1
|
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Navigating Neurotoxicity and Safety Assessment of Nanocarriers for Brain Delivery: Strategies and Insights. Acta Biomater 2024:S1742-7061(24)00543-9. [PMID: 39307261 DOI: 10.1016/j.actbio.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Nanomedicine, an area that uses nanomaterials for theragnostic purposes, is advancing rapidly, particularly in the detection and treatment of neurodegenerative diseases. The design of nanocarriers can be optimized to enhance drug bioavailability and targeting to specific organs, improving therapeutic outcomes. However, clinical translation hinges on biocompatibility and safety. Nanocarriers can cross the blood-brain barrier (BBB), potentially causing neurotoxic effects through mechanisms such as oxidative stress, DNA damage, and neuroinflammation. Concerns about their accumulation and persistence in the brain make it imperative to carry out a nanotoxicological risk assessment. Generally, this involves identifying exposure sources and routes, characterizing physicochemical properties, and conducting cytotoxicity assays both in vitro and in vivo. The lack of a specialized regulatory framework creates substantial gaps, making it challenging to translate findings across development stages. Additionally, there is a pressing need for innovative testing methods due to constraints on animal use and the demand for high-throughput screening. This review examines the mechanisms of nanocarrier-induced neurotoxicity and the challenges in risk assessment, highlighting the impact of physicochemical properties and the advantages and limitations of current neurotoxicity evaluation models. Future perspectives are also discussed. Additional guidance is crucial to improve the safety of nanomaterials and reduce associated uncertainty. STATEMENT OF SIGNIFICANCE: Nanocarriers show tremendous potential for theragnostic purposes in neurological diseases, enhancing drug targeting to the brain, and improving biodistribution and pharmacokinetics. However, their neurotoxicity is still a major field to be explored, with only 5% of nanotechnology-related publications addressing this matter. This review focuses on the issue of neurotoxicity and safety assessment of nanocarriers for brain delivery. Neurotoxicity-relevant exposure sources, routes, and molecular mechanisms, along with the impact of the physicochemical properties of nanomaterials, are comprehensively described. Moreover, the different experimental models used for neurotoxicity evaluation are explored at length, including their main advantages and limitations. To conclude, we discuss current challenges and future perspectives for a better understanding of risk assessment of nanocarriers for neurobiomedical applications.
Collapse
Affiliation(s)
- Maria Inês Teixeira
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carla M Lopes
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; FP-I3ID, FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment, and Health Research Unit/Biomedical Research Center, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal.
| | - Maria Helena Amaral
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo C Costa
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Mohammadi V, Esmaeilzadeh K, Esmaeilzadeh A. Application of magnetic nanoparticles in adoptive cell therapy of cancer; training, guiding and imaging cells. Nanomedicine (Lond) 2024; 19:1-15. [PMID: 39258568 PMCID: PMC11488091 DOI: 10.1080/17435889.2024.2395239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
Adoptive cell therapy (ACT) is on the horizon as a thrilling therapeutic plan for cancer. However, widespread application of ACT is often restricted by several challenges, including complexity of priming tumor-specific T cells and poor trafficking in solid tumors. The convergence of nanotechnology and cancer immunotherapy is coming of age and could address the limitations of ACT. Recent studies have provided evidence on the application of magnetic nanoparticles (MNPs) to generate smart immune cells and to bypass problems associated with conventional ACT. Herein, we review current progress in the application of MNPs to improve preparing, guiding and tracking immune cells in cancer ACT. Besides, we comment on the challenges ahead and strategies to optimize MNPs for clinical settings.
Collapse
Affiliation(s)
- Vahid Mohammadi
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
3
|
Yao Y, Zhang T, Tang M. Toxicity mechanism of engineered nanomaterials: Focus on mitochondria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123231. [PMID: 38154775 DOI: 10.1016/j.envpol.2023.123231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Abstract
With the rapid development of nanotechnology, engineered nanomaterials (ENMs) are widely used in various fields. This has exacerbated the environmental pollution and human exposure of ENMs. The study of toxicity of ENMs and its mechanism has become a hot research topic in recent years. Mitochondrial damage plays an important role in the toxicity of ENMs. This paper reviews the structural damage, dysfunction, and molecular level perturbations caused by different ENMs to mitochondria, including ZnO NPs, Ag NPs, TiO2 NPs, iron oxide NPs, cadmium-based quantum dots, CuO NPs, silica NPs, carbon-based nanomaterials. Among them, mitochondrial quality control plays an important role in mitochondrial damage. We further summarize the cellular level outcomes caused by mitochondrial damage, mainly including, apoptosis, ferroptosis, pyroptosis and inflammation response. In addition, we concluded that reducing mitochondrial damage at source as well as accelerating recovery from mitochondrial damage through ENMs modification and pharmacological intervention are two feasible strategies. This review further provides new insights into the mitochondrial toxicity mechanisms of ENMs and provides a new foothold for predicting human health and environmental risks of ENMs.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China.
| |
Collapse
|
4
|
Irrsack E, Aydin S, Bleckmann K, Schuller J, Dringen R, Koch M. Local Administrations of Iron Oxide Nanoparticles in the Prefrontal Cortex and Caudate Putamen of Rats Do Not Compromise Working Memory and Motor Activity. Neurotox Res 2023; 42:6. [PMID: 38133743 PMCID: PMC10746586 DOI: 10.1007/s12640-023-00684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/10/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Iron oxide nanoparticles (IONPs) have come into focus for their use in medical applications although possible health risks for humans, especially in terms of brain functions, have not yet been fully clarified. The present study investigates the effects of IONPs on neurobehavioural functions in rats. For this purpose, we infused dimercaptosuccinic acid-coated IONPs into the medial prefrontal cortex (mPFC) and caudate putamen (CPu). Saline (VEH) and ferric ammonium citrate (FAC) were administered as controls. One- and 4-week post-surgery mPFC-infused animals were tested for their working memory performance in the delayed alternation T-maze task and in the open field (OF) for motor activity, and CPu-infused rats were tested for their motor activity in the OF. After completion of the experiments, the brains were examined histologically and immunohistochemically. We did not observe any behavioural or structural abnormalities in the rats after administration of IONPs in the mPFC and the CPu. In contrast, administration of FAC into the CPu resulted in decreased motor activity and increased the number of microglia in the mPFC. Perls' Prussian blue staining revealed that FAC- and IONP-treated rats had more iron-containing ramified cells than VEH-treated rats, indicating iron uptake by microglia. Our results demonstrate that local infusions of IONPs into selected brain regions have no adverse impact on locomotor behaviour and working memory.
Collapse
Affiliation(s)
- Ellen Irrsack
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, Bremen, 28334, Germany.
| | - Sidar Aydin
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, Bremen, 28334, Germany
| | - Katja Bleckmann
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, Bremen, 28334, Germany
| | - Julia Schuller
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, Bremen, 28334, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen (CBIB), and Centre for Environmental Research and Sustainable, Technology, University of Bremen, PO Box 330440, Bremen, 28334, Germany
| | - Michael Koch
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, Bremen, 28334, Germany
| |
Collapse
|
5
|
Benayas E, Espinosa A, Portolés MT, Vila-del Sol V, Morales MP, Serrano MC. Cellular and Molecular Processes Are Differently Influenced in Primary Neural Cells by Slight Changes in the Physicochemical Properties of Multicore Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17726-17741. [PMID: 36976318 PMCID: PMC10103129 DOI: 10.1021/acsami.3c02729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Herein, we use two exemplary superparamagnetic iron oxide multicore nanoparticles (SPIONs) to illustrate the significant influence of slightly different physicochemical properties on the cellular and molecular processes that define SPION interplay with primary neural cells. Particularly, we have designed two different SPION structures, NFA (i.e., a denser multicore structure accompanied by a slightly less negative surface charge and a higher magnetic response) and NFD (i.e., a larger surface area and more negatively charged), and identified specific biological responses dependent on SPION type, concentration, exposure time, and magnetic actuation. Interestingly, NFA SPIONs display a higher cell uptake, likely driven by their less negative surface and smaller protein corona, more significantly impacting cell viability and complexity. The tight contact of both SPIONs with neural cell membranes results in the significant augmentation of phosphatidylcholine, phosphatidylserine, and sphingomyelin and the reduction of free fatty acids and triacylglycerides for both SPIONs. Nonetheless, NFD induces greater effects on lipids, especially under magnetic actuation, likely indicating a preferential membranal location and/or a tighter interaction with membrane lipids than NFA, in agreement with their lower cell uptake. From a functional perspective, these lipid changes correlate with an increase in plasma membrane fluidity, again larger for more negatively charged nanoparticles (NFD). Finally, the mRNA expression of iron-related genes such as Ireb-2 and Fth-1 remains unaltered, while TfR-1 is only detected in SPION-treated cells. Taken together, these results demonstrate the substantial impact that minor physicochemical differences of nanomaterials may exert in the specific targeting of cellular and molecular processes. A denser multicore structure generated by autoclave-based production is accompanied by a slight difference in surface charge and magnetic properties that become decisive for the biological impact of these SPIONs. Their capacity to markedly modify the lipidic cell content makes them attractive as lipid-targetable nanomedicines.
Collapse
Affiliation(s)
- Esther Benayas
- , Instituto de
Ciencia de Materiales de Madrid, Consejo Superior de
Investigaciones Científicas, calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Ana Espinosa
- , Instituto de
Ciencia de Materiales de Madrid, Consejo Superior de
Investigaciones Científicas, calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - M. Teresa Portolés
- Departamento
de Bioquímica y Biología Molecular, Facultad de Ciencias
Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico
San Carlos (IdISSC), Madrid 28040, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III (IDSCIII), Madrid 28040, Spain
| | - Virginia Vila-del Sol
- Hospital
Nacional de Parapléjicos, Servicio
de Salud de Castilla-La Mancha (SESCAM), Finca de la Peraleda s/n, Toledo 45071, Spain
| | - M. Puerto Morales
- , Instituto de
Ciencia de Materiales de Madrid, Consejo Superior de
Investigaciones Científicas, calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - María C. Serrano
- , Instituto de
Ciencia de Materiales de Madrid, Consejo Superior de
Investigaciones Científicas, calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| |
Collapse
|
6
|
Thirumurthi NA, Raghunath A, Balasubramanian S, Perumal E. Evaluation of Maghemite Nanoparticles-Induced Developmental Toxicity and Oxidative Stress in Zebrafish Embryos/Larvae. Biol Trace Elem Res 2022; 200:2349-2364. [PMID: 34297274 DOI: 10.1007/s12011-021-02830-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022]
Abstract
Maghemite nanoparticles ([Formula: see text] NPs) have a wide array of applications in various industries including biomedical field. There is an absence of legislation globally for the regulation of the production, use, and disposal of such NPs as they are eventually dumped into the environment where these NPs might affect the living systems. This study evaluates the effect of the [Formula: see text] NP-induced developmental toxicity in zebrafish embryos/larvae. The commercially available Fe2O3 NPs were purchased, and zebrafish embryos toxicity test was done by exposing embryos to various concentrations of [Formula: see text] NPs at 1 hpf and analyzed at 96 hpf. Based on the LC50 value (60.17 ppm), the sub-lethal concentrations of 40 and 60 ppm were used for further experiments. Hatching, lethality, developmental malformations, and heartbeat rate were measured in the control and treated embryos/larvae. The ionic Fe content in the media, and the larvae was quantified using ICP-MS and AAS. The biomolecular alterations in the control and treated groups were analyzed using FT-IR. The Fe ions present in the larvae were visualized using SEM-EDXS. In situ detection of AChE and apoptotic bodies was done using staining techniques. Biochemical markers (total protein content, AChE, and Na+ K+-ATPase) along with oxidants and antioxidants were assessed. A significant decrease in the heartbeat rate and hatching delay was observed in the treated groups affecting the developmental processes. Teratogenic analysis showed increased developmental deformity incidence in treated groups in a dose-dependent manner. The accumulation of Fe was evidenced from the ICP-MS, AAS, and SEM-EDXS. Alterations in AChE and Na+ K+-ATPase activity were observed along with an increment in the oxidants level with a concomitant decrease in antioxidant enzymes. These results show [Formula: see text] NP exposure leads to developmental malformation and results in the alteration of redox homeostasis.
Collapse
Affiliation(s)
| | - Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | | | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
7
|
Mohammadipour A, Abudayyak M. Hippocampal toxicity of metal base nanoparticles. Is there a relationship between nanoparticles and psychiatric disorders? REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:35-44. [PMID: 33770832 DOI: 10.1515/reveh-2021-0006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Metal base nanoparticles are widely produced all over the world and used in many fields and products such as medicine, electronics, cosmetics, paints, ceramics, toys, kitchen utensils and toothpastes. They are able to enter the body through digestive, respiratory, and alimentary systems. These nanoparticles can also cross the blood brain barrier, enter the brain and aggregate in the hippocampus. After entering the hippocampus, they induce oxidative stress, neuro-inflammation, mitochondrial dysfunction, and gene expression alteration in hippocampal cells, which finally lead to neuronal apoptosis. Metal base nanoparticles can also affect hippocampal neurogenesis and synaptic plasticity that both of them play crucial role in memory and learning. On the one hand, hippocampal cells are severely vulnerable due to their high metabolic activity, and on the other hand, metal base nanoparticles have high potential to damage hippocampus through variety of mechanisms and affect its functions. This review discusses, in detail, nanoparticles' detrimental effects on the hippocampus in cellular, molecular and functional levels to reveal that according to the present information, which types of nanoparticles have more potential to induce hippocampal toxicity and psychiatric disorders and which types should be more evaluated in the future studies.
Collapse
Affiliation(s)
- Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Sofranko A, Wahle T, Kolling J, Heusinkveld HJ, Stahlmecke B, Rosenbruch M, Albrecht C, Schins RPF. Effects of subchronic dietary exposure to the engineered nanomaterials SiO 2 and CeO 2 in C57BL/6J and 5xFAD Alzheimer model mice. Part Fibre Toxicol 2022; 19:23. [PMID: 35337343 PMCID: PMC8957165 DOI: 10.1186/s12989-022-00461-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is an increasing concern about the neurotoxicity of engineered nanomaterials (NMs). To investigate the effects of subchronic oral exposures to SiO2 and CeO2 NMs on Alzheimer's disease (AD)-like pathology, 5xFAD transgenic mice and their C57BL/6J littermates were fed ad libitum for 3 or 14 weeks with control food pellets, or pellets dosed with these respective NMs at 0.1% or 1% (w/w). Behaviour effects were evaluated by X-maze, string suspension, balance beam and open field tests. Brains were analysed for plaque load, beta-amyloid peptide levels, markers of oxidative stress and neuroinflammation. RESULTS No marked behavioural impairments were observed in the mice exposed to SiO2 or CeO2 and neither treatment resulted in accelerated plaque formation, increased oxidative stress or inflammation. In contrast, the 5xFAD mice exposed to 1% CeO2 for 14 weeks showed significantly lower hippocampal Aβ plaque load and improved locomotor activity compared to the corresponding controls. CONCLUSIONS The findings from the present study suggest that long-term oral exposure to SiO2 or CeO2 NMs has no neurotoxic and AD-promoting effects. The reduced plaque burden observed in the mice following dietary CeO2 exposure warrants further investigation to establish the underlying mechanism, given the easy applicability of this administration method.
Collapse
Affiliation(s)
- Adriana Sofranko
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Tina Wahle
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Julia Kolling
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Harm J Heusinkveld
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Burkhard Stahlmecke
- Institute for Energy and Environmental Technology e.V. (IUTA), Duisburg, Germany
| | | | - Catrin Albrecht
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
- State Office for Consumer Protection Saxony-Anhalt, Stendal, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| |
Collapse
|
9
|
Gong JY, Holt MG, Hoet PHM, Ghosh M. Neurotoxicity of four frequently used nanoparticles: a systematic review to reveal the missing data. Arch Toxicol 2022; 96:1141-1212. [DOI: 10.1007/s00204-022-03233-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/20/2022] [Indexed: 12/27/2022]
|
10
|
Ngowi EE, Wang YZ, Qian L, Helmy YASH, Anyomi B, Li T, Zheng M, Jiang ES, Duan SF, Wei JS, Wu DD, Ji XY. The Application of Nanotechnology for the Diagnosis and Treatment of Brain Diseases and Disorders. Front Bioeng Biotechnol 2021; 9:629832. [PMID: 33738278 PMCID: PMC7960921 DOI: 10.3389/fbioe.2021.629832] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Brain is by far the most complex organ in the body. It is involved in the regulation of cognitive, behavioral, and emotional activities. The organ is also a target for many diseases and disorders ranging from injuries to cancers and neurodegenerative diseases. Brain diseases are the main causes of disability and one of the leading causes of deaths. Several drugs that have shown potential in improving brain structure and functioning in animal models face many challenges including the delivery, specificity, and toxicity. For many years, researchers have been facing challenge of developing drugs that can cross the physical (blood–brain barrier), electrical, and chemical barriers of the brain and target the desired region with few adverse events. In recent years, nanotechnology emerged as an important technique for modifying and manipulating different objects at the molecular level to obtain desired features. The technique has proven to be useful in diagnosis as well as treatments of brain diseases and disorders by facilitating the delivery of drugs and improving their efficacy. As the subject is still hot, and new research findings are emerging, it is clear that nanotechnology could upgrade health care systems by providing easy and highly efficient diagnostic and treatment methods. In this review, we will focus on the application of nanotechnology in the diagnosis and treatment of brain diseases and disorders by illuminating the potential of nanoparticles.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China.,Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lei Qian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yasmeen Ahmed Saleheldin Hassan Helmy
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
| | - Bright Anyomi
- Brain Research Laboratory, School of Life Sciences, Henan University, Kaifeng, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Meng Zheng
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
| | - En-She Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Nursing and Health, Institutes of Nursing and Health, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Jian-She Wei
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Brain Research Laboratory, School of Life Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Stomatology, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
11
|
Chrishtop VV, Mironov VA, Prilepskii AY, Nikonorova VG, Vinogradov VV. Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology 2020; 15:167-204. [PMID: 33216662 DOI: 10.1080/17435390.2020.1842934] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The unique properties of magnetic iron oxide nanoparticles determined their widespread use in medical applications, the food industry, textile industry, which in turn led to environmental pollution. These factors determine the long-term nature of the effect of iron oxide nanoparticles on the body. However, studies in the field of chronic nanotoxicology of magnetic iron particles are insufficient and scattered. Studies show that toxicity may be increased depending on oral and inhalation routes of administration rather than injection. The sensory nerve pathway can produce a number of specific effects not seen with other routes of administration. Organ systems showing potential toxic effects when injected with iron oxide nanoparticles include the nervous system, heart and lungs, the thyroid gland, and organs of the mononuclear phagocytic system (MPS). A special place is occupied by the reproductive system and the effect of nanoparticles on the health of the first and second generations of individuals exposed to the toxic effects of iron oxide nanoparticles. This knowledge should be taken into account for subsequent studies of the toxicity of iron oxide nanoparticles. Particular attention should be paid to tests conducted on animals with pathologies representing human chronic socially significant diseases. This part of preclinical studies is almost in its infancy but of great importance for further medical translation on nanomaterials to practice.
Collapse
Affiliation(s)
| | | | | | - Varvara G Nikonorova
- Ivanovo State Agricultural Academy named after D.K. Belyaev, Peterburg, Russian Federation
| | | |
Collapse
|
12
|
Mohammadipour A, Haghir H, Ebrahimzadeh Bideskan A. A link between nanoparticles and Parkinson's disease. Which nanoparticles are most harmful? REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:545-556. [PMID: 32681785 DOI: 10.1515/reveh-2020-0043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, different kinds of nanoparticles (NPs) are produced around the world and used in many fields and products. NPs can enter the body and aggregate in the various organs including brain. They can damage neurons, in particular dopaminergic neurons in the substantia nigra (SN) and striatal neurons which their lesion is associated with Parkinson's disease (PD). So, NPs can have a role in PD induction along with other agents and factors. PD is the second most common neurodegenerative disease in the world, and in patients, its symptoms progressively worsen day by day through different pathways including oxidative stress, neuroinflammation, mitochondrial dysfunction, α-synuclein increasing and aggregation, apoptosis and reduction of tyrosine hydroxylase positive cells. Unfortunately, there is no effective treatment for PD. So, prevention of this disease is very important. On the other hand, without having sufficient information about PD inducers, prevention of this disease would not be possible. Therefore, we need to have sufficient information about things we contact with them in daily life. Since, NPs are widely used in different products especially in consumer products, and they can enter to the brain easily, in this review the toxicity effects of metal and metal oxide NPs have been evaluated in molecular and cellular levels to determine potential of different kinds of NPs in development of PD.
Collapse
Affiliation(s)
- Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Center (MGRC), Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Center (MGRC), Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Shi Y, Pilozzi AR, Huang X. Exposure of CuO Nanoparticles Contributes to Cellular Apoptosis, Redox Stress, and Alzheimer's Aβ Amyloidosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1005. [PMID: 32033400 PMCID: PMC7038189 DOI: 10.3390/ijerph17031005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/23/2020] [Accepted: 01/31/2020] [Indexed: 01/20/2023]
Abstract
Fe2O3, CuO and ZnO nanoparticles (NP) have found various industrial and biomedical applications. However, there are growing concerns among the general public and regulators about their potential environmental and health impacts as their physio-chemical interaction with biological systems and toxic responses of the latter are complex and not well understood. Herein we first reported that human SH-SY5Y and H4 cells and rat PC12 cell lines displayed concentration-dependent neurotoxic responses to insults of CuO nanoparticles (CuONP), but not to Fe2O3 nanoparticles (Fe2O3NP) or ZnO nanoparticles (ZnONP). This study provides evidence that CuONP induces neuronal cell apoptosis, discerns a likely p53-dependent apoptosis pathway and builds out the relationship between nanoparticles and Alzheimer's disease (AD) through the involvement of reactive oxygen species (ROS) and increased Aβ levels in SH-SY5Y and H4 cells. Our results implicate that exposure to CuONP may be an environmental risk factor for AD. For public health concerns, regulation for environmental or occupational exposure of CuONP are thus warranted given AD has already become a pandemic.
Collapse
Affiliation(s)
| | | | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (Y.S.); (A.R.P.)
| |
Collapse
|