1
|
Wilkinson J, Lehmler HJ, Roman DL. High-Throughput GPCRome Screen of Pollutants Reveals the Activity of Polychlorinated Biphenyls at Melatonin and Sphingosine-1-phosphate Receptors. Chem Res Toxicol 2024; 37:439-449. [PMID: 38295294 PMCID: PMC10880096 DOI: 10.1021/acs.chemrestox.3c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 02/02/2024]
Abstract
Exposure to environmental pollutants is linked to numerous toxic outcomes, warranting concern about the effect of pollutants on human health. To assess the threat of pollutant exposure, it is essential to understand their biological activity. Unfortunately, gaps remain for many pollutants' specific biological activity and molecular targets. A superfamily of signaling proteins, G-protein-coupled receptors (GPCRs), has been shown as potential targets for pollutant activity. However, research investigating the pollutant activity at the GPCRome is scarce. This work explores pollutant activity across a library of human GPCRs by leveraging modern high-throughput screening techniques devised for drug discovery and pharmacology. We designed and implemented a pilot screen of eight pollutants at 314 human GPCRs and discovered specific polychlorinated biphenyl (PCB) activity at sphingosine-1-phosphate and melatonin receptors. The method utilizes open-source resources available to academic and governmental institutions to enable future campaigns that screen large numbers of pollutants. Thus, we present a novel high-throughput approach to assess the biological activity and specific targets of pollutants.
Collapse
Affiliation(s)
- Joshua
C. Wilkinson
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Neuroscience, University
of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Human Toxicology, University
of Iowa, Iowa City, Iowa 52242, United States
| | - David L. Roman
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
- Iowa
Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine,
University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
2
|
Langan-Evans C, Hearris MA, Gallagher C, Long S, Thomas C, Moss AD, Cheung W, Howatson G, Morton JP. Nutritional Modulation of Sleep Latency, Duration, and Efficiency: A Randomized, Repeated-Measures, Double-Blind Deception Study. Med Sci Sports Exerc 2023; 55:289-300. [PMID: 36094342 DOI: 10.1249/mss.0000000000003040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE This study aimed to test the hypothesis that a novel nutritional blend composed of tryptophan, glycine, magnesium, tart cherry powder, and l -theanine enhances subjective and objective measures of sleep during free living conditions. METHODS In a randomized, repeated-measures crossover and double-blind deception design, participants ( n = 9 males and 7 females, age = 24 ± 3 yr, body mass = 69.8 ± 11.6 kg, stature = 170.8 ± 9.1 cm) completed a 3-d familiarization period, followed by 3-d intervention and placebo trials. Subjective Pittsburgh Quality Sleep Index, Core Consensus Sleep Diary, and Karolinska Sleepiness Scale survey tools, alongside objective actigraphy measures of sleep, were assessed, with daily nutritional intake, activity, and light exposure standardized between trials. Participants provided daily urine samples for assessment of targeted and untargeted metabolomes. RESULTS The intervention trial reduced sleep onset latency (-24 ± 25 min; P = 0.002), increased total sleep time (22 ± 32 min; P = 0.01), and increased sleep efficiency (2.4% ± 3.9%; P = 0.03), while also reducing morning sleepiness ( P = 0.02). Throughout the study, 75% of participants remained blinded to sleep assessment as a primary outcome measure, with 56% subjectively indicating improved sleep during the intervention trial. Metabolomic analysis highlighted several significantly altered metabolomes related to sleep regulation between trials, inclusive of 6-sulfatoxymelatonin, d -serine, and l -glutamic acid. CONCLUSIONS Data demonstrate that using the proposed blend of novel nutritional ingredients during free living conditions reduced sleep onset latency, increased total sleep duration, and increased sleep efficiency, leading to reduced perceptions of morning sleepiness. These effects may be mediated by the upregulation of key metabolites involved in the neurophysiological modulation of the sleep/wake cycle.
Collapse
Affiliation(s)
- Carl Langan-Evans
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UNITED KINGDOM
| | - Mark A Hearris
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UNITED KINGDOM
| | - Chloe Gallagher
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UNITED KINGDOM
| | - Stephen Long
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UNITED KINGDOM
| | - Craig Thomas
- School of Sport, Exercise and Health Sciences (SSEHS) Loughborough University, Loughborough, UNITED KINGDOM
| | - Andrew D Moss
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UNITED KINGDOM
| | - William Cheung
- Department of Sport, Exercise and Rehabilitation and Applied Sciences, Northumbria University, Newcastle upon Tyne, UNITED KINGDOM
| | | | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UNITED KINGDOM
| |
Collapse
|
3
|
Thurfah JN, Christine , Bagaskhara PP, Alfian SD, Puspitasari IM. Dietary Supplementations and Depression. J Multidiscip Healthc 2022; 15:1121-1141. [PMID: 35607362 PMCID: PMC9123934 DOI: 10.2147/jmdh.s360029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
Depression is a mood disturbance condition that occurs for more than two weeks in a row, leading to suicide. Due to adverse effects of depression, antidepressants and adjunctive therapies, such as dietary supplementation, are used for treatment. Therefore, this review explored and summarized dietary supplements’ types, dosages, and effectiveness in preventing and treating depression. A literature search of the PubMed database was conducted in August 2021 to identify studies assessing depression, after which scale measurements based on dietary supplements were identified. From the obtained 221 studies, we selected 63 papers. Results showed PUFA (EPA and DHA combination), vitamin D, and probiotics as the most common supplementation used in clinical studies to reduce depressive symptoms. We also observed that although the total daily PUFA dosage that exhibited beneficial effects was in the range of 0.7–2 g EPA and 0.4–0.8 g DHA daily, with an administration period of three weeks to four months, positive vitamin D-based supplementation effects were observed after administering doses of 2000 IU/day or 50,000 IU/week between 8 weeks and 24 months. Alternatively, microbes from the genus Lactobacillus and Bifidobacterium in the probiotic group with a minimum dose of 108 CFU in various dose forms effectively treated depression. Besides, a depression scale was helpful to assess the effect of an intervention on depression. Hence, PUFA, vitamin D, and probiotics were proposed as adjunctive therapies for depression treatment based on the results from this study.
Collapse
|
4
|
Alghamdi BS, Alshehri FS. Melatonin Blocks Morphine-Induced Place Preference: Involvement of GLT-1, NF-κB, BDNF, and CREB in the Nucleus Accumbens. Front Behav Neurosci 2021; 15:762297. [PMID: 34720901 PMCID: PMC8551802 DOI: 10.3389/fnbeh.2021.762297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022] Open
Abstract
Opioid addiction remains a widespread issue despite continuous attempts by the FDA to help maintain abstinence. Melatonin is a neurohormone considered to be involved only in the neuroendocrine and reproductive systems; however, recent reports have demonstrated its potential to attenuate drug addiction and dependence. Cumulative studies have suggested that melatonin can attenuate the rewarding effects of several drugs of abuse, including opioids. This study aimed to investigate the effect of melatonin (50 mg/kg) on morphine (5 mg/kg) to produce place preference. We also investigated the effect of melatonin and morphine on the expression of GLT-1, BDNF, NF-κB, and CREB within the nucleus accumbens. Male Wistar rats were divided into control, morphine, melatonin, and the morphine + melatonin groups. The study involved a two-phase habituation phase from day 1 to day 3 and an acquisition phase from day 5 to day 14. The conditioned place preference (CPP) score, distance traveled, resting time, ambulatory count, and total activity count were measured for all animals. Rats that received morphine showed a significant increase in CPP score compared to those in the control group. Morphine treatment reduced the mRNA expression of GLT-1, BDNF, and CREB and increased that of NF-κB. However, melatonin treatment administered 30 min before morphine treatment attenuated morphine place preference and reversed GLT-1, BDNF, NF-κB, and CREB expression levels. In conclusion, the study results indicate, for the first time, the new potential targets of melatonin in modulating morphine-induced CPP.
Collapse
Affiliation(s)
- Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
5
|
Rodríguez-Campuzano AG, Ortega A. Glutamate transporters: Critical components of glutamatergic transmission. Neuropharmacology 2021; 192:108602. [PMID: 33991564 DOI: 10.1016/j.neuropharm.2021.108602] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. Once released, it binds to specific membrane receptors and transporters activating a wide variety of signal transduction cascades, as well as its removal from the synaptic cleft in order to avoid its extracellular accumulation and the overstimulation of extra-synaptic receptors that might result in neuronal death through a process known as excitotoxicity. Although neurodegenerative diseases are heterogenous in clinical phenotypes and genetic etiologies, a fundamental mechanism involved in neuronal degeneration is excitotoxicity. Glutamate homeostasis is critical for brain physiology and Glutamate transporters are key players in maintaining low extracellular Glutamate levels. Therefore, the characterization of Glutamate transporters has been an active area of glutamatergic research for the last 40 years. Transporter activity its regulated at different levels: transcriptional and translational control, transporter protein trafficking and membrane mobility, and through extensive post-translational modifications. The elucidation of these mechanisms has emerged as an important piece to shape our current understanding of glutamate actions in the nervous system.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
| |
Collapse
|
6
|
Labban S, Alshehri FS, Kurdi M, Alatawi Y, Alghamdi BS. Melatonin Improves Short-Term Spatial Memory in a Mouse Model of Alzheimer's Disease. Degener Neurol Neuromuscul Dis 2021; 11:15-27. [PMID: 33986623 PMCID: PMC8110255 DOI: 10.2147/dnnd.s291172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/15/2021] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disease that has become a leading cause of death in recent years. Impairments in spatial learning and memory are an important clinical feature of AD. Melatonin (MLT), the main product secreted by the pineal gland, showed multiple antioxidant, anti-inflammatory, and neuroprotective properties. PURPOSE The present study aimed to explore the possible prophylactic effects of MLT against spatial memory deficits in a sporadic mouse model of AD induced by D-galactose and aluminium chloride (AlCl3). METHODS Four groups of mice (n = 10 per group) were prepared: control, AD (the D-galactose and AlCl3 AD model group), AD+MLT (AD mice treated with 80 mg/kg MLT), and AD+DON (AD mice treated with 3 mg/kg donepezil). We then used the object location and Y-maze tests to assess spatial memory in the four groups. Gene expression levels of brain-derived neurotrophic factor (Bdnf) and cAMP-responsive element-binding protein (Creb1) were measured using real-time polymerase chain reaction. RESULTS We found that MLT improved spatial memory in the sporadic AD mice. MLT ameliorated Creb1 gene expression and significantly increased Bdnf gene expression in the hippocampus of AD model mice compared with the AD group. CONCLUSION MLT could have a substantial potential to alleviate memory impairment in sporadic AD if introduced at early stages.
Collapse
Affiliation(s)
- Samah Labban
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Physiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maher Kurdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Yasser Alatawi
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Tonon AC, Pilz LK, Markus RP, Hidalgo MP, Elisabetsky E. Melatonin and Depression: A Translational Perspective From Animal Models to Clinical Studies. Front Psychiatry 2021; 12:638981. [PMID: 33897495 PMCID: PMC8060443 DOI: 10.3389/fpsyt.2021.638981] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Daily rhythm of melatonin synchronizes the body to the light/dark environmental cycle. Several hypotheses have been raised to understand the intersections between melatonin and depression, in which changes in rest-activity and sleep patterns are prominent. This review describes key experimental and clinical evidence that link melatonin with the etiopathology and symptomatology of depressive states, its role in the follow up of therapeutic response to antidepressants, as well as the clinical evidence of melatonin as MDD treatment. Melatonin, as an internal temporal cue contributing to circadian organization and best studied in the context of circadian misalignment, is also implicated in neuroplasticity. The monoaminergic systems that underly MDD and melatonin production overlap. In addition, the urinary metabolite 6-sulfatoxymelatonin (aMT6) has been proposed as biomarker for antidepressant responders, by revealing whether the blockage of noradrenaline uptake has taken place within 24 h from the first antidepressant dose. Even though animal models show benefits from melatonin supplementation on depressive-like behavior, clinical evidence is inconsistent vis-à-vis prophylactic or therapeutic benefits of melatonin or melatonin agonists in depression. We argue that the study of melatonin in MDD or other psychiatric disorders must take into account the specificities of melatonin as an integrating molecule, inextricably linked to entrainment, metabolism, immunity, neurotransmission, and cell homeostasis.
Collapse
Affiliation(s)
- André C. Tonon
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Luísa K. Pilz
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Regina P. Markus
- Laboratório de Cronofarmacologia, Departamento de Fisiologia, Instituto de Biociência, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Paz Hidalgo
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Elaine Elisabetsky
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
8
|
Lin CH, Chiu CC, Lane HY. Trough Melatonin Levels Differ between Early and Late Phases of Alzheimer Disease. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:135-144. [PMID: 33508797 PMCID: PMC7851471 DOI: 10.9758/cpn.2021.19.1.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022]
Abstract
Objective Melatonin has been considered to have an essential role in the pathophysiology of Alzheimer’s disease (AD) for its regulatory function on circadian rhythm and interaction with glutamate for the modulation of learning and memory. Previous studies revealed that melatonin levels decreased in patients with AD. However, melatonin supplement didn’t show promising efficacy for AD. This study compared trough melatonin levels among elderly people with different severities of cognitive deficits. Methods We enrolled 270 elder individuals (consisting four groups healthy elderly, amnestic mild cognitive impairment [MCI], mild AD, and moderate-severe AD) in the learning cohort. Trough melatonin levels in plasma were measured using ELISA. Cognitive function was evaluated by Clinical Dementia Rating Scale (CDR) and Mini-Mental State Examination (MMSE). An independent testing cohort, also consisting of four groups, was enrolled for ascertainment. Results In the learning cohort, trough melatonin levels decreased in the MCI group but elevated in the mild and moderate to severe AD groups. Trough melatonin levels were associated with CDR and MMSE in MCI or AD patients significantly. In the testing cohort, the results were similar to those in the learning cohort. Conclusion This study demonstrated that trough melatonin levels in the peripheral blood were decreased in MCI but increased with the severity of AD. The finding supports the trials indicating that melatonin showed efficacy only in MCI but not in AD. Whether trough melatonin level has potential to be a treatment response biomarker for AD, especially its early phase needs further studies.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taipei, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Chiang Chiu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei, Taiwan.,Department of Psychiatry, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taipei, Taiwan.,Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| |
Collapse
|
9
|
|
10
|
Morris G, Walker AJ, Walder K, Berk M, Marx W, Carvalho AF, Maes M, Puri BK. Increasing Nrf2 Activity as a Treatment Approach in Neuropsychiatry. Mol Neurobiol 2021; 58:2158-2182. [PMID: 33411248 DOI: 10.1007/s12035-020-02212-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor encoded by NFE2L2. Under oxidative stress, Nrf2 does not undergo its normal cytoplasmic degradation but instead travels to the nucleus, where it binds to a DNA promoter and initiates transcription of anti-oxidative genes. Nrf2 upregulation is associated with increased cellular levels of glutathione disulfide, glutathione peroxidase, glutathione transferases, thioredoxin and thioredoxin reductase. Given its key role in governing the cellular antioxidant response, upregulation of Nrf2 has been suggested as a common therapeutic target in neuropsychiatric illnesses such as major depressive disorder, bipolar disorder and schizophrenia, which are associated with chronic oxidative and nitrosative stress, characterised by elevated levels of reactive oxygen species, nitric oxide and peroxynitrite. These processes lead to extensive lipid peroxidation, protein oxidation and carbonylation, and oxidative damage to nuclear and mitochondrial DNA. Intake of N-acetylcysteine, coenzyme Q10 and melatonin is accompanied by increased Nrf2 activity. N-acetylcysteine intake is associated with improved cerebral mitochondrial function, decreased central oxidative and nitrosative stress, reduced neuroinflammation, alleviation of endoplasmic reticular stress and suppression of the unfolded protein response. Coenzyme Q10, which acts as a superoxide scavenger in neuroglial mitochondria, instigates mitohormesis, ameliorates lipid peroxidation in the inner mitochondrial membrane, activates uncoupling proteins, promotes mitochondrial biogenesis and has positive effects on the plasma membrane redox system. Melatonin, which scavenges mitochondrial free radicals, inhibits mitochondrial nitric oxide synthase, restores mitochondrial calcium homeostasis, deacetylates and activates mitochondrial SIRT3, ameliorates increased permeability of the blood-brain barrier and intestine and counters neuroinflammation and glutamate excitotoxicity.
Collapse
Affiliation(s)
- G Morris
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A J Walker
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - K Walder
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - M Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - W Marx
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - M Maes
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
11
|
Labban S, Alghamdi BS, Alshehri FS, Kurdi M. Effects of melatonin and resveratrol on recognition memory and passive avoidance performance in a mouse model of Alzheimer's disease. Behav Brain Res 2021; 402:113100. [PMID: 33417994 DOI: 10.1016/j.bbr.2020.113100] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/12/2020] [Accepted: 12/27/2020] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the foremost cause of dementia among other neurodegenerative diseases, leading to memory loss and cognitive deficits. AD has gained extensive attention in research for exploring possible interventions. One promising field is natural substances and compounds that could provide a wide range of neuroprotection against AD. This study aimed to investigate the possible effects of melatonin (MEL) and resveratrol (RES) in improving memory deficits in a sporadic mouse model of AD. Memory deficit was induced using AlCl3 and d-galactose for generating an AD mouse model. Mice were randomly distributed into five groups (n = 13): control, AD, AD + MEL (AD mice treated with 80 mg/kg of MEL), AD + RES (AD mice treated with 40 mg/kg of RES), and AD + Combination)AD mice that received 80 mg/kg MEL and 40 mg/kg RES). A novel object recognition task (NORT) and passive avoidance task (PAT) were used for assessing memory. Moreover, acetylcholinesterase (AChE) level, brain-derived neurotrophic factor (BDNF), and cAMP-response element binding (CREB) protein expression were measured in the prefrontal cortex tissue. Our results showed that MEL significantly improved memory deficits in both the NORT and PAT of the AD model, while RES improved the PAT only in the AD model. Co-treatment with MEL and RES exerted beneficial additive effects on recognition memory impairment in the AD mouse model. Moreover, our results demonstrated that both MEL and RES enhanced the cholinergic system and BDNF and CREB signaling pathways in the prefrontal cortex in an AD mouse model.
Collapse
Affiliation(s)
- Samah Labban
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Physiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Badrah S Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Maher Kurdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia.
| |
Collapse
|
12
|
Baller EB, Hogan CS, Fusunyan MA, Ivkovic A, Luccarelli JW, Madva E, Nisavic M, Praschan N, Quijije NV, Beach SR, Smith FA. Neurocovid: Pharmacological Recommendations for Delirium Associated With COVID-19. PSYCHOSOMATICS 2020; 61:585-596. [PMID: 32828569 PMCID: PMC7240270 DOI: 10.1016/j.psym.2020.05.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as one of the biggest health threats of our generation. A significant portion of patients are presenting with delirium and neuropsychiatric sequelae of the disease. Unique examination findings and responses to treatment have been identified. OBJECTIVE In this article, we seek to provide pharmacologic and treatment recommendations specific to delirium in patients with COVID-19. METHODS We performed a literature search reviewing the neuropsychiatric complications and treatments in prior coronavirus epidemics including Middle Eastern respiratory syndrome and severe acute respiratory syndrome coronaviruses, as well as the emerging literature regarding COVID-19. We also convened a work group of consultation-liaison psychiatrists actively managing patients with COVID-19 in our hospital. Finally, we synthesized these findings to provide preliminary pharmacologic recommendations for treating delirium in these patients. RESULTS Delirium is frequently found in patients who test positive for COVID-19, even in the absence of respiratory symptoms. There appears to be a higher rate of agitation, myoclonus, abulia, and alogia. No data are currently available on the treatment of delirium in patients with COVID-19. Extrapolating from general delirium treatment, Middle Eastern respiratory syndrome/severe acute respiratory syndrome case reports, and our experience, preliminary recommendations for pharmacologic management have been assembled. CONCLUSIONS COVID-19 is associated with neuropsychiatric symptoms. Low-potency neuroleptics and alpha-2 adrenergic agents may be especially useful in this setting. Further research into the pathophysiology of COVID-19 will be key in developing more targeted treatment guidelines.
Collapse
Affiliation(s)
- Erica B Baller
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA.
| | - Charlotte S Hogan
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Mark A Fusunyan
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Ana Ivkovic
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| | - James W Luccarelli
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Elizabeth Madva
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Mladen Nisavic
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Nathan Praschan
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Nadia V Quijije
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Scott R Beach
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Felicia A Smith
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
13
|
Khan S, Khurana M, Vyas P, Vohora D. The role of melatonin and its analogues in epilepsy. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2019-0088/revneuro-2019-0088.xml. [PMID: 32950966 DOI: 10.1515/revneuro-2019-0088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/01/2020] [Indexed: 12/31/2022]
Abstract
Extensive research has gone into proposing a promising link between melatonin administration and attenuation of epileptic activity, the majority of which suggest its propensity as an antiseizure with antioxidant and neuroprotective properties. In the past few years, a number of studies highlighting the association of the melatonergic ligands with epilepsy have also emerged. In this context, our review is based on discussing the recent studies and various mechanisms of action that the said category of drugs exhibit in the context of being therapeutically viable antiseizure drugs. Our search revealed several articles on the four major drugs i.e. melatonin, agomelatine, ramelteon and piromelatine along with other melatonergic agonists like tasimelteon and TIK-301. Our review is suggestive of antiseizure effects of both melatonin and its analogues; however, extensive research work is still required to study their implications in the treatment of persons with epilepsy. Further evaluation of melatonergic signaling pathways and mechanisms may prove to be helpful in the near future and might prove to be a significant advance in the field of epileptology.
Collapse
Affiliation(s)
- Sumaira Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mallika Khurana
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Preeti Vyas
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
14
|
Barghout MS, Al-Shahawy AK, El Amrousy DM, Darwish AH. Comparison Between Efficacy of Melatonin and Diazepam for Prevention of Recurrent Simple Febrile Seizures: A Randomized Clinical Trial. Pediatr Neurol 2019; 101:33-38. [PMID: 31521449 DOI: 10.1016/j.pediatrneurol.2019.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/06/2019] [Accepted: 01/11/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVES We evaluated the efficacy and safety of oral melatonin compared with oral diazepam for prevention of recurrent simple febrile seizures. METHODS This prospective randomized clinical trial included 60 children aged six to 50 months with recurrent simple febrile seizures who attended the pediatric neurology clinic in Tanta University Hospital. Children were randomly allocated into two groups: the first group (30 children) received oral melatonin 0.3 mg/kg/8 hours, whereas the other group (30 children) received oral diazepam 1 mg/kg/day divided into three doses. Both melatonin and diazepam were given only during the febrile illness, started at the onset of the fever for 48 to 72 hours. Patients were followed up for six months. The primary outcome was recurrence of febrile seizures and the secondary outcome was occurrence of adverse effect related to melatonin or diazepam. RESULTS The recurrence rate of febrile seizures was 17% (5/30) in the melatonin group and 37% (11/30) in the diazepam group. There was no significant difference between the two groups (P = 0.08) (95% confidence interval -0.025 to 0.42). Both melatonin and diazepam have significantly reduced recurrence of febrile seizures (P < 0.001). Adverse effects were reported in 13.3% and 23.3% of the children taking melatonin and diazepam, respectively. No serious side effects were reported with melatonin use. Sedation and dizziness were the main side effects reported in children receiving oral diazepam. CONCLUSIONS Our data suggest that melatonin, administered at the onset of a febrile illness, may effectively reduce the likelihood of recurrent simple febrile seizures. No serious side effects were encountered.
Collapse
Affiliation(s)
- Mohammad Sami Barghout
- Faculty of Medicine, Department of Pediatrics, Tanta University Hospital, Tanta University, Tanta, Egypt
| | - Azza Kamal Al-Shahawy
- Faculty of Medicine, Department of Pediatrics, Pediatric Neurology Unit, Tanta University Hospital, Tanta University, Tanta, Egypt
| | - Doaa Mohamed El Amrousy
- Faculty of Medicine, Department of Pediatrics, Pediatric Cardiology Unit, Tanta University Hospital, Tanta University, Tanta, Egypt
| | - Amira Hamed Darwish
- Faculty of Medicine, Department of Pediatrics, Pediatric Neurology Unit, Tanta University Hospital, Tanta University, Tanta, Egypt.
| |
Collapse
|
15
|
Nesan D, Kurrasch DM. Gestational Exposure to Common Endocrine Disrupting Chemicals and Their Impact on Neurodevelopment and Behavior. Annu Rev Physiol 2019; 82:177-202. [PMID: 31738670 DOI: 10.1146/annurev-physiol-021119-034555] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endocrine disrupting chemicals are common in our environment and act on hormone systems and signaling pathways to alter physiological homeostasis. Gestational exposure can disrupt developmental programs, permanently altering tissues with impacts lasting into adulthood. The brain is a critical target for developmental endocrine disruption, resulting in altered neuroendocrine control of hormonal signaling, altered neurotransmitter control of nervous system function, and fundamental changes in behaviors such as learning, memory, and social interactions. Human cohort studies reveal correlations between maternal/fetal exposure to endocrine disruptors and incidence of neurodevelopmental disorders. Here, we summarize the major literature findings of endocrine disruption of neurodevelopment and concomitant changes in behavior by four major endocrine disruptor classes:bisphenol A, polychlorinated biphenyls, organophosphates, and polybrominated diphenyl ethers. We specifically review studies of gestational and/or lactational exposure to understand the effects of early life exposure to these compounds and summarize animal studies that help explain human correlative data.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, Alberta T2N 4N1, Canada; , .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, Alberta T2N 4N1, Canada; , .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
16
|
Schaefer M, Gebhard MM, Gross W. The effect of melatonin on hearts in ischemia/reperfusion experiments without and with HTK cardioplegia. Bioelectrochemistry 2019; 129:170-178. [DOI: 10.1016/j.bioelechem.2019.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 11/16/2022]
|
17
|
Wu H, Dunnett S, Ho YS, Chang RCC. The role of sleep deprivation and circadian rhythm disruption as risk factors of Alzheimer's disease. Front Neuroendocrinol 2019; 54:100764. [PMID: 31102663 DOI: 10.1016/j.yfrne.2019.100764] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 12/25/2022]
Abstract
Emerging evidence suggests that sleep deprivation (SD) and circadian rhythm disruption (CRD) may interact and increase the risk for the development of Alzheimer's disease (AD). This review inspects different pathophysiological aspects of SD and CRD, and shows that the two may impair the glymphatic-vascular-lymphatic clearance of brain macromolecules (e.g., β-amyloid and microtubule associated protein tau), increase local brain oxidative stress and diminish circulatory melatonin levels. Lastly, this review looks into the potential association between sleep and circadian rhythm with stress granule formation, which might be a new mechanism along the AD pathogenic pathway. In summary, SD and CRD is likely to be associated with a positive risk in developing Alzheimer's disease in humans.
Collapse
Affiliation(s)
- Hao Wu
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sophie Dunnett
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yuen-Shan Ho
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
18
|
Olivares-Bañuelos TN, Chí-Castañeda D, Ortega A. Glutamate transporters: Gene expression regulation and signaling properties. Neuropharmacology 2019; 161:107550. [PMID: 30822498 DOI: 10.1016/j.neuropharm.2019.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/24/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. During synaptic activity, glutamate is released and binds to specific membrane receptors and transporters activating, in the one hand, a wide variety of signal transduction cascades, while in the other hand, its removal from the synaptic cleft. Extracellular glutamate concentrations are maintained within physiological levels mainly by glia glutamate transporters. Inefficient clearance of this amino acid is neurotoxic due to a prolonged hyperactivation of its postsynaptic receptors, exacerbating a wide array of intracellular events linked to an ionic imbalance, that results in neuronal cell death. This process is known as excitotoxicity and is the underlying mechanisms of an important number of neurodegenerative diseases. Therefore, it is important to understand the regulation of glutamate transporters function. The transporter activity can be regulated at different levels: gene expression, transporter protein targeting and trafficking, and post-translational modifications of the transporter protein. The identification of these mechanisms has paved the way to our current understanding the role of glutamate transporters in brain physiology and will certainly provide the needed biochemical information for the development of therapeutic strategies towards the establishment of novel therapeutic approaches for the treatment and/or prevention of pathologies associated with excitotoxicity insults. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Tatiana N Olivares-Bañuelos
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Tijuana-Ensenada No. 3917, Fraccionamiento Playitas, 22860, Ensenada, Baja California, Mexico
| | - Donají Chí-Castañeda
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
| |
Collapse
|
19
|
Shukla M, Chinchalongporn V, Govitrapong P, Reiter RJ. The role of melatonin in targeting cell signaling pathways in neurodegeneration. Ann N Y Acad Sci 2019; 1443:75-96. [PMID: 30756405 DOI: 10.1111/nyas.14005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are typified by neuronal loss associated with progressive dysfunction and clinical presentation. Neurodegenerative diseases are characterized by the intra- and extracellular conglomeration of misfolded proteins that occur because of abnormal protein dynamics and genetic manipulations; these trigger processes of cell death in these disorders. The disrupted signaling mechanisms involved are oxidative stress-mediated mitochondrial and calcium signaling deregulation, alterations in immune and inflammatory signaling, disruption of autophagic integrity, proteostasis dysfunction, and anomalies in the insulin, Notch, and Wnt/β-catenin signaling pathways. Herein, we accentuate some of the contemporary translational approaches made in characterizing the underlying mechanisms of neurodegeneration. Melatonin-induced cognitive enhancement and inhibition of oxidative signaling substantiates the efficacy of melatonin in combating neurodegenerative processes. Our review considers in detail the possible roles of melatonin in understanding the synergistic pathogenic mechanisms between aggregated proteins and in regulating, modulating, and preventing the altered signaling mechanisms discovered in cellular and animal models along with clinical evaluations pertaining to neurodegeneration. Furthermore, this review showcases the therapeutic potential of melatonin in preventing and treating neurodegenerative diseases with optimum prognosis.
Collapse
Affiliation(s)
- Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Vorapin Chinchalongporn
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, Texas
| |
Collapse
|
20
|
Valdés-Tovar M, Estrada-Reyes R, Solís-Chagoyán H, Argueta J, Dorantes-Barrón AM, Quero-Chávez D, Cruz-Garduño R, Cercós MG, Trueta C, Oikawa-Sala J, Dubocovich ML, Benítez-King G. Circadian modulation of neuroplasticity by melatonin: a target in the treatment of depression. Br J Pharmacol 2018; 175:3200-3208. [PMID: 29512136 DOI: 10.1111/bph.14197] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 01/03/2023] Open
Abstract
Mood disorders are a spectrum of neuropsychiatric disorders characterized by changes in the emotional state. In particular, major depressive disorder is expected to have a worldwide prevalence of 20% in 2020, representing a huge socio-economic burden. Currently used antidepressant drugs have poor efficacy with only 30% of the patients in remission after the first line of treatment. Importantly, mood disorder patients present uncoupling of circadian rhythms. In this regard, melatonin (5-methoxy-N-acetyltryptamine), an indolamine synthesized by the pineal gland during the night, contributes to synchronization of body rhythms with the environmental light/dark cycle. In this review, we describe evidence supporting antidepressant-like actions of melatonin related to the circadian modulation of neuroplastic changes in the hippocampus. We also present evidence for the role of melatonin receptors and their signalling pathways underlying modulatory effects in neuroplasticity. Finally, we briefly discuss the detrimental consequences of circadian disruption on neuroplasticity and mood disorders, due to the modern human lifestyle. Together, data suggest that melatonin's stimulation of neurogenesis and neuronal differentiation is beneficial to patients with mood disorders. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Marcela Valdés-Tovar
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Rosa Estrada-Reyes
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Jesús Argueta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Ana María Dorantes-Barrón
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Daniel Quero-Chávez
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Ricardo Cruz-Garduño
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Montserrat G Cercós
- Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Citlali Trueta
- Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Julián Oikawa-Sala
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Margarita L Dubocovich
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| |
Collapse
|
21
|
Kraemer ÂB, Parfitt GM, Acosta DDS, Bruch GE, Cordeiro MF, Marins LF, Ventura-Lima J, Monserrat JM, Barros DM. Fullerene (C60) particle size implications in neurotoxicity following infusion into the hippocampi of Wistar rats. Toxicol Appl Pharmacol 2017; 338:197-203. [PMID: 29191454 DOI: 10.1016/j.taap.2017.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/23/2017] [Accepted: 11/26/2017] [Indexed: 12/23/2022]
Abstract
The buckminsterfullerene (C60) is considered as a relevant candidate for drug and gene delivery to the brain, once it has the ability to cross the blood-brain barrier. However, the biological implications of this nanomaterial are not fully understood, and its safety for intracerebral delivery is still debatable. In this study, we investigated if C60 particle size could alter its biological effects. For this, two aqueous C60 suspensions were used with maximum particle size up to 200nm and 450nm. The suspensions were injected in the hippocampus, the main brain structure involved in memory processing and spatial localization. In order to assess spatial learning, male Wistar rats were tested in Morris water maze, and the hippocampal BDNF protein levels and gene expression were analyzed. Animals treated with C60 up to 450nm demonstrated impaired spatial memory with a significant decrease in BDNF protein levels and gene expression. However, an enhanced antioxidant capacity was observed in both C60 treatments. A decrease in reactive oxygen species levels was observed in the treatments with suspensions containing particles measuring with up to 450nm. Thiobarbituric acid reactive substances, glutamate cysteine ligase, and glutathione levels showed no alterations among the different treatments. In conclusion, different particle sizes of the same nanomaterial can lead to different behavioral outcomes and biochemical parameters in brain tissue.
Collapse
Affiliation(s)
- Ândrea Barbosa Kraemer
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Gustavo Morrone Parfitt
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Daiane da Silva Acosta
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Gisele Eva Bruch
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Marcos Freitas Cordeiro
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Luis Fernando Marins
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Juliane Ventura-Lima
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - José Maria Monserrat
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Daniela Martí Barros
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
22
|
Sugantha Priya E, Sathish Kumar T, Balaji S, Bavithra S, Raja Singh P, Sakthivel D, Ravi Sankar B, Arunakaran J. Lactational exposure effect of polychlorinated biphenyl on rat Sertoli cell markers and functional regulators in prepuberal and puberal F 1 offspring. J Endocrinol Invest 2017; 40:91-100. [PMID: 27614457 DOI: 10.1007/s40618-016-0539-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/20/2016] [Indexed: 01/10/2023]
Abstract
PURPOSE Polychlorinated biphenyls (PCBs) are persistent and bioaccumulative environmental toxicants acting as endocrine disruptors. Many researches evidenced that PCBs affect the male reproductive system in adult rats and it can transfer from mother to offspring through milk. We investigated whether the lactational exposure to PCBs affects the Sertoli cell function in F1 offspring. METHODS Dams were orally treated with different doses of PCB-Aroclor 1254 (1, 2 and 5 mg/kg bw/day, respectively) from postpartum day 1-20. Male offspring rats were killed on PND 21 and PND 60. Testes were used both for histological study and to isolate Sertoli cell. Serum and testicular interstitial fluid (TIF) levels of testosterone, ABP and estradiol were analyzed by ELISA method. The mRNA and protein expressions of follicle-stimulating hormone (FSHR), androgen-binding protein (ABP), Inhibinβ, androgen receptor (AR) and estrogen receptor (ERβ) were studied using real-time PCR and immunoblotting, respectively. RESULTS The testicular architecture was altered in PCB-treated groups of both prepuberal and puberal rats. Testosterone, estradiol and androgen-binding protein levels were altered in both serum and TIF in PCB treated groups. The gene expression level of FSHR, ABP, ERβ and AR was decreased in a dose-dependent manner, whereas Inhibinβ gene expression level was increased in PCB-treated groups. CONCLUSION Lactational exposure to PCB affects both the histoarchitecture of testis, Sertoli cell maker and functional regulators in both prepuberal and puberal F1 male progeny.
Collapse
Affiliation(s)
- E Sugantha Priya
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India
| | - T Sathish Kumar
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India
| | - S Balaji
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India
| | - S Bavithra
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India
| | - P Raja Singh
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India
| | - D Sakthivel
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India
| | - B Ravi Sankar
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India
| | - J Arunakaran
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India.
| |
Collapse
|
23
|
Bavithra S, Selvakumar K, Sundareswaran L, Arunakaran J. Neuroprotective Effect of Melatonin Against PCBs Induced Behavioural, Molecular and Histological Changes in Cerebral Cortex of Adult Male Wistar Rats. Neurochem Res 2016; 42:428-438. [DOI: 10.1007/s11064-016-2087-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/30/2016] [Accepted: 10/20/2016] [Indexed: 12/01/2022]
|
24
|
Miller RL, Yan Z, Maher C, Zhang H, Gudsnuk K, McDonald J, Champagne FA. Impact of prenatal polycyclic aromatic hydrocarbon exposure on behavior, cortical gene expression and DNA methylation of the Bdnf gene. ACTA ACUST UNITED AC 2016; 5:11-18. [PMID: 27088078 DOI: 10.1016/j.nepig.2016.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prenatal exposure to polycyclic aromatic hydrocarbons (PAH) has been associated with sustained effects on the brain and behavior in offspring. However, the mechanisms have yet to be determined. We hypothesized that prenatal exposure to ambient PAH in mice would be associated with impaired neurocognition, increased anxiety, altered cortical expression of Bdnf and Grin2b, and greater DNA methylation of Bdnf. Our results indicated that during open-field testing, prenatal PAH exposed offspring spent more time immobile and less time exploring. Females produced more fecal boli. Offspring prenatally exposed to PAH displayed modest reductions in overall exploration of objects. Further, prenatal PAH exposure was associated with lower cortical expression of Grin2b and Bdnf in males, and greater Bdnf IV promoter methylation. Epigenetic differences within the Bdnf IV promoter correlated with Bdnf gene expression, but not with the observed behavioral outcomes, suggesting that additional targets may account for these PAH-associated effects.
Collapse
Affiliation(s)
- Rachel L Miller
- Department of Medicine, PH8E-101, 630 W. 168 St, Columbia University Medical Center, New York, NY, 10032, USA; Department of Pediatrics, PH8E-101, 630 W. 168 St, Columbia University Medical Center, New York, NY, 10032, USA; Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY 10032, USA
| | - Zhonghai Yan
- Department of Medicine, PH8E-101, 630 W. 168 St, Columbia University Medical Center, New York, NY, 10032, USA
| | - Christina Maher
- Department of Medicine, PH8E-101, 630 W. 168 St, Columbia University Medical Center, New York, NY, 10032, USA
| | - Hanjie Zhang
- Department of Medicine, PH8E-101, 630 W. 168 St, Columbia University Medical Center, New York, NY, 10032, USA
| | - Kathryn Gudsnuk
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, New York, NY, 10027, USA
| | - Jacob McDonald
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque NM, 87108, USA
| | - Frances A Champagne
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, New York, NY, 10027, USA
| |
Collapse
|