1
|
Dos Santos GRO, Cararo-Lopes MM, Possebom IR, de Sá Lima L, Scavone C, Kawamoto EM. Sex-dependent changes in AMPAR expression and Na, K-ATPase activity in the cerebellum and hippocampus of α-Klotho-Hypomorphic mice. Neuropharmacology 2024; 258:110097. [PMID: 39094831 DOI: 10.1016/j.neuropharm.2024.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Aging is characterized by a functional decline in several physiological systems. α-Klotho-hypomorphic mice (Kl-/-) exhibit accelerated aging and cognitive decline. We evaluated whether male and female α-Klotho-hypomorphic mice show changes in the expression of synaptic proteins, N-methyl-d-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits, postsynaptic density protein 95 (PSD-95), synaptophysin and synapsin, and the activity of Na+, K+-ATPase (NaK) isoforms in the cerebellum and hippocampus. In this study, we demonstrated that in the cerebellum, Kl-/- male mice have reduced expression of GluA1 (AMPA) compared to wild-type (Kl+/+) males and Kl-/- females. Also, Kl-/- male and female mice show reduced ɑ2/ɑ3-NaK and Mg2+-ATPase activities in the cerebellum, respectively, and sex-based differences in NaK and Mg2+-ATPase activities in both the regions. Our findings suggest that α-Klotho could influence the expression of AMPAR and the activity of NaK isoforms in the cerebellum in a sex-dependent manner, and these changes may contribute, in part, to cognitive decline.
Collapse
Affiliation(s)
| | - Marina Minto Cararo-Lopes
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso Do Sul, 79070-900, Campo Grande, MS, Brazil
| | - Isabela Ribeiro Possebom
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Larissa de Sá Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Elisa Mitiko Kawamoto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Benazzato C, Lojudice F, Pöehlchen F, Leite PEC, Manucci AC, Van der Linden V, Jungmann P, Sogayar MC, Bruni-Cardoso A, Russo FB, Beltrão-Braga P. Zika virus vertical transmission induces neuroinflammation and synapse impairment in brain cells derived from children born with Congenital Zika Syndrome. Sci Rep 2024; 14:18002. [PMID: 39097642 PMCID: PMC11297915 DOI: 10.1038/s41598-024-65392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/18/2024] [Indexed: 08/05/2024] Open
Abstract
Zika virus (ZIKV) infection was first reported in 2015 in Brazil as causing microcephaly and other developmental abnormalities in newborns, leading to the identification of Congenital Zika Syndrome (CZS). Viral infections have been considered an environmental risk factor for neurodevelopmental disorders outcome, such as Autism Spectrum Disorder (ASD). Moreover, not only the infection per se, but maternal immune system activation during pregnancy, has been linked to fetal neurodevelopmental disorders. To understand the impact of ZIKV vertical infection on brain development, we derived induced pluripotent stem cells (iPSC) from Brazilian children born with CZS, some of the patients also being diagnosed with ASD. Comparing iPSC-derived neurons from CZS with a control group, we found lower levels of pre- and postsynaptic proteins and reduced functional synapses by puncta co-localization. Furthermore, neurons and astrocytes derived from the CZS group showed decreased glutamate levels. Additionally, the CZS group exhibited elevated levels of cytokine production, one of which being IL-6, already associated with the ASD phenotype. These preliminary findings suggest that ZIKV vertical infection may cause long-lasting disruptions in brain development during fetal stages, even in the absence of the virus after birth. These disruptions could contribute to neurodevelopmental disorders manifestations such as ASD. Our study contributes with novel knowledge of the CZS outcomes and paves the way for clinical validation and the development of potential interventions to mitigate the impact of ZIKV vertical infection on neurodevelopment.
Collapse
Affiliation(s)
- Cecilia Benazzato
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, Av. Prof Lineu Prestes, 1374, 2Nd Floor, Room 235, São Paulo, SP, 05508-000, Brazil
| | - Fernando Lojudice
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo-SP, 01246-903, Brazil
| | - Felizia Pöehlchen
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, Av. Prof Lineu Prestes, 1374, 2Nd Floor, Room 235, São Paulo, SP, 05508-000, Brazil
- Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Paulo Emílio Corrêa Leite
- Clinical Research Unit of the Antonio Pedro Hospital, Federal Fluminense University, Rio de Janeiro, 24220-900, Brazil
| | - Antonio Carlos Manucci
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | | | - Patricia Jungmann
- Pathology Department, University of Pernambuco, Recife, 50670-901, Brazil
| | - Mari C Sogayar
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo-SP, 01246-903, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Alexandre Bruni-Cardoso
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Fabiele B Russo
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, Av. Prof Lineu Prestes, 1374, 2Nd Floor, Room 235, São Paulo, SP, 05508-000, Brazil.
| | - Patricia Beltrão-Braga
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, Av. Prof Lineu Prestes, 1374, 2Nd Floor, Room 235, São Paulo, SP, 05508-000, Brazil.
- Institute Pasteur of São Paulo, Av. Prof. Lucio Martins Rodrigues 370, A-Building, 4Th Floor, São Paulo-SP, 05508-020, Brazil.
| |
Collapse
|
3
|
Gao R, Ali T, Liu Z, Li A, He K, Yang C, Feng J, Li S. NMDAR (2C) deletion in astrocytes relieved LPS-induced neuroinflammation and depression. Int Immunopharmacol 2024; 132:111964. [PMID: 38603856 DOI: 10.1016/j.intimp.2024.111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
The link between neuroinflammation and depression is a subject of growing interest in neuroscience and psychiatry; meanwhile, the precise mechanisms are still being unrevealed. However, glial cell activation, together with cytokine level elevation, suggests a connection between neuroinflammation and the development or exacerbation of depression. Glial cells (astrocytes) communicate with neurons via their extracellular neurotransmitter receptors, including glutamate receptors NMDARs. However, these receptor roles are controversial and enigmatic in neurological disorders, including depression. Therefore, we hypothesized whether NMDAR subnit NR2C deletion in the astrocytes exhibited anti-depressive effects concurrent with neuroinflammation prevention. To assess, we prepared astrocytic-NR2C knockout mice (G-2C: GFAPCre+Grin2Cflox/flox), followed by LPS administration, behavior tests, and biochemical analysis. Stimulatingly, astrocytic-NR2C knockout mice (G-2C) did not display depressive-like behaviors, neuroinflammation, and synaptic deficits upon LPS treatment. PI3K was impaired upon LPS administration in control mice (Grin2Cflox/flox); however, they were intact in the hippocampus of LPS-treated G-2C mice. Further, PI3K activation (via PTEN inhibition by BPV) restored neuroinflammation and depressive-like behavior, accompanied by altered synaptic protein and spine numbers in G-2C mice in the presence of LPS. In addition, NF-κB and JNK inhibitor (BAY, SP600125) treatments reversed the effects of BPV. Moreover, these results were further validated with an NR2C antagonist DQP-1105. Collectively, these observations support the astrocytic-NR2C contribution to LPS-induced neuroinflammation, depression, and synaptic deficits.
Collapse
Affiliation(s)
- Ruyan Gao
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, PR China, 518055.
| | - Tahir Ali
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, PR China, 518055; Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518132 China.
| | - Zizhen Liu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, PR China, 518055.
| | - Axiang Li
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Kaiwu He
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, PR China, 518055.
| | - Canyu Yang
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Jinxing Feng
- Department of Neonatology, Shenzhen Children's Hospital, Shenzhen, China.
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, PR China, 518055; Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518132 China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Moss A, Kuttippurathu L, Srivastava A, Schwaber JS, Vadigepalli R. Dynamic dysregulation of transcriptomic networks in brainstem autonomic nuclei during hypertension development in the female spontaneously hypertensive rat. Physiol Genomics 2024; 56:283-300. [PMID: 38145287 PMCID: PMC11283910 DOI: 10.1152/physiolgenomics.00073.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Neurogenic hypertension stems from an imbalance in autonomic function that shifts the central cardiovascular control circuits toward a state of dysfunction. Using the female spontaneously hypertensive rat and the normotensive Wistar-Kyoto rat model, we compared the transcriptomic changes in three autonomic nuclei in the brainstem, nucleus of the solitary tract (NTS), caudal ventrolateral medulla, and rostral ventrolateral medulla (RVLM) in a time series at 8, 10, 12, 16, and 24 wk of age, spanning the prehypertensive stage through extended chronic hypertension. RNA-sequencing data were analyzed using an unbiased, dynamic pattern-based approach that uncovered dominant and several subtle differential gene regulatory signatures. Our results showed a persistent dysregulation across all three autonomic nuclei regardless of the stage of hypertension development as well as a cascade of transient dysregulation beginning in the RVLM at the prehypertensive stage that shifts toward the NTS at the hypertension onset. Genes that were persistently dysregulated were heavily enriched for immunological processes such as antigen processing and presentation, the adaptive immune response, and the complement system. Genes with transient dysregulation were also largely region-specific and were annotated for processes that influence neuronal excitability such as synaptic vesicle release, neurotransmitter transport, and an array of neuropeptides and ion channels. Our results demonstrate that neurogenic hypertension is characterized by brainstem region-specific transcriptomic changes that are highly dynamic with significant gene regulatory changes occurring at the hypertension onset as a key time window for dysregulation of homeostatic processes across the autonomic control circuits.NEW & NOTEWORTHY Hypertension is a major disease and is the primary risk factor for cardiovascular complications and stroke. The gene expression changes in the central nervous system circuits driving hypertension are understudied. Here, we show that coordinated and region-specific gene expression changes occur in the brainstem autonomic circuits over time during the development of a high blood pressure phenotype in a rat model of human essential hypertension.
Collapse
Affiliation(s)
- Alison Moss
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Ankita Srivastava
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
5
|
Mhanna A, Martini N, Hmaydoosh G, Hamwi G, Jarjanazi M, Zaifah G, Kazzazo R, Haji Mohamad A, Alshehabi Z. The correlation between gut microbiota and both neurotransmitters and mental disorders: A narrative review. Medicine (Baltimore) 2024; 103:e37114. [PMID: 38306525 PMCID: PMC10843545 DOI: 10.1097/md.0000000000037114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/09/2024] [Indexed: 02/04/2024] Open
Abstract
The gastrointestinal tract is embedded with microorganisms of numerous genera, referred to as gut microbiota. Gut microbiota has multiple effects on many body organs, including the brain. There is a bidirectional connection between the gut and brain called the gut-brain-axis, and these connections are formed through immunological, neuronal, and neuroendocrine pathways. In addition, gut microbiota modulates the synthesis and functioning of neurotransmitters. Therefore, the disruption of the gut microbiota in the composition or function, which is known as dysbiosis, is associated with the pathogenesis of many mental disorders, such as schizophrenia, depression, and other psychiatric disorders. This review aims to summarize the modulation role of the gut microbiota in 4 prominent neurotransmitters (tryptophan and serotonergic system, dopamine, gamma-aminobutyric acid, and glutamate), as well as its association with 4 psychiatric disorders (schizophrenia, depression, anxiety disorders, and autism spectrum disorder). More future research is required to develop efficient gut-microbiota-based therapies for these illnesses.
Collapse
Affiliation(s)
- Amjad Mhanna
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Nafiza Martini
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
- Damascus University, Faculty of Medicine, Damascus, Syrian Arab Republic
| | - Ghefar Hmaydoosh
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - George Hamwi
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Mulham Jarjanazi
- Pediatric Surgery Resident, Pediatric Surgery Department, Aleppo University Hospital, Aleppo, Syrian Arab Republic
| | - Ghaith Zaifah
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Reem Kazzazo
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Aya Haji Mohamad
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
- Faculty of Medicine, Aleppo University, Aleppo University Hospital, Aleppo, Syrian Arab Republic
| | - Zuheir Alshehabi
- Department of Pathology, Tishreen University Hospital, Latakia, Syrian Arab Republic
| |
Collapse
|
6
|
Naumova AA, Oleynik EA, Grigorieva YS, Nikolaeva SD, Chernigovskaya EV, Glazova MV. In search of stress: analysis of stress-related markers in mice after hindlimb unloading and social isolation. Neurol Res 2023; 45:957-968. [PMID: 37642364 DOI: 10.1080/01616412.2023.2252280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVES Hindlimb unloading (HU), widely used to simulate microgravity effects, is known to induce a stress response. However, as single-housed animals are usually used in such experiments, social isolation (SI) stress can affect experimental results. In the present study, we aimed to delineate stressful effects of 3-day HU and SI in mice. METHODS Three animal groups, HU, SI, and group-housed (GH) control mice, were recruited. A comprehensive analysis of stress-related markers was performed using ELISA, western blotting, and immunohistochemistry. RESULTS Our results showed that blood corticosterone and activity of glucocorticoid receptors and cAMP response element-binding protein (CREB) in the hippocampus of SI and HU animals did not differ from GH control. However, SI mice demonstrated upregulation of the hippocampal corticotropin-releasing hormone (CRH), inducible NO synthase (iNOS), vesicular glutamate transporter 1 (VGLUT1), and glutamate decarboxylases 65/67 (GAD65/67) along with activation of Fos-related antigen 1 (Fra-1) in the amygdala confirming the expression of stress. In HU mice, the same increase in GAD65/67 and Fra-1 indicated the contribution of SI. The special HU effect was expressed only in neurogenesis attenuation. DISCUSSION Thus, our data indicated that 3-day HU could not be characterized as physiological stress, but SI stress contributed to the negative effects of HU.
Collapse
Affiliation(s)
- Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina A Oleynik
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Yulia S Grigorieva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Svetlana D Nikolaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
7
|
Nogueira CO, Rocha T, Messor DF, Souza INO, Clarke JR. Fundamental neurochemistry review: Glutamatergic dysfunction as a central mechanism underlying flavivirus-induced neurological damage. J Neurochem 2023; 166:915-927. [PMID: 37603368 DOI: 10.1111/jnc.15935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
The Flaviviridae family comprises positive-sense single-strand RNA viruses mainly transmitted by arthropods. Many of these pathogens are especially deleterious to the nervous system, and a myriad of neurological symptoms have been associated with infections by Zika virus (ZIKV), West Nile virus (WNV), and Japanese encephalitis virus (JEV) in humans. Studies suggest that viral replication in neural cells and the massive release of pro-inflammatory mediators lead to morphological alterations of synaptic spine structure and changes in the balance of excitatory/inhibitory neurotransmitters and receptors. Glutamate is the predominant excitatory neurotransmitter in the brain, and studies propose that either enhanced release or impaired uptake of this amino acid contributes to brain damage in several conditions. Here, we review existing evidence suggesting that glutamatergic dysfunction-induced by flaviviruses is a central mechanism for neurological damage and clinical outcomes of infection. We also discuss current data suggesting that pharmacological approaches that counteract glutamatergic dysfunction show benefits in animal models of such viral diseases.
Collapse
Affiliation(s)
- Clara O Nogueira
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tamires Rocha
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel F Messor
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isis N O Souza
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia R Clarke
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Plantainoside D Reduces Depolarization-Evoked Glutamate Release from Rat Cerebral Cortical Synaptosomes. Molecules 2023; 28:molecules28031313. [PMID: 36770979 PMCID: PMC9919923 DOI: 10.3390/molecules28031313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/29/2023] [Indexed: 01/31/2023] Open
Abstract
Inhibiting the excessive release of glutamate in the brain is emerging as a promising therapeutic option and is efficient for treating neurodegenerative disorders. The aim of this study is to investigate the effect and mechanism of plantainoside D (PD), a phenylenthanoid glycoside isolated from Plantago asiatica L., on glutamate release in rat cerebral cortical nerve terminals (synaptosomes). We observed that PD inhibited the potassium channel blocker 4-aminopyridine (4-AP)-evoked release of glutamate and elevated concentration of cytosolic Ca2+. Using bafilomycin A1 to block glutamate uptake into synaptic vesicles and EDTA to chelate extracellular Ca2+, the inhibitory effect of PD on 4-AP-evoked glutamate release was prevented. In contrast, the action of PD on the 4-AP-evoked release of glutamate in the presence of dl-TBOA, a potent nontransportable inhibitor of glutamate transporters, was unaffected. PD does not alter the 4-AP-mediated depolarization of the synaptosomal membrane potential, suggesting that the inhibitory effect of PD on glutamate release is associated with voltage-dependent Ca2+ channels (VDCCs) but not the modulation of plasma membrane potential. Pretreatment with the Ca2+ channel blocker (N-type) ω-conotoxin GVIA abolished the inhibitory effect of PD on the evoked glutamate release, as did pretreatment with the protein kinase C inhibitor GF109203x. However, the PD-mediated inhibition of glutamate release was eliminated by applying the mitochondrial Na+/Ca2+ exchanger inhibitor CGP37157 or dantrolene, which inhibits Ca2+ release through ryanodine receptor channels. These data suggest that PD mediates the inhibition of evoked glutamate release from synaptosomes primarily by reducing the influx of Ca2+ through N-type Ca2+ channels, subsequently reducing the protein kinase C cascade.
Collapse
|
9
|
Chemerin-9 in paraventricular nucleus increases sympathetic outflow and blood pressure via glutamate receptor-mediated ROS generation. Eur J Pharmacol 2022; 936:175343. [DOI: 10.1016/j.ejphar.2022.175343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/20/2022]
|
10
|
Fan JF, Wang W, Tan X, Ye P, Li JK, Niu LY, Li WY, Wang WZ, Wang YK. Contribution of cyclooxygenase-2 overexpression to enhancement in tonically active glutamatergic inputs to the rostral ventrolateral medulla in hypertension. J Hypertens 2022; 40:2394-2405. [PMID: 36189462 DOI: 10.1097/hjh.0000000000003268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Cyclooxygenase (COX) is critical in regulating cardiovascular function, but its role involved in the central control of blood pressure (BP) is uncovered. The tonic glutamatergic inputs to the rostral ventrolateral medulla (RVLM) are enhanced in hypertension. Here, the present study was designed to investigate the effect and mechanism of central COX on tonic glutamatergic inputs to the RVLM and BP regulation. METHODS Wistar-Kyoto (WKY) rats and spontaneous hypertensive rats (SHRs) received RVLM microinjection of adeno-associated viral vectors to promote or inhibit the COX2 expression were subjected to subsequent experiments. Glutamate level and glutaminase expression were detected by ELISA and western blot, respectively. The function of tonic glutamatergic inputs was assessed by BP response to microinjection of the glutamate receptor antagonist into the RVLM. PC12 cells were used to detect the underlying signal pathway. RESULTS The RVLM COX2 expression and prostaglandin E2 level were significant higher in SHRs than in WKY rats. Overexpression of COX2 in the RVLM produced an increase in basal BP, RVLM glutamate level, and glutaminase expression in WKY rats, while they were significantly reduced by interfering with COX2 expression in SHRs. Microinjections of the glutamate receptor antagonist into the RVLM produced a significant BP decrease in WKY rats with COX2 overexpression pretreatment. Furthermore, the increased levels of BP, glutamate content, and glutaminase activity in the RVLM evoked by central infusion of angiotensin II were attenuated in COX2 knockout mice. It was also found that prostaglandin E2 increased supernatant glutamate level and phosphorylation of signal transducer and activator of transcription 3 in PC12 cells. CONCLUSION Our findings suggest that upregulated COX2 expression enhances the tonically active glutamatergic inputs to the RVLM, which is associated with cardiovascular regulation in hypertension.
Collapse
Affiliation(s)
- Jie-Fu Fan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Musazzi L, Tornese P, Sala N, Lee FS, Popoli M, Ieraci A. Acute stress induces an aberrant increase of presynaptic release of glutamate and cellular activation in the hippocampus of BDNF Val/Met mice. J Cell Physiol 2022; 237:3834-3844. [PMID: 35908196 PMCID: PMC9796250 DOI: 10.1002/jcp.30833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 01/01/2023]
Abstract
Stressful life events are considered major risk factors for the development of several psychiatric disorders, though people differentially cope with stress. The reasons for this are still largely unknown but could be accounted for by individual genetic variants, previous life events, or the kind of stressors. The human brain-derived neurotrophic factor (BDNF) Val66Met variant, which was found to impair intracellular trafficking and activity-dependent secretion of BDNF, has been associated with increased susceptibility to develop several neuropsychiatric disorders, although there is still some controversial evidence. On the other hand, acute stress has been consistently demonstrated to promote the release of glutamate in cortico-limbic regions and altered glutamatergic transmission has been reported in psychiatric disorders. However, it is not known if the BDNF Val66Met single-nucleotide polymorphism (SNP) affects the stress-induced presynaptic glutamate release. In this study, we exposed adult male BDNFVal/Val and BDNFVal/Met knock-in mice to 30 min of acute restraint stress. Plasma corticosterone levels, glutamate release, protein, and gene expression in the hippocampus were analyzed immediately after the end of the stress session. Acute restraint stress similarly increased plasma corticosterone levels and nuclear glucocorticoid receptor levels and phosphorylation in both BDNFVal/Val and BDNFVal/Met mice. However, acute restraint stress induced higher increases in hippocampal presynaptic release of glutamate, phosphorylation of cAMP-response element binding protein (CREB), and levels of the immediate early gene c-fos of BDNFVal/Met compared to BFNFVal/Val mice. Moreover, acute restraint stress selectively increased phosphorylation levels of synapsin I at Ser9 and at Ser603 in BDNFVal/Val and BDNFVal/Met mice, respectively. In conclusion, we report here that the BDNF Val66Met SNP knock-in mice display an altered response to acute restraint stress in terms of hippocampal glutamate release, CREB phosphorylation, and neuronal activation, compared to wild-type animals. Taken together, these results could partially explain the enhanced vulnerability to stressful events of Met carriers reported in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Laura Musazzi
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Paolo Tornese
- Dipartimento di Scienze FarmaceuticheUniversity of MilanMilanItaly
| | - Nathalie Sala
- Dipartimento di Scienze FarmaceuticheUniversity of MilanMilanItaly
| | - Francis S. Lee
- Department of PsychiatryWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Maurizio Popoli
- Dipartimento di Scienze FarmaceuticheUniversity of MilanMilanItaly
| | | |
Collapse
|
12
|
Hendricks EL, Smith IR, Prates B, Barmaleki F, Liebl FLW. The CD63 homologs, Tsp42Ee and Tsp42Eg, restrict endocytosis and promote neurotransmission through differential regulation of synaptic vesicle pools. Front Cell Neurosci 2022; 16:957232. [PMID: 36072568 PMCID: PMC9441712 DOI: 10.3389/fncel.2022.957232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
The Tetraspanin (Tsp), CD63, is a transmembrane component of late endosomes and facilitates vesicular trafficking through endosomal pathways. Despite being widely expressed in the human brain and localized to late endosomes, CD63's role in regulating endo- and exocytic cycling at the synapse has not been investigated. Synaptic vesicle pools are highly dynamic and disruptions in the mobilization and replenishment of these vesicle pools have adverse neuronal effects. We find that the CD63 homologs, Tsp42Ee and Tsp42Eg, are expressed at the Drosophila neuromuscular junction to regulate synaptic vesicle pools through both shared and unique mechanisms. Tsp42Ee and Tsp42Eg negatively regulate endocytosis and positively regulate neurotransmitter release. Both tsp mutants show impaired locomotion, reduced miniature endplate junctional current frequencies, and increased endocytosis. Expression of human CD63 in Drosophila neurons leads to impaired endocytosis suggesting the role of Tsps in endocytosis is conserved. We further show that Tsps influence the synaptic cytoskeleton and membrane composition by regulating Futsch loop formation and synaptic levels of SCAR and PI(4,5)P2. Finally, Tsp42Ee and Tsp42Eg influence the synaptic localization of several vesicle-associated proteins including Synapsin, Synaptotagmin, and Cysteine String Protein. Together, our results present a novel function for Tsps in the regulation of vesicle pools and provide insight into the molecular mechanisms of Tsp-related synaptic dysfunction.
Collapse
Affiliation(s)
| | | | | | | | - Faith L. W. Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| |
Collapse
|
13
|
Hoffe B, Holahan MR. Hyperacute Excitotoxic Mechanisms and Synaptic Dysfunction Involved in Traumatic Brain Injury. Front Mol Neurosci 2022; 15:831825. [PMID: 35283730 PMCID: PMC8907921 DOI: 10.3389/fnmol.2022.831825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
The biological response of brain tissue to biomechanical strain are of fundamental importance in understanding sequela of a brain injury. The time after impact can be broken into four main phases: hyperacute, acute, subacute and chronic. It is crucial to understand the hyperacute neural outcomes from the biomechanical responses that produce traumatic brain injury (TBI) as these often result in the brain becoming sensitized and vulnerable to subsequent TBIs. While the precise physical mechanisms responsible for TBI are still a matter of debate, strain-induced shearing and stretching of neural elements are considered a primary factor in pathology; however, the injury-strain thresholds as well as the earliest onset of identifiable pathologies remain unclear. Dendritic spines are sites along the dendrite where the communication between neurons occurs. These spines are dynamic in their morphology, constantly changing between stubby, thin, filopodia and mushroom depending on the environment and signaling that takes place. Dendritic spines have been shown to react to the excitotoxic conditions that take place after an impact has occurred, with a shift to the excitatory, mushroom phenotype. Glutamate released into the synaptic cleft binds to NMDA and AMPA receptors leading to increased Ca2+ entry resulting in an excitotoxic cascade. If not properly cleared, elevated levels of glutamate within the synaptic cleft will have detrimental consequences on cellular signaling and survival of the pre- and post-synaptic elements. This review will focus on the synaptic changes during the hyperacute phase that occur after a TBI. With repetitive head trauma being linked to devastating medium – and long-term maladaptive neurobehavioral outcomes, including chronic traumatic encephalopathy (CTE), understanding the hyperacute cellular mechanisms can help understand the course of the pathology and the development of effective therapeutics.
Collapse
|
14
|
Inhibition of Glutamate Release from Rat Cortical Nerve Terminals by Dehydrocorydaline, an Alkaloid from Corydalis yanhusuo. Molecules 2022; 27:molecules27030960. [PMID: 35164225 PMCID: PMC8838318 DOI: 10.3390/molecules27030960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Excessive release of glutamate induces excitotoxicity and causes neuronal damage in several neurodegenerative diseases. Natural products have emerged as potential neuroprotective agents for preventing and treating neurological disorders. Dehydrocorydaline (DHC), an active alkaloid compound isolated from Corydalis yanhusuo, possesses neuroprotective capacity. The present study investigated the effect of DHC on glutamate release using a rat brain cortical synaptosome model. Our results indicate that DHC inhibited 4-aminopyridine (4-AP)-evoked glutamate release and elevated intrasynaptosomal calcium levels. The inhibitory effect of DHC on 4-AP-evoked glutamate release was prevented in the presence of the vesicular transporter inhibitor bafilomycin A1 and the N- and P/Q-type Ca2+ channel blocker ω-conotoxin MVIIC but not the intracellular inhibitor of Ca2+ release dantrolene or the mitochondrial Na+/Ca2+ exchanger inhibitor CGP37157. Moreover, the inhibitory effect of DHC on evoked glutamate release was prevented by the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) inhibitor PD98059. Western blotting data in synaptosomes also showed that DHC significantly decreased the level of ERK1/2 phosphorylation and synaptic vesicle-associated protein synapsin I, the main presynaptic target of ERK. Together, these results suggest that DHC inhibits presynaptic glutamate release from cerebrocortical synaptosomes by suppressing presynaptic voltage-dependent Ca2+ entry and the MAPK/ERK/synapsin I signaling pathway.
Collapse
|
15
|
Involvement of Hippocampal Astrocytic Connexin-43 in Morphine dependence. Physiol Behav 2022; 247:113710. [DOI: 10.1016/j.physbeh.2022.113710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
|
16
|
Extracellular Glutamate Concentration Increases Linearly in Proportion to Decreases in Residual Cerebral Blood Flow After the Loss of Membrane Potential in a Rat Model of Ischemia. J Neurosurg Anesthesiol 2021; 33:356-362. [PMID: 31834249 DOI: 10.1097/ana.0000000000000666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/26/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Brain ischemia due to disruption of cerebral blood flow (CBF) results in increases in extracellular glutamate concentration and neuronal cell damage. However, the impact of CBF on glutamate dynamics after the loss of the membrane potential remains unknown. MATERIALS AND METHODS To determine this impact, we measured extracellular potential, CBF, and extracellular glutamate concentration in the parietal cortex in male Sprague-Dawley rats (n=21). CBF was reduced by bilateral occlusion of the common carotid arteries and exsanguination until loss of extracellular membrane potential was observed (low-flow group), or until CBF was further reduced by 5% to 10% of preischemia levels (severe-low-flow group). CBF was promptly restored 10 minutes after the loss of membrane potential. Histologic outcomes were evaluated 5 days later. RESULTS Extracellular glutamate concentration in the low-flow group was significantly lower than that in the severe-low-flow group. Moreover, increases in extracellular glutamate concentration exhibited a linear relationship with decreases in CBF after the loss of membrane potential in the severe-low-flow group, and the percentage of damaged neurons exhibited a dose-response relationship with the extracellular glutamate concentration. The extracellular glutamate concentration required to cause 50% neuronal damage was estimated to be 387 μmol/L, at 8.7% of preischemia CBF. Regression analyses revealed that extracellular glutamate concentration increased by 21 μmol/L with each 1% decrease in residual CBF and that the percentage of damaged neurons increased by 2.6%. CONCLUSION Our results indicate that residual CBF is an important factor that determines the extracellular glutamate concentration after the loss of membrane potential, and residual CBF would be one of the important determinants of neuronal cell prognosis.
Collapse
|
17
|
Berezovskaya AS, Tyganov SA, Nikolaeva SD, Naumova AA, Merkulyeva NS, Shenkman BS, Glazova MV. Dynamic Foot Stimulations During Short-Term Hindlimb Unloading Prevent Dysregulation of the Neurotransmission in the Hippocampus of Rats. Cell Mol Neurobiol 2021; 41:1549-1561. [PMID: 32683580 DOI: 10.1007/s10571-020-00922-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022]
Abstract
Spaceflight and simulated microgravity both affect learning and memory, which are mostly controlled by the hippocampus. However, data about molecular alterations in the hippocampus in real or simulated microgravity conditions are limited. Adult Wistar rats were recruited in the experiments. Here we analyzed whether short-term simulated microgravity caused by 3-day hindlimb unloading (HU) will affect the glutamatergic and GABAergic systems of the hippocampus and how dynamic foot stimulation (DFS) to the plantar surface applied during HU can contribute in the regulation of hippocampus functioning. The results demonstrated a decreased expression of vesicular glutamate transporters 1 and 2 (VGLUT1/2) in the hippocampus after 3 days of HU, while glutamate decarboxylase 67 (GAD67) expression was not affected. HU also significantly induced Akt signaling and transcriptional factor CREB that are supposed to activate the neuroprotective mechanisms. On the other hand, DFS led to normalization of VGLUT1/2 expression and activity of Akt and CREB. Analysis of exocytosis proteins revealed the inhibition of SNAP-25, VAMP-2, and syntaxin 1 expression in DFS group proposing attenuation of excitatory neurotransmission. Thus, we revealed that short-term HU causes dysregulation of glutamatergic system of the hippocampus, but, at the same time, stimulates neuroprotective Akt-dependent mechanism. In addition, most importantly, we demonstrated positive effect of DFS on the hippocampus functioning that probably depends on the regulation of neurotransmitter exocytosis.
Collapse
Affiliation(s)
- Anna S Berezovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia
| | - Sergey A Tyganov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana D Nikolaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia
| | - Natalia S Merkulyeva
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Boris S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia.
| |
Collapse
|
18
|
Kalia M, Meijer HGE, van Gils SA, van Putten MJAM, Rose CR. Ion dynamics at the energy-deprived tripartite synapse. PLoS Comput Biol 2021; 17:e1009019. [PMID: 34143772 PMCID: PMC8244923 DOI: 10.1371/journal.pcbi.1009019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 06/30/2021] [Accepted: 04/28/2021] [Indexed: 01/09/2023] Open
Abstract
The anatomical and functional organization of neurons and astrocytes at 'tripartite synapses' is essential for reliable neurotransmission, which critically depends on ATP. In low energy conditions, synaptic transmission fails, accompanied by a breakdown of ion gradients, changes in membrane potentials and cell swelling. The resulting cellular damage and cell death are causal to the often devastating consequences of an ischemic stroke. The severity of ischemic damage depends on the age and the brain region in which a stroke occurs, but the reasons for this differential vulnerability are far from understood. In the present study, we address this question by developing a comprehensive biophysical model of a glutamatergic synapse to identify key determinants of synaptic failure during energy deprivation. Our model is based on fundamental biophysical principles, includes dynamics of the most relevant ions, i.e., Na+, K+, Ca2+, Cl- and glutamate, and is calibrated with experimental data. It confirms the critical role of the Na+/K+-ATPase in maintaining ion gradients, membrane potentials and cell volumes. Our simulations demonstrate that the system exhibits two stable states, one physiological and one pathological. During energy deprivation, the physiological state may disappear, forcing a transit to the pathological state, which can be reverted when blocking voltage-gated Na+ and K+ channels. Our model predicts that the transition to the pathological state is favoured if the extracellular space fraction is small. A reduction in the extracellular space volume fraction, as, e.g. observed with ageing, will thus promote the brain's susceptibility to ischemic damage. Our work provides new insights into the brain's ability to recover from energy deprivation, with translational relevance for diagnosis and treatment of ischemic strokes.
Collapse
Affiliation(s)
- Manu Kalia
- Applied Analysis, Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
- * E-mail:
| | - Hil G. E. Meijer
- Applied Analysis, Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
| | - Stephan A. van Gils
- Applied Analysis, Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
| | | | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
19
|
Plantar Stimulations during 3-Day Hindlimb Unloading Prevent Loss of Neural Progenitors and Maintain ERK1/2 Activity in the Rat Hippocampus. Life (Basel) 2021; 11:life11050449. [PMID: 34067876 PMCID: PMC8157184 DOI: 10.3390/life11050449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/23/2022] Open
Abstract
Adult neurogenesis is a flexible process that depends on the environment and correlates with cognitive functions. Cognitive functions are impaired by various factors including space flight conditions and reduced physical activity. Physically active life significantly improves both cognition and the hippocampal neurogenesis. Here, we analyzed how 3-day simulated microgravity caused by hindlimb unloading (HU) or dynamic foot stimulation (DFS) during HU can affect the hippocampal neurogenesis. Adult Wistar rats were recruited in the experiments. The results demonstrated a decrease in the number of doublecortine (DCX) positive neural progenitors, but proliferation in the subgranular zone of the dentate gyrus was not changed after 3-day HU. Analysis of the effects of DFS showed restoration of neural progenitor population in the subgranular zone of the dentate gyrus. Additionally, we analyzed activity of the cRaf/ERK1/2 pathway, which is one of the major players in the regulation of neuronal differentiation. The results demonstrated inhibition of cRaf/ERK1/2 signaling in the hippocampus of HU rats. In DFS rats, no changes in the activity of cRaf/ERK1/2 were observed. Thus, we demonstrated that the process of neurogenesis fading during HU begins with inhibition of the formation of immature neurons and associated ERK1/2 signaling activity, while DFS prevents the development of mentioned alterations.
Collapse
|
20
|
Ravera S, Colombo E, Pasquale C, Benedicenti S, Solimei L, Signore A, Amaroli A. Mitochondrial Bioenergetic, Photobiomodulation and Trigeminal Branches Nerve Damage, What's the Connection? A Review. Int J Mol Sci 2021; 22:4347. [PMID: 33919443 PMCID: PMC8122620 DOI: 10.3390/ijms22094347] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Injury of the trigeminal nerve in oral and maxillofacial surgery can occur. Schwann cell mitochondria are regulators in the development, maintenance and regeneration of peripheral nerve axons. Evidence shows that after the nerve injury, mitochondrial bioenergetic dysfunction occurs and is associated with pain, neuropathy and nerve regeneration deficit. A challenge for research is to individuate new therapies able to normalise mitochondrial and energetic metabolism to aid nerve recovery after damage. Photobiomodulation therapy can be an interesting candidate, because it is a technique involving cell manipulation through the photonic energy of a non-ionising light source (visible and NIR light), which produces a nonthermal therapeutic effect on the stressed tissue. METHODS The review was based on the following questions: (1) Can photo-biomodulation by red and NIR light affect mitochondrial bioenergetics? (2) Can photobiomodulation support damage to the trigeminal nerve branches? (preclinical and clinical studies), and, if yes, (3) What is the best photobiomodulatory therapy for the recovery of the trigeminal nerve branches? The papers were searched using the PubMed, Scopus and Cochrane databases. This review followed the ARRIVE-2.0, PRISMA and Cochrane RoB-2 guidelines. RESULTS AND CONCLUSIONS The reliability of photobiomodulatory event strongly bases on biological and physical-chemical evidence. Its principal player is the mitochondrion, whether its cytochromes are directly involved as a photoacceptor or indirectly through a vibrational and energetic variation of bound water: water as the photoacceptor. The 808-nm and 100 J/cm2 (0.07 W; 2.5 W/cm2; pulsed 50 Hz; 27 J per point; 80 s) on rats and 800-nm and 0.2 W/cm2 (0.2 W; 12 J/cm2; 12 J per point; 60 s, CW) on humans resulted as trustworthy therapies, which could be supported by extensive studies.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Esteban Colombo
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
| | - Claudio Pasquale
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
| | - Luca Solimei
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
| | - Antonio Signore
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
- Department of Therapeutic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
- Department of Orthopaedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
21
|
Liu Y, Wang S, Kan J, Zhang J, Zhou L, Huang Y, Zhang Y. Chinese Herbal Medicine Interventions in Neurological Disorder Therapeutics by Regulating Glutamate Signaling. Curr Neuropharmacol 2020; 18:260-276. [PMID: 31686629 PMCID: PMC7327939 DOI: 10.2174/1570159x17666191101125530] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system, and its signaling is critical for excitatory synaptic transmission. The well-established glutamate system involves glutamate synthesis, presynaptic glutamate release, glutamate actions on the ionotropic glutamate receptors (NMDA, AMPA, and kainate receptors) and metabotropic glutamate receptors, and glutamate uptake by glutamate transporters. When the glutamate system becomes dysfunctional, it contributes to the pathogenesis of neurodegenerative and neuropsychiatric diseases such as Alzheimer's disease, Parkinson's disease, depression, epilepsy, and ischemic stroke. In this review, based on regulating glutamate signaling, we summarize the effects and underlying mechanisms of natural constituents from Chinese herbal medicines on neurological disorders. Natural constituents from Chinese herbal medicine can prevent the glutamate-mediated excitotoxicity via suppressing presynaptic glutamate release, decreasing ionotropic and metabotropic glutamate receptors expression in the excitatory synapse, and promoting astroglial glutamate transporter expression to increase glutamate clearance from the synaptic cleft. However, some natural constituents from Chinese herbal medicine have the ability to restore the collapse of excitatory synapses by promoting presynaptic glutamate release and increasing ionotropic and metabotropic glutamate receptors expression. These regulatory processes involve various signaling pathways, which lead to different mechanistic routes of protection against neurological disorders. Hence, our review addresses the underlying mechanisms of natural constituents from Chinese herbal medicines that regulate glutamate systems and serve as promising agents for the treatment of the above-mentioned neurological disorders.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.,Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Shan Wang
- Department of Biology, Center of Pain Medicine and Medical School, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Kan
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jingzhi Zhang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Lisa Zhou
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, China
| | - Yunlong Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.,Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
22
|
Cho YS, Ko HG, Han HM, Park SK, Moozhayil SJ, Choi SY, Bae YC. Vesicular glutamate transporter-immunopositive axons that coexpress neuropeptides in the rat and human dental pulp. Int Endod J 2020; 54:377-387. [PMID: 33090483 DOI: 10.1111/iej.13427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
AIM To examine the type of vesicular glutamate transporter (VGLUT)-immunopositive (+) axons that coexpress neuropeptides in the rat and human dental pulp, which may help understand peripheral mechanism of pulpal inflammatory pain in rats and humans. METHODOLOGY The trigeminal ganglia (TG) and the dental pulp of the maxillary molar teeth from three male Sprague-Dawley rats weighing 300-330 g and dental pulps of three healthy human (male) maxillary premolar teeth from three 16 to 28-year-old patients extracted for orthodontic treatment were used. The type of VGLUT + axons that coexpress substance P (SP)- and/or calcitonin gene-related peptide (CGRP) and parvalbumin in the rat TG and in the axons of the rat and the human dental pulp was examined by double fluorescence immunohistochemistry and quantitative analysis. Results were analyzed using one-way anova and the Kruskal-Wallis test. RESULTS SP and CGRP were expressed in many human VGLUT1 + pulpal axons but not in the rat VGLUT1 + TG neurons and pulpal axons (P < 0.05). SP and CGRP were expressed in a considerable number of human VGLUT2 + pulpal axons and also in many rat TG neurons and pulpal axons. The fraction of VGLUT1 + axons expressing parvalbumin was about three times higher in the rat than in the human dental pulp (P < 0.05). CONCLUSIONS These findings suggest that the types of VGLUT + axons, which release neuropeptides, may be different between the rat and the human dental pulp, raising a possibility that peripheral mechanism of pulpal inflammatory pain may be different between rats and humans.
Collapse
Affiliation(s)
- Y S Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - H G Ko
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - H M Han
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - S K Park
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - S J Moozhayil
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - S Y Choi
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Y C Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
23
|
Glutamatergic Receptor Trafficking and Delivery: Role of the Exocyst Complex. Cells 2020; 9:cells9112402. [PMID: 33153008 PMCID: PMC7693776 DOI: 10.3390/cells9112402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/29/2022] Open
Abstract
Cells comprise several intracellular membrane compartments that allow them to function properly. One of these functions is cargo movement, typically proteins and membranes within cells. These cargoes ride microtubules through vesicles from Golgi and recycling endosomes to the plasma membrane in order to be delivered and exocytosed. In neurons, synaptic functions employ this cargo trafficking to maintain inter-neuronal communication optimally. One of the complexes that oversee vesicle trafficking and tethering is the exocyst. The exocyst is a protein complex containing eight subunits first identified in yeast and then characterized in multicellular organisms. This complex is related to several cellular processes, including cellular growth, division, migration, and morphogenesis, among others. It has been associated with glutamatergic receptor trafficking and tethering into the synapse, providing the molecular machinery to deliver receptor-containing vesicles into the plasma membrane in a constitutive manner. In this review, we discuss the evidence so far published regarding receptor trafficking and the exocyst complex in both basal and stimulated levels, comparing constitutive trafficking and long-term potentiation-related trafficking.
Collapse
|
24
|
Kan NE, Khachatryan ZV, Chagovets VV, Starodubtseva NL, Amiraslanov EY, Tyutyunnik VL, Lomova NA, Frankevich VE. [Analysis of metabolic pathways in intrauterine growth restriction]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:174-180. [PMID: 32420900 DOI: 10.18097/pbmc20206602174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective was to analyze metabolic pathways based on a study of the metabolomic profile of pregnant women with intrauterine growth restriction. The metabolic profile of pregnant women with fetal growth restriction has been analyzed using liquid chromatography-mass spectrometry. At the second stage pathways were identified using SMPDB and MetaboAnalyst databases to clarify the relationship between metabolites. Biological networks allow to determine the effect of proteins on the metabolic pathways involved in pathogenesis of IUGR and determine the epigenetic mechanisms of its formation.
Collapse
Affiliation(s)
- N E Kan
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Z V Khachatryan
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - V V Chagovets
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - N L Starodubtseva
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - E Yu Amiraslanov
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - V L Tyutyunnik
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - N A Lomova
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - V E Frankevich
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| |
Collapse
|
25
|
Nonose Y, Pieper LZ, da Silva JS, Longoni A, Apel RV, Meira-Martins LA, Grings M, Leipnitz G, Souza DO, de Assis AM. Guanosine enhances glutamate uptake and oxidation, preventing oxidative stress in mouse hippocampal slices submitted to high glutamate levels. Brain Res 2020; 1748:147080. [PMID: 32866546 DOI: 10.1016/j.brainres.2020.147080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 01/01/2023]
Abstract
Glutamate (Glu) is the main mammalian brain neurotransmitter. Concerning the glutamatergic neurotransmission, excessive levels of glutamate in the synaptic cleft are extremally harmful. This phenomenon, named as excitotoxicity is involved in various acute and chronic brain diseases. Guanosine (GUO), an endogenous guanine nucleoside, possesses neuroprotective effects in several experimental models of glutamatergic excitotoxicity, an effect accompanied by an increase in astrocytic glutamate uptake. Therefore, the objective of this study was to investigate the involvement of an additional putative parameter, glutamate oxidation to CO2, involved in ex-vivo GUO neuroprotective effects in mouse hippocampal slices submitted to glutamatergic excitotoxicity. Mice were sacrificed by decapitation, the hippocampi were removed and sliced. The slices were incubated for various times and concentrations of Glu and GUO. First, the concentration of Glu that produced an increase in L-[14C(U)]-Glu oxidation to CO2 without cell injury was determined at different time points (between 0 and 90 min); 1000 μM Glu increased Glu oxidation between 30 and 60 min of incubation without cell injury. Under these conditions (Glu concentration and incubation time), 100 μM GUO increased Glu oxidation (35%). Additionally, 100 μM GUO increased L-[3,4-3H]-glutamate uptake (45%) in slices incubated with 1000 μM Glu (0-30 min). Furthermore, 1000 μM Glu increased reactive species levels, SOD activity, and decreased GPx activity, and GSH content after 30 and 60 min; 100 μM GUO prevented these effects. This is the first study demonstrating that GUO simultaneously promoted an increase in the uptake and utilization of Glu in excitotoxicity-like conditions preventing redox imbalance.
Collapse
Affiliation(s)
- Y Nonose
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - L Z Pieper
- Graduate Program in Health and Behavior, Center of Health Science, Universidade Católica de Pelotas - UCPel, Pelotas, RS 96015-560, Brazil
| | - J S da Silva
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - A Longoni
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil; Graduate Program in Health and Behavior, Center of Health Science, Universidade Católica de Pelotas - UCPel, Pelotas, RS 96015-560, Brazil
| | - R V Apel
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - L A Meira-Martins
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - M Grings
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - G Leipnitz
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - D O Souza
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil.
| | - A M de Assis
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil; Graduate Program in Health and Behavior, Center of Health Science, Universidade Católica de Pelotas - UCPel, Pelotas, RS 96015-560, Brazil
| |
Collapse
|
26
|
Zhang S, Yan ML, Yang L, An XB, Zhao HM, Xia SN, Jin Z, Huang SY, Qu Y, Ai J. MicroRNA-153 impairs hippocampal synaptic vesicle trafficking via downregulation of synapsin I in rats following chronic cerebral hypoperfusion. Exp Neurol 2020; 332:113389. [PMID: 32580014 DOI: 10.1016/j.expneurol.2020.113389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/02/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Chronic cerebral hypoperfusion (CCH) promotes the development of Alzheimer's pathology. However, whether and how CCH impairs the synaptic vesicle trafficking is still unclear. In the present study, we found that the hippocampal glutamatergic vesicle trafficking was impaired as indicated by a significant shortened delayed response enhancement (DRE) phase in CA3-CA1 circuit and decreased synapsin I in CCH rats suffering from bilateral common carotid artery occlusion (2VO). Further study showed an upregulated miR-153 in the hippocampus of 2VO rats. In vitro, overexpression of miR-153 downregulated synapsin I by binding the 3'UTRs of SYN1 mRNAs, which was prevented by its antisense AMO-153 and miRNA-masking antisense oligodeoxynucleotides (SYN1-ODN). In vivo, the upregulation of miR-153 elicited similar reduced DRE phase and synapsin I deficiency as CCH. Furthermore, miR-153 knockdown rescued the downregulated synapsin I and shortened DRE phase in 2VO rats. Our results demonstrate that CCH impairs hippocampal glutamatergic vesicle trafficking by upregulating miR-153, which suppresses the expression of synapsin I at the post-transcriptional level. These results will provide important references for drug research and treatment of vascular dementia.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Mei-Ling Yan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Lin Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Xiao-Bin An
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Hong-Mei Zhao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Sheng-Nan Xia
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Zhuo Jin
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Si-Yu Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Yang Qu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China.
| |
Collapse
|
27
|
Sánchez-Melgar A, Albasanz JL, Pallàs M, Martín M. Resveratrol Differently Modulates Group I Metabotropic Glutamate Receptors Depending on Age in SAMP8 Mice. ACS Chem Neurosci 2020; 11:1770-1780. [PMID: 32437602 DOI: 10.1021/acschemneuro.0c00067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glutamate homeostasis is critical for neurotransmission as this excitatory neurotransmitter has a relevant role in cognition functions through ionotropic and metabotropic glutamate receptors in the central nervous system. During the last years, the role of the group I metabotropic glutamate receptors (mGluRs) in neurodegenerative diseases such as Alzheimer's disease has been intensely investigated. Resveratrol (RSV) is a natural polyphenolic compound that is thought to have neuroprotective properties for human health. However, little is known about the action of this compound on mGluR signaling. Therefore, the aim of this study was to investigate the possible modulation of group I mGluRs in SAMP8 mice five and seven months of age supplemented with RSV in the diet. Data reported herein show that RSV plays a different modulatory action on group I mGluRs: mGluR5 is downregulated as age increases, independently of RSV presence, and mGluR1 is upregulated or downregulated by RSV treatment depending on age (i.e., depending on mGluR5 levels). In addition, a neuroprotective role can be inferred for RSV as lower glutamate levels, higher synapsin levels, and unchanged caspase-3 activity were detected after RSV treatment. In conclusion, our findings indicate that RSV treatment modifies the group I mGluR-mediated glutamatergic system in SAMP8 mice, which could contribute to the beneficial effects of this natural polyphenol.
Collapse
Affiliation(s)
- Alejandro Sánchez-Melgar
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical Sciences and Technologies, Faculty of Medicine of Ciudad Real, Regional Center of Biomedical Research, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - José Luis Albasanz
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical Sciences and Technologies, Faculty of Medicine of Ciudad Real, Regional Center of Biomedical Research, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Mercé Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona, Barcelona 08024, Spain
| | - Mairena Martín
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical Sciences and Technologies, Faculty of Medicine of Ciudad Real, Regional Center of Biomedical Research, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| |
Collapse
|
28
|
Liao R, Wood TR, Nance E. Nanotherapeutic modulation of excitotoxicity and oxidative stress in acute brain injury. Nanobiomedicine (Rij) 2020; 7:1849543520970819. [PMID: 35186151 PMCID: PMC8855450 DOI: 10.1177/1849543520970819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
Excitotoxicity is a primary pathological process that occurs during stroke, traumatic brain injury (TBI), and global brain ischemia such as perinatal asphyxia. Excitotoxicity is triggered by an overabundance of excitatory neurotransmitters within the synapse, causing a detrimental cascade of excessive sodium and calcium influx, generation of reactive oxygen species, mitochondrial damage, and ultimately cell death. There are multiple potential points of intervention to combat excitotoxicity and downstream oxidative stress, yet there are currently no therapeutics clinically approved for this specific purpose. For a therapeutic to be effective against excitotoxicity, the therapeutic must accumulate at the disease site at the appropriate concentration at the right time. Nanotechnology can provide benefits for therapeutic delivery, including overcoming physiological obstacles such as the blood–brain barrier, protect cargo from degradation, and provide controlled release of a drug. This review evaluates the use of nano-based therapeutics to combat excitotoxicity in stroke, TBI, and hypoxia–ischemia with an emphasis on mitigating oxidative stress, and consideration of the path forward toward clinical translation.
Collapse
Affiliation(s)
- Rick Liao
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Thomas R Wood
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, WA, USA
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA.,Department of Radiology, University of Washington, Seattle, WA, USA.,Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| |
Collapse
|
29
|
Yao H, Yu PC, Jiang CM. Metabolomics-driven identification of perturbations in amino acid and sphingolipid metabolism as therapeutic targets in a rat model of anorexia nervosa disease using chemometric analysis and a multivariate analysis platform. RSC Adv 2020; 10:4928-4941. [PMID: 35498285 PMCID: PMC9049018 DOI: 10.1039/c9ra05187b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/25/2019] [Indexed: 12/03/2022] Open
Abstract
It is important to explore novel therapeutic targets and develop an effective strategy for the treatment of anorexia nervosa. In this work, serum samples were analyzed using ultra-performance liquid chromatography coupled with quadrupole time-of flight mass spectrometry (UPLC/Q-TOF MS) coupled with chemometric analysis and multivariate analysis to obtain the metabolites and their corresponding pathways. In addition, knock-in and knock-down of the key enzyme in vivo was performed to verify the reliability of the obtained metabolic pathway, which is closely associated with the anorexia nervosa pathomechanism and the potential targets. There were significant differences in the biochemical parameters between the model group and the control group. A total of 26 potential biomarkers were identified to resolve the difference between the control and model rats, which were closely related to amino acid metabolism, sphingolipid metabolism, arachidonic acid metabolism, the citrate cycle, and so forth. According to the ingenuity pathway analysis, we further elucidated the relationship between the gene, protein, and metabolite alteration in anorexia nervosa, which are involved in cellular compromise, lipid metabolism, small molecule biochemistry, cell signaling, molecular transport, nucleic acid metabolism, cell morphology, cellular function and maintenance. Arginosuccinate synthetase (ASS) deficiency was accompanied by a significant downregulation of the β-endorphin and ghrelin in the animal models. The metabolites and pathways obtained using the metabolomics strategy may provide valuable information for the early treatment for anorexia nervosa. It is important to explore novel therapeutic targets and develop an effective strategy for the treatment of anorexia nervosa.![]()
Collapse
Affiliation(s)
- Hong Yao
- Neonatology Department
- First Affiliated Hospital of Harbin Medical University
- Harbin 150001
- China
| | - Peng-Cheng Yu
- College of Traditional Chinese Medicine
- Jilin Agricultural University
- Changchun 130118
- China
| | - Chun-Ming Jiang
- Neonatology Department
- First Affiliated Hospital of Harbin Medical University
- Harbin 150001
- China
| |
Collapse
|
30
|
da Silveira TL, Machado ML, Arantes LP, Zamberlan DC, Cordeiro LM, Obetine FBB, da Silva AF, Tassi CL, Soares FAA. Guanosine Prevents against Glutamatergic Excitotoxicity in C. elegans. Neuroscience 2019; 414:265-272. [PMID: 31306683 DOI: 10.1016/j.neuroscience.2019.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023]
Abstract
Glutamatergic neurotransmission is present in most mammalian excitatory synapses and plays a key role in central nervous system homeostasis. When over-activated, it can induce excitotoxicity, which is present in several neuropathologies. The nucleoside guanosine (GUO) is a guanine-based purine known to have neuroprotective effects by modulating glutamatergic system during glutamate excitotoxicity in mammals. However, GUO action in Caenorhabditis elegans, as well as on C. elegans glutamatergic excitotoxicity model, is not known. The GUO effects on behavioral parameters in Wild Type (WT) and knockouts worms for glutamate transporters (GLT-3, GLT-1), glutamate vesicular transporter (EAT-4), and NMDA and non-NMDA receptors were used to evaluate the GUO modulatory effects. The GUO tested concentrations did not alter the animals' development, but GUO reduced pharyngeal pumps in WT animals in a dose-dependent manner. The same effect was observed in pharyngeal pumps, when the animals were treated with 4 mM of GUO in glr-1, nmr-1 and eat-4, but not in glt-3 and glt-3;glt-1 knockouts. The double mutant glt-3; glt-1 for GluTs had decreased body bends and an increased number of reversions. This effect was reverted after treatment with GUO. Furthermore, GUO did not alter the sensory response in worms with altered glutamatergic signaling. Thus, GUO seems to modulate the worm's glutamatergic system in situations of exacerbated glutamatergic signaling, which are represented by knockout strains to glutamate transporters. However, in WT animals, GUO appears to reinforce glutamatergic signaling in specific neurons. Our findings indicate that C. elegans strains are useful models to study new compounds that could be used in glutamate-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Tássia Limana da Silveira
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Marina Lopes Machado
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Leticia Priscilla Arantes
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Daniele Coradini Zamberlan
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Larissa Marafiga Cordeiro
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Fabiane Bicca Baptista Obetine
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Aline Franzen da Silva
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Cintia Letícia Tassi
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Felix Alexandre Antunes Soares
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
31
|
da Silva APB, Souza DG, Souza DO, Machado DC, Sato DK. Role of Glutamatergic Excitotoxicity in Neuromyelitis Optica Spectrum Disorders. Front Cell Neurosci 2019; 13:142. [PMID: 31031597 PMCID: PMC6473164 DOI: 10.3389/fncel.2019.00142] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/21/2019] [Indexed: 01/12/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disorder mediated by immune-humoral responses directed against central nervous system (CNS) antigens. Most patients are positive for specific immunoglobulin G (IgG) auto-antibodies for aquaporin-4 (AQP4), a water channel present in astrocytes. Antigen-antibody binding promotes complement system cascade activation, immune system cell infiltration, IgG deposition, loss of AQP4 and excitatory amino acid transporter 2 (EAAT2) expression on the astrocytic plasma membrane, triggering necrotic destruction of spinal cord tissue and optic nerves. Astrocytes are very important cells in the CNS and, in addition to supporting other nerve cells, they also regulate cerebral homeostasis and control glutamatergic synapses by modulating neurotransmission in the cleft through the high-affinity glutamate transporters present in their cell membrane. Specific IgG binding to AQP4 in astrocytes blocks protein functions and reduces EAAT2 activity. Once compromised, EAAT2 cannot take up free glutamate from the extracellular space, triggering excitotoxicity in the cells, which is characterized by overactivation of glutamate receptors in postsynaptic neurons. Therefore, the longitudinally extensive myelitis and optic neuritis lesions observed in patients with NMOSD may be the result of primary astrocytic damage triggered by IgG binding to AQP4, which can activate the immune-system cascade and, in addition, downregulate EAAT2. All these processes may explain the destructive lesions in NMOSD secondary to neuroinflammation and glutamatergic excitotoxicity. New or repurposed existing drugs capable of controlling glutamatergic excitotoxicity may provide new therapeutic options to reduce tissue damage and permanent disability after NMOSD attacks.
Collapse
Affiliation(s)
- Ana Paula Bornes da Silva
- Molecular and Cellular Biology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Medical School, Institute of Geriatrics and Gerontology, Graduate Program in Biomedical Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Débora Guerini Souza
- Graduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo Onofre Souza
- Graduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Denise Cantarelli Machado
- Molecular and Cellular Biology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Medical School, Institute of Geriatrics and Gerontology, Graduate Program in Biomedical Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Douglas Kazutoshi Sato
- Molecular and Cellular Biology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
32
|
Gaburro J, Paradkar PN, Klein M, Bhatti A, Nahavandi S, Duchemin JB. Dengue virus infection changes Aedes aegypti oviposition olfactory preferences. Sci Rep 2018; 8:13179. [PMID: 30181545 PMCID: PMC6123472 DOI: 10.1038/s41598-018-31608-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/08/2018] [Indexed: 12/27/2022] Open
Abstract
Aedes aegypti mosquitoes, main vectors for numerous flaviviruses, have olfactory preferences and are capable of olfactory learning especially when seeking their required environmental conditions to lay their eggs. In this study, we showed that semiochemical conditions during Aedes aegypti larval rearing affected future female choice for oviposition: water-reared mosquitoes preferred to lay eggs in water or p-cresol containers, while skatole reared mosquitoes preferred skatole sites. Using two independent behavioural assays, we showed that this skatole preference was lost in mosquitoes infected with dengue virus. Viral RNA was extracted from infected female mosquito heads, and an increase of virus load was detected from 3 to 10 days post infection, indicating replication in the insect head and possibly in the central nervous system. Expression of selected genes, potentially implied in olfactory learning processes, were also altered during dengue infection. Based on these results, we hypothesise that dengue virus infection alters gene expression in the mosquito’s head and is associated with a loss of olfactory preferences, possibly modifying oviposition site choice of female mosquitoes.
Collapse
Affiliation(s)
- Julie Gaburro
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia.,Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, Australia
| | - Prasad N Paradkar
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Melissa Klein
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Asim Bhatti
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, Australia
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, Australia
| | - Jean-Bernard Duchemin
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia.
| |
Collapse
|
33
|
Gordillo-Salas M, Pilar-Cuéllar F, Auberson YP, Adell A. Signaling pathways responsible for the rapid antidepressant-like effects of a GluN2A-preferring NMDA receptor antagonist. Transl Psychiatry 2018; 8:84. [PMID: 29666360 PMCID: PMC5904130 DOI: 10.1038/s41398-018-0131-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/06/2018] [Accepted: 02/18/2018] [Indexed: 12/21/2022] Open
Abstract
In a previous study we found that the preferring GluN2A receptor antagonist, NVP-AAM077, elicited rapid antidepressant-like effects in the forced swim test that was related to the release of glutamate and serotonin in the medial prefrontal cortex. In the present work we sought to examine the duration of this behavioral effect as well as the molecular readouts involved. Our results showed that NVP-AAM077 reduced the immobility in the forced swim test 30 min and 24 h after its administration. However, this effect waned 7 days later. The rapid antidepressant-like response seems to be associated with increases in the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, mammalian target of rapamycin (mTOR) signaling, glia markers such as glial fibrillary acidic protein (GFAP) and excitatory amino acid transporter 1 (EAAT1), and a rapid mobilization of intracellular stores of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex.
Collapse
Affiliation(s)
- Marta Gordillo-Salas
- 0000 0004 1770 272Xgrid.7821.cInstituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), Santander, Spain
| | - Fuencisla Pilar-Cuéllar
- 0000 0004 1770 272Xgrid.7821.cInstituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), Santander, Spain ,0000 0000 9314 1427grid.413448.eCentro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain ,0000 0004 1770 272Xgrid.7821.cDepartamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Yves P. Auberson
- 0000 0001 1515 9979grid.419481.1Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Albert Adell
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), Santander, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
34
|
Wei H, Ma Y, Ding C, Jin G, Liu J, Chang Q, Hu F, Yu L. Reduced Glutamate Release in Adult BTBR Mouse Model of Autism Spectrum Disorder. Neurochem Res 2016; 41:3129-3137. [PMID: 27538958 DOI: 10.1007/s11064-016-2035-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/02/2016] [Accepted: 08/12/2016] [Indexed: 01/05/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder characterized by impairments in social and communication abilities, as well as by restricted and repetitive behaviors. The BTBR T + Itpr3 tf (BTBR) mice have emerged as a well characterized and widely used mouse model of a range of ASD-like phenotype, showing deficiencies in social behaviors and unusual ultrasonic vocalizations as well as increased repetitive self-grooming. However, the inherited neurobiological changes that lead to ASD-like behaviors in these mice are incompletely known and still under active investigation. The aim of this study was to further evaluate the structure and neurotransmitter release of the glutamatergic synapse in BTBR mice. C57BL/6J (B6) mice were used as a control strain because of their high level of sociability. The important results showed that the evoked glutamate release in the cerebral cortex of BTBR mice was significantly lower than in B6 mice. And the level of vesicle docking-related protein Syntaxin-1A was reduced in BTBR mice. However, no significant changes were observed in the number of glutamatergic synapse, level of synaptic proteins, density of dendritic spine and postsynaptic density between BTBR mice and B6 mice. Overall, our results suggest that abnormal vesicular glutamate activity may underlie the ASD relevant pathology in the BTBR mice.
Collapse
Affiliation(s)
- Hongen Wei
- Department of Rehabilitation Medicine, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, 29 Shuangta Road, Taiyuan, 030012, China.
| | - Yuehong Ma
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Caiyun Ding
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Guorong Jin
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Jianrong Liu
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Qiaoqiao Chang
- Department of Rehabilitation Medicine, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, 29 Shuangta Road, Taiyuan, 030012, China
| | - Fengyun Hu
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Li Yu
- Department of Rehabilitation Medicine, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, 29 Shuangta Road, Taiyuan, 030012, China
| |
Collapse
|
35
|
Feligioni M, Mango D, Piccinin S, Imbriani P, Iannuzzi F, Caruso A, De Angelis F, Blandini F, Mercuri NB, Pisani A, Nisticò R. Subtle alterations of excitatory transmission are linked to presynaptic changes in the hippocampus of PINK1-deficient mice. Synapse 2016; 70:223-30. [PMID: 26850695 DOI: 10.1002/syn.21894] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/13/2022]
Abstract
Homozygous or heterozygous mutations in the PTEN-induced kinase 1 (PINK1) gene have been linked to early-onset Parkinson's disease (PD). Several neurophysiological studies have demonstrated alterations in striatal synaptic plasticity along with impaired dopamine release in PINK1-deficient mice. Using electrophysiological methods, here we show that PINK1 loss of function causes a progressive increase of spontaneous glutamate-mediated synaptic events in the hippocampus, without influencing long-term potentiation. Moreover, fluorescence analysis reveals increased neurotrasmitter release although our biochemical results failed to detect which presynaptic proteins might be engaged. This study provides a novel role for PINK1 beyond the physiology of nigrostriatal dopaminergic circuit. Specifically, PINK1 might contribute to preserve synaptic function and glutamatergic homeostasis in the hippocampus, a brain region underlying cognition. The subtle changes in excitatory transmission here observed might be a pathogenic precursor to excitotoxic neurodegeneration and cognitive decline often observed in PD. Using electrophysiological and fluorescence techniques, we demonstrate that lack of PINK1 causes increased excitatory transmission and neurotransmitter release in the hippocampus, which might lead to the cognitive decline often observed in Parkinson's disease.
Collapse
Affiliation(s)
- Marco Feligioni
- EBRI-European Brain Research Institute, Rome, Italy.,Casa Cura Policlinico, Milan, Italy
| | - Dalila Mango
- EBRI-European Brain Research Institute, Rome, Italy
| | | | | | | | | | | | - Fabio Blandini
- IRCSS "C. Mondino", National Neurological Institute, Pavia, Italy
| | - Nicola B Mercuri
- University of Rome "Tor Vergata", Rome, Italy.,IRCSS Santa Lucia Foundation, Rome, Italy
| | | | - Robert Nisticò
- EBRI-European Brain Research Institute, Rome, Italy.,University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
36
|
|