 10.1016/j.neuroscience.2016.04.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 11/17/2022]
|
36
|
Liu D, Jiang T, Cai W, Chen J, Zhang H, Hietala S, Santos HA, Yin G, Fan J. An In Situ Gelling Drug Delivery System for Improved Recovery after Spinal Cord Injury. Adv Healthc Mater 2016; 5:1513-21. [PMID: 27113454 DOI: 10.1002/adhm.201600055] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/02/2016] [Indexed: 12/11/2022]
Abstract
Therapeutic strategies for the spinal cord injury (SCI) are limited by the current available drug delivery techniques. Here, an in situ gelling drug delivery system (DDS), composed of a Poloxamer-407, a 188 mixture-based thermoresponsive hydrogel matrix and, an incorporated therapeutic compound (monosialoganglioside, GM1), is developed for SCI therapy. A low-thoracic hemisection in rats is used as SCI model to evaluate therapeutic efficiency. The GM1-incorporating Poloxamer-407 and 188 polymer solution is converted to a hydrogel (GM1-hydrogel) upon instillation to the injured spinal cord, due to the increased temperature. At body temperature, the thermoresponsive hydrogel prolongs the release of GM1 for about 1 month, due to the superposition of dissolution and swelling (anomalous transport) of the hydrogel matrix. The sustained release of the GM1-hydrogel enables the prolonged residence time of GM1 at the injured spinal cord, decreases the frequency of administration and, consequently, may improve patient compliance. After SCI, the administration of GM1-hydrogel to the lesion site inhibits the apoptotic cell death and glial scar formation, enhances the neuron regeneration, provides neuroprotection to the injured spinal cord, and improves the locomotor recovery. Overall, this study opens future perspectives for the treatment of SCI with a prolonged drug release DDS.
Collapse
Affiliation(s)
- Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki FI‐00014 Helsinki Finland
| | - Tao Jiang
- Department of Orthopaedics The First Affiliated Hospital of Nanjing Medical University Jiangsu 210029 China
| | - Weihua Cai
- Department of Orthopaedics The First Affiliated Hospital of Nanjing Medical University Jiangsu 210029 China
| | - Jian Chen
- Department of Orthopaedics The First Affiliated Hospital of Nanjing Medical University Jiangsu 210029 China
| | - Hongbo Zhang
- Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki FI‐00014 Helsinki Finland
| | - Sami Hietala
- Laboratory of Polymer Chemistry Department of Chemistry University of Helsinki FI‐00014 Helsinki Finland
| | - Hélder A. Santos
- Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki FI‐00014 Helsinki Finland
| | - Guoyong Yin
- Department of Orthopaedics The First Affiliated Hospital of Nanjing Medical University Jiangsu 210029 China
| | - Jin Fan
- Department of Orthopaedics The First Affiliated Hospital of Nanjing Medical University Jiangsu 210029 China
| |
Collapse
|
37
|
Wu J, Maoqiang L, Fan H, Zhenyu B, Qifang H, Xuepeng W, Liulong Z. Rutin attenuates neuroinflammation in spinal cord injury rats. J Surg Res 2016; 203:331-7. [DOI: 10.1016/j.jss.2016.02.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/22/2016] [Accepted: 02/26/2016] [Indexed: 01/09/2023]
|
38
|
Dopamine D1 Receptor Agonist A-68930 Inhibits NLRP3 Inflammasome Activation, Controls Inflammation, and Alleviates Histopathology in a Rat Model of Spinal Cord Injury. Spine (Phila Pa 1976) 2016; 41:E330-4. [PMID: 26966979 DOI: 10.1097/brs.0000000000001287] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A randomized experimental study. OBJECTIVE The aim of this study was to investigate the therapeutic efficacy and molecular mechanisms of dopamine D1 receptor agonist A-68930 in spinal cord injury (SCI) rats. SUMMARY OF BACKGROUND DATA The inflammation induced by SCI includes maturation and secretion of pro-inflammatory cytokines interleukin (IL)-1β and IL-18 mediated by nucleotide-binding domain -like receptor protein 3 (NLRP3) inflammasome. Dopamine D1 receptor agonist A-68930 has been reported to exert neuroprotective effect via suppressing NLRP3 inflammasome activation in some central nervous injury models. However, whether A-68930 can exert nueroprotection in rat SCI models through inhibition of NLRP3 inflammasome activation has yet to be investigated. METHODS Eighty female Sprague-Dawley rats were randomly divided into 4 groups: sham group, SCI group, SCI + Vehicle (Veh) group, SCI + A-68930 group. The influences of A-68930 on the proinflammatory cytokines levels, histological changes, and locomotion scale were estimated. RESULTS SCI significantly promoted NLRP3 inflammasome activation and increased proinflammatory cytokines productions in SCI group as compared with sham group. A-68930 administration significantly inhibited NLRP3 inflammasome activation and reduced inflammatory cytokines levels. Moreover, A-68930 administration attenuated histopathology and promoted locomotion recovery. CONCLUSION A-68930 can attenuate tissue damage and improve neurological function recovery, and the mechanism may be related to the inhibition of NLRP3 inflammasome activation.
Collapse
|
39
|
Quercetin suppresses NLRP3 inflammasome activation and attenuates histopathology in a rat model of spinal cord injury. Spinal Cord 2016; 54:592-6. [DOI: 10.1038/sc.2015.227] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/28/2015] [Accepted: 11/21/2015] [Indexed: 12/14/2022]
|