1
|
Taoto C, Tangsrisakda N, Thukhammee W, Phetcharaburanin J, Iamsaard S, Tanphaichitr N. Rats Orally Administered with Ethyl Alcohol for a Prolonged Time Show Histopathology of the Epididymis and Seminal Vesicle Together with Changes in the Luminal Metabolite Composition. Biomedicines 2024; 12:1010. [PMID: 38790972 PMCID: PMC11117629 DOI: 10.3390/biomedicines12051010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Prolonged ethanol (EtOH) consumption is associated with male infertility, with a decreased spermatogenesis rate as one cause. The defective maturation and development of sperm during their storage in the cauda epididymis and transit in the seminal vesicle can be another cause, possibly occurring before the drastic spermatogenesis disruption. Herein, we demonstrated that the cauda epididymis and seminal vesicle of rats, orally administered with EtOH under a regimen in which spermatogenesis was still ongoing, showed histological damage, including lesions, a decreased height of the epithelial cells and increased collagen fibers in the muscle layer, which implicated fibrosis. Lipid peroxidation (shown by malondialdehyde (MDA) levels) was observed, indicating that reactive oxygen species (ROS) were produced along with acetaldehyde during EtOH metabolism by CYP2E1. MDA, acetaldehyde and other lipid peroxidation products could further damage cellular components of the cauda epididymis and seminal vesicle, and this was supported by increased apoptosis (shown by a TUNEL assay and caspase 9/caspase 3 expression) in these two tissues of EtOH-treated rats. Consequently, the functionality of the cauda epididymis and seminal vesicle in EtOH-treated rats was impaired, as demonstrated by a decreases in 1H NMR-analyzed metabolites (e.g., carnitine, fructose), which were important for sperm development, metabolism and survival in their lumen.
Collapse
Affiliation(s)
- Chayakorn Taoto
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.T.); (N.T.)
| | - Nareelak Tangsrisakda
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.T.); (N.T.)
| | - Wipawee Thukhammee
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Jutarop Phetcharaburanin
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.T.); (N.T.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1Y 8L6, Canada
| |
Collapse
|
2
|
Deleanu C, Nicolescu A. NMR Spectroscopy in Diagnosis and Monitoring of Methylmalonic and Propionic Acidemias. Biomolecules 2024; 14:528. [PMID: 38785935 PMCID: PMC11117674 DOI: 10.3390/biom14050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Although both localized nuclear magnetic resonance spectroscopy (MRS) and non-localized nuclear magnetic resonance spectroscopy (NMR) generate the same information, i.e., spectra generated by various groups from the structure of metabolites, they are rarely employed in the same study or by the same research group. As our review reveals, these techniques have never been applied in the same study of methylmalonic acidemia (MMA), propionic acidemia (PA) or vitamin B12 deficiency patients. On the other hand, MRS and NMR provide complementary information which is very valuable in the assessment of the severity of disease and efficiency of its treatment. Thus, MRS provides intracellular metabolic information from localized regions of the brain, while NMR provides extracellular metabolic information from biological fluids like urine, blood or cerebrospinal fluid. This paper presents an up-to-date review of the NMR and MRS studies reported to date for methylmalonic and propionic acidemias. Vitamin B12 deficiency, although in most of its cases not inherited, shares similarities in its metabolic effects with MMA and it is also covered in this review.
Collapse
Affiliation(s)
- Calin Deleanu
- “Costin D. Nenitescu” Institute of Organic and Supramolecular Chemistry, Spl. Independentei 202-B, RO-060023 Bucharest, Romania
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41-A, RO-700487 Iasi, Romania
| | - Alina Nicolescu
- “Costin D. Nenitescu” Institute of Organic and Supramolecular Chemistry, Spl. Independentei 202-B, RO-060023 Bucharest, Romania
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41-A, RO-700487 Iasi, Romania
| |
Collapse
|
3
|
Liu Y, Wang H, Liang Y, Guo Z, Qu L, Wang Y, Zhang C, Sun G, Li Y. Dietary intakes of methionine, threonine, lysine, arginine and histidine increased risk of type 2 diabetes in Chinese population: does the mediation effect of obesity exist? BMC Public Health 2023; 23:1551. [PMID: 37582714 PMCID: PMC10428589 DOI: 10.1186/s12889-023-16468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Published studies have shown positive associations of branched chain and aromatic amino acids with type 2 diabetes mellitus (T2DM), and the findings remain consistent. However, the associations of other essential and semi-essential amino acids, i.e., methionine (Met), threonine (Thr), lysine (Lys), arginine (Arg) and histidine (His), with T2DM remain unknown. Obesity is an important independent risk factor for T2DM, and excessive amino acids can convert into glucose and lipids, which might underlie the associations of amino acids with obesity. Therefore, we aimed to estimate the associations between dietary intakes of these 5 amino acids and T2DM risk, as well as the mediation effects of obesity on these associations, in a Chinese population. METHODS A total of 10,920 participants (57,293 person-years) were included, and dietary intakes of 5 amino acids were investigated using 24-h dietary recalls. Anthropometric obesity indices were measured at both baseline and the follow-up endpoints. Associations of amino acids with T2DM were estimated using COX regression models, hazard ratios (HRs) and 95% confidence intervals (95% CIs) were shown. The mediation effects of obesity indices were analyzed, and the proportion of the mediation effect was estimated. RESULTS Higher intakes of the 5 amino acids were associated with increasing T2DM risk, while significant HRs were only shown in men after adjustments. No interaction by gender was found. Regression analyses using quintiles of amino acids intakes showed that T2DM risk was positively associated with amino acids intakes only when comparing participants with the highest intake levels of amino acids to those with the lowest intake levels. Adjusted correlation coefficients between amino acid intakes and obesity indices measured at follow-up endpoints were significantly positive. Mediation analyses showed that mediation effects of obesity indices existed on associations between amino acids intakes and T2DM risk, and the mediation effect of waist circumference remained strongest for each amino acid. CONCLUSIONS We found positive associations of dietary intakes of Met, Thr, Lys, Arg and His with increasing T2DM risk in general Chinese residents, on which the mediation effect of obesity existed. These findings could be helpful for developing more constructive guidance in the primary prevention of T2DM based on dietary interventions.
Collapse
Affiliation(s)
- Yuyan Liu
- Department of Clinical Epidemiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huan Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, China
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yuanhong Liang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, China
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Zijun Guo
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, China
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Litong Qu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, China
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Ying Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, China
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Chengwen Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, China
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Guifan Sun
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, China
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yongfang Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, China.
- School of Public Health, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Zhu X, Zhao Y, Sun N, Li C, Jiang Q, Zhang Y, Wei H, Li Y, Hu Q, Li X. Comparison of the gut microbiota and untargeted gut tissue metabolome of Chinese mitten crabs ( Eriocheir sinensis) with different shell colors. Front Microbiol 2023; 14:1218152. [PMID: 37520354 PMCID: PMC10374289 DOI: 10.3389/fmicb.2023.1218152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The Chinese mitten crab (Eriocheir sinensis) is a highly valued freshwater crustacean in China. While the natural shell color of E. sinensis is greenish brown (GH), we found a variety with a brownish-orange shell color (RH). Although RH is more expensive, it exhibits a lower molting frequency and growth rate compared with GH, which significantly reduces its yield and hinders large-scale farming. The growth and development of animals are closely related to their gut microbiota and gut tissue metabolic profiles. Methods In this study, we compared the gut microbiome communities and metabolic profiles of juvenile RH and GH crabs using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS), respectively. Results Our findings indicated that the intestinal microbial composition and metabolic characteristics of E. sinensis differed significantly between RH and GH. At the operational taxonomic unit (OTU) level, the α-diversity of the gut microbiota did not differ significantly between RH and GH, while the β-diversity of the RH gut microbiota was higher than that of the GH gut microbiota. At the species level, the richness of unclassified_c_Alphaproteobacteria was significantly higher in the GH group, while the RH group had a significantly higher richness of three low-abundance species, Flavobacteria bacterium BAL38, Paraburkholderia ferrariae, and uncultured_bacterium_g__Legionella. In the current study, 598 gut tissue metabolites were identified, and 159 metabolites were significantly different between GH and RH. The metabolite profile of RH was characteristic of a low level of most amino acids and lipid metabolites and a high level of several pigments compared with that of GH. These metabolites were enriched in 102 KEGG pathways. Four pathways, including (1) Central carbon metabolism in cancer, (2) protein digestion and absorption, (3) alanine, aspartate and glutamate metabolism, and (4) aminoacyl-tRNA biosynthesis, were significantly enriched. The correlation analysis between metabolites and microbiotas indicated that most key differential metabolites were positively correlated with the abundance of Shewanella_sp_MR-7. Discussion This research provided a greater understanding of the physiological conditions of E. sinensis varieties with different shell colors by comparing the gut microbiota and gut tissue metabolome.
Collapse
Affiliation(s)
- Xiaochen Zhu
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Yingying Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
| | - Na Sun
- Panjin Guanghe Crab Industry Co. Ltd., Panjin, China
| | - Changlei Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qing Jiang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yazhao Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Hua Wei
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
| | - Yingdong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
| | - Qingbiao Hu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
| | - Xiaodong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
- Panjin Guanghe Crab Industry Co. Ltd., Panjin, China
| |
Collapse
|
5
|
Samoilova J, Matveeva M, Tonkih O, Kudlau D, Oleynik O, Kanev A. A Prospective Study: Highlights of Hippocampal Spectroscopy in Cognitive Impairment in Patients with Type 1 and Type 2 Diabetes. J Pers Med 2021; 11:jpm11020148. [PMID: 33669655 PMCID: PMC7922999 DOI: 10.3390/jpm11020148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus type 1 and 2 is associated with cognitive impairment. Previous studies have reported a relationship between changes in cerebral metabolite levels and the variability of glycemia. However, the specific risk factors that affect the metabolic changes associated with type 1 and type 2 diabetes in cognitive dysfunction remain uncertain. The aim of the study was to evaluate the specificity of hippocampal spectroscopy in type 1 and type 2 diabetes and cognitive dysfunction. MATERIALS AND METHODS 65 patients with type 1 diabetes with cognitive deficits and 20 patients without, 75 patients with type 2 diabetes with cognitive deficits and 20 patients without have participated in the study. The general clinical analysis and evaluation of risk factors of cognitive impairment were carried out. Neuropsychological testing included the Montreal Scale of Cognitive Dysfunction Assessment (MoCA test). Magnetic resonance spectroscopy (MRS) was performed in the hippocampal area, with the assessment of N-acetylaspartate (NAA), choline (Cho), creatine (Cr), and phosphocreatine (PCr) levels. Statistical processing was performed using the commercially available IBM SPSS software. RESULTS Changes in the content of NAA, choline Cho, phosphocreatine Cr2 and their ratios were observed in type 1 diabetes. More pronounced changes in hippocampal metabolism were observed in type 2 diabetes for all of the studied metabolites. Primary risk factors of neurometabolic changes in patients with type 1 diabetes were episodes of severe hypoglycemia in the history of the disease, diabetic ketoacidosis (DKA), chronic hyperglycemia, and increased body mass index (BMI). In type 2 diabetes, arterial hypertension (AH), BMI, and patient's age are of greater importance, while the level of glycated hemoglobin (HbA1c), duration of the disease, level of education and insulin therapy are of lesser importance. CONCLUSION Patients with diabetes have altered hippocampal metabolism, which may serve as an early predictive marker. The main modifiable factors have been identified, correction of which may slow down the progression of cognitive dysfunction.
Collapse
Affiliation(s)
- Julia Samoilova
- Medical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (J.S.); (O.T.); (O.O.); (A.K.)
| | - Mariia Matveeva
- Medical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (J.S.); (O.T.); (O.O.); (A.K.)
- Correspondence: ; Tel.: +7-913-8152-552
| | - Olga Tonkih
- Medical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (J.S.); (O.T.); (O.O.); (A.K.)
| | - Dmitry Kudlau
- Institute of Immunology, Federal Medical and Biological Agency of Russia, 115478 Moscow, Russia;
| | - Oxana Oleynik
- Medical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (J.S.); (O.T.); (O.O.); (A.K.)
| | - Aleksandr Kanev
- Medical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (J.S.); (O.T.); (O.O.); (A.K.)
| |
Collapse
|
6
|
Nicolescu A, Blanita D, Boiciuc C, Hlistun V, Cristea M, Rotaru D, Pinzari L, Oglinda A, Stamati A, Tarcomnicu I, Tutulan-Cunita A, Stambouli D, Gladun S, Revenco N, Uşurelu N, Deleanu C. Monitoring Methylmalonic Aciduria by NMR Urinomics. Molecules 2020; 25:molecules25225312. [PMID: 33202577 PMCID: PMC7697698 DOI: 10.3390/molecules25225312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022] Open
Abstract
The paper reports on monitoring methylmalonic aciduria (MMA)-specific and non-specific metabolites via NMR urinomics. Five patients have been monitored over periods of time; things involved were diet, medication and occasional episodes of failing to comply with prescribed diets. An extended dataset of targeted metabolites is presented, and correlations with the type of MMA are underlined. A survey of previous NMR studies on MMA is also presented.
Collapse
Affiliation(s)
- Alina Nicolescu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41A, RO-700487 Iasi, Romania;
- “C. D. Nenitescu” Centre of Organic Chemistry, Romanian Academy, Spl. Independentei 202B, RO-060023 Bucharest, Romania
- Correspondence: (A.N.); (N.U.); or (C.D.); Tel.: +40-744-340-456 (C.D.)
| | - Daniela Blanita
- Institute of Mother and Child, Str. Burebista 93, MD-2062 Chisinau, Moldova; (D.B.); (C.B.); (V.H.); (L.P.); (S.G.)
| | - Chiril Boiciuc
- Institute of Mother and Child, Str. Burebista 93, MD-2062 Chisinau, Moldova; (D.B.); (C.B.); (V.H.); (L.P.); (S.G.)
| | - Victoria Hlistun
- Institute of Mother and Child, Str. Burebista 93, MD-2062 Chisinau, Moldova; (D.B.); (C.B.); (V.H.); (L.P.); (S.G.)
| | - Mihaela Cristea
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41A, RO-700487 Iasi, Romania;
| | - Dorina Rotaru
- “Gheorghe Palade” City Clinical Hospital, Str. Melestiu 20, MD-2001 Chisinau, Moldova;
| | - Ludmila Pinzari
- Institute of Mother and Child, Str. Burebista 93, MD-2062 Chisinau, Moldova; (D.B.); (C.B.); (V.H.); (L.P.); (S.G.)
| | - Ana Oglinda
- “Nicolae Testemitanu” State University of Medicine and Pharmacy, Bd. Stefan cel Mare si Sfint 165, MD-2004 Chisinau, Moldova; (A.O.); (A.S.); (N.R.)
| | - Adela Stamati
- “Nicolae Testemitanu” State University of Medicine and Pharmacy, Bd. Stefan cel Mare si Sfint 165, MD-2004 Chisinau, Moldova; (A.O.); (A.S.); (N.R.)
| | - Isabela Tarcomnicu
- Cytogenomic Medical Laboratory, Calea Floreasca 35, RO-014453 Bucharest, Romania; (I.T.); (A.T.-C.); (D.S.)
| | - Andreea Tutulan-Cunita
- Cytogenomic Medical Laboratory, Calea Floreasca 35, RO-014453 Bucharest, Romania; (I.T.); (A.T.-C.); (D.S.)
| | - Danae Stambouli
- Cytogenomic Medical Laboratory, Calea Floreasca 35, RO-014453 Bucharest, Romania; (I.T.); (A.T.-C.); (D.S.)
| | - Sergiu Gladun
- Institute of Mother and Child, Str. Burebista 93, MD-2062 Chisinau, Moldova; (D.B.); (C.B.); (V.H.); (L.P.); (S.G.)
| | - Ninel Revenco
- “Nicolae Testemitanu” State University of Medicine and Pharmacy, Bd. Stefan cel Mare si Sfint 165, MD-2004 Chisinau, Moldova; (A.O.); (A.S.); (N.R.)
| | - Natalia Uşurelu
- Institute of Mother and Child, Str. Burebista 93, MD-2062 Chisinau, Moldova; (D.B.); (C.B.); (V.H.); (L.P.); (S.G.)
- Correspondence: (A.N.); (N.U.); or (C.D.); Tel.: +40-744-340-456 (C.D.)
| | - Calin Deleanu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41A, RO-700487 Iasi, Romania;
- “C. D. Nenitescu” Centre of Organic Chemistry, Romanian Academy, Spl. Independentei 202B, RO-060023 Bucharest, Romania
- Correspondence: (A.N.); (N.U.); or (C.D.); Tel.: +40-744-340-456 (C.D.)
| |
Collapse
|
7
|
Zhao X, Han Q, Gang X, Wang G. Altered brain metabolites in patients with diabetes mellitus and related complications - evidence from 1H MRS study. Biosci Rep 2018; 38:BSR20180660. [PMID: 30104398 PMCID: PMC6127672 DOI: 10.1042/bsr20180660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/23/2018] [Accepted: 08/09/2018] [Indexed: 12/24/2022] Open
Abstract
In recent years, diabetes mellitus (DM) has been acknowledged as an important factor for brain disorders. Significant alterations in brain metabolism have been demonstrated during the development of DM and its complications. Magnetic resonance spectroscopy (MRS), a cutting-edge technique used in biochemical analyses, non-invasively provides insights into altered brain metabolite levels in vivo This review aims to discuss current MRS data describing brain metabolite levels in DM patients with or without complications. Cerebral metabolites including N-acetylaspartate (NAA), creatine (Cr), choline (Cho), myo-inositol (mI), glutamate, and glutamine were significantly altered in DM patients, suggesting that energy metabolism, neurotransmission, and lipid membrane metabolism might be disturbed during the progression of DM. Changes in brain metabolites may be non-invasive biomarkers for DM and DM-related complications. Different brain regions presented distinct metabolic signatures, indicating region-specific diabetic brain damages. In addition to serving as biomarkers, MRS data on brain metabolites can also shed light on diabetic treatment monitoring. For example, exercise may restore altered brain metabolite levels and has beneficial effects on cognition in DM patients. Future studies should validate the above findings in larger populations and uncover the mechanisms of DM-induced brain damages.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Qing Han
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
8
|
Wasim M, Awan FR, Khan HN, Tawab A, Iqbal M, Ayesha H. Aminoacidopathies: Prevalence, Etiology, Screening, and Treatment Options. Biochem Genet 2017; 56:7-21. [PMID: 29094226 DOI: 10.1007/s10528-017-9825-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 09/18/2017] [Indexed: 12/26/2022]
Abstract
Inborn errors of metabolism (IEMs) are a group of inherited metabolic disorders which are caused by mutations in the specific genes that lead to impaired proteins or enzymes production. Different metabolic pathways are perturbed due to the deficiency or lack of enzymes. To date, more than 500 IEMs have been reported with most of them being untreatable. However, fortunately 91 such disorders are potentially treatable, if diagnosed at an earlier stage of life. IEMs have been classified into different categories and one class of IEMs, characterized by the physiological disturbances of amino acids is called as aminoacidopathies. Out of 91 treatable IEM, thirteen disorders are amino acid related. Aminoacidopathies can be detected by chromatography and mass spectrometry based analytical techniques (e.g., HPLC, GC-MS, LC-MS/MS) for amino acid level changes, and through genetic assays (e.g., PCR, TaqMan Genotyping, DNA sequencing) at the mutation level in the corresponding genes. Hence, this review is focused to describe thirteen common aminoacidopathies namely: Phenylketonuria (PKU), Maple Syrup Urine Disease (MSUD), Homocystinuria/Methylene Tetrahydrofolate Reductase (MTHFR) deficiency, Tyrosinemia type II, Citrullinemia type I and type II, Argininosuccinic aciduria, Carbamoyl Phosphate Synthetase I (CPS) deficiency, Argininemia (arginase deficiency), Hyperornithinemia-Hyperammonemia-Homocitrullinuria (HHH) syndrome, N-Acetylglutamate Synthase (NAGS) deficiency, Ornithine Transcarbamylase (OTC) deficiency, and Pyruvate Dehydrogenase (PDH) complex deficiency. Furthermore, the etiology, prevalence and commonly used analytical techniques for screening of aminoacidopathies are briefly described. This information would be helpful to researchers and clinicians especially from developing countries to initiate newborn screening programs for aminoacidopathies.
Collapse
Affiliation(s)
- Muhammad Wasim
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan
| | - Fazli Rabbi Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan.
| | - Haq Nawaz Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan
| | - Abdul Tawab
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan
| | - Hina Ayesha
- DHQ Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| |
Collapse
|
9
|
I Amaral A, Hadera MG, Kotter M, Sonnewald U. Oligodendrocytes Do Not Export NAA-Derived Aspartate In Vitro. Neurochem Res 2017; 42:827-837. [PMID: 27394419 PMCID: PMC5357468 DOI: 10.1007/s11064-016-1985-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/24/2022]
Abstract
Oligodendroglial cells are known to de-acetylate the N-acetylaspartate (NAA) synthesized and released by neurons and use it for lipid synthesis. However, the role of NAA regarding their intermediary metabolism remains poorly understood. Two hypotheses were proposed regarding the fate of aspartate after being released by de-acetylation: (1) aspartate is metabolized in the mitochondria of oligodendrocyte lineage cells; (2) aspartate is released to the medium. We report here that aspartoacylase mRNA expression increases when primary rat oligodendrocyte progenitor cells (OPCs) differentiate into mature cells in culture. Moreover, characterising metabolic functions of acetyl coenzyme A and aspartate from NAA catabolism in mature oligodendrocyte cultures after 5 days using isotope-labelled glucose after 5-days of differentiation we found evidence of extensive NAA metabolism. Incubation with [1,6-13C]glucose followed by gas chromatography-mass spectrometry and high performance liquid chromatography analyses of cell extracts and media in the presence and absence of NAA established that the acetate moiety produced by hydrolysis of NAA does not enter mitochondrial metabolism in the form of acetyl coenzyme A. We also resolved the controversy concerning the possible release of aspartate to the medium: aspartate is not released to the medium by oligodendrocytes in amounts detectable by our methods. Therefore we propose that: aspartate released from NAA joins the cytosolic aspartate pool rapidly and takes part in the malate-aspartate shuttle, which transports reducing equivalents from glycolysis into the mitochondria for ATP production and enters the tricarboxylic acid cycle at a slow rate.
Collapse
Affiliation(s)
- Ana I Amaral
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Clinical Neurosciences, University of Cambridge, West Forvie Building, Robinson Way, Cambridge, CB2 0SZ, UK
| | - Mussie Ghezu Hadera
- Department of Pharmacy, College of Health Sciences, Mekelle University, Tigray, Ethiopia
| | - Mark Kotter
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Clinical Neurosciences, University of Cambridge, West Forvie Building, Robinson Way, Cambridge, CB2 0SZ, UK.
| | - Ursula Sonnewald
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), PO Box 8905, MTFS, 7491, Trondheim, Norway.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark.
| |
Collapse
|
10
|
Lee P, Adany P, Choi IY. Imaging based magnetic resonance spectroscopy (MRS) localization for quantitative neurochemical analysis and cerebral metabolism studies. Anal Biochem 2017; 529:40-47. [PMID: 28082217 DOI: 10.1016/j.ab.2017.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/10/2016] [Accepted: 01/08/2017] [Indexed: 11/15/2022]
Abstract
Accurate quantitative metabolic imaging of the brain presents significant challenges due to the complexity and heterogeneity of its structures and compositions with distinct compartmentations of brain tissue types (e.g., gray and white matter). The brain is compartmentalized into various regions based on their unique functions and locations. In vivo magnetic resonance spectroscopy (MRS) techniques allow non-invasive measurements of neurochemicals in either single voxel or multiple voxels, yet the spatial resolution and detection sensitivity of MRS are significantly lower compared with MRI. A fundamentally different approach, namely spectral localization by imaging (SLIM) provides a new framework that overcomes major limitations of conventional MRS techniques. Conventional MRS allows only rectangular voxel shapes that do not conform to the shapes of brain structures or lesions, while SLIM allows compartments with arbitrary shapes. However, the restrictive assumption proposed in the original concept of SLIM, i.e., compartmental homogeneity, led to spectral localization errors, which have limited its broad applications. This review focuses on the recent technical frontiers of image-based MRS localization techniques that overcome the limitations of SLIM through the development and implementation of various new strategies, including incorporation of magnetic field inhomogeneity corrections, the use of multiple receiver coils, and prospective optimization of data acquisition.
Collapse
Affiliation(s)
- Phil Lee
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Peter Adany
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - In-Young Choi
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|