1
|
Jiao F, Meng L, Du K, Li X. The autophagy-lysosome pathway: a potential target in the chemical and gene therapeutic strategies for Parkinson's disease. Neural Regen Res 2025; 20:139-158. [PMID: 38767483 PMCID: PMC11246151 DOI: 10.4103/nrr.nrr-d-23-01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/06/2023] [Indexed: 05/22/2024] Open
Abstract
Parkinson's disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such as α-synuclein in neurons. As one of the major intracellular degradation pathways, the autophagy-lysosome pathway plays an important role in eliminating these proteins. Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance of α-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson's disease. Moreover, multiple genes associated with the pathogenesis of Parkinson's disease are intimately linked to alterations in the autophagy-lysosome pathway. Thus, this pathway appears to be a promising therapeutic target for treatment of Parkinson's disease. In this review, we briefly introduce the machinery of autophagy. Then, we provide a description of the effects of Parkinson's disease-related genes on the autophagy-lysosome pathway. Finally, we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy-lysosome pathway and their applications in Parkinson's disease.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Lingyan Meng
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Kang Du
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Xuezhi Li
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| |
Collapse
|
2
|
Zeng X, Sheng Z, Zhang Y, Xiao J, Li Y, Zhang J, Xu G, Jia J, Wang M, Li L. The therapeutic potential of glycyrrhizic acid and its metabolites in neurodegenerative diseases: Evidence from animal models. Eur J Pharmacol 2024; 985:177098. [PMID: 39510337 DOI: 10.1016/j.ejphar.2024.177098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Neurodegenerative diseases, mostly occurring in the elderly population, are the significant cause of disability and death worldwide. The pathogenesis of neurodegenerative diseases is still largely unknown yet, although they have been continuously explored. Thus, there is still a lack of safe, effective, and low side effect drugs in clinical practice for the treatment of neurodegenerative diseases. Pieces of accumulating evidence have demonstrated that licorice played neuroprotective roles in various neurodegenerative diseases. In the past two decades, increasing studies have indicated that glycyrrhizic acid (GL), the main active ingredient from traditional Chinese medicine licorice (widely used in the food industry) and a triterpenoid saponin with multiple pharmacological effects (such as anti-oxidant, anti-inflammatory, and immune regulation), and its metabolites (glycyrrhetinic acid and carbenoxolone) play a neuroprotective role in a range of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease and epilepsy. This review will elaborate on the multiple neuroprotective mechanisms of GL and its metabolites in this series of diseases, aiming to provide a basis for further research on these protective drugs for neurodegenerative diseases and their clinical application. In summary, GL may be a promising candidate drug for the therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China; Department of Biochemistry and Molecular Biology, Jiaxing University Medical College, Jiaxing, 314001, China; Institute of Forensic Science, Jiaxing University, Jiaxing, 314001, China
| | - Zixuan Sheng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Yuqian Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Jing Xiao
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Yang Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Jiaping Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Guangtao Xu
- Institute of Forensic Science, Jiaxing University, Jiaxing, 314001, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, 314001, China.
| | - Min Wang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, 314001, China.
| | - Li Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, 314001, China.
| |
Collapse
|
3
|
Ma S, Chong Y, Zhang R, Quan W, Gui J, Li L, Wang J, Miao S, Shi X, Zhao M, Zhang K. Glycyrrhizic acid treatment ameliorates anxiety-like behaviour via GLT1 and Per1/2-dependent pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118013. [PMID: 38453099 DOI: 10.1016/j.jep.2024.118013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese medicinal herb, Glycyrrhiza. URALENSIS Fisch. (licorice root, chinese name: Gancao) has a variety of medicinal values and is widely used clinically. Its main active ingredient, glycyrrhizic acid (GA), is believed to have a neuroprotective effect. However, the underlying biological mechanisms of GA on stress-induced anxiety disorders are still unclear. AIM OF THE STUDY To investigate the anti-anxiety effect of GA and its underlying mechanism. METHODS We selected the anxiety model induced by repeated chronic restraint stress (CRS) for 2 h on each of 7 consecutive days. GA (4, 20, 100 mg/kg) was injected intraperitoneally once daily for 1 week. The potential GA receptors were identified using whole-cell patches and computer-assisted docking of molecules. High-throughput RNA sequencing, adeno-associated virus-mediated gene regulation, Western blotting, and RT-qPCR were used to assess the underlying molecular pathways. RESULTS GA alleviate depression-like and anxiety-like behaviors in CRS mice. GA decreased synaptic transmission by facilitating glutamate reuptaking in mPFC. Meanwhile, long-term GA treatment increased the expression of clock genes Per1 and Per2. Suppressing both Per1 and Per2 abolished the anxiolytic effects of GA treatment. CONCLUSION Our study suggests that GA may be developed for the treatment of stress-induced anxiety disorders, and its mechanism is related to GLT1 and Per1/2-dependent pathways. This presents a novel approach to discovering potent therapeutic drugs.
Collapse
Affiliation(s)
- Shanbo Ma
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, 710032, Xi'an, Shaanxi, PR China
| | - Ye Chong
- Departments of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, PR China
| | - Rui Zhang
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, 710032, Xi'an, Shaanxi, PR China
| | - Wei Quan
- Department of Pharmacy, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, PR China
| | - Jiayue Gui
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, 710032, Xi'an, Shaanxi, PR China
| | - Long Li
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, 710032, Xi'an, Shaanxi, PR China
| | - Jin Wang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, 710032, Xi'an, Shaanxi, PR China
| | - Shan Miao
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, 710032, Xi'an, Shaanxi, PR China
| | - Xiaopeng Shi
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, 710032, Xi'an, Shaanxi, PR China.
| | - Minggao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, 710038, Xi'an, Shaanxi, PR China.
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, 710032, Xi'an, Shaanxi, PR China.
| |
Collapse
|
4
|
Zhu D, Zhang S, Wang X, Xiao C, Cui G, Yang X. Secretory Clusterin Inhibits Dopamine Neuron Apoptosis in MPTP Mice by Preserving Autophagy Activity. Neuroscience 2024; 540:38-47. [PMID: 38242280 DOI: 10.1016/j.neuroscience.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Secretory clusterin (sCLU) plays an important role in the research progress of nervous system diseases. However, the physiological function of sCLU in Parkinson's disease (PD) are unclear. The purpose of this study was to examine the effects of sCLU-mediated autophagy on cell survival and apoptosis inhibition in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. We found that MPTP administration induced prolonged pole-climbing time, shortened traction time and rotarod time, significantly decreased TH protein expression in the SN tissue of mice. In contrast, sCLU -treated mice took less time to climb the pole and had an extended traction time and rotating rod time. Meanwhile, sCLU intervention induced increased expression of the TH protein in the SN of mice. These results indicated that sCLU intervention could reduce the loss of dopamine neurons in the SN area and alleviate dyskinesia in mice. Furthermore, MPTP led to suppressed viability, enhanced apoptosis, an increased Bax/Bcl-2 ratio, and cleaved caspase-3 in the SN of mice, and these effects were abrogated by sCLU intervention. In addition, MPTP increased the levels of P62 protein, decreased Beclin1 protein, decreased the ratio of LC3B-II/LC3B-I, and decreased the numbers of autophagosomes and autophagolysosomes in the SN tissues of mice. These effects were also abrogated by sCLU intervention. Activation of PI3K/AKT/mTOR signaling with MPTP inhibited autophagy in the SN of MPTP mice; however, sCLU treatment activated autophagy in MPTP-induced PD mice by inhibiting PI3K/AKT/mTOR signaling. These data indicated that sCLU treatment had a neuroprotective effect in an MPTP-induced model of PD.
Collapse
Affiliation(s)
- Dongxue Zhu
- Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Shenyang Zhang
- Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xiaoying Wang
- Department of Ultrasound, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Chenghua Xiao
- Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Guiyun Cui
- Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xinxin Yang
- Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Institute of Neurological Diseases of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
5
|
Ge S, Guo Z, Xiao T, Sun P, Yang B, Ying Y. Qingfei Tongluo Mixture Attenuates Bleomycin-Induced Pulmonary Inflammation and Fibrosis through mTOR-Dependent Autophagy in Rats. Mediators Inflamm 2024; 2024:5573353. [PMID: 38361765 PMCID: PMC10869187 DOI: 10.1155/2024/5573353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024] Open
Abstract
As an interstitial fibrosis disease characterized by diffuse alveolitis and structural alveolar disorders, idiopathic pulmonary fibrosis (IPF) has high lethality but lacks limited therapeutic drugs. A hospital preparation used for the treatment of viral pneumonia, Qingfei Tongluo mixture (QFTL), is rumored to have protective effects against inflammatory and respiratory disease. This study aims to confirm whether it has a therapeutic effect on bleomycin-induced IPF in rats and to elucidate its mechanism of action. Male SD rats were randomly divided into the following groups: control, model, CQ + QFTL (84 mg/kg chloroquine (CQ) + 3.64 g/kg QFTL), QFTL-L, M, H (3.64, 7.28, and 14.56 g/kg, respectively) and pirfenidone (PFD 420 mg/kg). After induction modeling and drug intervention, blood samples and lung tissue were collected for further detection. Body weight and lung coefficient were examined, combined with hematoxylin and eosin (H&E) and Masson staining to observe lung tissue lesions. The enzyme-linked immunosorbent assay (ELISA) and the hydroxyproline (HYP) assay kit were used to detect changes in proinflammatory factors (transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β)) and HYP. Immunohistochemistry and Western blotting were performed to observe changes in proteins related to pulmonary fibrosis (α-smooth muscle actin (α-SMA) and matrix metalloproteinase 12 (MMP12)) and autophagy (P62 and mechanistic target of rapamycin (mTOR)). Treatment with QFTL significantly improved the adverse effects of bleomycin on body weight, lung coefficient, and pathological changes. Then, QFTL reduced bleomycin-induced increases in proinflammatory mediators and HYP. The expression changes of pulmonary fibrosis and autophagy marker proteins are attenuated by QFTL. Furthermore, the autophagy inhibitor CQ significantly reversed the downward trend in HYP levels and α-SMA protein expression, which QFTL improved in BLM-induced pulmonary fibrosis rats. In conclusion, QFTL could effectively attenuate bleomycin-induced inflammation and pulmonary fibrosis through mTOR-dependent autophagy in rats. Therefore, QFTL has the potential to be an alternative treatment for IPF in clinical practice.
Collapse
Affiliation(s)
- Shuyu Ge
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhenghong Guo
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ting Xiao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| | - Pingping Sun
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Bo Yang
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yin Ying
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
6
|
Zhang Y, Sheng Z, Xiao J, Li Y, Huang J, Jia J, Zeng X, Li L. Advances in the roles of glycyrrhizic acid in cancer therapy. Front Pharmacol 2023; 14:1265172. [PMID: 37649893 PMCID: PMC10463042 DOI: 10.3389/fphar.2023.1265172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Since the first 70 years of reporting cancer chemotherapy, malignant tumors have been the second most common cause of death in children and adults. Currently, the commonly used anti-cancer methods include surgery, chemotherapy, radiotherapy, and immunotherapy. Although these treatment methods could alleviate cancer, they lead to different forms of side effects and have no particularly significant effect on prolonging the patients' life span. Glycyrrhizic acid (GL), a native Chinese herbal extract, has a wide range of pharmacological effects, such as anti-cancer, anti-inflammatory, antioxidant, and immune regulation. In this review, the anti-cancer effects and mechanisms of GL are summarized in various cancers. The inhibition of GL on chemotherapy-induced side effects, including hepatotoxicity, nephrotoxicity, genotoxicity, neurotoxicity and pulmonary toxicity, is highlighted. Therefore, GL may be a promising and ideal drug for cancer therapy.
Collapse
Affiliation(s)
- Yuqian Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Zixuan Sheng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Jing Xiao
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Yang Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Jie Huang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
- Department of Physiology, Jiaxing University Medical College, Jiaxing, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
- Department of Biochemistry and Molecular Biology, Jiaxing University Medical College, Jiaxing, China
| | - Li Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
- Department of Physiology, Jiaxing University Medical College, Jiaxing, China
| |
Collapse
|
7
|
Zhang MJ, Song ML, Zhang Y, Yang XM, Lin HS, Chen WC, Zhong XD, He CY, Li T, Liu Y, Chen WG, Sun HT, Ao HQ, He SQ. SNS alleviates depression-like behaviors in CUMS mice by regluating dendritic spines via NCOA4-mediated ferritinophagy. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116360. [PMID: 37028613 DOI: 10.1016/j.jep.2023.116360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression is one of the most common mood disturbances worldwide. The Si-ni-san formula (SNS) is a famous classic Traditional Chinese Medicine (TCM) widely used to treat depression for thousands of years in clinics. However, the mechanism underlying the therapeutic effect of SNS in improving depression-like behaviors following chronic unpredictable mild stress (CUMS) remains unknown. AIM OF THE STUDY This study aimed to investigate whether SNS alleviates depression-like behaviors in CUMS mice by regulating dendritic spines via NCOA4-mediated ferritinophagy in vitro and in vivo. STUDY DESIGN AND METHODS In vivo, mice were exposed to CUMS for 42 days, and SNS (4.9, 9.8, 19.6 g/kg/d), fluoxetine (10 mg/kg/d), 3-methyladenine (3-MA) (30 mg/kg/d), rapamycin(1 mg/kg/d), and deferoxamine (DFO) (200 mg/kg/d) were conducted once daily during the last 3 weeks of the CUMS procedure. In vitro, a depressive model was established by culture of SH-SY5Y cells with corticosterone, followed by treatment with different concentrations of freeze-dried SNS (0.001, 0.01, 0.1 mg/mL) and rapamycin (10 nM), NCOA4-overexpression, Si-NCOA4. After the behavioral test (open-field test (OFT), sucrose preference test (SPT), forced swimming test (FST) and tail suspension test (TST), dendritic spines, GluR2 protein expression, iron concentration, and ferritinophagy-related protein levels (P62, FTH, NCOA4, LC3-II/LC3-I) were tested in vitro and in vivo using immunohistochemistry, golgi staining, immunofluorescence, and Western blot assays. Finally, HEK-293T cells were transfected by si-NCOA4 or GluR2-and NCOA4-overexpression plasmid and treated with corticosterone(100 μM), freeze-dried SNS(0.01 mg/mL), rapamycin(25 nM), and 3-MA(5 mM). The binding amount of GluR2, NCOA4, and LC3 was assessed by the co-immunoprecipitation (CO-IP) assay. RESULTS 3-MA, SNS, and DFO promoted depressive-like behaviors in CUMS mice during OFT, SPT, FST and TST, improved the amount of the total, thin, mushroom spine density and enhanced GluR2 protein expression in the hippocampus. Meanwhile, treatment with SNS decreased iron concentrations and inhibited NCOA4-mediated ferritinophagy activation in vitro and in vivo. Importantly, 3-MA and SNS could prevent the binding of GluR2, NCOA4 and LC3 in corticosterone-treated HEK-293T, and rapamycin reversed this phenomenon after treatment with SNS. CONCLUSION SNS alleviates depression-like behaviors in CUMS mice by regulating dendritic spines via NCOA4-mediated ferritinophagy.
Collapse
Affiliation(s)
- Ming-Jia Zhang
- School Basic Medicine Science, Zhejiang Chinese Medical University(1), Zhejiang, 310053, PR China; Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| | - Mao-Lin Song
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China.
| | - Yi Zhang
- Department of Psychology, School of Economics and Management, Guang Zhou University of Chinese Medicine, Guangzhou, 510405, PR China.
| | - Xue-Mei Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Hui-Shan Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Wei-Cong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Xiao-Dan Zhong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Chun-Yu He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Tong Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Yang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Wei-Guang Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Hai-Tao Sun
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Hai-Qing Ao
- Department of Psychology, School of Economics and Management, Guang Zhou University of Chinese Medicine, Guangzhou, 510405, PR China.
| | - Song-Qi He
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
8
|
Liu S, Xu S, Liu S, Chen H. Importance of DJ-1 in autophagy regulation and disease. Arch Biochem Biophys 2023:109672. [PMID: 37336341 DOI: 10.1016/j.abb.2023.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/28/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Autophagy is a highly conserved biological process that has evolved across evolution. It can be activated by various external stimuli including oxidative stress, amino acid starvation, infection, and hypoxia. Autophagy is the primary mechanism for preserving cellular homeostasis and is implicated in the regulation of metabolism, cell differentiation, tolerance to starvation conditions, and resistance to aging. As a multifunctional protein, DJ-1 is commonly expressed in vivo and is associated with a variety of biological processes. Its most widely studied role is its function as an oxidative stress sensor that inhibits the production of excessive reactive oxygen species (ROS) in the mitochondria and subsequently the cellular damage caused by oxidative stress. In recent years, many studies have identified DJ-1 as another important factor regulating autophagy; it regulates autophagy in various ways, most commonly by regulating the oxidative stress response. In particular, DJ-1-regulated autophagy is involved in cancer progression and plays a key role in alleviating neurodegenerative diseases(NDS) and defective reperfusion diseases. It could serve as a potential target for the regulation of autophagy and participate in disease treatment as a meaningful modality. Therefore, exploring DJ-1-regulated autophagy could provide new avenues for future disease treatment.
Collapse
Affiliation(s)
- Shiyi Liu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China; Second Clinical Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Sheng Xu
- Second Clinical Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Song Liu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Heping Chen
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
9
|
Xu X, Han C, Wang P, Zhou F. Natural products targeting cellular processes common in Parkinson's disease and multiple sclerosis. Front Neurol 2023; 14:1149963. [PMID: 36970529 PMCID: PMC10036594 DOI: 10.3389/fneur.2023.1149963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
The hallmarks of Parkinson's disease (PD) include the loss of dopaminergic neurons and formation of Lewy bodies, whereas multiple sclerosis (MS) is an autoimmune disorder with damaged myelin sheaths and axonal loss. Despite their distinct etiologies, mounting evidence in recent years suggests that neuroinflammation, oxidative stress, and infiltration of the blood-brain barrier (BBB) all play crucial roles in both diseases. It is also recognized that therapeutic advances against one neurodegenerative disorder are likely useful in targeting the other. As current drugs in clinical settings exhibit low efficacy and toxic side effects with long-term usages, the use of natural products (NPs) as treatment modalities has attracted growing attention. This mini-review summarizes the applications of natural compounds to targeting diverse cellular processes inherent in PD and MS, with the emphasis placed on their neuroprotective and immune-regulating potentials in cellular and animal models. By reviewing the many similarities between PD and MS and NPs according to their functions, it becomes evident that some NPs studied for one disease are likely repurposable for the other. A review from this perspective can provide insights into the search for and utilization of NPs in treating the similar cellular processes common in major neurodegenerative diseases.
Collapse
Affiliation(s)
- Xuxu Xu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shangdong, China
- Department of Neurology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Chaowei Han
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shangdong, China
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shangdong, China
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shangdong, China
| |
Collapse
|
10
|
Correia AS, Silva I, Reguengo H, Oliveira JC, Vasques-Nóvoa F, Cardoso A, Vale N. The Effect of the Stress Induced by Hydrogen Peroxide and Corticosterone on Tryptophan Metabolism, Using Human Neuroblastoma Cell Line (SH-SY5Y). Int J Mol Sci 2023; 24:ijms24054389. [PMID: 36901819 PMCID: PMC10001894 DOI: 10.3390/ijms24054389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
L-tryptophan (L-Trp) is an important amino acid in several physiological mechanisms, being metabolized into two important pathways: the kynurenine and the serotonin (5-HT) pathways. It is important in processes such as mood and stress response, the 5-HT pathway begins with the conversion of L-Trp to 5-hydroxytryptophan (5-HTP), that is metabolized into 5-HT, converted to melatonin or to 5-hydroxyindoleacetic acid (5-HIAA). Disturbances in this pathway are reported to be connected with oxidative stress and glucocorticoid-induced stress, are important to explore. Thus, our study aimed to understand the role of hydrogen peroxide (H2O2) and corticosterone (CORT)-induced stress on the serotonergic pathway of L-Trp metabolism, and on SH-SY5Y cells, focusing on the study of L-Trp, 5-HTP, 5-HT, and 5-HIAA in combination with H2O2 or CORT. We evaluated the effect of these combinations on cellular viability, morphology, and on the extracellular levels of the metabolites. The data obtained highlighted the different ways that stress induction led to different extracellular medium concentration of the studied metabolites. These distinct chemical transformations did not lead to differences in cell morphology/viability. Additionally, serotonin may be the most sensitive metabolite to the exposure to the different stress inducers, being more promissory to study conditions associated with cellular stress.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Isabel Silva
- Clinical Chemistry, Department of Laboratory Pathology, Hospital Center of the University of Porto (CHUP), Largo Prof. Abel Salazar, 4099-313 Porto, Portugal
| | - Henrique Reguengo
- Clinical Chemistry, Department of Laboratory Pathology, Hospital Center of the University of Porto (CHUP), Largo Prof. Abel Salazar, 4099-313 Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - José Carlos Oliveira
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Clinical Chemistry, Department of Laboratory Pathology, Hospital Center of the University of Porto (CHUP), Largo Prof. Abel Salazar, 4099-313 Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Francisco Vasques-Nóvoa
- Cardiovascular R and D Center, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Armando Cardoso
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220-426-537
| |
Collapse
|
11
|
Pathogenic Aspects and Therapeutic Avenues of Autophagy in Parkinson's Disease. Cells 2023; 12:cells12040621. [PMID: 36831288 PMCID: PMC9954720 DOI: 10.3390/cells12040621] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
The progressive aging of the population and the fact that Parkinson's disease currently does not have any curative treatment turn out to be essential issues in the following years, where research has to play a critical role in developing therapy. Understanding this neurodegenerative disorder keeps advancing, proving the discovery of new pathogenesis-related genes through genome-wide association analysis. Furthermore, the understanding of its close link with the disruption of autophagy mechanisms in the last few years permits the elaboration of new animal models mimicking, through multiple pathways, different aspects of autophagic dysregulation, with the presence of pathological hallmarks, in brain regions affected by Parkinson's disease. The synergic advances in these fields permit the elaboration of multiple therapeutic strategies for restoring autophagy activity. This review discusses the features of Parkinson's disease, the autophagy mechanisms and their involvement in pathogenesis, and the current methods to correct this cellular pathway, from the development of animal models to the potentially curative treatments in the preclinical and clinical phase studies, which are the hope for patients who do not currently have any curative treatment.
Collapse
|
12
|
Hou DD, Wang XX, Li SJ, Wang DC, Niu Y, Xu ZR, Jin ZQ. Glycyrrhizic acid suppresses atopic dermatitis-like symptoms by regulating the immune balance. J Cosmet Dermatol 2022; 21:7090-7099. [PMID: 36099014 DOI: 10.1111/jocd.15383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Glycyrrhiza is one of the most widely used traditional Chinese medicines in China. Its main bioactive ingredient glycyrrhizic acid (GA) has the potential to be used as a treatment for atopic dermatitis (AD) because it has similar actions to steroids, but with relatively few side effects. AIMS The objective of this study was to explore the potential mechanisms of GA on AD mice model. METHODS Calcipotriol, a vitamin D3 analogue (MC903) was applied topically to establish AD mouse model. Mice were intraperitoneally administrated with 2 mg/kg dexamethasone (DEX), 25 or 50 mg/kg GA for 15 days. After mice were executed, skin tissues were collected and detected the expression levels of IL-4, IFN-γ, TNF-α and thymic stromal lymphopoietin (TSLP). The percentages of Th1, Th2, Th17, langerhans cells (LCs) in draining lymph nodes (dLNs) were measured by flow cytometry. RESULTS Our data demonstrated that GA improved the symptoms of AD by exerting anti-inflammatory and anti-allergic functions in vivo. We found that GA treatment decreased the level of total IgE in serum, suppressed ear swelling, reduced the infiltration of mast cells in skin lesions and decreased expressions of IL-4, IFN-γ, TNF-α and TSLP in skin lesions. Furthermore, our experimental results demonstrated that GA suppressed the Th1/Th2/Th17-immune responses in the dLNs, inhibited the migration of LCs in dLNs. CONCLUSIONS In conclusion, our findings suggested potential therapeutic effects of GA against MC903-induced AD-like skin lesions in mice.
Collapse
Affiliation(s)
- Dian-Dong Hou
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| | - Xin-Xin Wang
- Basic Medical and Forensic Medicine, Baotou Medical College, Baotou, China
| | - Si-Jia Li
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - De-Cheng Wang
- The Second Clinical Medical Institute, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yuan Niu
- Huzhou University, Huzhou, China
| | | | | |
Collapse
|
13
|
Correia AS, Silva I, Oliveira JC, Reguengo H, Vale N. Serotonin Type 3 Receptor Is Potentially Involved in Cellular Stress Induced by Hydrogen Peroxide. Life (Basel) 2022; 12:life12101645. [PMID: 36295079 PMCID: PMC9605598 DOI: 10.3390/life12101645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
Depression is a disease with several molecular mechanisms involved, such as problems in the serotonergic pathway. This disease is very complex and prevalent, and thus important to deeply study and aim to overcome high rates of relapse and therapeutic failure. In this study, two cellular lines were used (HT-22 and SH-SY5Y cells) to gain insight about the role of the serotonin type 3 (5-HT3) receptor in cellular stress induced by hydrogen peroxide and/or corticosterone. In research, these compounds are known to mimic the high levels of oxidative stress and dysfunction of the hypothalamus–hypophysis–adrenal axis by the action of glucocorticoids, usually present in depressed individuals. The receptor 5-HT3 is also known to be involved in depression, previously demonstrated in studies that highlight the role of these receptors as promising targets for antidepressant therapy. Indeed, the drugs used in this work (mirtazapine, scopolamine, and lamotrigine) interact with this serotonergic receptor. Thus, by using cell morphology, cell viability (neutral red and MTT), and HPLC assays, this work aimed to understand the role of these drugs in the stress induced by H2O2/corticosterone to HT-22 and SH-SY5Y cell lines. We concluded that the antagonism of the 5-HT3 receptor by these drugs may be important in the attenuation of H2O2-induced oxidative stress to the cells, but not in the corticosterone-induced stress.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Isabel Silva
- Clinical Chemistry, Department of Laboratory Pathology, Hospital Center of the University of Porto (CHUP), Largo Professor Abel Salazar, 4099-313 Porto, Portugal
| | - José Carlos Oliveira
- Clinical Chemistry, Department of Laboratory Pathology, Hospital Center of the University of Porto (CHUP), Largo Professor Abel Salazar, 4099-313 Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Henrique Reguengo
- Clinical Chemistry, Department of Laboratory Pathology, Hospital Center of the University of Porto (CHUP), Largo Professor Abel Salazar, 4099-313 Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
14
|
Ni Q, Gao Y, Yang X, Zhang Q, Guo B, Han J, Chen S. Analysis of the network pharmacology and the structure-activity relationship of glycyrrhizic acid and glycyrrhetinic acid. Front Pharmacol 2022; 13:1001018. [PMID: 36313350 PMCID: PMC9606671 DOI: 10.3389/fphar.2022.1001018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Licorice, a herbal product derived from the root of Glycyrrhiza species, has been used as a sweetening agent and traditional herbal medicine for hundreds of years. Glycyrrhizic acid (GL) and glycyrrhetinic acid (GA) are the most important active ingredients in licorice. Both GL and GA have pharmacological effects against tumors, inflammation, viral infection, liver diseases, neurological diseases, and metabolic diseases. However, they also exhibit differences. KEGG analysis indicated that licorice is involved in neuroactive ligand‒receptor interactions, while 18β-GA is mostly involved in arrhythmogenic right ventricular cardiomyopathy. In this article, we comprehensively review the therapeutic potential of GL and GA by focusing on their pharmacological effects and working mechanisms. We systemically examine the structure-activity relationship of GL, GA and their isomers. Based on the various pharmacological activities of GL, GA and their isomers, we propose further development of structural derivatives of GA after chemical structure modification, with less cytotoxicity but higher targeting specificity. More research is needed on the clinical applications of licorice and its active ingredients.
Collapse
Affiliation(s)
- Qingqiang Ni
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affifiliated to Shandong First Medical University, Jinan, Shandong, China
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuxuan Gao
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiuzhen Yang
- Department of Basic Research, Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Qingmeng Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Baojian Guo
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, Guangdong, China
| | - Jinxiang Han
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- *Correspondence: Jinxiang Han, ; Shaoru Chen,
| | - Shaoru Chen
- Department of Basic Research, Guangzhou Laboratory, Guangzhou, Guangdong, China
- *Correspondence: Jinxiang Han, ; Shaoru Chen,
| |
Collapse
|
15
|
Wang Y, Liu Z, Wei J, Di L, Wang S, Wu T, Li N. Norlignans and phenolics from genus Curculigo protect corticosterone-injured neuroblastoma cells SH-SY5Y by inhibiting endoplasmic reticulum stress-mitochondria pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115430. [PMID: 35659626 DOI: 10.1016/j.jep.2022.115430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plants of genus Curculigo are divided into the Section Curculigo and the Section Capitulata, which are mainly distributed in southeastern and southwestern China. Various ancient chinese books record that these plants were used as an important herb for tonifying kidney yang. Traditional Chinese medicine often draws on this property to treat depression syndrome. Thus genus Curculigo has potential for the treatment of neurodegenerative diseases (ND). The study showed that phenolics were the main characteristic components of plants in the Section Curculigo, represented by orcinol glucoside and curculigoside; the norlignans, with Ph-C5-Ph as the basic backbone, were the main characteristic components of the Section Capitulata. However, there is a lack of sufficient scientific evidence as to whether these two types of ingredients have neuroprotective effects. AIM OF THE STUDY To determine the neuroprotective effects of phenolics and norlignans in genus Curculigo on human neuroblastoma cells SH-SY5Y. To discuss their structure-activity relationship and screen for compounds with high activity and neuroprotective effects. To reveal that the amelioration of endoplasmic reticulum (ER) stress by two classes of compounds is mediated by the PERK/eIF2α/ATF4 pathway. MATERIALS AND METHODS The cytotoxicity of 17 compounds was assayed by MTT. SH-SY5Y cells were damaged by corticosterone (Cort) (200 μM) for 24 h and then co-administered with 17 compounds (0.1-100 μM) and Cort (200 μM) for 24 h. Cell survival was determined by MTT assay. Apoptosis rate, mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) levels were detected using flow cytometry. Intracellular Ca2+ levels were detected using a fluorescent probe. Cellular mitochondrial and ER damage was observed using transmission electron microscopy (TEM). ER stress and apoptotic pathway-related proteins (BiP, CHOP, cleaved caspase-3, cleaved caspase-9, Bax/Bcl-2), and the expression level of PERK/eIF2α/ATF4 pathway was measured via western blot (WB). RESULTS The experimental data showed that Cort treatment of SH-SY5Y cells resulted in decreased cell survival and increased apoptosis, mitochondrial depolarization, ROS, and intracellular Ca2+ levels. The co-action of 17 compounds and Cort for a period of time significantly increased cell survival. Compounds 3, 7, 12, 13 also reduced apoptosis rate, mitochondrial depolarization, ROS and intracellular Ca2+ levels in the subsequent experiments. In addition, TEM observed that Cort caused mitochondrial and ER damage, and the damage was improved after treatment. WB analysis obtained that Cort increased the expression of apoptotic and ER stress-related proteins and activated pathway expression. However, in the presence of compounds 3, 7, 12, 13, the expression of BiP, CHOP, cleaved caspase-3, cleaved caspase-9, and Bax/Bcl-2 was significantly reduced, and the phosphorylation of PERK and eIF2α and the expression of ATF4 were inhibited. CONCLUSION This study found that one phenolic (3) and three norlignans (7, 12, 13) from genus Curculigo have significant neuroprotective effects. The results of the structure-activity relationship indicated that the glucosyl polymeric norlignans and the phenolics with benzoic acid as the parent nucleus were more active. The neuroprotective effect of three norlignans is the latest discovery. This finding has important research value in the field of prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Zhenzhen Liu
- School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Juanru Wei
- School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Lei Di
- School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, Hefei, China.
| | - Tingni Wu
- School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Ning Li
- School of Pharmacy, Anhui Medical University, Hefei, China.
| |
Collapse
|
16
|
Liu DX, Zhao CS, Wei XN, Ma YP, Wu JK. Semaglutide Protects against 6-OHDA Toxicity by Enhancing Autophagy and Inhibiting Oxidative Stress. PARKINSON'S DISEASE 2022; 2022:6813017. [PMID: 35873704 PMCID: PMC9300292 DOI: 10.1155/2022/6813017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder for which no effective treatment is available. Studies have demonstrated that improving insulin resistance in type 2 diabetes mellitus (T2DM) can benefit patients with PD. In addition, a neuroprotective effect of glucagon-like peptide-1 (GLP-1) receptor agonists was demonstrated in experimental models of PD. In addition, there are some clinical trials to study the neuroprotective effect of GLP-1 analog on PD patients. Semaglutide is a long-acting, once-a-week injection treatment and the only available oral form of GLP-1 analog. In the present study, we treated the human neuroblastoma SH-SY5Y cell line with 6-hydroxydopamine (6-OHDA) as a PD in vitro model to explore the neuroprotective effects and potential mechanisms of semaglutide to protect against PD. Moreover, we compared the effect of semaglutide with liraglutide given at the same dose. We demonstrated that both semaglutide and liraglutide protect against 6-OHDA cytotoxicity by increasing autophagy flux and decreasing oxidative stress as well as mitochondrial dysfunction in SH-SY5Y cells. Moreover, by comparing the neuroprotective effects of semaglutide and liraglutide on PD cell models at the same dose, we found that semaglutide was superior to liraglutide for most parameters measured. Our results indicate that semaglutide, the new long-acting and only oral GLP-1 analog, may be represent a promising treatment for PD.
Collapse
Affiliation(s)
- Dong-xing Liu
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Chen-sheng Zhao
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Xiao-na Wei
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Yi-peng Ma
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Jian-kun Wu
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
17
|
Sahoo S, Padhy AA, Kumari V, Mishra P. Role of Ubiquitin-Proteasome and Autophagy-Lysosome Pathways in α-Synuclein Aggregate Clearance. Mol Neurobiol 2022; 59:5379-5407. [PMID: 35699874 DOI: 10.1007/s12035-022-02897-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/21/2022] [Indexed: 11/26/2022]
Abstract
Synuclein aggregation in neuronal cells is the primary underlying cause of synucleinopathies. Changes in gene expression patterns, structural modifications, and altered interactions with other cellular proteins often trigger aggregation of α-synuclein, which accumulates as oligomers or fibrils in Lewy bodies. Although fibrillar forms of α-synuclein are primarily considered pathological, recent studies have revealed that even the intermediate states of aggregates are neurotoxic, complicating the development of therapeutic interventions. Autophagy and ubiquitin-proteasome pathways play a significant role in maintaining the soluble levels of α-synuclein inside cells; however, the heterogeneous nature of the aggregates presents a significant bottleneck to its degradation by these cellular pathways. With studies focused on identifying the proteins that modulate synuclein aggregation and clearance, detailed mechanistic insights are emerging about the individual and synergistic effects of these degradation pathways in regulating soluble α-synuclein levels. In this article, we discuss the impact of α-synuclein aggregation on autophagy-lysosome and ubiquitin-proteasome pathways and the therapeutic strategies that target various aspects of synuclein aggregation or degradation via these pathways. Additionally, we also highlight the natural and synthetic compounds that have shown promise in alleviating the cellular damage caused due to synuclein aggregation.
Collapse
Affiliation(s)
- Subhashree Sahoo
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Amrita Arpita Padhy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Varsha Kumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Parul Mishra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
18
|
Zhang Y, Xu X. Chinese Herbal Medicine in the Treatment of Depression in Parkinson’s Disease: From Molecules to Systems. Front Pharmacol 2022; 13:879459. [PMID: 35496318 PMCID: PMC9043316 DOI: 10.3389/fphar.2022.879459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
Depression is one of the most common non-motor symptoms in patients with Parkinson’s disease (PD). Depression in PD (DPD) increases the disability rate and reduces the quality of life of PD patients and increases the caregiver burden. Although previous studies have explained the relationship between depression and PD through a variety of pathological mechanisms, whether depression is a precursor or an independent risk factor for PD remains unclear. Additionally, increasing evidence shows that conventional anti-PD drug therapy is not ideal for DPD. Chinese Herbal Medicine (CHM) prescriptions exhibit the characteristics of multi-target, multi-pathway, and multi-level treatment of DPD and may simultaneously improve the motor symptoms of PD patients through multiple mechanisms. However, the specific pharmacological mechanisms of these CHM prescriptions remain unelucidated. Here, we investigated the mechanisms of action of the active ingredients of single herbs predominantly used in CHM prescriptions for depression as well as the therapeutic effect of CHM prescriptions on DPD. This review may facilitate the design of new selective and effective treatment strategies for DPD.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoman Xu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiaoman Xu,
| |
Collapse
|
19
|
Feng L, Xing H, Zhang K. The therapeutic potential of traditional Chinese medicine in depression: Targeting adult hippocampal neurogenesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153980. [PMID: 35152089 DOI: 10.1016/j.phymed.2022.153980] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Depression is a common mental disorder characterized by persistent sadness and lack of interest or pleasure in previously rewarding or enjoyable activities. Understandably, the causes of depression are complex. Nevertheless, the understanding of depression pathophysiology has progressed considerably and numerous studies indicate that hippocampal neurogenesis plays a pivotal role. However, no drugs specifically targeting hippocampal neurogenesis yet exist. Meanwhile, the effects of traditional Chinese medicine (TCM) on hippocampal neurogenesis have received increasing attention in the field of antidepressant treatment because of its multi-ingredient, multi-target, and holistic view. However, the effects and mechanisms of TCM on hippocampal neurogenesis in clinical trials and pharmaceutical studies remain to be comprehensively delineated. PURPOSE To summarize the importance of hippocampal neurogenesis in depression and illustrate the targets and mechanisms of hippocampal neurogenesis regulation that underlie the antidepressant effects of TCM. METHOD A systematic review of clinical trials and studies ending by January 2022 was performed across eight electronic databases (Web of Science, PubMed, SciFinder, Research Gate, ScienceDirect, Google Scholar, Scopus and China Knowledge Infrastructure) according to the PRISMA criteria, using the search terms 'traditional Chinese medicine' "AND" 'depression' "OR" 'hippocampal neurogenesis' "OR" 'multi-ingredient' "OR" 'multi-target'. RESULTS Numerous studies show that hippocampal neurogenesis is attenuated in depression, and that antidepressants act by enhancing hippocampal neurogenesis. Moreover, compound Chinese medicine (CCM), Chinese meteria medica (CMM), and major bioactive components (MBCs) can promote hippocampal neurogenesis exerting antidepressant effects through modulation of neurotransmitters and receptors, neurotrophins, the hypothalamic-pituitary-adrenal axis, inflammatory factors, autophagy, and gut microbiota. CONCLUSION We have comprehensively summarized the effect and mechanism of TCM on hippocampal neurogenesis in depression providing a unique perspective on the use of TCM in the antidepressant field. TCM has the characteristics and advantages of multiple targets and high efficacy, showing great potential in the field of depression treatment.
Collapse
Affiliation(s)
- Lijin Feng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hang Xing
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; Tianjin UBasio Biotechnology Group, Tianjin 300457, China.
| |
Collapse
|
20
|
Wang Z, Zhu L, Huang Y, Peng L. Successful Treatment of Immune-related Cystitis by Chai-Ling-Tang (Sairei-To) in a Gastric Carcinoma Patient: Case Report and Literature Review. Explore (NY) 2022; 19:458-462. [PMID: 35469747 DOI: 10.1016/j.explore.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have changed the landscape of advanced cancer treatment. However, immune checkpoint inhibitors can trigger effector T cells against self-antigens as well as tumor antigens, resulting in immune-related toxicities in normal organs, referred to as immune-related adverse events (irAEs). CASE SUMMARY A 56-year-old man with undifferentiated gastric carcinoma received sintilimab plus paclitaxel and tegafur therapy. After five cycles of treatment, the patient was referred to the hospital for sudden onset urinary frequency, micturition pain, and urinary incontinence. Cystoscopy revealed the entire bladder mucosa was red and edematous but there was no evidence of tumor. Oral administration of Chai-Ling-Tang (Sairei-To) alleviated lower urinary tract symptoms (LUTS). Histological analysis revealed numerous infiltrates of CD3-positive and CD8-positive cells into the urothelium but no atypia, indicating a diagnosis of immune-related cystitis. Interestingly, the urothelial epithelium infiltrated by lymphocytes and subepithelial inflammatory cells strongly expressed cell boundary PD-L1. The dose of Chai-Ling-Tang was maintained and stopped 2 months later without recurrence of LUTS. Since recovering from cystitis, the patient remains alive with no disease progression. CONCLUSION This report shows that Chai-Ling-Tang is safe and effective for treating immune-related cystitis. The detailed mechanism of action requires further investigation.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong, China
| | - Liping Zhu
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong, China
| | - Yong Huang
- Department of Radiology, Shandong Cancer Hospital, Jinan, Shandong, China
| | - Ling Peng
- Department of Respiratory Disease, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Talebi M, Mohammadi Vadoud SA, Haratian A, Talebi M, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The interplay between oxidative stress and autophagy: focus on the development of neurological diseases. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2022; 18:3. [PMID: 35093121 PMCID: PMC8799983 DOI: 10.1186/s12993-022-00187-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
Regarding the epidemiological studies, neurological dysfunctions caused by cerebral ischemia or neurodegenerative diseases (NDDs) have been considered a pointed matter. Mount-up shreds of evidence support that both autophagy and reactive oxygen species (ROS) are involved in the commencement and progression of neurological diseases. Remarkably, oxidative stress prompted by an increase of ROS threatens cerebral integrity and improves the severity of other pathogenic agents such as mitochondrial damage in neuronal disturbances. Autophagy is anticipated as a cellular defending mode to combat cytotoxic substances and damage. The recent document proposes that the interrelation of autophagy and ROS creates a crucial function in controlling neuronal homeostasis. This review aims to overview the cross-talk among autophagy and oxidative stress and its molecular mechanisms in various neurological diseases to prepare new perceptions into a new treatment for neurological disorders. Furthermore, natural/synthetic agents entailed in modulation/regulation of this ambitious cross-talk are described.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Ali Mohammadi Vadoud
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Haratian
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA
- Viatris Pharmaceuticals Inc, 3300 Research Plaza, San Antonio, TX, 78235, USA
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
22
|
Zhang K, Zhu S, Li J, Jiang T, Feng L, Pei J, Wang G, Ouyang L, Liu B. Targeting autophagy using small-molecule compounds to improve potential therapy of Parkinson's disease. Acta Pharm Sin B 2021; 11:3015-3034. [PMID: 34729301 PMCID: PMC8546670 DOI: 10.1016/j.apsb.2021.02.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/28/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD), known as one of the most universal neurodegenerative diseases, is a serious threat to the health of the elderly. The current treatment has been demonstrated to relieve symptoms, and the discovery of new small-molecule compounds has been regarded as a promising strategy. Of note, the homeostasis of the autolysosome pathway (ALP) is closely associated with PD, and impaired autophagy may cause the death of neurons and thereby accelerating the progress of PD. Thus, pharmacological targeting autophagy with small-molecule compounds has been drawn a rising attention so far. In this review, we focus on summarizing several autophagy-associated targets, such as AMPK, mTORC1, ULK1, IMPase, LRRK2, beclin-1, TFEB, GCase, ERRα, C-Abelson, and as well as their relevant small-molecule compounds in PD models, which will shed light on a clue on exploiting more potential targeted small-molecule drugs tracking PD treatment in the near future.
Collapse
Key Words
- 3-MA, 3-methyladenine
- 5-HT2A, Serotonin 2A
- 5-HT2C, serotonin 2C
- A2A, adenosine 2A
- AADC, aromatic amino acid decarboxylase
- ALP, autophagy-lysosomal pathway
- AMPK, 5ʹAMP-activated protein kinase
- ATG, autophagy related protein
- ATP13A2, ATPase cation transporting 13A2
- ATTEC, autophagosome-tethering compound
- AUC, the area under the curve
- AUTAC, autophagy targeting chimera
- Autophagy
- BAF, bafilomycinA1
- BBB, blood−brain barrier
- CL, clearance rate
- CMA, chaperone-mediated autophagy
- CNS, central nervous system
- COMT, catechol-O-methyltransferase
- DA, dopamine
- DAT, dopamine transporter
- DJ-1, Parkinson protein 7
- DR, dopamine receptor
- ER, endoplasmic reticulum
- ERRα, estrogen-related receptor alpha
- F, oral bioavailability
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- GBA, glucocerebrosidase β acid
- GWAS, genome-wide association study
- HDAC6, histone deacetylase 6
- HSC70, heat shock cognate 71 kDa protein
- HSPA8, heat shock 70 kDa protein 8
- IMPase, inositol monophosphatase
- IPPase, inositol polyphosphate 1-phosphatase
- KI, knockin
- LAMP2A, lysosome-associated membrane protein 2 A
- LC3, light chain 3
- LIMP-2, lysosomal integrated membrane protein-2
- LRRK2, leucine-rich repeat sequence kinase 2
- LRS, leucyl-tRNA synthetase
- LUHMES, lund human mesencephalic
- Lamp2a, type 2A lysosomal-associated membrane protein
- MAO-B, monoamine oxidase B
- MPP+, 1-methyl-4-phenylpyridinium
- MPTP, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine
- MYCBP2, MYC-binding protein 2
- NMDA, N-methyl-d-aspartic acid
- ONRs, orphan nuclear receptors
- PD therapy
- PD, Parkinson's disease
- PDE4, phosphodiesterase 4
- PI3K, phosphatidylinositol 3-kinase
- PI3P, phosphatidylinositol 3-phosphate
- PINK1, PTEN-induced kinase 1
- PLC, phospholipase C
- PREP, prolyl oligopeptidase
- Parkin, parkin RBR E3 ubiquitin−protein ligase
- Parkinson's disease (PD)
- ROS, reactive oxygen species
- SAR, structure–activity relationship
- SAS, solvent accessible surface
- SN, substantia nigra
- SNCA, α-synuclein gene
- SYT11, synaptotagmin 11
- Small-molecule compound
- TFEB, transcription factor EB
- TSC2, tuberous sclerosis complex 2
- Target
- ULK1, UNC-51-like kinase 1
- UPS, ubiquitin−proteasome system
- mAChR, muscarinic acetylcholine receptor
- mTOR, the mammalian target of rapamycin
- α-syn, α-synuclein
Collapse
|
23
|
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Bhatia S, Al-Harrasi A, Bungau S. Exploring the Role of Autophagy Dysfunction in Neurodegenerative Disorders. Mol Neurobiol 2021; 58:4886-4905. [PMID: 34212304 DOI: 10.1007/s12035-021-02472-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
Autophagy is a catabolic pathway by which misfolded proteins or damaged organelles are engulfed by autophagosomes and then transported to lysosomes for degradation. Recently, a great improvement has been done to explain the molecular mechanisms and roles of autophagy in several important cellular metabolic processes. Besides being a vital clearance pathway or a cell survival pathway in response to different stresses, autophagy dysfunction, either upregulated or down-regulated, has been suggested to be linked with numerous neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Impairment at different stages of autophagy results in the formation of large protein aggregates and damaged organelles, which leads to the onset and progression of different neurodegenerative disorders. This article elucidates the recent progress about the role of autophagy in neurodegenerative disorders and explains how autophagy dysfunction is linked with the pathogenesis of such disorders as well as the novel potential autophagy-associated therapies for treating them.
Collapse
Affiliation(s)
- Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Haryana, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
24
|
Natural compounds modulate the autophagy with potential implication of stroke. Acta Pharm Sin B 2021; 11:1708-1720. [PMID: 34386317 PMCID: PMC8343111 DOI: 10.1016/j.apsb.2020.10.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke is considered a leading cause of mortality and neurological disability, which puts a huge burden on individuals and the community. To date, effective therapy for stroke has been limited by its complex pathological mechanisms. Autophagy refers to an intracellular degrading process with the involvement of lysosomes. Autophagy plays a critical role in maintaining the homeostasis and survival of cells by eliminating damaged or non-essential cellular constituents. Increasing evidence support that autophagy protects neuronal cells from ischemic injury. However, under certain circumstances, autophagy activation induces cell death and aggravates ischemic brain injury. Diverse naturally derived compounds have been found to modulate autophagy and exert neuroprotection against stroke. In the present work, we have reviewed recent advances in naturally derived compounds that regulate autophagy and discussed their potential application in stroke treatment.
Collapse
Key Words
- AD, Alzheimer's disease
- ALS, amyotrophic lateral sclerosis
- AMPK, 5′-adenosine monophosphate-activated protein kinase
- ATF6, activating transcription factor 6
- ATG, autophagy related genes
- Autophagy
- BCL-2, B-cell lymphoma 2
- BNIP3L, BCL2/adenovirus
- COPII, coat protein complex II
- Cerebral ischemia
- ER, endoplasmic reticulum
- FOXO, forkhead box O
- FUNDC1, FUN14 domain containing 1
- GPCR, G-protein coupled receptor
- HD, Huntington's disease
- IPC, ischemic preconditioning
- IRE1, inositol-requiring enzyme 1
- JNK, c-Jun N-terminal kinase
- LAMP, lysosomal-associated membrane protein
- LC3, light chain 3
- LKB1, liver kinase B1
- Lysosomal activation
- Mitochondria
- Mitophagy
- Natural compounds
- Neurological disorders
- Neuroprotection
- OGD/R, oxygen and glucose deprivation-reperfusion
- PD, Parkinson's disease
- PERK, protein kinase R (PKR)-like endoplasmic reticulum kinase
- PI3K, phosphatidylinositol 3-kinase
- ROS, reactive oxygen species
- SQSTM1, sequestosome 1
- TFEB, transcription factor EB
- TIGAR, TP53-induced glycolysis and apoptosis regulator
- ULK, Unc-51- like kinase
- Uro-A, urolithin A
- eIF2a, eukaryotic translation-initiation factor 2
- mTOR, mechanistic target of rapamycin
- ΔΨm, mitochondrial membrane potential
Collapse
|
25
|
Selbach MT, Scotti AS, Feistel CC, Nicolau CC, Dalberto D, Dos Santos NG, Borsoi G, Ferraz ABF, Grivicich I, de Souza GMS, Chytry P, Dias JF, Corrêa DS, da Silva J. Evaluation of the cytotoxic and genotoxic effects of Sida planicaulis Cav extract using human neuroblastoma cell line SH-SY5Y. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:345-355. [PMID: 33435828 DOI: 10.1080/15287394.2020.1871144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sida planicaulis is a weed thought to have originated in Brazil, where it is present in abundant quantities, but also this plant is also found in south-central Florida, Indian Ocean Islands, and the Pacific Islands. Sida planicaulis produces neurotoxicity that adversely affects livestock breeding with heavy animal losses and consequent negative impact on Brazil's economy. The aim of this study was to determine the chemical profile, cytotoxic and genotoxic effects of ethanolic extracts of S. planicaulis collected in winter (leaf extract) and summer (leaf extract and leaf + flower extract) using an in vitro model of human neuroblastoma cell line SH-SY5Y. Phytochemical screening demonstrated the presence of alkaloids, flavonoids, and apolar compounds. Rutin, quercetin, and swainsonine were detected by HPLC and GC/MS, respectively. Phosphorus, potassium, iron, and zinc were the inorganic elements found. Extracts produced cytotoxicity at all concentrations tested (7-4,000 μg/ml) as evidenced by the colorimetric assay [3-(4,5-dimethyl-thiazol-2-yl) -2,5-diphenyl-tetrazolium bromide (MTT)]. Based upon the alkaline comet assay extracts were found to induce genotoxicity at concentrations ranging from 0.437 to 7 μg/ml. DNA damage produced by extracts was affirmed using a modified comet assay with the enzymes Endo III and FPG in a concentration dependent manner. Further, enzyme-modified comet assay showed both oxidized purines and pyrimidines, and consequently oxidative stress was related to genomic instability and cell death. Data suggest that low concentrations of ethanolic extracts of S. planicaulis (different seasons) induced increased DNA damage related to oxidative stress and chemical composition.
Collapse
Affiliation(s)
- Mariana Terezinha Selbach
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Amanda Souza Scotti
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Cleverson Costa Feistel
- Pharmacognosy and Phytochemistry Laboratory, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Caroline C Nicolau
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Daiana Dalberto
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Natália Garcia Dos Santos
- Pharmacognosy and Phytochemistry Laboratory, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Guilherme Borsoi
- Pharmacognosy and Phytochemistry Laboratory, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Alexandre Barros Falcão Ferraz
- Pharmacognosy and Phytochemistry Laboratory, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Ivana Grivicich
- Laboratory of Cancer Biology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | | | - Paola Chytry
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Dione Silva Corrêa
- Center for Research in Product and Development (CEPPED), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| |
Collapse
|
26
|
Ji Y, Luo J, Zeng J, Fang Y, Liu R, Luan F, Zeng N. Xiaoyao Pills Ameliorate Depression-like Behaviors and Oxidative Stress Induced by Olfactory Bulbectomy in Rats via the Activation of the PIK3CA-AKT1-NFE2L2/BDNF Signaling Pathway. Front Pharmacol 2021; 12:643456. [PMID: 33935736 PMCID: PMC8082504 DOI: 10.3389/fphar.2021.643456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/02/2021] [Indexed: 12/28/2022] Open
Abstract
Numerous studies have revealed that oxidative stress is closely associated with the occurrence and development of depression. Xiaoyao Pills (XYW) are included in the Chinese Pharmacopoeia and are frequently used for treating anxiety and depression by smoothing the liver, strengthening the spleen, and nourishing the blood. However, the antidepressant effects of XYW have not yet been thoroughly investigated. The objective of our study was to investigate the antidepressant-like effects of XYW and the underlying molecular mechanism in the olfactory bulbectomized (OB) rat model of depression using the open field test (OFT), sucrose preference test (SPT), splash test (ST), and novelty suppressed feeding test (NSFT). Results showed that XYW (0.93 and 1.86 g·kg−1) significantly alleviated depression-like behaviors in rats, which was indicated by increased sucrose preference in the SPT, prolonged grooming time in the ST, decreased horizontal movement in the OFT, and shorter feeding latency in the NSFT. In addition, XYW treatment dramatically reversed the reduced activity of superoxide dismutase and the decreased level of glutathione, while also lowering levels of malondialdehyde, an inflammatory mediator (nitric oxide), and pro-inflammatory cytokines (interleukin-6 and 1β) in the serum and cortex of OB rats. Mechanistically, XYW induced marked upregulation of mRNA and protein expression levels of NFE2L2, KEAP1, GPX3, HMOX1, SOD1, NQO1, OGG1, PIK3CA, p-AKT1/AKT1, NTRK2, and BDNF, and downregulation of ROS in the cortex and hippocampus via the activation of the NFE2L2/KEAP1, PIK3CA/AKT1, and NTRK2/BDNF pathways. These findings suggest that XYW exert antidepressant-like effects in OB rats with depression-like symptoms, and these effects are mediated by the alleviation of oxidative stress and the enhancement of neuroprotective effects through the activation of the PIK3CA-AKT1-NFE2L2/BDNF signaling pathways.
Collapse
Affiliation(s)
- Yafei Ji
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Luo
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiuseng Zeng
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Fang
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Liu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
A Flavonoid-Rich Extract of Mandarin Juice Counteracts 6-OHDA-Induced Oxidative Stress in SH-SY5Y Cells and Modulates Parkinson-Related Genes. Antioxidants (Basel) 2021; 10:antiox10040539. [PMID: 33808343 PMCID: PMC8066648 DOI: 10.3390/antiox10040539] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
Parkinson’s disease (PD) is a degenerative disorder of the nervous system due to unceasing impairment of dopaminergic neurons situated in the substantia nigra. At present, anti-PD drugs acting on dopamine receptors are mainly symptomatic and have only very limited neuroprotective effects, whereas drugs slowing down neurodegeneration of dopaminergic neurons and deterioration of clinical symptoms are not yet available. Given that, the development of more valuable pharmacological strategies is highly demanded. Comprehensive research on innovative neuroprotective drugs has proven that anti-inflammatory and antioxidant molecules from food sources may prevent and/or counteract neurodegenerative diseases, such as PD. The present study was aimed at the evaluation the protective effect of mandarin juice extract (MJe) against 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y human neuroblastoma cell death. Treatment of differentiated SH-SY5Y cells with 6-OHDA brought cell death, and specifically, apoptosis, which was significantly inhibited by the preincubation with MJe through caspase 3 blockage and the modulation of p53, Bax, and Bcl-2 genes. In addition, it showed antioxidant properties in abiotic models as well as in vitro, where it reduced both reactive oxygen and nitrogen species induced by 6-OHDA, along with restored mitochondrial membrane potential, and prevented the oxidative DNA damage evoked by 6-OHDA. Furthermore, MJe restored the impaired balance of SNCA, LRRK2, PINK1, parkin, and DJ-1 gene levels, PD-related factors, caused by 6-OHDA oxidative stress. Overall, these results indicate that MJe exerts neuroprotective effects against 6-OHDA-induced cell death in SH-SY5Y cells by mechanisms involving both the specific interaction with intracellular pathways and its antioxidant capability. Our study suggests a novel possible strategy to prevent and/or ameliorate neurodegenerative diseases, such as PD.
Collapse
|
28
|
Motta JR, Jung IEDC, Azzolin VF, Teixeira CF, Braun LE, De Oliveira Nerys DA, Motano MAE, Duarte MMMF, Maia-Ribeiro EA, da Cruz IBM, Barbisan F. Avocado oil (Persea americana) protects SH-SY5Y cells against cytotoxicity triggered by cortisol by the modulation of BDNF, oxidative stress, and apoptosis molecules. J Food Biochem 2021; 45:e13596. [PMID: 33480081 DOI: 10.1111/jfbc.13596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022]
Abstract
Chronic psycho-environmental stress can induce neurological dysfunction due to an increase in cortisol levels. It is possible that some food supplements could attenuate its negative impact, such as avocado oil (AO), which is rich in fatty acids with beneficial effects on the brain. This hypothesis was tested by an in vitro model using undifferentiated neuroblastoma cells (SH-SY5Y) exposed to hydrocortisone (HC), an active cortisol molecule with and without AO-supplementation. Cortisol can induce oxidative stress, apoptosis events, and a lowering effect on brain-derived neurotrophic factor (BDNF), a neurogenic molecule. As AO protective effects on HC-exposed cells could involve these routes, some markers of these routes were compared among neuroblastoma cultures. In the first assay, the range concentrations of HC exposure that trigger cell mortality and range AO-concentrations that could revert the HC effect. AO at all concentrations tested (2-30 µg/ml) did not present a cytotoxic effect on SH-SY5Y cells, whereas HC at 0.3-10 ng/ml had a dose-dependent cytotoxic effect on these cells. From these results, HC at 10 ng/ml and AO at 5 µg/ml were chosen for mechanistic analysis. AO was able to decrease the oxidative molecules; however, both AO- and HC-induced differential and varied gene expression modulation of these enzymes. AO partially reverted the protein and gene expression of apoptotic markers that were higher in HC-exposed cells. AO also increases the BDNF levels, which are lower HC-exposed cultures. The results indicate that AO could be a beneficial supplement in situations where cortisol levels are elevated, including chronic psycho-environmental stress. PRACTICAL APPLICATIONS: Psychological chronic stress that induces high cortisol exposure has been linked to premature aging and decreased healthy life expectancy. Neurobiological models involving cortisol have suggested a neurotoxic effect of this molecule, increasing the risk of psychiatric and other CNTDs. This effect can have a high impact mainly in infants and elderly people. In child abuse situations, chronic cortisol exposure could induce extensive apoptosis events, causing impairment in synaptogenesis. In both age groups, chronic cortisol exposure increased the risk of psychiatric conditions, especially anxiety and major depression. However, it is possible that the negative effects associated with chronic cortisol exposure could be attenuated by some food supplements. This is the case for molecules acquired through diet, such as polyunsaturated fatty acids (PUFAs), including omega-3. As inadequate omega-3 levels in the brain can increase the risk factor for neuropsychiatric disorders, it is possible to infer that some from food supplements, such as avocado oil, could attenuate the neurotoxic effects of chronic cortisol exposure. This hypothesis was tested using an exploratory in vitro protocol, and the results suggested that avocado oil could be used as a cytoprotective food supplement by decreasing the oxidative stress and apoptotic events induced by cortisol.
Collapse
Affiliation(s)
- Jéssica Rosso Motta
- Graduate Program in Gerontology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | | | | | - Luiza Elizabete Braun
- Biogenomics Laboratory, Department of Morphology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | | | - Marta Maria Medeiros Frescura Duarte
- Pharmacology Graduate Program, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Health Sciences Center, Universidade Luterana do Brasil, Santa Maria, Brazil
| | | | | | - Fernanda Barbisan
- Graduate Program in Gerontology, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Pharmacology Graduate Program, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
29
|
Wang ZY, Liu J, Zhu Z, Su CF, Sreenivasmurthy SG, Iyaswamy A, Lu JH, Chen G, Song JX, Li M. Traditional Chinese medicine compounds regulate autophagy for treating neurodegenerative disease: A mechanism review. Biomed Pharmacother 2020; 133:110968. [PMID: 33189067 DOI: 10.1016/j.biopha.2020.110968] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/19/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (NDs) are common chronic diseases related to progressive damage of the nervous system. Globally, the number of people with an ND is dramatically increasing consistent with the fast aging of society and one of the common features of NDs is the abnormal aggregation of diverse proteins. Autophagy is the main process by which misfolded proteins and damaged organelles are removed from cells. It has been found that the impairment of autophagy is associated with many NDs, suggesting that autophagy has a vital role in the neurodegeneration process. Recently, more and more studies have reported that autophagy inducers display a protective role in different ND experimental models, suggesting that enhancement of autophagy could be a potential therapy for NDs. In this review, the evidence for beneficial effects of traditional Chinese medicine (TCM) regulate autophagy in the models of Alzheimer's disease (AD), Parkinson's disease (PD), and other NDs are presented and common autophagy-related mechanisms are identified. The results demonstrate that TCM which regulate autophagy are potential therapeutic candidates for ND treatment.
Collapse
Affiliation(s)
- Zi-Ying Wang
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region; Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, China
| | - Jia Liu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhou Zhu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Cheng-Fu Su
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | | | - Ashok Iyaswamy
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Gang Chen
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, China
| | - Ju-Xian Song
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region; Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Min Li
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
30
|
Shenzhiling Oral Liquid Protects STZ-Injured Oligodendrocyte through PI3K/Akt-mTOR Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4527283. [PMID: 32774416 PMCID: PMC7396001 DOI: 10.1155/2020/4527283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 02/01/2023]
Abstract
White matter degeneration and demyelination are nonnegligible pathological manifestations of Alzheimer's disease (AD). The damage of myelin sheath consisting of oligodendrocytes is the basis of AD's unique early lesions. Shenzhiling oral liquid (SZL) was the effective Chinese herbal compound approved by the Food and Drug Administration (FDA) for the treatment of AD in China, which plays the exact therapeutic role in clinical AD patients. However, its molecular mechanism remains unclear to date. For this purpose, an in vitro mode of streptozotocin- (STZ-) induced rat oligodendrocyte OLN-93 cell injury was established to mimic the pathological changes of myelin sheath of AD and investigate the mechanism of SZL protecting injured OLN-93 cell. The results showed that STZ can decrease cell viability and downregulate the activity of PI3K/Akt-mTOR signalling pathway and the expression of myelin sheath-related proteins (MBP, MOG, and PLP) in OLN-93 cells. Both SZL-medicated serum and donepezil (positive control) can protect cells from STZ-caused damage. SZL-medicated serum increased OLN-93 cell viability in a dose- and time-dependent manner and enhanced the activity of PI3K/Akt-mTOR signalling pathway. The inhibitor of PI3K (LY294002) inhibited the protective effect of SZL-medicated serum on the STZ-injured OLN-93 cells. Furthermore, rapamycin, the inhibitor of mTOR, inhibited the promotion of cell viability and upregulation of p-mTOR and MBP caused by SZL-medicated serum. In conclusion, our data indicate that SZL plays its therapeutic role on AD by promoting PI3K/Akt-mTOR signalling pathway of oligodendrocytes. Thus, the present study may facilitate the therapeutic research of AD.
Collapse
|
31
|
Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol Ther 2020; 214:107618. [PMID: 32592716 PMCID: PMC7311916 DOI: 10.1016/j.pharmthera.2020.107618] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Safe and efficient drugs to combat the current COVID-19 pandemic are urgently needed. In this context, we have analyzed the anti-coronavirus potential of the natural product glycyrrhizic acid (GLR), a drug used to treat liver diseases (including viral hepatitis) and specific cutaneous inflammation (such as atopic dermatitis) in some countries. The properties of GLR and its primary active metabolite glycyrrhetinic acid are presented and discussed. GLR has shown activities against different viruses, including SARS-associated Human and animal coronaviruses. GLR is a non-hemolytic saponin and a potent immuno-active anti-inflammatory agent which displays both cytoplasmic and membrane effects. At the membrane level, GLR induces cholesterol-dependent disorganization of lipid rafts which are important for the entry of coronavirus into cells. At the intracellular and circulating levels, GLR can trap the high mobility group box 1 protein and thus blocks the alarmin functions of HMGB1. We used molecular docking to characterize further and discuss both the cholesterol- and HMG box-binding functions of GLR. The membrane and cytoplasmic effects of GLR, coupled with its long-established medical use as a relatively safe drug, make GLR a good candidate to be tested against the SARS-CoV-2 coronavirus, alone and in combination with other drugs. The rational supporting combinations with (hydroxy)chloroquine and tenofovir (two drugs active against SARS-CoV-2) is also discussed. Based on this analysis, we conclude that GLR should be further considered and rapidly evaluated for the treatment of patients with COVID-19.
Collapse
|
32
|
Xu T, Lei T, Li SQ, Mai EH, Ding FH, Niu B. DNAH17-AS1 promotes pancreatic carcinoma by increasing PPME1 expression via inhibition of miR-432-5p. World J Gastroenterol 2020; 26:1745-1757. [PMID: 32351291 PMCID: PMC7183867 DOI: 10.3748/wjg.v26.i15.1745] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The incidence and mortality rates of pancreatic carcinoma (PC) are rapidly increasing worldwide. Long noncoding RNAs (lncRNAs) play critical roles during PC initiation and progression. Since the lncRNA DNAH17-AS1 is highly expressed in PC, the regulation of DNAH17-AS1 in PC was investigated in this study. AIM To investigate the expression and molecular action of lncRNA DNAH17-AS1 in PC cells. METHODS The PC expression data for the lncRNA DNAH17-AS1 was downloaded from The Cancer Genome Atlas database and used to examine its profile. Western blot and reverse transcription-quantitative PCR were employed to assess protein and mRNA expression. A subcellular fractionation assay was used to determine the location of DNAH17-AS1 in cells. In addition, the regulatory effects of DNAH17-AS1 on miR-432-5p, PPME1, and tumor activity were investigated using luciferase reporter assay, MTT viability analysis, flow cytometry, and transwell migration analysis. RESULTS DNAH17-AS1 was upregulated in PC cells and was associated with aggressive tumor behavior and poor prognosis for patients. Silencing DNAH17-AS1 promoted the apoptosis and reduced the viability, invasion, and migration of PC cells. In addition, DNAH17-AS1 served as a PC oncogene by downregulating miR-432-5p which normally directly targeted PPME1 to downregulate its expression. CONLUSION DNAH17-AS1 functions in PC as a tumor promoter by regulating the miR-432-5p/PPME1 axis. This finding may provide new insights for PC prognosis and therapy.
Collapse
Affiliation(s)
- Tao Xu
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan Province, China
| | - Ting Lei
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan Province, China
| | - Si-Qiao Li
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan Province, China
| | - Er-Hui Mai
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan Province, China
| | - Fei-Hu Ding
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan Province, China
| | - Bin Niu
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong Province, China
| |
Collapse
|
33
|
Elmatboly AM, Sherif AM, Deeb DA, Benmelouka A, Bin-Jumah MN, Aleya L, Abdel-Daim MM. The impact of proteostasis dysfunction secondary to environmental and genetic causes on neurodegenerative diseases progression and potential therapeutic intervention. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11461-11483. [PMID: 32072427 DOI: 10.1007/s11356-020-07914-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Aggregation of particular proteins in the form of inclusion bodies or plaques followed by neuronal death is a hallmark of neurodegenerative proteopathies such as primary Parkinsonism, Alzheimer's disease, Lou Gehrig's disease, and Huntington's chorea. Complex polygenic and environmental factors implicated in these proteopathies. Accumulation of proteins in these disorders indicates a substantial disruption in protein homeostasis (proteostasis). Proteostasis or cellular proteome homeostasis is attained by the synchronization of a group of cellular mechanisms called the proteostasis network (PN), which is responsible for the stability of the proteome and achieves the equilibrium between synthesis, folding, and degradation of proteins. In this review, we will discuss the different types of PN and the impact of PN component dysfunction on the four major neurodegenerative diseases mentioned earlier. Graphical abstract.
Collapse
Affiliation(s)
| | - Ahmed M Sherif
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Dalia A Deeb
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Amira Benmelouka
- Faculty of Medicine, University of Algiers, Sidi M'Hamed, Algeria
| | - May N Bin-Jumah
- Biology Department, College Of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
34
|
Yan L, Zhang Z, Yin X, Li Y. lncRNA NEAT1 Facilitates Cell Proliferation, Invasion and Migration by Regulating CBX7 and RTCB in Breast Cancer. Onco Targets Ther 2020; 13:2449-2458. [PMID: 32273717 PMCID: PMC7102915 DOI: 10.2147/ott.s240769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose To investigate the association between the lncRNA NEAT1 and breast cancer, and to determine the influence of NEAT1 on regulation of other signaling molecules in breast cancer. Methods In the present study, we measured levels of the lncRNA NEAT1 in 106 breast cancer patients and in a human breast cancer cell line by qRT-PCR. The correlation between NEAT1 expression and patients’ clinical characteristics was analyzed with in-house and TCGA data. We used cellular functioning assays and cell immunofluorescence assay to evaluate the role of NEAT1 and its target molecules in proliferation, invasion and migration in breast cancer. We used Western blotting to explore possible targets of NEAT1 and a subcellular fractionation assay to locate NEAT1 expression. Results NEAT1 was overexpressed in breast cancer tissue and also closely related to advanced clinical stages and positive lymph node metastases. NEAT1 levels were also tightly correlated to prognosis for breast cancer patients in survival analyses. Cellular function assays revealed that downregulation of NEAT1 could inhibit breast cancer cell viability, invasion and migration. Western blotting revealed down-regulation of CBX7 and up-regulation of RTCB following NEAT1 inhibition. Based on the cytoplasmic and nuclear expression of NEAT1, we investigated the possible regulation of CBX7 and RTCB by NEAT1. Results showed that NEAT1 regulated the expression of CBX7 and RTCB, possibly by binding of NEAT1 to DNA in the nucleus, which facilitates cell proliferation, invasion and migration. Conclusion The current results suggest that the lncRNA NEAT1 is upregulated in breast cancer and facilitates tumor cell viability, invasion and migration via CBX7 and RTCB.
Collapse
Affiliation(s)
- Lixia Yan
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, People's Republic of China
| | - Ze Zhang
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, People's Republic of China
| | - Xingmei Yin
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, People's Republic of China
| | - Yongxia Li
- Department of Stomatology and Eye, Dongying People's Hospital, Dongying, Shandong 257091, People's Republic of China
| |
Collapse
|
35
|
Zhu J, Gao W, Shan X, Wang C, Wang H, Shao Z, Dou S, Jiang Y, Wang C, Cheng B. Apelin-36 mediates neuroprotective effects by regulating oxidative stress, autophagy and apoptosis in MPTP-induced Parkinson's disease model mice. Brain Res 2019; 1726:146493. [PMID: 31586624 DOI: 10.1016/j.brainres.2019.146493] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/28/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD), a common human neurodegenerative disorder, is characterized by the presence of intraneuronal Lewy bodies composed principally of abnormal aggregated and post-translationally modified α-synuclein. In our previous research, we have demonstrated the neuroprotective effect of Apelin-36, a neuroendocrine peptide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP)-lesioned PD model mice. Therefore, this study was designed to evaluate the neuroprotective mechanism of Apelin-36 against MPTP-induced neurotoxicity in mice. The results showed that MPTP-induced the depletion of dopamine in the striatum (STR) was partially reversed by Apelin-36. Apelin-36 also improved the activity of antioxidant system including superoxide dismutase (SOD) and glutathione (GSH), and decreased the overproduction of malondialdehyde (MDA) in the substantia nigra pars compacta (SNpc) and STR of MPTP-treated mice. Moreover, Apelin-36 downregulated inducible nitric oxide synthase (iNOS) and nitrated α-synuclein expression. Furthermore, Apelin-36 significantly promoted autophagy indicated by the up-regulation of LC3-II and Beclin1 and inhibition of p62 expression in the SNpc and STR of MPTP-treated mice. The protective effect of Apelin-36 was also associated with the inhibition of the apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) signaling pathway and inactivation of caspase-3. Taken together, our findings demonstrated that the neuroprotective mechanism of Apelin-36 against MPTP-induced neurotoxicity in mice might be related to decreasing the aggregation of nitrated α-synuclein and alleviating oxidative stress as well as promoting autophagy and inhibiting ASK1/JNK/caspase-3 apoptotic pathway, which provides a novel strategy for PD treatment.
Collapse
Affiliation(s)
- Junge Zhu
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Wenming Gao
- Basic Medical Sciences, Jining Medical University, 272067 Jining, China
| | - Xuehua Shan
- Basic Medical Sciences, Jining Medical University, 272067 Jining, China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Huiqing Wang
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Ziqi Shao
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Shanshan Dou
- Basic Medical Sciences, Jining Medical University, 272067 Jining, China
| | - Yunlu Jiang
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Chuangong Wang
- Basic Medical Sciences, Jining Medical University, 272067 Jining, China.
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, 272067 Jining, China.
| |
Collapse
|
36
|
Parekh P, Sharma N, Gadepalli A, Shahane A, Sharma M, Khairnar A. A Cleaning Crew: The Pursuit of Autophagy in Parkinson's Disease. ACS Chem Neurosci 2019; 10:3914-3926. [PMID: 31385687 DOI: 10.1021/acschemneuro.9b00244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disorder, neuropathologically characterized by the aggregation of misfolded α-synuclein (α-syn) protein, which appears to be central to the onset and progression of PD pathology. Evidence from pioneering studies has highly advocated the existence of impaired autophagy pathways in the brains of PD patients. Autophagy is an evolutionarily conserved, homeostatic mechanism for minimizing abnormal protein aggregates and facilitating organelle turnover. Any aberration in constitutive autophagy activity results in the aggregation of misfolded α-syn, which, in turn, may further inhibit their own degradation-leading to a vicious cycle of neuronal death. Despite the plethora of available literature, there are still lacunas existing in our understanding of the exact cellular interplay between autophagy impairment and α-syn accumulation-mediated neurotoxicity. In this context, clearance of aggregated α-syn via up-regulation of the autophagy-lysosomal pathway could provide a pharmacologically viable approach to the treatment of PD. The present Review highlights the basics of autophagy and detrimental cross-talk between α-syn and chaperone-mediated autophagy, and α-syn and macroautophagy. It also depicts the interaction between α-syn and novel targets, LRRK2 and mTOR, followed by the role of autophagy in PD from a therapeutic perspective. More importantly, it further updates the reader's understanding of various newer therapeutic avenues that may accomplish disease modification via promoting clearance of toxic α-syn through activation of autophagy.
Collapse
Affiliation(s)
- Pathik Parekh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat India
| | - Nishant Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat India
| | - Anagha Gadepalli
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat India
| | - Abhishekh Shahane
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat India
| | - Monika Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat India
| |
Collapse
|
37
|
Ma RD, Zhou GJ, Qu M, Yi JH, Tang YL, Yang XY, Nie YX, Gu HF. Corticosterone induces neurotoxicity in PC12 cells via disrupting autophagy flux mediated by AMPK/mTOR signaling. CNS Neurosci Ther 2019; 26:167-176. [PMID: 31423743 PMCID: PMC6978254 DOI: 10.1111/cns.13212] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/31/2019] [Accepted: 08/04/2019] [Indexed: 12/14/2022] Open
Abstract
Aims Our previous study indicated that chronic stress caused autophagy impairment and subsequent neuron apoptosis in hippocampus. However, the mechanism underlying the stress‐induced damage to neurons is unclear. In present work, we investigated whether stress‐level glucocorticoids (GCs) GCs promoted PC12 cell damage via AMPK/mTOR signaling‐mediated autophagy. Methods Chronic stress‐induced PC12 cell injury model was built by treatment with high level corticosterone (CORT). Cell injury was evaluated by flow cytometry assay and transmission electron microscopy observation. Results Autophagy flux was measured based on the changes in LC3‐II and P62 protein expressions, and the color alteration of mCherry‐GFP‐LC3‐II transfection. Our results showed that CORT not only increased cell injury and apoptosis, but also dysregulated AMPK/mTOR signaling‐mediated autophagy flux, as indicated by the upregulated expression of LC3‐II and P62 proteins, and the lowered ration of autolysosomes to autophagosomes. Mechanistically, our results demonstrated that autophagy activation by AMPK activator metformin or mTOR inhibitor rapamycin obviously promotes cell survival and autophagy flux, improved mitochondrial ultrastructure, and reduced expression of Cyt‐C and caspase‐3 in CORT‐induced PC12 cells. Conclusion These results indicate that high CORT triggers PC12 cell damage through disrupting AMPK/mTOR‐mediated autophagy flux. Targeting this signaling may be a promising approach to protect against high CORT and chronic stress‐induced neuronal impairment.
Collapse
Affiliation(s)
- Run-Dong Ma
- Department of Neurology of the First Affiliated Hospital, University of South China, Hengyang, China
| | - Gui-Juan Zhou
- Department of Neurology of the First Affiliated Hospital, University of South China, Hengyang, China
| | - Miao Qu
- Department of Physiology & Institute of Neuroscience, University of South China, Hengyang, China
| | - Ji-Hong Yi
- Institute of Neuroscience of the First Affiliated Hospital, University of South China, Hengyang, China
| | - Ya-Ling Tang
- Department of Physiology & Institute of Neuroscience, University of South China, Hengyang, China
| | - Xiang-Yi Yang
- Department of Neurology of the First Affiliated Hospital, University of South China, Hengyang, China
| | - Ya-Xiong Nie
- Department of Neurology of the First Affiliated Hospital, University of South China, Hengyang, China
| | - Hong-Feng Gu
- Department of Physiology & Institute of Neuroscience, University of South China, Hengyang, China
| |
Collapse
|
38
|
Meng T, Lin S, Zhuang H, Huang H, He Z, Hu Y, Gong Q, Feng D. Recent progress in the role of autophagy in neurological diseases. Cell Stress 2019; 3:141-161. [PMID: 31225510 PMCID: PMC6551859 DOI: 10.15698/cst2019.05.186] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy (here refers to macroautophagy) is a catabolic pathway by which large protein aggregates and damaged organelles are first sequestered into a double-membraned structure called autophago-some and then delivered to lysosome for destruction. Recently, tremen-dous progress has been made to elucidate the molecular mechanism and functions of this essential cellular metabolic process. In addition to being either a rubbish clearing system or a cellular surviving program in response to different stresses, autophagy plays important roles in a large number of pathophysiological conditions, such as cancer, diabetes, and especially neurodegenerative disorders. Here we review recent progress in the role of autophagy in neurological diseases and discuss how dysregulation of autophagy initiation, autophagosome formation, maturation, and/or au-tophagosome-lysosomal fusion step contributes to the pathogenesis of these disorders in the nervous system.
Collapse
Affiliation(s)
- Tian Meng
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Shiyin Lin
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Haixia Zhuang
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Haofeng Huang
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac-Cerebral Vascular Disease, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Zhengjie He
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Yongquan Hu
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Qing Gong
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Du Feng
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|