1
|
Ning J, Tian Z, Wang J, Yan F, Shi C, Zhang S, Feng L, Shu X, Cui J, James TD, Ma X. Rational Molecular Design of a Fluorescent Probe for Selectively Sensing Human Cytochrome P450 2D6. Angew Chem Int Ed Engl 2024; 63:e202409217. [PMID: 38989537 DOI: 10.1002/anie.202409217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
Cytochrome P450 2D6 (CYP2D6) is a key enzyme that mediates the metabolism of various drugs and endogenous substances in humans. However, its biological role in drug-drug interactions especially mechanism-based inactivation (MBI), and various diseases remains poorly understood, owing to the lack of molecular tools suitable for selectively monitoring CYP2D6 in complex biological systems. Herein, using a tailored molecular strategy, we developed a fluorescent probe BDPM for CYP2D6. BDPM exhibits excellent specificity and imaging capability for CYP2D6, making it suitable for the real-time monitoring of endogenous CYP2D6 activity in living bio-samples. Therefore, our tailored strategy proved useful for constructing the highly selective and enzyme-activated fluorescent probes. BDPM as a molecular tool to explore the critical roles of CYP2D6 in the pathogenesis of diseases, high-throughput screening of inhibitors and intensive investigation of CYP2D6-induced MBI in natural systems.
Collapse
Affiliation(s)
- Jing Ning
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Zhenhao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiayue Wang
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
- Beijing DP Technology Co., Ltd., Beijing, 100080, China
| | - Fei Yan
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Chao Shi
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Shujing Zhang
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Lei Feng
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Xiaohong Shu
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Tony D James
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Xiaochi Ma
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| |
Collapse
|
2
|
Cao DL, Ma LJ, Jiang BC, Gu Q, Gao YJ. Cytochrome P450 26A1 Contributes to the Maintenance of Neuropathic Pain. Neurosci Bull 2024; 40:293-309. [PMID: 37639183 PMCID: PMC10912416 DOI: 10.1007/s12264-023-01101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/02/2023] [Indexed: 08/29/2023] Open
Abstract
The cytochrome P450 proteins (CYP450s) have been implicated in catalyzing numerous important biological reactions and contribute to a variety of diseases. CYP26A1, a member of the CYP450 family, carries out the oxidative metabolism of retinoic acid (RA), the active metabolite of vitamin A. Here we report that CYP26A1 was dramatically upregulated in the spinal cord after spinal nerve ligation (SNL). CYP26A1 was mainly expressed in spinal neurons and astrocytes. HPLC analysis displayed that the content of all-trans-RA (at-RA), the substrate of CYP26A1, was reduced in the spinal cord on day 7 after SNL. Inhibition of CYP26A1 by siRNA or inhibition of CYP26A1-mediated at-RA catabolism by talarozole relieved the SNL-induced mechanical allodynia during the maintenance phase of neuropathic pain. Talarozole also reduced SNL-induced glial activation and proinflammatory cytokine production but increased anti-inflammatory cytokine (IL-10) production. The RA receptors RARα, RXRβ, and RXRγ were expressed in spinal neurons and glial cells. The promoter of Il-10 has several binding sites for RA receptors, and at-RA directly increased Il-10 mRNA expression in vitro. Finally, intrathecal IL-10 attenuated SNL-induced neuropathic pain and reduced the activation of astrocytes and microglia. Collectively, the inhibition of CYP26A1-mediated at-RA catabolism alleviates SNL-induced neuropathic pain by promoting the expression of IL-10 and suppressing glial activation. CYP26A1 may be a potential therapeutic target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- De-Li Cao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
- Nantong University Medical School, Nantong, 226001, China
| | - Ling-Jie Ma
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Bao-Chun Jiang
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Qiang Gu
- Department of Pain Management, The Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
| |
Collapse
|
3
|
Zhang M, Rottschäfer V, C M de Lange E. The potential impact of CYP and UGT drug-metabolizing enzymes on brain target site drug exposure. Drug Metab Rev 2024; 56:1-30. [PMID: 38126313 DOI: 10.1080/03602532.2023.2297154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Drug metabolism is one of the critical determinants of drug disposition throughout the body. While traditionally associated with the liver, recent research has unveiled the presence and functional significance of drug-metabolizing enzymes (DMEs) within the brain. Specifically, cytochrome P-450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) enzymes have emerged as key players in drug biotransformation within the central nervous system (CNS). This comprehensive review explores the cellular and subcellular distribution of CYPs and UGTs within the CNS, emphasizing regional expression and contrasting profiles between the liver and brain, humans and rats. Moreover, we discuss the impact of species and sex differences on CYPs and UGTs within the CNS. This review also provides an overview of methodologies for identifying and quantifying enzyme activities in the brain. Additionally, we present factors influencing CYPs and UGTs activities in the brain, including genetic polymorphisms, physiological variables, pathophysiological conditions, and environmental factors. Examples of CYP- and UGT-mediated drug metabolism within the brain are presented at the end, illustrating the pivotal role of these enzymes in drug therapy and potential toxicity. In conclusion, this review enhances our understanding of drug metabolism's significance in the brain, with a specific focus on CYPs and UGTs. Insights into the expression, activity, and influential factors of these enzymes within the CNS have crucial implications for drug development, the design of safe drug treatment strategies, and the comprehension of drug actions within the CNS. To that end, CNS pharmacokinetic (PK) models can be improved to further advance drug development and personalized therapy.
Collapse
Affiliation(s)
- Mengxu Zhang
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
4
|
Mostafalou S, Abdollahi M. The susceptibility of humans to neurodegenerative and neurodevelopmental toxicities caused by organophosphorus pesticides. Arch Toxicol 2023; 97:3037-3060. [PMID: 37787774 DOI: 10.1007/s00204-023-03604-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
The toxicology field is concerned with the impact of organophosphorus (OP) compounds on human health. These compounds have been linked to an increased risk of neurological disorders, including neurodegenerative and neurodevelopmental diseases. This article aims to review studies on the role of OP compounds in developing these neurological disorders and explore how genetic variations can affect susceptibility to the neurotoxicity of these pesticides. Studies have shown that exposure to OP compounds can lead to the development of various neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD), autism, intellectual disability, and other developmental neurotoxicities. Apart from inhibiting the cholinesterase enzyme, OP compounds are believed to cause other pathological mechanisms at both the extracellular level (cholinergic, serotonergic, dopaminergic, glutamatergic, and GABAergic synapses) and the intracellular level (oxidative stress, mitochondrial dysfunction, inflammation, autophagy, and apoptosis) that contribute to these disorders. Specific genetic polymorphisms, including PON1, ABCB1, NOS, DRD4, GST, CYP, and APOE, have increased the risk of developing OP-related neurological disorders.
Collapse
Affiliation(s)
- Sara Mostafalou
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Abdollahi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Moric-Janiszewska E, Smolik S, Szydłowski L, Kapral M. Associations between Selected ADRB1 and CYP2D6 Gene Polymorphisms in Children with Ventricular and Supraventricular Arrhythmias. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2057. [PMID: 38138160 PMCID: PMC10744405 DOI: 10.3390/medicina59122057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Tachycardia is a common cardiovascular disease. Drugs blocking β1-adrenergic receptors (ADRB1) are used in the therapy of arrhythmogenic heart diseases. Disease-related polymorphisms can be observed within the ADRB1 gene. The two most important are Ser49Gly and Arg389Gly, and they influence the treatment efficacy. The family of the cytochrome P450 system consists of the isoenzyme CYP2D6 (Debrisoquine 4-hydroxylase), which is involved in phase I metabolism of almost 25% of clinically important drugs, including antiarrhythmic drugs. A study was conducted to detect the ADRB1 and CYP2D6 gene polymorphisms. Materials and Methods: The material for the test was whole blood from 30 patients with ventricular and supraventricular tachycardia and 20 controls. The samples were obtained from the Department of Pediatric Cardiology. The first to be made was the extraction of DNA using a GeneMATRIX Quick Blood DNA Purification Kit from EURx. The selected ADRB1 and CYP2D6 gene polymorphisms were detected by high-resolution melting polymerase chain reaction (HRM-PCR) analysis. Results: Based on the analysis of melt profile data for each PCR product, the identification of polymorphisms was carried out. Heterozygotes and homozygotes were found in the examined alleles. Conclusions: The frequency of the Arg389Gly polymorphism differs statistically significantly between the control group and patients with supraventricular and ventricular arrhythmias, as well as between these two groups of patients. Moreover, the Arg389Gly polymorphism was statistically more prevalent in the group of girls with SVT arrhythmia compared to girls with VT. A few carriers of homozygous and heterozygous systems of the S49G polymorphism were detected among patients with arrhythmias, as well as control group. The percentage of individuals carrying the CYP2D6 4 allele as either homozygous or heterozygous was observed in the study and control groups. The high prevalence of the CYP2D6*4 allele carriers in both groups prompts the optimization of beta-1 blocker therapy.
Collapse
Affiliation(s)
- Ewa Moric-Janiszewska
- Department of Biochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8B, 41-200 Sosnowiec, Poland
| | - Sławomir Smolik
- Department of Biochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8B, 41-200 Sosnowiec, Poland
| | - Lesław Szydłowski
- Department of Pediatric Cardiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 16, 40-752 Katowice, Poland
| | - Małgorzata Kapral
- Department of Biochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8B, 41-200 Sosnowiec, Poland
| |
Collapse
|
6
|
Konstandi M, Johnson EO. Age-related modifications in CYP-dependent drug metabolism: role of stress. Front Endocrinol (Lausanne) 2023; 14:1143835. [PMID: 37293497 PMCID: PMC10244505 DOI: 10.3389/fendo.2023.1143835] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 06/10/2023] Open
Abstract
Accumulating clinical evidence indicates extensive inter-individual variations in the effectiveness and adverse effects of standard treatment protocols, which are largely attributed to the multifactorial regulation of the hepatic CYP-dependent drug metabolism that is connected with either transcriptional or post-translational modifications. Age and stress belong to the most important factors in CYP gene regulation. Alterations in neuroendocrine responses to stress, which are associated with modified hypothalamo-pituitary-adrenal axis function, usually accompany ageing. In this light, ageing followed by a decline of the functional integrity of organs, including liver, a failure in preserving homeostasis under stress, increased morbidity and susceptibility to stress, among others, holds a determinant role in the CYP-catalyzed drug metabolism and thus, in the outcome and toxicity of pharmacotherapy. Modifications in the drug metabolizing capacity of the liver with age have been reported and in particular, a decline in the activity of the main CYP isoforms in male senescent rats, indicating decreased metabolism and higher levels of the drug-substrates in their blood. These factors along with the restricted experience in the use of the most medicines in childhood and elderly, could explain at an extent the inter-individual variability in drug efficacy and toxicity outcomes, and underscore the necessity of designing the treatment protocols, accordingly.
Collapse
Affiliation(s)
- Maria Konstandi
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Elizabeth O. Johnson
- Department of Anatomy, School of Medicine, European University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
7
|
Liu X, Wang Q, Chen M, Tao J, Wang J, Liu S, Hou J, Li D, Wang R. Interaction between Changan Granule and its main components in the plasma and CYP450 enzymes. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116303. [PMID: 36841379 DOI: 10.1016/j.jep.2023.116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Changan Granule (CAG) is a Chinese patent drug developed based on an empirical prescription in accordance with the formulation theory of Traditional Chinese Medicine. The prescription is composed of eight herbal drugs which have been traditionally used by Chinese people for a long history. It has effects of invigorating spleen and supplementing qi, as well as regulating liver and ceasing diarrhea, and is indicated for the treatment of irritable bowel syndrome (IBS). AIM OF THE STUDY This study was aimed to investigate the interaction between CAG and its main components and cytochrome P450 (CYP450) enzymes so as to characterize the major metabolites and metabolic enzymes and evaluate the safety concerns to its clinical use. MATERIALS AND METHODS Both in vivo and in vitro experiments using such as diarrhea-predominant IBS (IBS-D) rat model, HepG2 cells, and human liver microsomes (HLM) were carried out to investigate the interaction between CAG and its main components and CYP450 enzymes. Real-time quantitative PCR (qPCR), ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and cocktail probes were employed to qualitatively or quantitatively measure the metabolites and metabolic enzymes. RESULTS CAG inhibited the enzyme activities of CYP1A2, CYP2E1, CYP2D6, CYP2C9, and CYP3A4 and the mRNA expressions of CYP2E1, CYP2C9, CYP3A4, and CYP2D6 in vitro. CAG down-regulated the increased expression of CYP1A2 and up-regulated the decreased expression of CYP3A1 in vivo. Twenty-two metabolites were characterized from the main components of CAG after incubation with HLM in vitro. CYP2D6, CYP2E1, CYP3A4 and CYP2C9 were identified as the characteristic metabolic enzymes. CONCLUSIONS This study provides a reference for clinical application of CAG in safety. CAG and CYP450 enzymes are interacted. CAG is mainly metabolized by CYP2E1 and CYP2D6. The expression of CYP2E1 and CYP2D6 are more susceptible to be influenced by CAG in comparison with that of CYP3A4, CYP2C9 and CYP1A2. It implies the potential risk of interaction when CAG is taken together with the drugs metabolized by CYP2E1 and CYP2D6.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qiaoxia Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Meng Chen
- China National Institute of Standardization, Beijing, 100191, China
| | - Jiayue Tao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Siqi Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jincai Hou
- Hebei Shineway Pharmaceutical Co., Ltd., Langfang, 065201, China
| | - Dan Li
- Hebei Shineway Pharmaceutical Co., Ltd., Langfang, 065201, China.
| | - Rufeng Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
8
|
Li C, Saliba NB, Martin H, Losurdo NA, Kolahdouzan K, Siddiqui R, Medeiros D, Li W. Purkinje cell dopaminergic inputs to astrocytes regulate cerebellar-dependent behavior. Nat Commun 2023; 14:1613. [PMID: 36959176 PMCID: PMC10036610 DOI: 10.1038/s41467-023-37319-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
Dopamine has a significant role in motor and cognitive function. The dopaminergic pathways originating from the midbrain have received the most attention; however, the relevance of the cerebellar dopaminergic system is largely undiscovered. Here, we show that the major cerebellar astrocyte type Bergmann glial cells express D1 receptors. Dopamine can be synthesized in Purkinje cells by cytochrome P450 and released in an activity-dependent fashion. We demonstrate that activation of D1 receptors induces membrane depolarization and Ca2+ release from the internal store. These astrocytic activities in turn modify Purkinje cell output by altering its excitatory and inhibitory synaptic input. Lastly, we show that conditional knockout of D1 receptors in Bergmann glial cells results in decreased locomotor activity and impaired social activity. These results contribute to the understanding of the molecular, cellular, and circuit mechanisms underlying dopamine function in the cerebellum, revealing a critical role for the cerebellar dopaminergic system in motor and social behavior.
Collapse
Affiliation(s)
- Chang Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Natalie B Saliba
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hannah Martin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nicole A Losurdo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Neuroscience Program, The University of Utah, Salt Lake City, UT, USA
| | - Kian Kolahdouzan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Riyan Siddiqui
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Destynie Medeiros
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Liu G, Bai X, Yang J, Duan Y, Zhu J, Xiangyang L. Relationship between blood-brain barrier changes and drug metabolism under high-altitude hypoxia: obstacle or opportunity for drug transport? Drug Metab Rev 2023; 55:107-125. [PMID: 36823775 DOI: 10.1080/03602532.2023.2180028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The blood-brain barrier is essential for maintaining the stability of the central nervous system and is also crucial for regulating drug metabolism, changes of blood-brain barrier's structure and function can influence how drugs are delivered to the brain. In high-altitude hypoxia, the central nervous system's function is drastically altered, which can cause disease and modify the metabolism of drugs in vivo. Changes in the structure and function of the blood-brain barrier and the transport of the drug across the blood-brain barrier under high-altitude hypoxia, are regulated by changes in brain microvascular endothelial cells, astrocytes, and pericytes, either regulated by drug metabolism factors such as drug transporters and drug-metabolizing enzymes. This article aims to review the effects of high-altitude hypoxia on the structure and function of the blood-brain barrier as well as the effects of changes in the blood-brain barrier on drug metabolism. We also hypothesized and explore the regulation and potential mechanisms of the blood-brain barrier and associated pathways, such as transcription factors, inflammatory factors, and nuclear receptors, in regulating drug transport under high-altitude hypoxia.
Collapse
Affiliation(s)
- Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Jianxin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Yabin Duan
- Affiliated Hospital of Qinghai University, Xining, China
| | - Junbo Zhu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Li Xiangyang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
10
|
Hartz P, Fehlmann T, Wagenpfeil G, Unger MM, Bernhardt R. A CYPome-wide study reveals new potential players in the pathogenesis of Parkinson's disease. Front Pharmacol 2023; 13:1094265. [PMID: 36744208 PMCID: PMC9892771 DOI: 10.3389/fphar.2022.1094265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023] Open
Abstract
Genetic and environmental factors lead to the manifestation of Parkinson's disease (PD) but related mechanisms are only rudimentarily understood. Cytochromes P450 (P450s) are involved in the biotransformation of toxic compounds and in many physiological processes and thus predestinated to be involved in PD. However, so far only SNPs (single nucleotide polymorphisms) in CYP2D6 and CYP2E1 have been associated with the susceptibility of PD. Our aim was to evaluate the role of all 57 human P450s and their redox partners for the etiology and pathophysiology of PD and to identify novel potential players which may lead to the identification of new biomarkers and to a causative treatment of PD. The PPMI (Parkinson's Progression Markers Initiative) database was used to extract the gene sequences of all 57 P450s and their three redox partners to analyze the association of SNPs with the occurrence of PD. Applying statistical analyses of the data, corresponding odds ratios (OR) and confidence intervals (CI) were calculated. We identified SNPs significantly over-represented in patients with a genetic predisposition for PD (GPD patients) or in idiopathic PD (IPD patients) compared to HC (healthy controls). Xenobiotic-metabolizing P450s show a significant accumulation of SNPs in PD patients compared with HC supporting the role of toxic compounds in the pathogenesis of PD. Moreover, SNPs with high OR values (>5) in P450s catalyzing the degradation of cholesterol (CYP46A1, CY7B1, CYP39A1) indicate a prominent role of cholesterol metabolism in the brain for PD risk. Finally, P450s participating in the metabolism of eicosanoids show a strong over-representation of SNPs in PD patients underlining the effect of inflammation on the pathogenesis of PD. Also, the redox partners of P450 show SNPs with OR > 5 in PD patients. Taken together, we demonstrate that SNPs in 26 out of 57 P450s are at least 5-fold over-represented in PD patients suggesting these P450s as new potential players in the pathogenesis of PD. For the first time exceptionally high OR values (up to 12.9) were found. This will lead to deeper insight into the origin and development of PD and may be applied to develop novel strategies for a causative treatment of this disease.
Collapse
Affiliation(s)
- Philip Hartz
- Institut für Biochemie, Fachbereich Biologie, Universität des Saarlandes, Naturwissenschaftlich-Technische Fakultät, Saarbrücken, Germany
| | - Tobias Fehlmann
- Institut für Klinische Bioinformatik, Universität des Saarlandes, Saarbrücken, Germany
| | - Gudrun Wagenpfeil
- Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik, Universität des Saarlandes, Homburg, Germany
| | - Marcus Michael Unger
- KLinik für Neurologie, Fachbereich Klinische Medizin, Universität des Saarlandes, Homburg, Germany
- Klinik für Neurologie, SHG Kliniken Sonnenberg, Saarbrücken, Germany
| | - Rita Bernhardt
- Institut für Biochemie, Fachbereich Biologie, Universität des Saarlandes, Naturwissenschaftlich-Technische Fakultät, Saarbrücken, Germany
| |
Collapse
|
11
|
Alvarado AT, Saravia M, Losno R, Pariona R, Muñoz AM, Ybañez-Julca RO, Loja B, Bendezú MR, García JA, Surco-Laos F, Laos-Anchante D, Chávez H, Aguilar P, Pineda M. CYP2D6 and CYP2C19 Genes Associated with Tricontinental and Latin American Ancestry of Pe-ruvians. DRUG METABOLISM AND BIOANALYSIS LETTERS 2022; 16:DMBL-EPUB-128245. [PMID: 36518034 PMCID: PMC10436705 DOI: 10.2174/1872312815666221213151140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Precision medicine seeks to individualize the dose from the beginning of phar-macological therapy based on the characteristics of each patient, genes involved in the metabolic phenotype, ethnicity or miscegenation, with the purpose to minimize adverse effects and optimize drug efficacy. The objective was to re-view studies that describe the association of the CYP2D6 and CYP2C19 genes with the tricontinental and Latin American ancestry of Peruvians. A biblio-graphic search was carried out in PubMed/Medline and SciELO, with various descriptors in Spanish and English. The results of this review confirm that the ethnic origin of Peruvians is triconti-nental due to European (mainly Spanish), African and Asian migration, in addi-tion to Latin American migration, being 60.2% mixed, 25.8% Amerindian, 5.9% white, 3.6% African descent, 1.2% Chinese and Japanese descent, and 3.3% unspecified. Studies on CYP2C19*3, CYP2D6*2, *3 and *6 have been reported in Peruvians, and the frequency is similar to that studied in Ecuadori-ans and Colombians. The CYP2C19*3, CYP2D6*3, and CYP2D6*6 alleles found in Peruvians are common in Europeans, Africans, and Asians; while CYP2D6*4 in Africans and CYP2D6*2 related to Asians. In some studies, the ethnic/gene association has not been demonstrated; while others have shown a significant association, which is why further investigation is warranted. It is concluded that the studies on CYP2D6 and CYP2C19 genes associated with the tricontinental and Latin American ancestry of Peruvians are little, and ac-cording to what has been investigated, the CYP2C19*3, CYP2D6*2, *3, *4 and *6 alleles have more related to their ancestry.
Collapse
Affiliation(s)
- Angel T. Alvarado
- International Research Network in Pharmacology and Precision Medicine, Human Medicine School, San Ignacio de Loyola University, USIL, Lima, 15024, Peru
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, 28001, Spain
| | - María Saravia
- International Research Network in Pharmacology and Precision Medicine, Human Medicine School, San Ignacio de Loyola University, USIL, Lima, 15024, Peru
| | - Ricardo Losno
- International Research Network in Pharmacology and Precision Medicine, Human Medicine School, San Ignacio de Loyola University, USIL, Lima, 15024, Peru
| | - Ricardo Pariona
- International Research Network in Pharmacology and Precision Medicine, Human Medicine School, San Ignacio de Loyola University, USIL, Lima, 15024, Peru
| | - Ana María Muñoz
- Institute of Food Science and Nutrition, ICAN, San Ignacio de Loyola University, USIL, Lima, 15024, Peru
| | - Roberto O. Ybañez-Julca
- Faculty of Pharmacy and Biochemistry, National University of Trujillo, Trujillo, 13001, Peru
| | - Berta Loja
- International Research Network in Pharmacology and Precision Medicine, Human Medicine School, San Ignacio de Loyola University, USIL, Lima, 15024, Peru
| | - María R. Bendezú
- Faculty of Pharmacy and Biochemistry, San Luis Gonzaga National University of Ica, Ica, 11001, Peru
| | - Jorge A. García
- Faculty of Pharmacy and Biochemistry, San Luis Gonzaga National University of Ica, Ica, 11001, Peru
| | - Felipe Surco-Laos
- Faculty of Pharmacy and Biochemistry, San Luis Gonzaga National University of Ica, Ica, 11001, Peru
| | - Doris Laos-Anchante
- Faculty of Pharmacy and Biochemistry, San Luis Gonzaga National University of Ica, Ica, 11001, Peru
| | - Haydee Chávez
- Faculty of Pharmacy and Biochemistry, San Luis Gonzaga National University of Ica, Ica, 11001, Peru
| | | | - Mario Pineda
- Pharmacy and Biochemistry, FCS, Scientific of the South University, UCSUR, Lima, 15067, Peru
| |
Collapse
|
12
|
Relevance of CYP2D6 Gene Variants in Population Genetic Differentiation. Pharmaceutics 2022; 14:pharmaceutics14112481. [PMID: 36432672 PMCID: PMC9694252 DOI: 10.3390/pharmaceutics14112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
A significant portion of the variability in complex features, such as drug response, is likely caused by human genetic diversity. One of the highly polymorphic pharmacogenes is CYP2D6, encoding an enzyme involved in the metabolism of about 25% of commonly prescribed drugs. In a directed search of the 1000 Genomes Phase III variation data, 86 single nucleotide polymorphisms (SNPs) in the CYP2D6 gene were extracted from the genotypes of 2504 individuals from 26 populations, and then used to reconstruct haplotypes. Analyses were performed using Haploview, Phase, and Arlequin softwares. Haplotype and nucleotide diversity were high in all populations, but highest in populations of African ancestry. Pairwise FST showed significant results for eleven SNPs, six of which were characteristic of African populations, while four SNPs were most common in East Asian populations. A principal component analysis of CYP2D6 haplotypes showed that African populations form one cluster, Asian populations form another cluster with East and South Asian populations separated, while European populations form the third cluster. Linkage disequilibrium showed that all African populations have three or more haplotype blocks within the CYP2D6 gene, while other world populations have one, except for Chinese Dai and Punjabi in Pakistan populations, which have two.
Collapse
|
13
|
Faizan M, Sarkar A, Singh MP. Type 2 diabetes mellitus augments Parkinson's disease risk or the other way around: Facts, challenges and future possibilities. Ageing Res Rev 2022; 81:101727. [PMID: 36038113 DOI: 10.1016/j.arr.2022.101727] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/01/2022] [Accepted: 08/24/2022] [Indexed: 01/31/2023]
Abstract
About 10% of the adult population is living with type 2 diabetes mellitus (T2DM) and 1% of the population over 60 years of age is suffering from Parkinson's disease (PD). A school of thought firmly believes that T2DM, an age-related disease, augments PD risk. Such relationship is reflected from the severity of PD symptoms in drug naive subjects possessing T2DM. Onset of Parkinsonian feature in case controls possessing T2DM corroborates the role of hyperglycemia in PD. A few cohort, meta-analysis and animal studies have shown an increased PD risk owing to insulin resistance. High fat diet and role of insulin signaling in the regulation of sugar metabolism, oxidative stress, α-synuclein aggregation and accumulation, inflammatory response and mitochondrial function in PD models and sporadic PD further connect the two. Although little is reported about the implication of PD in hyperglycemia and T2DM, a few studies have also contradicted. Ameliorative effect of anti-diabetic drugs on Parkinsonian symptoms and vague outcome of anti-PD medications in T2DM patients also suggest a link. The article reviews the literature supporting augmented risk of one by the other, analysis of proof of the concept, facts, challenges, future possibilities and standpoint on the subject.
Collapse
Affiliation(s)
- Mohd Faizan
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Alika Sarkar
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Mahendra Pratap Singh
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| |
Collapse
|
14
|
GLP-1 Receptor Agonists in Neurodegeneration: Neurovascular Unit in the Spotlight. Cells 2022; 11:cells11132023. [PMID: 35805109 PMCID: PMC9265397 DOI: 10.3390/cells11132023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Defects in brain energy metabolism and proteopathic stress are implicated in age-related degenerative neuronopathies, exemplified by Alzheimer’s disease (AD) and Parkinson’s disease (PD). As the currently available drug regimens largely aim to mitigate cognitive decline and/or motor symptoms, there is a dire need for mechanism-based therapies that can be used to improve neuronal function and potentially slow down the underlying disease processes. In this context, a new class of pharmacological agents that achieve improved glycaemic control via the glucagon-like peptide 1 (GLP-1) receptor has attracted significant attention as putative neuroprotective agents. The experimental evidence supporting their potential therapeutic value, mainly derived from cellular and animal models of AD and PD, has been discussed in several research reports and review opinions recently. In this review article, we discuss the pathological relevance of derangements in the neurovascular unit and the significance of neuron–glia metabolic coupling in AD and PD. With this context, we also discuss some unresolved questions with regard to the potential benefits of GLP-1 agonists on the neurovascular unit (NVU), and provide examples of novel experimental paradigms that could be useful in improving our understanding regarding the neuroprotective mode of action associated with these agents.
Collapse
|
15
|
Morais VA, Vos M. Reduced penetrance of Parkinson's disease models. MED GENET-BERLIN 2022; 34:117-124. [PMID: 38835909 PMCID: PMC11006373 DOI: 10.1515/medgen-2022-2138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The etiology and progression of Parkinson's Disease (PD), the second most prevalent neurological disorder, have been widely investigated for several decades; however, a cure is still lacking. Despite the development of several neurotoxins and animal models to study this rather heterogeneous disease, a complete recapitulation of the neurophysiology and neuropathology of PD has not been fully achieved. One underlying cause for this could be that mutations in PD-associated genes have reduced penetrance. Therefore, the quest for novel PD models is required where a double hit approach needs to be evoked - a combination of genetic alterations and environmental factors need to be accounted for in one unique model simultaneously.
Collapse
Affiliation(s)
- Vanessa A Morais
- iMM, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal
| | - Melissa Vos
- Institute of Neurogenetics, University of Luebeck, Ratzeburger Allee 160 building 67, 23562 Luebeck, Germany
| |
Collapse
|
16
|
Diagnosis of Parkinson's disease by investigating the inhibitory effect of serum components on P450 inhibition assay. Sci Rep 2022; 12:6622. [PMID: 35459262 PMCID: PMC9033851 DOI: 10.1038/s41598-022-10528-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/06/2022] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and diagnostic methods and biomarkers for patients without subjective motor symptoms have not yet been established. Previously, we developed a cytochrome P450 inhibition assay that detects alterations in metabolite levels associated with P450s caused by inflammation and exposure to endogenous or exogenous substances. However, it is unknown whether the P450 inhibition assay can be applied in PD diagnosis. Here, we determined whether the P450 inhibition assay can discriminate sera between patients with PD and healthy individuals. The results of the assay revealed that the P450 inhibition assay can discriminate PD with an area under the receiver operating characteristic curve (AUC) value of 0.814-0.914 in rats and an AUC value of 0.910 in humans. These findings demonstrate that the P450 inhibition assay can aid in the future development of liquid biopsy-based diagnostic methods for PD.
Collapse
|
17
|
Konstandi M, Johnson EO, Lang MA. Stress as a Potential Regulatory Factor in the Outcome of Pharmacotherapy. Front Neurosci 2022; 16:737716. [PMID: 35401076 PMCID: PMC8984175 DOI: 10.3389/fnins.2022.737716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Affiliation(s)
- Maria Konstandi
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Elizabeth O Johnson
- Department of Anatomy, School of Medicine, European University Cyprus, Nicosia, Cyprus
| | | |
Collapse
|
18
|
Stojanović Marković A, Zajc Petranović M, Tomas Ž, Puljko B, Šetinc M, Škarić-Jurić T, Peričić Salihović M. Untangling SNP Variations within CYP2D6 Gene in Croatian Roma. J Pers Med 2022; 12:jpm12030374. [PMID: 35330374 PMCID: PMC8951754 DOI: 10.3390/jpm12030374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
CYP2D6 is a highly polymorphic gene whose variations affect its enzyme activity. To assess whether the specific population history of Roma, characterized by constant migrations and endogamy, influenced the distribution of alleles and thus phenotypes, the CYP2D6 gene was sequenced using NGS (Next Generation Sequencing) method-targeted sequencing in three groups of Croatian Roma (N = 323) and results were compared to European and Asian populations. Identified single nucleotide polymorphisms (SNPs) were used to reconstruct haplotypes, which were translated into the star-allele nomenclature and later into phenotypes. A total of 43 polymorphic SNPs were identified. The three Roma groups differed significantly in the frequency of alleles of polymorphisms 6769 A > G, 6089 G > A, and 5264 A > G (p < 0.01), as well as in the prevalence of the five most represented star alleles: *1, *2, *4, *10, and *41 (p < 0.0001). Croatian Roma differ from the European and Asian populations in the accumulation of globally rare SNPs (6089 G > A, 4589 C > T, 4622 G > C, 7490 T > C). Our results also show that demographic history influences SNP variations in the Roma population. The three socio-culturally different Roma groups studied differ significantly in the distribution of star alleles, which confirms the importance of a separate study of different Roma groups.
Collapse
Affiliation(s)
- Anita Stojanović Marković
- Institute for Anthropological Research, 10000 Zagreb, Croatia; (A.S.M.); (M.Z.P.); (M.Š.); (T.Š.-J.)
| | - Matea Zajc Petranović
- Institute for Anthropological Research, 10000 Zagreb, Croatia; (A.S.M.); (M.Z.P.); (M.Š.); (T.Š.-J.)
| | - Željka Tomas
- Department for Translational Medicine, Srebrnjak Children’s Hospital, 10000 Zagreb, Croatia;
| | - Borna Puljko
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department for Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Maja Šetinc
- Institute for Anthropological Research, 10000 Zagreb, Croatia; (A.S.M.); (M.Z.P.); (M.Š.); (T.Š.-J.)
| | - Tatjana Škarić-Jurić
- Institute for Anthropological Research, 10000 Zagreb, Croatia; (A.S.M.); (M.Z.P.); (M.Š.); (T.Š.-J.)
| | - Marijana Peričić Salihović
- Institute for Anthropological Research, 10000 Zagreb, Croatia; (A.S.M.); (M.Z.P.); (M.Š.); (T.Š.-J.)
- Correspondence:
| |
Collapse
|
19
|
Alvarado AT, Ybañez-Julca R, Muñoz AM, Tejada-Bechi C, Cerro R, Quiñones LA, Varela N, Alvarado CA, Alvarado E, Bendezú MR, García JA. Frequency of CYP2D6*3 and *4 and metabolizer phenotypes in three mestizo Peruvian populations. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e75165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Wild type genotypes (CYP2D6) and their allelic variants have been described in a sample of a Peruvian mestizo population. The global allele frequency was 0.015 for CYP2D6*3 and 0.051 for CYP2D6*4. The percentages of genotypes described were 97% CYP2D6*1/*1 and 3.0% CYP2D6*1/*3; 90.60% for CYP2D6*1/*1, 8.55% CYP2D6*1/*4 and 0.85% CYP2D6*4/*4. The allelic frequencies of CYP2D6*3 in the Lima subpopulations were 0.022 and 0.010 for Junin; CYP2D6*4 of 0.048, 0.060, and 0.050 for residents of Lima, Junín, and Tacna, respectively. The Hardy-Weinberg equilibrium test for the studied population showed that both frequencies are in equilibrium, p <.05. The metabolizer phenotype was inferred according to the genotypes: 11.54% were classified as intermediate metabolizers (*1/*3 or *1/*4) and 0.85% as poor metabolizers (*4/*4). It is concluded that the frequencies of the CYP2D6*3 and CYP2D6*4 alleles are low for the Peruvian mestizo population compared to the Latin American and tricontinental population, due to their natural population evolution, which is manifested by their decreased metabolic activity, the same that is relevant in clinical practice.
Collapse
|
20
|
Parga JA, Rodriguez-Perez AI, Garcia-Garrote M, Rodriguez-Pallares J, Labandeira-Garcia JL. NRF2 Activation and Downstream Effects: Focus on Parkinson's Disease and Brain Angiotensin. Antioxidants (Basel) 2021; 10:antiox10111649. [PMID: 34829520 PMCID: PMC8614768 DOI: 10.3390/antiox10111649] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are signalling molecules used to regulate cellular metabolism and homeostasis. However, excessive ROS production causes oxidative stress, one of the main mechanisms associated with the origin and progression of neurodegenerative disorders such as Parkinson's disease. NRF2 (Nuclear Factor-Erythroid 2 Like 2) is a transcription factor that orchestrates the cellular response to oxidative stress. The regulation of NRF2 signalling has been shown to be a promising strategy to modulate the progression of the neurodegeneration associated to Parkinson's disease. The NRF2 pathway has been shown to be affected in patients with this disease, and activation of NRF2 has neuroprotective effects in preclinical models, demonstrating the therapeutic potential of this pathway. In this review, we highlight recent advances regarding the regulation of NRF2, including the effect of Angiotensin II as an endogenous signalling molecule able to regulate ROS production and oxidative stress in dopaminergic neurons. The genes regulated and the downstream effects of activation, with special focus on Kruppel Like Factor 9 (KLF9) transcription factor, provide clues about the mechanisms involved in the neurodegenerative process as well as future therapeutic approaches.
Collapse
Affiliation(s)
- Juan A. Parga
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
- Correspondence: (J.A.P.); (J.L.L.-G.)
| | - Ana I. Rodriguez-Perez
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
| | - Maria Garcia-Garrote
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
| | - Jannette Rodriguez-Pallares
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
| | - Jose L. Labandeira-Garcia
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
- Correspondence: (J.A.P.); (J.L.L.-G.)
| |
Collapse
|
21
|
Perrelli A, Retta SF. Polymorphisms in genes related to oxidative stress and inflammation: Emerging links with the pathogenesis and severity of Cerebral Cavernous Malformation disease. Free Radic Biol Med 2021; 172:403-417. [PMID: 34175437 DOI: 10.1016/j.freeradbiomed.2021.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Cerebral Cavernous Malformation (CCM) is a cerebrovascular disease of genetic origin affecting 0.5% of the population and characterized by abnormally enlarged and leaky capillaries that predispose to seizures, neurological deficits, and intracerebral hemorrhage (ICH). CCM occurs sporadically or is inherited as dominant condition with incomplete penetrance and highly variable expressivity. Three disease genes have been identified: KRIT1 (CCM1), CCM2 and CCM3. Previous results demonstrated that loss-of-function mutations of CCM genes cause pleiotropic effects, including defective autophagy, altered reactive oxygen species (ROS) homeostasis, and enhanced sensitivity to oxidative stress and inflammatory events, suggesting a novel unifying pathogenetic mechanism, and raising the possibility that CCM disease onset and severity are influenced by the presence of susceptibility and modifier genes. Consistently, genome-wide association studies (GWAS) in large and homogeneous cohorts of patients sharing the familial form of CCM disease and identical mutations in CCM genes have led to the discovery of distinct genetic modifiers of major disease severity phenotypes, such as development of numerous and large CCM lesions, and susceptibility to ICH. This review deals with the identification of genetic modifiers with a significant impact on inter-individual variability in CCM disease onset and severity, including highly polymorphic genes involved in oxidative stress, inflammatory and immune responses, such as cytochrome P450 monooxygenases (CYP), matrix metalloproteinases (MMP), and Toll-like receptors (TLR), pointing to their emerging prognostic value, and opening up new perspectives for risk stratification and personalized medicine strategies.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy; CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy.
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy; CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
22
|
Zhang X, Guarin D, Mohammadzadehhonarvar N, Chen X, Gao X. Parkinson's disease and cancer: a systematic review and meta-analysis of over 17 million participants. BMJ Open 2021; 11:e046329. [PMID: 34215604 PMCID: PMC8256737 DOI: 10.1136/bmjopen-2020-046329] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To systematically review and qualitatively evaluate epidemiological evidence on associations between Parkinson's disease (PD) and cancer via meta-analysis. DATA SOURCES MEDLINE via PubMed, Web of Science and EMBASE, until March 2021. STUDY SELECTION Included were publications that (1) were original epidemiological studies on PD and cancer; (2) reported risk estimates; (3) were in English. Exclusion criteria included: (1) review/comments; (2) biological studies; (3) case report/autopsy studies; (4) irrelevant exposure/outcome; (5) treated cases; (6) no measure of risk estimates; (7) no confidence intervals/exact p values and (8) duplicates. DATA EXTRACTION AND SYNTHESIS PRISMA and MOOSE guidelines were followed in data extraction. Two-step screening was performed by two authors blinded to each other. A random-effects model was used to calculate pooled relative risk (RR). MAIN OUTCOMES AND MEASURES We included publications that assessed the risk of PD in individuals with vs without cancer and the risk of cancer in individuals with vs without PD. RESULTS A total of 63 studies and 17 994 584 participants were included. Meta-analysis generated a pooled RR of 0.82 (n=33; 95% CI 0.76 to 0.88; p<0.001) for association between PD and total cancer, 0.76 (n=21; 95% CI 0.67 to 0.85; p<0.001) for PD and smoking-related cancer and 0.92 (n=19; 95% CI 0.84 to 0.99; p=0.03) for non-smoking-related cancer. PD was associated with an increased risk of melanoma (n=29; pooled RR=1.75; 95% CI 1.43 to 2.14; p<0.001) but not for other skin cancers (n=17; pooled RR=0.90; 95% CI 0.60 to 1.34; p=0.60). CONCLUSIONS PD and total cancer were inversely associated. This inverse association persisted for both smoking-related and non-smoking-related cancers. PD was positively associated with melanoma. These results provide evidence for further investigations for possible mechanistic associations between PD and cancer. PROSPERO REGISTRATION NUMBER CRD42020162103.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Nutritional Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - David Guarin
- Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Xiqun Chen
- Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xiang Gao
- Nutritional Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
23
|
Feng L, Ning J, Tian X, Wang C, Yu Z, Huo X, Xie T, Zhang B, James TD, Ma X. Fluorescent probes for the detection and imaging of Cytochrome P450. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213740] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Rasheed MSU, Tripathi MK, Patel DK, Singh MP. Resveratrol Regulates Nrf2-Mediated Expression of Antioxidant and Xenobiotic Metabolizing Enzymes in Pesticides-Induced Parkinsonism. Protein Pept Lett 2021; 27:1038-1045. [PMID: 32242774 DOI: 10.2174/0929866527666200403110036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Combined maneb (MB) and paraquat (PQ), two widely used pesticides, increases oxidative stress leading to Parkinsonism. Xenobiotic metabolizing enzymes, cytochrome P450 (CYP) 2D6 and its mouse ortholog Cyp2d22 protect against Parkinsonism. Resveratrol, an antioxidant, restores antioxidant defense system through the activation of nuclear factor erythroid 2- related factor 2 (Nrf2). However, a crosstalk between Cyp2d22/CYP2D6-mediated protection and resveratrol-induced Nrf2 activation leading to neuroprotection is not yet elucidated. OBJECTIVE The study aimed to decipher the effect of resveratrol on Nrf2 activation and expression of its downstream mediators, nicotinamide adenine dinucleotide phosphate quinone oxidoreductase 1 (NQO1) and thioredoxin 1 (Trx1) along with Cyp2d22/CYP2D6 activity in combined MB and PQ mouse model of Parkinsonism and differentiated neuroblastoma cells. RESULTS MB and PQ reduced the dopamine content (mouse) and Cyp2d22/CYP2D6 activity (mouse/neuroblastoma cells) and increased the nuclear translocation of Nrf2 and expression of NQO1 and Trx1 (both). Resveratrol ameliorated pesticides-induced changes in dopamine content and Cyp2d22/CYP2D6 activity. It was found to promote nuclear translocation of Nrf2 and expression of NQO1 and Trx1 proteins. Since Cyp2d22/CYP2D6 inhibitor (ketoconazole/quinidine) per se reduced Cyp2d22/CYP2D6 activity and dopamine content, it was found to substantially increase the pesticides-induced reduction in Cyp2d22/CYP2D6 activity and dopamine content. Inhibitors normalized the pesticides induced changes in Nrf2 translocation and NQO1 and Trx1 levels in pesticides treated groups. CONCLUSION The results suggest that resveratrol promotes the catalytic activity of xenobiotic metabolizing enzyme, Cyp2d22/CYP2D6, which partially contributes to Nrf2 activation in pesticides- induced Parkinsonism.
Collapse
Affiliation(s)
- Mohd Sami Ur Rasheed
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group,
CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226 001, Uttar Pradesh, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Manish Kumar Tripathi
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group,
CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226 001, Uttar Pradesh, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Devendra Kumar Patel
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226 001, Uttar Pradesh, India
| | - Mahendra Pratap Singh
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group,
CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226 001, Uttar Pradesh, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
25
|
Jiang Z, Gu L, Liang X, Cao B, Zhang J, Guo X. The Effect of Selenium on CYP450 Isoform Activity and Expression in Pigs. Biol Trace Elem Res 2020; 196:454-462. [PMID: 31721080 DOI: 10.1007/s12011-019-01945-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/18/2019] [Indexed: 01/08/2023]
Abstract
Selenium is an essential nutrient in diets; however, the effects of selenium on enzyme metabolic activation are not currently clear. Cytochromes P450 (CYP450) are major phase I metabolic enzymes involved in the biotransformation of xenobiotics and endogenous compounds to form electrophilic reactive metabolites. To investigate the effect of selenium on CYP450 isoform activity, the Landrace pigs were divided into three groups: the control group (containing Se 0.15 mg/kg), the Se-deficient group (Se 0.03 mg/kg), and the Se-supply group (Se 0.35 mg/kg). After 1 week of administration, a mixed solution (20 mg/kg of dextromethorphan, phenacetin, chlorzoxazone, and 10 mg/kg of testosterone in a CMC-Na solution) was intravenously injected into all pigs. The mixed solution content and pharmacokinetic parameters were assayed by HPLC and DAS, respectively. To investigate the effect of selenium on CYP450 isoform expression, RNA-Seq analysis, Western boltting, and qPCR were used. Results showed that Se-supply group significantly increased the activity and expression of CYP1A2 and CYP2D25, and decreased CYP3A29. Se-deficient group decreased the activity of CYP1A2, CYP2D25, and CYP2E1. These results demonstrated that selenium content affecting the activity or expression of the CYP450 isoform may lead to a food-drug interaction.
Collapse
Affiliation(s)
- Zhihui Jiang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Lingbiao Gu
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Xiuli Liang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Baorui Cao
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Jingmiao Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Xiao Guo
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, 455000, Henan, China.
- College of Food and Biological Engineering, Anyang Institute of Technology, Huang he Road 22, Anyang, 455000, Henan, China.
| |
Collapse
|
26
|
β-Naphthoflavone and Ethanol Reverse Mitochondrial Dysfunction in A Parkinsonian Model of Neurodegeneration. Int J Mol Sci 2020; 21:ijms21113955. [PMID: 32486438 PMCID: PMC7312836 DOI: 10.3390/ijms21113955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/04/2022] Open
Abstract
The 1-methyl-4-phenylpyridinium (MPP+) is a parkinsonian-inducing toxin that promotes neurodegeneration of dopaminergic cells by directly targeting complex I of mitochondria. Recently, it was reported that some Cytochrome P450 (CYP) isoforms, such as CYP 2D6 or 2E1, may be involved in the development of this neurodegenerative disease. In order to study a possible role for CYP induction in neurorepair, we designed an in vitro model where undifferentiated neuroblastoma SH-SY5Y cells were treated with the CYP inducers β-naphthoflavone (βNF) and ethanol (EtOH) before and during exposure to the parkinsonian neurotoxin, MPP+. The toxic effect of MPP+ in cell viability was rescued with both βNF and EtOH treatments. We also report that this was due to a decrease in reactive oxygen species (ROS) production, restoration of mitochondrial fusion kinetics, and mitochondrial membrane potential. These treatments also protected complex I activity against the inhibitory effects caused by MPP+, suggesting a possible neuroprotective role for CYP inducers. These results bring new insights into the possible role of CYP isoenzymes in xenobiotic clearance and central nervous system homeostasis.
Collapse
|
27
|
Parkinson's disease treatment: past, present, and future. J Neural Transm (Vienna) 2020; 127:785-791. [PMID: 32172471 DOI: 10.1007/s00702-020-02167-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
The substantial contributions of Dr. Gerald Stern to past and current treatments for Parkinson's disease patients are reviewed, which form the foundation for an evaluation of future options to control symptoms and halt progression of the disease. These opportunities will depend on a greater understanding of the relative contributions of the environment, genetic and epigenetic influences to disease onset, and promise to emerge as strategies for improving mitochondrial function, halting accumulation of synuclein and neuromelanin, in addition to refinement of stem cell and gene therapies. Such advances will be achieved through deployment of improved models for the disease.
Collapse
|
28
|
De Miranda BR, Greenamyre JT. Trichloroethylene, a ubiquitous environmental contaminant in the risk for Parkinson's disease. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:543-554. [PMID: 31996877 PMCID: PMC7941732 DOI: 10.1039/c9em00578a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Organic solvents are common chemicals used in industry throughout the world, however, there is evidence for adverse health effects from exposure to these compounds. Trichloroethylene (TCE) is a halogenated solvent that has been used as a degreasing agent since the early 20th century. Due to its widespread use, TCE remains one of the most significant environmental contaminants in the US, and extensive research suggests TCE is a causative factor in a number of diseases, including cancer, fetal cardiac development, and neurotoxicity. TCE has also been implicated as a possible risk factor in the development of the most common neurodegenerative movement disorder, Parkinson's disease (PD). However, there is variable concordance across multiple occupational epidemiological studies assessing TCE (or solvent) exposure and risk for PD. In addition, there remains a degree of uncertainty about how TCE elicits toxicity to the dopaminergic system. To this end, we review the specific neurotoxic mechanisms of TCE in the context of selective vulnerability of dopaminergic neurons. In addition, we consider the complexity of combined risk factors that ultimately contribute to neurodegeneration and discuss the limitations of single-factor exposure assessments.
Collapse
Affiliation(s)
- Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, 3501 Fifth Avenue, BST-7045, Pittsburgh, 15260, Pennsylvania, USA.
| | | |
Collapse
|
29
|
Abstract
The cytochromes P450 comprise a family of enzymes that are responsible for around three-quarters of all drug metabolism reactions that occur in human populations. Many isoforms of cytochrome P450 exist but most reactions are undertaken by CYP2C9, CYP2C19, CYP2D6 and CYP3A4. This brief review focusses on the first three isozymes which exhibit polymorphism of phenotype.If there is a wide variation in drug metabolising capacity within the population, this may precipitate clinical consequences and influence the drug treatment of patients. Such problems range from a lack of efficacy to unanticipated toxicity. In order to minimise untoward events and "personalise" a patient's treatment, efforts have been made to discover an individual's drug metabolism status. This requires knowledge of the subject's phenotype at the time of clinical treatment. Since such testing is difficult, time-consuming and costly, the simpler approach of genotyping has been advocated.However, the correlation between genotype and phenotype is not good, with values of up to 50% misprediction being reported. Genotype-assisted forecasts cannot therefore be used with confidence to replace actual phenotype measurements. Obfuscating factors discussed include gene splicing, single nucleotide polymorphisms, epigenetics and microRNA, transcription regulation and multiple gene copies.
Collapse
|
30
|
Elfaki I, Mir R, Almutairi FM, Duhier FMA. Cytochrome P450: Polymorphisms and Roles in Cancer, Diabetes and Atherosclerosis. Asian Pac J Cancer Prev 2018; 19:2057-2070. [PMID: 30139042 PMCID: PMC6171375 DOI: 10.22034/apjcp.2018.19.8.2057] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytochromes P450s (CYPs) constitute a superfamily of enzymes that catalyze the metabolism of drugs and other substances. Endogenous substrates of CYPs include eicosanoids, estradiol, arachidonic acids, cholesterol, vitamin D and neurotransmitters. Exogenous substrates of CYPs include the polycyclic aromatic hydrocarbons and about 80% of currently used drugs. Some isoforms can activate procarcinogens to ultimate carcinogens. Genetic polymorphisms of CYPs may affect the enzyme catalytic activity and have been reported among different populations to be associated with various diseases and adverse drug reactions. With regard of drug metabolism, phenotypes for CYP polymorphism range from ultrarapid to poor metabolizers. In this review, we discuss some of the most clinically important CYPs isoforms (CYP2D6, CYP2A6, CYP2C19, CYP2C9, CYP1B1 and CYP1A2) with respect to gene polymorphisms and drug metabolism. Moreover, we review the role of CYPs in renal, lung, breast and prostate cancers and also discuss their significance for atherosclerosis and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Kingdom of Saudi Arabia.
| | | | | | | |
Collapse
|
31
|
Navarro-Mabarak C, Camacho-Carranza R, Espinosa-Aguirre JJ. Cytochrome P450 in the central nervous system as a therapeutic target in neurodegenerative diseases. Drug Metab Rev 2018; 50:95-108. [DOI: 10.1080/03602532.2018.1439502] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Cynthia Navarro-Mabarak
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rafael Camacho-Carranza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jesús Javier Espinosa-Aguirre
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|