1
|
Rizk MZ, Ibrahim Fouad G, Aly HF, El-Rigal NS, Ahmed KA, Mohammed FF, Khalil WKB, Abd El-Karim SS. Therapeutic impact of a benzofuran derivative on Aluminium chloride-induced Alzheimer's disease-like neurotoxicity in rats via modulating apoptotic and Insulin 1 genes. Biochem Biophys Res Commun 2024; 739:150971. [PMID: 39531906 DOI: 10.1016/j.bbrc.2024.150971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD) are age-related and are fatal in advanced cases. There is a limited efficacy of drugs used for the management of these diseases. Herein, the neurotherapeutic efficacy of a benzofuran-derivative-7 (BF-7) was investigated. Aluminum chloride (AlCl3) was employed to induce AD-like brain toxicity in rats. The rats were divided into four groups: Negative control, AlCl3-induced AD rats (100 mg/kg body weight, orally), AlCl3-AD induced rats treated with BF-7 (10 mg/kg body weight, orally), AlCl3-AD-induced rats treated with the standard drug "Donepezil" (10 mg/kg body weight, orally). The behavioral performance was tested using a beam-balance test. Brain and serum acetylcholinesterase (AChE) activities and the brain levels of norepinephrine, dopamine (DA), and serotonin (5-HT) were measured. The genetic expression of Bcl-2, Bax, caspase-3, and insulin 1 were assayed. The histopathological imaging and the immunohistochemical evaluation of Glial Fibrillary Acidic Protein (GFAP) were investigated in the cerebral cortex. Treatment of AD-rats with BF-7 mitigated AlCl3-induced neurotoxicity by improving motor functions, counteracting apoptosis, and exerting cholinergic functions. In addition, the genetic expression of Insulin 1 was upregulated significantly in AD-induced rats treated with BF-7. This compound could be used as a promising candidate for neurotherapeutic drug discovery against AD or any other toxic brain disorders.
Collapse
Affiliation(s)
- Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., PO Box, 12622, Dokki, Cairo, Egypt
| | - Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., PO Box, 12622, Dokki, Cairo, Egypt.
| | - Hanan F Aly
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., PO Box, 12622, Dokki, Cairo, Egypt
| | - Nagy S El-Rigal
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., PO Box, 12622, Dokki, Cairo, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Faten F Mohammed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Wagdy K B Khalil
- Cell Biology Department, National Research Centre, 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Somaia S Abd El-Karim
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., PO Box, 12622, Dokki, Cairo, Egypt
| |
Collapse
|
2
|
Ajibare AJ, Akintoye OO, Oriowo OA, Asuku AO, Oriyomi IA, Ayoola AM. Zinc Ameliorates Acrylamide-Induced Cognitive Impairment in Male Wistar Rats: Modulation of Oxidative Stress, Neuro-inflammation, and Neurotrophic Pathways. Biol Trace Elem Res 2024:10.1007/s12011-024-04490-0. [PMID: 39688764 DOI: 10.1007/s12011-024-04490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024]
Abstract
This study investigated the neuromodulatory potential of zinc against acrylamide-induced cognitive impairment. Acrylamide (AA), a toxic substance commonly found in certain foods such as potato, grains and coffee, is known to cause neurological damage and severe cognitive decline. Twenty (20) male Wistar rats were divided into four groups (n = 5) by random selection. All groups except Control (Group 1) which received 1 mL/kg water daily, were induced with an oral dose of 10 mg/kg of Acrylamide. Acrylamide (AA) (Group 2) was left untreated, while Low Zinc (AA + LZN-Group 3) and High zinc (AA + HZN-Group 4) were orally treated respectively with 10 mg/kg and 30 mg/kg of Zinc for 8 weeks. Zinc treatment mitigated the anxiety-like behavior and spatial and non-spatial memory deficit which are all signs of cognitive impairment observed in the AA group. Zinc reverses the significant decrease in superoxide dismutase (SOD) and catalase, significant increase in malondialdehyde (MDA) and interleukin 1β (IL-1β) caused by AA demonstrating its antioxidant and anti-inflammatory properties. Zinc also demonstrated potency in up-regulating brain-derived neurotrophic factor (BDNF) gene expression and down-regulating acetylcholinesterase (AChE) expression. Zinc treatment at both doses significantly increased the number of dentate gyrus cells. This study demonstrates the ability of zinc to mitigate the cognitive impairment secondary to acrylamide exposure.
Collapse
Affiliation(s)
- Ayodeji Johnson Ajibare
- Neuro-Reproductive and Metabolism Unit, Department of Physiology, Faculty of Basic Medical and Health Sciences, College of Medicine, Lead City University, Ibadan, Oyo State, Nigeria.
| | - Olabode Oluwadare Akintoye
- Neuro-Reproductive and Metabolism Unit, Department of Physiology, Faculty of Basic Medical and Health Sciences, College of Medicine, Lead City University, Ibadan, Oyo State, Nigeria
| | | | - Abraham Olufemi Asuku
- Bioresources Development Centre, National Biotechnology Research and Development Agency, Ogbomosho, Oyo State, Nigeria
| | - Isaac Adeola Oriyomi
- Department of Physiology, College of Medicine, Ekiti State University, Ado Ekiti, Ekiti State, Nigeria
| | - Abosede Mary Ayoola
- Department of Anatomy, Faculty of Basic Medical and Health Sciences, College of Medicine, Lead City University, Ibadan, Oyo State, Nigeria
| |
Collapse
|
3
|
Aydin SS, Hatipoglu D. Probiotic strategies for mitigating heat stress effects on broiler chicken performance. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2153-2171. [PMID: 39320540 DOI: 10.1007/s00484-024-02779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
The primary objective of this study was to evaluate the effects of liquid (Fructose-added lactic acid bacteria, F-LAB) and commercial (Commercial LAB, C-LAB) probiotics sourced from Rye-Grass Lactic Acid Bacteria (LAB) on broiler chickens experiencing heat stress (HS). The research involved 240 broiler chicks, divided into six groups: control, F-LAB, C-LAB (raised at 24 °C), HS, F-LAB/HS, and C-LAB/HS (exposed to 5-7 h of 34-36 °C daily). The study followed a randomized complete block design, with each group consisting of 40 chicks. F-LAB and HS/F-LAB groups received a natural probiotic added to their drinking water at a rate of 0.5 ml/L, while C-LAB and HS/C-LAB groups were supplemented with a commercial probiotic at the same dosage. Control and HS groups received no probiotic supplementation. The duration of the study was 42 days, with data collected on growth performance, feed intake, feed conversion ratio, and health parameters. Statistical analyses were performed using ANOVA, and significant differences between groups were determined using post hoc tests. The results revealed that without probiotic supplementation, heat stress led to a decrease in body weight gain, T3 levels, citrulline, and growth hormone levels, along with an increase in the feed conversion ratio, serum corticosterone, HSP70, ALT, AST, and leptin levels (p < 0.05 for all). Heat stress also adversely affected cecal microbiota, reducing lactic acid bacteria count (LABC) while increasing Escherichia coli and coliform bacteria (CBC) counts. However, in the groups receiving probiotic supplementation under heat stress (F-LAB/HS and C-LAB/HS), these effects were alleviated (p < 0.05 for all). Particularly noteworthy was the observation that broiler chickens supplemented with natural lactic acid bacteria (F-LAB) exhibited greater resilience to heat stress compared to those receiving the commercial probiotic, as evidenced by improvements in growth, liver function, hormonal balance, intestinal health, and cecal microbiome ecology (p < 0.05). These findings suggest that the supplementation of naturally sourced probiotics (F-LAB) may positively impact the intestinal health of broiler chickens exposed to heat stress, potentially supporting growth and health parameters.
Collapse
Affiliation(s)
- Sadik Serkan Aydin
- Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Türkiye
| | - Durmus Hatipoglu
- Department of Physiology, Faculty of Veterinary Medicine, Selcuk University, 42130, Konya, Türkiye.
| |
Collapse
|
4
|
Walton B, Kaplan N, Hrdlicka B, Mehta K, Arendt LM. Obesity Induces DNA Damage in Mammary Epithelial Cells Exacerbated by Acrylamide Treatment through CYP2E1-Mediated Oxidative Stress. TOXICS 2024; 12:484. [PMID: 39058136 PMCID: PMC11281187 DOI: 10.3390/toxics12070484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Obesity and environmental toxins are risk factors for breast cancer; however, there is limited knowledge on how these risk factors interact to promote breast cancer. Acrylamide, a probable carcinogen and obesogen, is a by-product in foods prevalent in the obesity-inducing Western diet. Acrylamide is metabolized by cytochrome P450 2E1 (CYP2E1) to the genotoxic epoxide, glycidamide, and is associated with an increased risk for breast cancer. To investigate how acrylamide and obesity interact to increase breast cancer risk, female mice were fed a low-fat (LFD) or high-fat diet (HFD) and control water or water supplemented with acrylamide at levels similar to the average daily exposure in humans. While HFD significantly enhanced weight gain in mice, the addition of acrylamide did not significantly alter body weights compared to respective controls. Mammary epithelial cells from obese, acrylamide-treated mice had increased DNA strand breaks and oxidative DNA damage compared to all other groups. In vitro, glycidamide-treated COMMA-D cells showed significantly increased DNA strand breaks, while acrylamide-treated cells demonstrated significantly higher levels of intracellular reactive oxygen species. The knockdown of CYP2E1 rescued the acrylamide-induced oxidative stress. These studies suggest that long-term acrylamide exposure through foods common in the Western diet may enhance DNA damage and the CYP2E1-induced generation of oxidative stress in mammary epithelial cells, potentially enhancing obesity-induced breast cancer risk.
Collapse
Affiliation(s)
- Brenna Walton
- Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Noah Kaplan
- Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Brooke Hrdlicka
- Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Kavi Mehta
- Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Lisa M. Arendt
- Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI 53715, USA
- Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| |
Collapse
|
5
|
Turkez H, Alak G, Ozgeris FB, Cilingir Yeltekin A, Ucar A, Parlak V, Şuţan NA, Atamanalp M. Borax attenuates oxidative stress, inflammation, and apoptosis by modulating Nrf2/ROS balance in acrylamide-induced neurotoxicity in rainbow trout. Drug Chem Toxicol 2024:1-10. [PMID: 38938109 DOI: 10.1080/01480545.2024.2370916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
Acrylamide (ACR) can have adverse environmental effects because of its multiple applications. Relevant scientific literatures of the existence of ACR residues in foods following processing steps have raised concern in the biochemistry, chemistry and safety of this vinyl substance. The interest has focused on the hepatotoxicity of ACR in animals and humans and on the ACR content mitigation and its detoxification. Borax (BX), as a naturally occurring antioxidant featured boron compound, was selected in this investigation to assess its possible neuro-protective potential against ACR-induced neurotoxicity. Nrf2 axis signaling pathways and detoxification response to oxidative stress after exposure to ACR in brains of rainbow trout, and the effect of BX application on reducing ACR-induced neurotoxicity were investigated. Rainbow trout were acutely exposed to ACR (12.5 mg/L) alone or simultaneously treated with BX (0.75 mg/L) during 96h. The exposed fish were sampled at 48th and 96th and oxidative stress response endpoints, 8-OHdG, Nrf2, TNF-α, caspase-3, in addition to IL-6 activities and the levels of AChE and BDNF in brain tissues of rainbow trout (Oncorhynchus mykiss) were evaluated. Samples showed decreases in the levels of ACR-mediated biomarkers used to assess neural toxicity (SOD, CAT, GPx, AChE, BDNF, GSH), increased levels of MDA, MPO, DNA damage and apoptosis. ACR disrupted the Nrf2 pathway, and induced neurotoxicity. Inhibited activities' expressions under simultaneous administration experiments, revealed the protective effects of BX against ACR-induced toxicity damage. The obtained data allow the outline of early multi-parameter signaling pathways in rainbow trout.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Gonca Alak
- Department of Seaafod Processing, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Fatma Betul Ozgeris
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, Erzurum, Turkey
| | | | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | | | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| |
Collapse
|
6
|
Durmus H, Burak AM, Goktug S, Aysegul B. Metabolomic modelling and neuroprotective effects of carvacrol against acrylamide toxicity in rat's brain and sciatic nerve. Clin Exp Pharmacol Physiol 2024; 51:e13841. [PMID: 38302077 DOI: 10.1111/1440-1681.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
The study aimed to investigate the harmful effects of acrylamide (AA), which forms in carbohydrate-rich foods at temperatures above 120°C, on the central and peripheral nervous systems and to evaluate the potential neuroprotective effects of carvacrol (CRV). Male Wistar Albino rats were subjected to AA (40 mg/kg/bw/day) and CRV (50 mg/kg/bw/day) for 15 days. Following the last administration, evaluations revealed disrupted gait, heightened thermal sensitivity and altered paw withdrawal thresholds in AA-exposed rats. Notably, AA reduced glutathione (GSH) and raised malondialdehyde (MDA) levels in both brain and sciatic nerve tissues. AA raised nuclear factor erythroid 2-related factor 2 (Nrf2), caspase 3 and nuclear factor κB (NF-κB) gene expressions while decreasing NR4A2. CRV co-administration mitigated gait abnormalities, elevated GSH levels and lowered MDA levels in both tissues. CRV also modulated gene expression, reducing Nrf2 and NF-κB while increasing NR4A2. Histopathological signs of AA-induced neurodegeneration and elevated glial fibrillary acidic protein levels observed in brain and sciatic nerve tissues were rectified with simultaneous administration of CRV, thereby demonstrating neuroprotective efficacy in both regions. This study is pioneering in demonstrating CRV's neuroprotective potential against AA-induced neurotoxicity in both central and peripheral nervous systems, effectively addressing limitations in the literature. In conclusion, the study revealed AA-induced neurodegeneration in the brain and sciatic nerve, with CRV significantly mitigating this neurotoxicity. This novel research underscores CRV's promise as a neuroprotective agent against AA-induced adverse effects in both the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Hatipoglu Durmus
- Department of Physiology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Ates M Burak
- Department of Pathology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Senturk Goktug
- Department of Physiology, Faculty of Veterinary Medicine, Aksaray University, Aksaray, Türkiye
| | - Bulut Aysegul
- Department of Pathology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| |
Collapse
|
7
|
Govindaraju I, Sana M, Chakraborty I, Rahman MH, Biswas R, Mazumder N. Dietary Acrylamide: A Detailed Review on Formation, Detection, Mitigation, and Its Health Impacts. Foods 2024; 13:556. [PMID: 38397533 PMCID: PMC10887767 DOI: 10.3390/foods13040556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
In today's fast-paced world, people increasingly rely on a variety of processed foods due to their busy lifestyles. The enhanced flavors, vibrant colors, and ease of accessibility at reasonable prices have made ready-to-eat foods the easiest and simplest choice to satiate hunger, especially those that undergo thermal processing. However, these foods often contain an unsaturated amide called 'Acrylamide', known by its chemical name 2-propenamide, which is a contaminant formed when a carbohydrate- or protein-rich food product is thermally processed at more than 120 °C through methods like frying, baking, or roasting. Consuming foods with elevated levels of acrylamide can induce harmful toxicity such as neurotoxicity, hepatoxicity, cardiovascular toxicity, reproductive toxicity, and prenatal and postnatal toxicity. This review delves into the major pathways and factors influencing acrylamide formation in food, discusses its adverse effects on human health, and explores recent techniques for the detection and mitigation of acrylamide in food. This review could be of interest to a wide audience in the food industry that manufactures processed foods. A multi-faceted strategy is necessary to identify and resolve the factors responsible for the browning of food, ensure safety standards, and preserve essential food quality traits.
Collapse
Affiliation(s)
- Indira Govindaraju
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| | - Maidin Sana
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| | - Md. Hafizur Rahman
- Department of Quality Control and Safety Management, Faculty of Food Sciences and Safety, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Rajib Biswas
- Department of Physics, Tezpur University, Tezpur 784028, Assam, India;
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| |
Collapse
|
8
|
Aboulthana WM, Ibrahim NES, Hassan AK, Bassaly WK, Abdel-Gawad H, Taha HA, Ahmed KA. The hepato- and neuroprotective effect of gold Casuarina equisetifolia bark nano-extract against Chlorpyrifos-induced toxicity in rats. J Genet Eng Biotechnol 2023; 21:158. [PMID: 38040926 PMCID: PMC10692062 DOI: 10.1186/s43141-023-00595-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND The bark of Casuarina equisetifolia contains several active phytoconstituents that are suitable for the biosynthesis of gold nanoparticles (Au-NPs). These nanoparticles were subsequently evaluated for their effectiveness in reducing the toxicity induced by Chlorpyrifos (CPF) in rats. RESULTS Various hematological and biochemical measurements were conducted in this study. In addition, markers of oxidative stress and inflammatory reactions quantified in liver and brain tissues were evaluated. Histopathological examinations were performed on both liver and brain tissues. Furthermore, the native electrophoretic protein and isoenzyme patterns were analyzed, and the relative expression levels of apoptotic genes in these tissues were determined. The hematological and biochemical parameters were found to be severely altered in the group injected with CPF. However, the administration of Au-C. equisetifolia nano-extract normalized these levels in all treated groups. The antioxidant system markers showed a significant decrease (P ≤ 0.05) in conjunction with elevated levels of inflammatory and fibrotic markers in both liver and brain tissues of the CPF-injected group. In comparison, the pre-treated group exhibited a reduction in these markers when treated with the nano-extract, as opposed to the CPF-injected group. Additionally, the nano-extract mitigated the severity of histopathological lesions induced by CPF in both liver and brain tissues, with a higher ameliorative effect observed in the pre-treated group. Electrophoretic assays conducted on liver and brain tissues revealed that the nano-extract prevented the qualitative changes induced by CPF in the pre-treated group. Furthermore, the molecular assay demonstrated a significant increase in the relative expression of apoptotic genes in the CPF-injected rats. Although the nano-extract ameliorated the relative expression of these genes compared to the CPF-injected group, it was unable to restore their values to normal levels. CONCLUSION Our results demonstrated that the nano-extract effectively reduced the toxicity induced by CPF in rats at hematological, biochemical, histopathological, physiological, and molecular levels, in the group pre-treated with the nano-extract.
Collapse
Affiliation(s)
- Wael Mahmoud Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
| | - Noha El-Sayed Ibrahim
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Amgad Kamal Hassan
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Wagdy Khalil Bassaly
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Hassan Abdel-Gawad
- Applied Organic Chemistry Department, Chemical Industries Researches Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Hamdy Ahmed Taha
- Applied Organic Chemistry Department, Chemical Industries Researches Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
9
|
He Y, Xu G, Jiang P, She D, Huang L, Chen C. Antibacterial diarrhea effect and action mechanism of Portulaca oleracea L. water extract based on the regulation of gut microbiota and fecal metabolism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7260-7272. [PMID: 37357594 DOI: 10.1002/jsfa.12810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Portulaca oleracea has served as food and folk medicine in many parts of the world for thousands of years. Portulaca oleracea extract (POE) was prepared from fresh plants. This study aims to evaluate the antibacterial diarrhea effect and explore the possible mechanism. RESULTS POE was effective in reducing diarrhea rate, improving intestinal tissue, and reducing cytokines concentrations of interleukin (IL)-6, IL-10, IL-12 p40 and TNF-α in blood. Besides, the result of histological observation showed that the mucus layer thickness and crypt length in the POE-treated group was higher than that in the model group. The POE could significantly upregulate the protein expression of MUC2, occludin and ZO-1. 16S rRNA sequencing analysis showed that Parabacteroides, Clostridium and Muribaculaceae may be the key functional microflora of POE. The non-targeted metabolomics also suggested that the antibacterial diarrheal effects of P. oleracea may be attributed to the regulation of amino acid metabolism and composition of the gut microbiota. CONCLUSION Portulaca oleracea has definite clinical efficacy against bacterial diarrhea and anti-inflammatory effects. Its regulation of gut microbiota and fecal metabolism may account for its antibacterial diarrhea and anti-inflammatory effects. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanfei He
- College of Biotechnology and Pharmaceutical Engineering of West Anhui University, Lu'an, People's Republic of China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, Lu'an, People's Republic of China
| | - Guangpei Xu
- College of Biotechnology and Pharmaceutical Engineering of West Anhui University, Lu'an, People's Republic of China
| | - Ping Jiang
- College of Biotechnology and Pharmaceutical Engineering of West Anhui University, Lu'an, People's Republic of China
| | - Deyong She
- College of Biotechnology and Pharmaceutical Engineering of West Anhui University, Lu'an, People's Republic of China
| | - Lin Huang
- College of Biotechnology and Pharmaceutical Engineering of West Anhui University, Lu'an, People's Republic of China
| | - Cunwu Chen
- College of Biotechnology and Pharmaceutical Engineering of West Anhui University, Lu'an, People's Republic of China
| |
Collapse
|
10
|
Gutiérrez-Rodelo C, Martínez-Tolibia SE, Morales-Figueroa GE, Velázquez-Moyado JA, Olivares-Reyes JA, Navarrete-Castro A. Modulating cyclic nucleotides pathways by bioactive compounds in combatting anxiety and depression disorders. Mol Biol Rep 2023; 50:7797-7814. [PMID: 37486442 PMCID: PMC10460744 DOI: 10.1007/s11033-023-08650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023]
Abstract
Anxiety and depression disorders are highly prevalent neurological disorders (NDs) that impact up to one in three individuals during their lifetime. Addressing these disorders requires reducing their frequency and impact, understanding molecular causes, implementing prevention strategies, and improving treatments. Cyclic nucleotide monophosphates (cNMPs) like cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), cyclic uridine monophosphate (cUMP), and cyclic cytidine monophosphate (cCMP) regulate the transcription of genes involved in neurotransmitters and neurological functions. Evidence suggests that cNMP pathways, including cAMP/cGMP, cAMP response element binding protein (CREB), and Protein kinase A (PKA), play a role in the physiopathology of anxiety and depression disorders. Plant and mushroom-based compounds have been used in traditional and modern medicine due to their beneficial properties. Bioactive compound metabolism can activate key pathways and yield pharmacological outcomes. This review focuses on the molecular mechanisms of bioactive compounds from plants and mushrooms in modulating cNMP pathways. Understanding these processes will support current treatments and aid in the development of novel approaches to reduce the prevalence of anxiety and depression disorders, contributing to improved outcomes and the prevention of associated complications.
Collapse
Affiliation(s)
- Citlaly Gutiérrez-Rodelo
- Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, ZIP 04510, Mexico.
| | | | - Guadalupe Elide Morales-Figueroa
- Department of Physiology, Biophysics, and Neurosciences of the Center for Research, Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, ZIP, 07360, Mexico
| | - Josué Arturo Velázquez-Moyado
- Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, ZIP 04510, Mexico
| | - J Alberto Olivares-Reyes
- Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) Mexico City, Mexico City, ZIP 07360, Mexico
| | - Andrés Navarrete-Castro
- Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, ZIP 04510, Mexico.
| |
Collapse
|
11
|
Yang Y, Shan S, Huang Z, Wang S, Liu Z, Yong H, Liu Z, Zhang C, Song F. Increased IP3R-3 degradation induced by acrylamide promoted Ca 2+-dependent calpain activation and axon damage in rats. Toxicol Lett 2023:S0378-4274(23)00203-5. [PMID: 37353096 DOI: 10.1016/j.toxlet.2023.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/23/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
Occupational and environmental exposure to acrylamide (ACR) can cause selective peripheral and central nerve fiber degeneration. IP3R-3 is an important transmembrane Ca2+ channel on the endoplasmic reticulum (ER), previous studies have found that ACR could induce Ca2+-dependent calpain activation and axon injury, but the exact role of IP3R-3 in ACR neuropathy is still unclear. Here we show that ACR exposure (40mg/kg) markedly increased the ubiquitination of IP3R-3 in rat spinal cords, and promoted the degradation of IP3R-3 through the ubiquitin-proteasome pathway. Furthermore, the normal structure of ER, especially the mitochondrial associated membranes (MAMs) component, was significantly impaired in ACR neuropathy, and the ER stress pathway was activated, which indicated that the aberrant increase of cytoplasmic Ca2+ could be attributed the destruction of IP3R-3. Further investigation demonstrated that the proteasome inhibitor MG-132 effectively rescued the IP3R-3 loss, attenuated the intracellular Ca2+ increase, and reduced the axon loss of Neuron 2a (N2a) cells following ACR exposure. Moreover, the calpain inhibitor ALLN also reduced the loss of IP3R-3 and axon injury in N2a cells, but did not alleviate the Ca2+ increase in cytosol, supporting that the abnormal ubiquitination of IP3R-3 was the upstream of the cellular Ca2+ rise and axon damage in ACR neuropathy. Taken together, our results suggested that the aberrant IP3R-3 degradation played an important role in the disturbance of Ca2+ homeostasis and the downstream axon loss in ACR neuropathy, thus providing a potential therapeutic target for ACR neurotoxicity.
Collapse
Affiliation(s)
- Yiyu Yang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhengcheng Huang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhaoxiong Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hui Yong
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, 266000, China
| | - Zhidan Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Cuiqin Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
12
|
Bakhsh HT, Mokhtar FA, Elmaidomy AH, Aly HF, Younis EA, Alzubaidi MA, Altemani FH, Algehainy NA, Majrashi MAA, Alsenani F, Bringmann G, Abdelmohsen UR, Abdelhafez OH. Abelmoschus eculentus Seed Extract Exhibits In Vitro and In Vivo Anti-Alzheimer's Potential Supported by Metabolomic and Computational Investigation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2382. [PMID: 37376007 DOI: 10.3390/plants12122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Abelmoschus esculentus Linn. (okra, F. Malvaceae) is a fruit widely consumed all over the world. In our study, the anti-Alzheimer's potential of A. esculentus was evaluated. An in vitro DPPH free radical assay on A. esculentus seed's total extract and AChE inhibition potential screening indicated a significant anti-Alzheimer's activity of the extract, which was confirmed through an in vivo study in an aluminum-intoxicated rat model. Additionally, in vivo results demonstrated significant improvement in Alzheimer's rats, which was confirmed by improving T-maze, beam balance tests, lower serum levels of AChE, norepinephrine, glycated end products, IL-6, and MDA. The levels of dopamine, BDNF, GSH, and TAC returned to normal values during the study. Moreover, histological investigations of brain tissue revealed that the destruction in collagen fiber nearly returns back to the normal pattern. Metabolomic analysis of the ethanolic extract of A. esculentus seeds via LC-HR-ESI-MS dereplicated ten compounds. A network pharmacology study displayed the relation between identified compounds and 136 genes, among which 84 genes related to Alzheimer's disorders, and focused on AChE, APP, BACE1, MAPT and TNF genes with interactions to all Alzheimer's disorders. Consequently, the results revealed in our study grant potential dietary elements for the management of Alzheimer's disorders.
Collapse
Affiliation(s)
- Hussain T Bakhsh
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatma A Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, Sharkia 44813, Egypt
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hanan F Aly
- Department of Therapeutic Chemistry, National Research Centre (NRC), El-Bouth St., Cairo 12622, Egypt
| | - Eman A Younis
- Department of Therapeutic Chemistry, National Research Centre (NRC), El-Bouth St., Cairo 12622, Egypt
| | - Mubarak A Alzubaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Naseh A Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed Ali A Majrashi
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Faisal Alsenani
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| | - Omnia Hesham Abdelhafez
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| |
Collapse
|
13
|
Abd-Elmawla MA, Essam RM, Ahmed KA, Abdelmonem M. Implication of Wnt/GSK-3β/β-Catenin Signaling in the Pathogenesis of Mood Disturbances Associated with Hyperthyroidism in Rats: Potential Therapeutic Effect of Naringin. ACS Chem Neurosci 2023. [PMID: 37196197 DOI: 10.1021/acschemneuro.3c00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
Patients with hyperthyroidism are commonly diagnosed with mood disorders. Naringin, (4',5,7-trihydrocyflavanone-7-O-rhamnoglucoside), a natural bioflavonoid, has many neurobehavioral activities including anxiolytic and antidepressant properties. The role of Wingless (Wnt) signaling in psychiatric disorders is considered substantial but debatable. Recently, regulation of Wnt signaling by naringin has been reported in different disorders. Therefore, the present study aimed to investigate the possible role of Wnt/GSK-3β/β-catenin signaling in hyperthyroidism-induced mood disturbances and explore the therapeutic effects of naringin. Hyperthyroidism was induced in rats by intraperitoneal injection of 0.3 mg/kg levothyroxine for 2 weeks. Naringin was orally administered to rats with hyperthyroidism at a dose of 50 or 100 mg/kg for 2 weeks. Hyperthyroidism induced mood alterations as revealed by behavioral tests and histopathological changes including marked necrosis and vacuolation of neurons in the hippocampus and cerebellum. Intriguingly, hyperthyroidism activated Wnt/p-GSK-3β/β-catenin/DICER1/miR-124 signaling pathway in the hippocampus along with an elevation in serotonin, dopamine, and noradrenaline contents and a reduction in brain-derived neurotrophic factor (BDNF) content. Additionally, hyperthyroidism induced upregulation of cyclin D-1 expression, malondialdehyde (MDA) elevation, and glutathione (GSH) reduction. Naringin treatment alleviated behavioral and histopathological alterations and reversed hyperthyroidism-induced biochemical changes. In conclusion, this study revealed, for the first time, that hyperthyroidism could affect mental status by stimulating Wnt/p-GSK-3β/β-catenin signaling in the hippocampus. The observed beneficial effects of naringin could be attributed to increasing hippocampal BDNF, controlling the expression of Wnt/p-GSK-3β/β-catenin signaling as well as its antioxidant properties.
Collapse
Affiliation(s)
- Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
- Department of Biology, School of Pharmacy, Newgiza University, First 6th of October, Giza 3296121, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12211 Cairo, Egypt
| | - Maha Abdelmonem
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| |
Collapse
|
14
|
Ibrahim Fouad G, Ahmed KA. Remyelinating activities of Carvedilol or alpha lipoic acid in the Cuprizone-Induced rat model of demyelination. Int Immunopharmacol 2023; 118:110125. [PMID: 37028277 DOI: 10.1016/j.intimp.2023.110125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
Multiple sclerosis (MS) is a complex and multifactorial neurodegenerative disease with unknown etiology, MS is featured by multifocal demyelinated lesions distributed throughout the brain. It is assumed to result from an interaction between genetic and environmental factors, including nutrition. Therefore, different therapeutic approaches are aiming to stimulate remyelination which could be defined as an endogenous regeneration and repair of myelin in the central nervous system. Carvedilol is an adrenergic receptor antagonist. Alpha lipoic acid (ALA) is a well-known antioxidant. Herein, we investigated the remyelination potential of Carvedilol or ALA post-Cuprizone (CPZ) intoxication. Carvedilol or ALA (20 mg/kg/d) was administrated orally for two weeks at the end of the five weeks of CPZ (0.6%) administration. CPZ provoked demyelination, enhanced oxidative stress, and stimulated neuroinflammation. Histological investigation of CPZ-induced brains showed obvious demyelination in the corpus callosum (CC). Both Carvedilol and ALA demonstrated remyelinating activities, with corresponding upregulation of the expression of MBP and PLP, the major myelin proteins, downregulation of the expression of TNF-α and MMP-9, and decrement of serum IFN-γ levels. Moreover, both Carvedilol and ALA alleviated oxidative stress, and ameliorated muscle fatigue. This study highlights the neurotherapeutic potential of Carvedilol or ALA in CPZ-induced demyelination, and offers a better model for the exploring of neuroregenerative strategies. The current study is the first to demonstrate a pro-remyelinating activity for Carvedilol, as compared to ALA, which might represent a potential additive benefit in halting demyelination and alleviating neurotoxicity. However, we could declare that Carvedilol showed a lower neuroprotective potential than ALA.
Collapse
|
15
|
Montoya-García CO, García-Mateos R, Magdaleno-Villar JJ, Volke-Haller VH, Villa-Ruano N, Zepeda-Vallejo LG, Becerra-Martínez E. NMR-based metabolomics to determine the fluctuation of metabolites in hydroponic purslane crops at different harvesting times. Food Res Int 2023; 166:112489. [PMID: 36914359 DOI: 10.1016/j.foodres.2023.112489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/05/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Purslane (Portulaca oleracea L.) has a high content of nutrients and medicinal effects that depend on the genotype, harvesting time, and production system. The objective of the present research work was to elucidate the NMR-based metabolomics profiling of three native purslane cultivars from Mexico (Xochimilco, Mixquic, and Cuautla) grown under hydroponic conditions and harvested in three different times (32, 39, and 46 days after emergence). Thirty-nine metabolites identified in the 1H NMR spectra of aerial parts of purslane, 5 sugars, 15 amino acids, 8 organic acids, 3 caffeoylquinic acids, as well as 2 alcohols and 3 nucleosides, choline, O-phosphocholine and trigonelline were also detected. A total of 37 compounds were detected in native purslane from Xochimilco and Cuautla, whereas 39 compounds were detected in purslane from Mixquic. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) separated the cultivars into three clusters. Mixquic cultivar had the highest number of differential compounds (amino acids and carbohydrates), followed by Xochimilco and Cuautla cultivars, respectively. Changes in the metabolome were observed in latest times of harvest for all the cultivars studied. The differential compounds were glucose, fructose, galactose, pyruvate, choline, and 2-hydroxysobutyrate. The results obtained in this investigation may contribute to selecting the best cultivar of purslane and the best time in which the levels of nutrients are optimal.
Collapse
Affiliation(s)
- César Omar Montoya-García
- Universidad Autónoma Chapingo - Departamento de Fitotecnia, Km. 38.5, Carretera México-Texcoco, 56230 Chapingo, Estado de México, Mexico
| | - Rosario García-Mateos
- Universidad Autónoma Chapingo - Departamento de Fitotecnia, Km. 38.5, Carretera México-Texcoco, 56230 Chapingo, Estado de México, Mexico.
| | - J Jesús Magdaleno-Villar
- Universidad Autónoma Chapingo - Departamento de Fitotecnia, Km. 38.5, Carretera México-Texcoco, 56230 Chapingo, Estado de México, Mexico
| | - Víctor Hugo Volke-Haller
- Colegio de Postgraduados - Campus Montecillo, Km. 36.5, Carretera México-Texcoco, Montecillo, Texcoco, 56230 Estado de México, Mexico
| | - Nemesio Villa-Ruano
- CONACyT-Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, CP 72570 Puebla, Mexico
| | - L Gerardo Zepeda-Vallejo
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N, Col. Santo Tomas, Delegación, Miguel Hidalgo, Ciudad de México 11340, Mexico
| | - Elvia Becerra-Martínez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico.
| |
Collapse
|
16
|
Mabrouk DM, El Makawy AI, Ahmed KA, Ramadan MF, Ibrahim FM. Topiramate potential neurotoxicity and mitigating role of ginger oil in mice brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87184-87199. [PMID: 35802336 DOI: 10.1007/s11356-022-21878-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Topiramate has multiple pharmacological mechanisms that are efficient in treating epilepsy and migraine. Ginger has been established to have gingerols and shogaols that cause migraine relief. Moreover, Topiramate has many off-label uses. Thus, it was necessary to explore the possible neurotoxicity of Topiramate and the role of ginger oil in attenuating the Topiramate neurotoxicity. Male albino mice were orally gavaged with Topiramate, ginger oil (400 mg/kg), and Topiramate plus ginger oil with the same pattern for 28 days. Oxidative stress markers, acetylcholinesterase (AchE), gamma-aminobutyric acid (GABA), and tumor necrosis factor-alpha (TNF-α) were examined. Histopathological examination, immunohistochemical glial fibrillary acidic protein (GFAP), and Bax expression analysis were detected. The GABAAR subunits, Gabra1, Gabra3, and Gabra5 expression, were assessed by RT-qPCR. The investigation showed that Topiramate raised oxidative stress markers levels, neurotransmitters, TNF-α, and diminished glutathione (GSH). In addition, Topiramate exhibited various neuropathological alterations, strong Bax, and GFAP immune-reactivity in the cerebral cortex. At the same time, the results indicated that ginger oil had no neurotoxicity. The effect of Topiramate plus ginger oil alleviated the changes induced by Topiramate in the tested parameters. Both Topiramate and ginger oil upregulated the mRNA expression of gabra1 and gabra3, while their interaction markedly downregulated them. Therefore, it could be concluded that the Topiramate overdose could cause neurotoxicity, but the interaction with ginger oil may reduce Topiramate-induced neurotoxicity and should be taken in parallel.
Collapse
Affiliation(s)
- Dalia M Mabrouk
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Aida I El Makawy
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, P.O. 12211, Giza, Egypt
| | - Mohamed Fawzy Ramadan
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7067, Makkah, 21955, Saudi Arabia.
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.
| | - Faten M Ibrahim
- Medicinal and Aromatic Plants Research Department, National Research Centre, 33 El Bohouth St., Dokki, P.O.12622, Giza, Egypt
| |
Collapse
|
17
|
Ibrahim Fouad G, El-Sayed SAM, Mabrouk M, Ahmed KA, Beherei HH. Neuroprotective Potential of Intranasally Delivered Sulforaphane-Loaded Iron Oxide Nanoparticles Against Cisplatin-Induced Neurotoxicity. Neurotox Res 2022; 40:1479-1498. [PMID: 35969308 PMCID: PMC9515146 DOI: 10.1007/s12640-022-00555-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
Cisplatin (CIS) is a platinum-based chemotherapeutic drug that is widely used to treat cancer. However, its therapeutic efficiency is limited due to its potential to provoke neurotoxicity. Sulforaphane (SF) is a natural phytochemical that demonstrated several protective activities. Iron oxide nanoparticles (Fe3O4-NPs) could be used as drug carriers. This study aimed to explore the nanotoxic influence of SF-loaded within Fe3O4-NPs (N.SF), and to compare the neuroprotective potential of both N.SF and SF against CIS-induced neurotoxicity. N.SF or SF was administrated intranasally for 5 days before and 3 days after a single dose of CIS (12 mg/kg/week, i.p.) on the 6th day. Neuromuscular coordination was assessed using hanging wire and tail-flick tests. Acetylcholinesterase (AChE) activities and markers of oxidative stress were measured in the brain. In addition, the brain iron (Fe) content was estimated. CIS significantly induced a significant increase in AChE activities and lipid peroxides, and a significant decrement in glutathione (GSH) and nitric oxide (NO) contents. CIS elicited impaired neuromuscular function and thermal hyperalgesia. CIS-induced brains displayed a significant reduction in Fe content. Histopathological examination of different brain regions supported the biochemical and behavioral results. Contradict, treatment of CIS-rats with either N.SF or SF significantly decreased AChE activity, mitigated oxidative stress, and ameliorated the behavioral outcome. The histopathological features supported our results. Collectively, N.SF demonstrated superior neuroprotective activities on the behavioral, biochemical, and histopathological (striatum and cerebral cortex) aspects. N.SF could be regarded as a promising “pre-clinical” neuroprotective agent. Furthermore, this study confirmed the safe toxicological profile of Fe3O4-NPs.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
18
|
Liu Y, Wang Y, Zhang X, Jiao Y, Duan L, Dai L, Yan H. Chronic acrylamide exposure resulted in dopaminergic neuron loss, neuroinflammation and motor impairment in rats. Toxicol Appl Pharmacol 2022; 451:116190. [PMID: 35917840 DOI: 10.1016/j.taap.2022.116190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
Acrylamide (ACR) as a by-product of Maillard reaction is widely present in food. Although ACR is known to exhibit neurotoxicity, most studies about ACR neurotoxicity are currently short-term high-dose providing limited reference value for human exposure. The present study aims to determine the effects of chronic ACR exposure on dopaminergic neurons in rat nigra and the potential mechanism from the perspective of NLRP3 inflammasome-mediated neuroinflammation. The SD rats were maintained on treated drinking water providing dosages of 0, 0.5, or 5 mg/kg/day ACR for 12 months. ACR exposure caused motor dysfunction in rats, which was associated with dopaminergic neuron loss, α-Synuclein (α-Syn) accumulation and decreased brain-derived neurotrophic factor (BDNF) in nigra. ACR activated microglia by increasing Iba-1+, Iba-1+CD68+ positive cells and the percentage of ameboid-shaped ones in rat nigra. ACR markedly upregulated the protein levels of NLRP3 inflammasome constituents NLRP3 and caspase-1 and inflammatory cytokine IL-1β. ACR chronic exposure increased the risk of Parkinson's disease (PD) like dopaminergic neuron depletion in nigra potentially through NLRP3 inflammasome-mediated neuroinflammtion.
Collapse
Affiliation(s)
- Ying Liu
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, PR China; Department of Clinical Laboratory, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, PR China
| | - Yiqi Wang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, PR China
| | - Xing Zhang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, PR China
| | - Yang Jiao
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, PR China
| | - Lian Duan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, PR China
| | - Lingling Dai
- Experimental Teaching Center of Preventive Medicine School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, PR China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, PR China.
| |
Collapse
|
19
|
Ogaly HA, Abdel-Rahman RF, Mohamed MAE, O A AF, Khattab MS, Abd-Elsalam RM. Thymol ameliorated neurotoxicity and cognitive deterioration in a thioacetamide-induced hepatic encephalopathy rat model; involvement of the BDNF/CREB signaling pathway. Food Funct 2022; 13:6180-6194. [PMID: 35583008 DOI: 10.1039/d1fo04292k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the present study, we aimed to delineate the neuroprotective potential of thymol (THY) against neurotoxicity and cognitive deterioration induced by thioacetamide (TAA) in an experimental model of hepatic encephalopathy (HE). Rats received TAA (100 mg kg-1, intraperitoneally injected, three times per week) for two weeks. THY (30 and 60 mg kg-1), and Vit E (100 mg k-1) were administered daily by oral gavage for 30 days after HE induction. Supplementation with THY significantly improved liver function, reduced serum ammonia level, and ameliorated the locomotor and cognitive deficits. THY effectively modulated the alteration in oxidative stress markers, neurotransmitters, and brain ATP content. Histopathology of liver and brain tissues showed that THY had ameliorated TAA-induced damage, astrocyte swelling and brain edema. Furthermore, THY downregulated NF-kB and upregulated GFAP protein expression. In addition, THY significantly promoted CREB and BDNF expression at both mRNA and protein levels, together with enhancing brain cAMP level. In conclusion, THY exerted hepato- and neuroprotective effects against HE by mitigating hepatotoxicity, hyperammonemia and brain ATP depletion via its antioxidant, anti-inflammatory effects in addition to activation of the CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Hanan A Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia. .,Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Rehab F Abdel-Rahman
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Center, Dokki, Giza, Egypt
| | - Marawan Abd Elbaset Mohamed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Center, Dokki, Giza, Egypt
| | - Ahmed-Farid O A
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
20
|
Elmaidomy AH, Abdelmohsen UR, Alsenani F, Aly HF, Eldin Shams SG, Younis EA, Ahmed KA, Sayed AM, Owis AI, Afifi N, El Amir D. The anti-Alzheimer potential of Tamarindus indica: an in vivo investigation supported by in vitro and in silico approaches. RSC Adv 2022; 12:11769-11785. [PMID: 35481086 PMCID: PMC9015909 DOI: 10.1039/d2ra01340a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 01/06/2023] Open
Abstract
Tamarindus indica Linn. (Tamarind, F. Fabaceae) is one of the most widely consumed fruits in the world. A crude extract and different fractions of T. indica (using n-hexane, dichloromethane, ethyl acetate, and n-butanol) were evaluated in vitro with respect to their DPPH scavenging and AchE inhibition activities. The results showed that the dichloromethane and ethyl acetate fractions showed the highest antioxidant activities, with 84.78 and 86.96% DPPH scavenging at 0.10 μg mL-1. The n-hexane, dichloromethane, and ethyl acetate fractions inhibited AchE activity in a dose-dependent manner, and the n-hexane fraction showed the highest inhibition at 20 μg mL-1. The results were confirmed by using n-hexane, dichloromethane, and ethyl acetate fractions in vivo to regress the neurodegenerative features of Alzheimer's dementia in an aluminum-intoxicated rat model. Phytochemical investigations of those three fractions afforded two new diphenyl ether derivative compounds 1-2, along with five known ones (3-7). The structures of the isolated compounds were confirmed via 1D and 2D NMR and HRESIMS analyses. The isolated compounds were subjected to extensive in silico-based investigations to putatively highlight the most probable compounds responsible for the anti-Alzheimer activity of T. indica. Inverse docking studies followed by molecular dynamics simulation (MDS) and binding free energy (ΔG) investigations suggested that both compounds 1 and 2 could be promising AchE inhibitors. The results presented in this study may provide potential dietary supplements for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia 61519 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 7 Universities Zone New Minia 61111 Egypt
| | - Faisal Alsenani
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Hanan F Aly
- Therapeutic Chemistry Department, National Research Centre (NRC) El-Bouth St. P.O. 12622 Cairo Egypt
| | - Shams Gamal Eldin Shams
- Therapeutic Chemistry Department, National Research Centre (NRC) El-Bouth St. P.O. 12622 Cairo Egypt
| | - Eman A Younis
- Therapeutic Chemistry Department, National Research Centre (NRC) El-Bouth St. P.O. 12622 Cairo Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University Giza 12211 Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University Beni-Suef 62513 Egypt
| | - Asmaa I Owis
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
| | - Naglaa Afifi
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt
| | - Dalia El Amir
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt
| |
Collapse
|
21
|
Portulaca oleracea, a rich source of polar lipids: Chemical profile by LC-ESI/LTQOrbitrap/MS/MS n and in vitro preliminary anti-inflammatory activity. Food Chem 2022; 388:132968. [PMID: 35447587 DOI: 10.1016/j.foodchem.2022.132968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 11/23/2022]
Abstract
Considering the ongoing interest in foods rich in nutrients like polyunsaturated fatty acids and bioactive polar lipids, the chemical and biological investigation of Portulaca oleracea (purslane), a herbaceous plant typically appreciated in Mediterranean and Asiatic diet, was carried out. The LC-ESI/HRMS/MSn analysis of extracts and lipid enriched fractions of purslane edible parts provided a comprehensive polar lipid profile, ranging from linear and cyclic oxylipins to high molecular weight lipids including glycolipids, phospholipids and sphingolipids. The evaluation of the anti-inflammatory potential by in vitro reporter gene assays highlighted the ability of purslane lipid enriched fractions, at a concentration of 20 µg/ml, to inhibit the TNF-α-stimulated NF-kB pathway by 30-40% and to activate PPAR-ɣ and Nrf2 transcription factors to the same extent or more than the positive control, respectively. Altogether, these results encourage to revalue purslane in human nutrition as a source of bioactive polar lipids.
Collapse
|
22
|
El-Shehawi AM, Sayed S, Hassan MM, Al-Otaibi S, Althobaiti F, Elseehy MM, Soliman M. Taify Pomegranate Juice (TPJ) Abrogates Acrylamide-Induced Oxidative Stress Through the Regulation of Antioxidant Activity, Inflammation, and Apoptosis-Associated Genes. Front Vet Sci 2022; 9:833605. [PMID: 35392110 PMCID: PMC8980525 DOI: 10.3389/fvets.2022.833605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Acrylamide (ACR) has various effects on biological systems, including oxidative stress and its associated metabolic disorders. Previous research reports that plants growing at high altitude have a different profile of antioxidants. In the current report, the Taify pomegranate juice (TPJ) of the Taify pomegranate growing at the Taif region (high altitude), Saudi Arabia, was investigated for its protective activity from ACR-induced oxidative stress. Rats were treated with ACR, TPJ, or TPJ+ACR, and various assays, including blood chemistry, liver function biomarkers, gene expression of endogenous antioxidant enzymes, oxidative stress regulatory genes, inflammation biomarkers, and apoptosis, were estimated using biochemical, real-time PCR, histopathological, and immunohistochemical analysis. TPJ showed a protective function of ACR-induced alteration of AST, ALT, GGT, urea, total proteins, albumin, MDA, and NO. It also increased the level of the endogenous antioxidative enzymes, including SOD, catalase, and GSH. It showed anti-inflammatory activity by reduction the TNF-α, IL-6 secretion and the enhancing of IL-10 levels. At the gene expression level, TPJ upregulated the expression of endogenous antioxidant genes (SOD and catalase) and of antioxidant-regulating genes Nrf2 and HO-1; downregulated the expression of inflammatory genes TGF-β1, COX2, and the apoptotic gene caspase-3; and upregulated the expression of antiapoptotic gene Bcl2. At the histological level, TPJ showed a protective effect from the ACR-induced hepatic histological damage. Results of this study conclude that TPJ has a protective effect from ACR-induced oxidative stress and its associated metabolic alterations through its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
- *Correspondence: Ahmed M. El-Shehawi
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, Taif, Saudi Arabia
| | - Mohamed M. Hassan
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Saad Al-Otaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Mona M. Elseehy
- Department of Genetics, Faculty of Agriculture, University of Alexandria, Alexandria, Egypt
| | - Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| |
Collapse
|
23
|
Hussein RM, Youssef AM, Magharbeh MK, Al-Dalaen SM, Al-Jawabri NA, Al-Nawaiseh TN, Al-Jwanieh A, Al-Ani FS. Protective Effect of Portulaca oleracea Extract Against Lipopolysaccharide-Induced Neuroinflammation, Memory Decline, and Oxidative Stress in Mice: Potential Role of miR-146a and miR-let 7. J Med Food 2022; 25:807-817. [PMID: 35235435 DOI: 10.1089/jmf.2021.0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation is an adaptive immune response to the central nervous system (CNS) injury induced by infection or toxins. MicroRNAs (miRs) showed critical roles in neuroinflammation as either proinflammatory or anti-inflammatory molecules. Interestingly, Portulaca oleracea (purslane) is an edible plant capable of ameliorating several diseases, including headache, burns, and diabetes; however, its effect on the neuroinflammation-associated miRs was not previously investigated. This study aimed to investigate the effect of aqueous purslane extract on the neuroinflammation induced by lipopolysaccharide (LPS) in mice and to identify its effect on animal cognition, oxidative stress, and expressions of miR-146a and miR-let 7. Adult mice were divided into the following groups: Normal group, LPS group, and Purslane+LPS group. Novel target recognition test, brain histopathology, and measurement of oxidative stress and inflammatory markers were performed. The results showed that LPS group exhibited significant decline in the cognitive memory, brain histopathological injury and a decrease in the number of intact neurons compared to the normal group. Furthermore, the LPS group showed a significant increase in malondialdehyde concentration, whereas superoxide dismutase and catalase activities were decreased. The LPS group also showed an increase in the inflammatory markers tumor necrosis factor-α and nuclear factor kappa B and downregulation of miR-146a and miR-let 7 expressions in the brain cells compared to the normal group, P value <.05. Interestingly, all these changes were reversed by administration of the aqueous purslane extract. In conclusion, the aqueous purslane extract protected from LPS-induced neuroinflammation and memory decline in mice through antioxidant and anti-inflammatory effect where upregulation of miR-146a and miR-1et 7 expressions was involved.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan.,Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed M Youssef
- Department of Pharmacology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Mousa K Magharbeh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Saed M Al-Dalaen
- Department of Pharmacology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Nariman A Al-Jawabri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Taymaa N Al-Nawaiseh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Abdullah Al-Jwanieh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Fakhir S Al-Ani
- Department of Physiology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| |
Collapse
|
24
|
Ersoy A, Tanoglu C, Yazici GN, Coban TA, Mammadov R, Suleyman H. The Effect of Anakinra on Acrylamide-induced Peripheral Neuropathy and Neuropathic Pain in Rats. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e21010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
25
|
Kumar A, Sreedharan S, Kashyap AK, Singh P, Ramchiary N. A review on bioactive phytochemicals and ethnopharmacological potential of purslane ( Portulaca oleracea L.). Heliyon 2022; 8:e08669. [PMID: 35028454 PMCID: PMC8741462 DOI: 10.1016/j.heliyon.2021.e08669] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/14/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
The Portulaca oleracea L. commonly known as purslane is distributed all over the world and easily grows in diverse soil and climatic conditions. It has been traditionally used as a nutritious and ethnomedicinal food across the globe. Various studies have shown that the plant is a rich source of various important phytochemicals such as flavonoids, alkaloids, terpenoids, proteins, carbohydrates, and vitamins such as A, C, E, and B, carotenoids and minerals such as phosphorus, calcium, magnesium and zinc. It is particularly very important because of the presence of a very high concentration of omega-3- fatty acids especially α-linolenic acid, gamma-linolenic acid and linoleic acid, which are not generally synthesized in terrestrial plants. Various parts of purslane are known for ethnomedicinal and pharmacological uses because of its anti-inflammatory, antidiabetic, skeletal muscle relaxant, antitumor, hepatoprotective, anticancer, antioxidant, anti-insomnia, analgesic, gastroprotective, neuroprotective, wound healing and antiseptic activities. Due to multiple benefits of purslane, it has become an important wonder crop and various scientists across the globe have shown much interest in it as a healthy food for the future. In this review, we provide an update on the phytochemical and nutritional composition of purslane, its usage as nutritional and an ethnomedicinal plant across the world. We further provide a detailed account on ethnopharmacological studies that have proved the ethnomedicinal properties of purslane.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Sajana Sreedharan
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Arun Kumar Kashyap
- Department of Biotechnology, Government E. Raghavendra Rao Postgraduate Science College, Bilaspur, Chhattisgarh, India
| | - Pardeep Singh
- Department of Environmental Science, PGDAV College, University of Delhi, New Delhi, 110065, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
26
|
Gastroprotective effects and metabolomic profiling of Chasteberry fruits against indomethacin-induced gastric injury in rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
27
|
Abd-Elsalam RM, El Badawy SA, Ogaly HA, Ibrahim FM, Farag OM, Ahmed KA. Eruca sativa seed extract modulates oxidative stress and apoptosis and up-regulates the expression of Bcl-2 and Bax genes in acrylamide-induced testicular dysfunction in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53249-53266. [PMID: 34024031 DOI: 10.1007/s11356-021-14532-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Acrylamide (ACR) has been previously associated with male sexual dysfunction and infertility. Eruca sativa (L.) (arugula or rocket) have been widely used in traditional remedies in Mediterranean region and western Asia and was known for its strong aphrodisiac effect since Roman times. The current study was designed to investigate LC/MS analysis of total ethanol extract Eruca sativa (L.) and the efficiency and mechanism of action of Eruca sativa seed extract (ESS) in reducing hypogonadism induced by acrylamide in male rats. Male Wistar rats were divided into 6 groups (n = 7): control group, Eruca sativa seed extract (ESS) at doses of 100 and 200 mg\kg, acrylamide (ACR), ACR + ESS 100 mg/kg, and ACR + ESS 200 mg/kg. The animals received ACR at a dose of 10 mg/kg b.wt for 60 days. Sperm indices, testicular oxidative stress, testosterone hormone, and testicular histopathology and immunohistochemistry of PCNA and caspase-3 were investigated. Moreover, the expression level of testicular B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax) genes was evaluated. In respect to the LC/MS of total ethanol extract Eruca sativa (L.) seed revealed tentative identification of 39 compounds, which belongs to different classes as sulphur-containing compounds, flavonoids, phenolic acid, and fatty acids. Administration of ESS extract (100, 200 mg/kg) improved semen quality, diminished lipid peroxidation, enhanced testicular antioxidant enzyme, restored serum testosterone level, and reduced testicular degeneration and Leydig cell death in the rats intoxicated with ACR. However, the effects of ESS at the dose of 200 mg/kg were similar to that of control group. Furthermore, ESS treatment significantly induced anti-apoptotic effect indicated by elevation of both Bcl-2 and Bax expressions. Nutriceutics of ESS extract protects testis against ACR-induced testicular toxicity via normalizing testicular steroidogenesis, keeping Leydig cells, and improving oxidative stress status.
Collapse
Affiliation(s)
- Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Shymaa A El Badawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Hanan A Ogaly
- Department of Chemistry, Collage of Science, King Khalid University, Abha, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Faten M Ibrahim
- Department of Medicinal and Aromatic Plants Research, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ola M Farag
- General Organization for Veterinary Services, Giza, 12618, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
28
|
Voynikov Y, Nedialkov P, Gevrenova R, Zheleva-Dimitrova D, Balabanova V, Dimitrov I. UHPLC-Orbitrap-MS Tentative Identification of 51 Oleraceins (Cyclo-Dopa Amides) in Portulaca oleracea L. Cluster Analysis and MS 2 Filtering by Mass Difference. PLANTS 2021; 10:plants10091921. [PMID: 34579453 PMCID: PMC8473048 DOI: 10.3390/plants10091921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 01/30/2023]
Abstract
Oleraceins are a class of indoline amide glycosides found in Portulaca oleracea L. (Portulacaceae), or purslane. These compounds are characterized by 5,6-dihydroxyindoline-2-carboxylic acid N-acylated with cinnamic acid derivatives, and many are glucosylated. Herein, hydromethanolic extracts of the aerial parts of purslane were subjected to UHPLC-Orbitrap-MS analysis, in negative ionization mode. Diagnostic ion filtering (DIF), followed by diagnostic difference filtering (DDF), were utilized to automatically filter out MS data and select plausible oleracein structures. After an in-depth MS2 analysis, a total of 51 oleracein compounds were tentatively identified. Of them, 26 had structures, matching one of the already known oleracein, and the other 25 were new, undescribed in the literature compounds, belonging to the oleracein class. Moreover, based on selected diagnostic fragment ions, clustering algorithms and visualizations were utilized. As we demonstrate, clustering methods provide valuable insights into the mass fragmentation elucidation of natural compounds in complex mixtures.
Collapse
Affiliation(s)
- Yulian Voynikov
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria;
- Correspondence:
| | - Paraskev Nedialkov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (P.N.); (R.G.); (D.Z.-D.); (V.B.)
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (P.N.); (R.G.); (D.Z.-D.); (V.B.)
| | - Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (P.N.); (R.G.); (D.Z.-D.); (V.B.)
| | - Vessela Balabanova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (P.N.); (R.G.); (D.Z.-D.); (V.B.)
| | - Ivan Dimitrov
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria;
| |
Collapse
|
29
|
Alsherbiny MA, Bhuyan DJ, Radwan I, Chang D, Li CG. Metabolomic Identification of Anticancer Metabolites of Australian Propolis and Proteomic Elucidation of Its Synergistic Mechanisms with Doxorubicin in the MCF7 Cells. Int J Mol Sci 2021; 22:ijms22157840. [PMID: 34360606 PMCID: PMC8346082 DOI: 10.3390/ijms22157840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
The combination of natural products with standard chemotherapeutic agents offers a promising strategy to enhance the efficacy or reduce the side effects of standard chemotherapy. Doxorubicin (DOX), a standard drug for breast cancer, has several disadvantages, including severe side effects and the development of drug resistance. Recently, we reported the potential bioactive markers of Australian propolis extract (AP-1) and their broad spectrum of pharmacological activities. In the present study, we explored the synergistic interactions between AP-1 and DOX in the MCF7 breast adenocarcinoma cells using different synergy quantitation models. Biochemometric and metabolomics-driven analysis was performed to identify the potential anticancer metabolites in AP-1. The molecular mechanisms of synergy were studied by analysing the apoptotic profile via flow cytometry, apoptotic proteome array and measuring the oxidative status of the MCF7 cells treated with the most synergistic combination. Furthermore, label-free quantification proteomics analysis was performed to decipher the underlying synergistic mechanisms. Five prenylated stilbenes were identified as the key metabolites in the most active AP-1 fraction. Strong synergy was observed when AP-1 was combined with DOX in the ratio of 100:0.29 (w/w) as validated by different synergy quantitation models implemented. AP-1 significantly enhanced the inhibitory effect of DOX against MCF7 cell proliferation in a dose-dependent manner with significant inhibition of the reactive oxygen species (p < 0.0001) compared to DOX alone. AP-1 enabled the reversal of DOX-mediated necrosis to programmed cell death, which may be advantageous to decline DOX-related side effects. AP-1 also significantly enhanced the apoptotic effect of DOX after 24 h of treatment with significant upregulation of catalase, HTRA2/Omi, FADD together with DR5 and DR4 TRAIL-mediated apoptosis (p < 0.05), contributing to the antiproliferative activity of AP-1. Significant upregulation of pro-apoptotic p27, PON2 and catalase with downregulated anti-apoptotic XIAP, HSP60 and HIF-1α, and increased antioxidant proteins (catalase and PON2) may be associated with the improved apoptosis and oxidative status of the synergistic combination-treated MCF7 cells compared to the mono treatments. Shotgun proteomics identified 21 significantly dysregulated proteins in the synergistic combination-treated cells versus the mono treatments. These proteins were involved in the TP53/ATM-regulated non-homologous end-joining pathway and double-strand breaks repairs, recruiting the overexpressed BRCA1 and suppressed RIF1 encoded proteins. The overexpression of UPF2 was noticed in the synergistic combination treatment, which could assist in overcoming doxorubicin resistance-associated long non-coding RNA and metastasis of the MCF7 cells. In conclusion, we identified the significant synergy and highlighted the key molecular pathways in the interaction between AP-1 and DOX in the MCF7 cells together with the AP-1 anticancer metabolites. Further in vivo and clinical studies are warranted on this synergistic combination.
Collapse
Affiliation(s)
- Muhammad A. Alsherbiny
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| | - Ibrahim Radwan
- Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia;
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Chun-Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| |
Collapse
|
30
|
El Badawy SA, Ogaly HA, Abd-Elsalam RM, Azouz AA. Benzyl isothiocyanates modulate inflammation, oxidative stress, and apoptosis via Nrf2/HO-1 and NF-κB signaling pathways on indomethacin-induced gastric injury in rats. Food Funct 2021; 12:6001-6013. [PMID: 34037056 DOI: 10.1039/d1fo00645b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present study investigated the gastroprotective activity of benzyl isothiocyanates (BITC) on indomethacin (IND)-induced gastric injury in a rat model and explicated the possible involved biochemical, cellular, and molecular mechanisms. The rat model with gastric ulcers was established by a single oral dose of IND (30 mg per kg b.wt). BITC (0.75 and 1.5 mg kg-1) and esomeprazole (20 mg per kg b.wt) were orally administered for 3 weeks to rats before the induction of gastric injury. Compared with the IND group, BITC could diminish both the macroscopic and microscopic pathological morphology of gastric mucosa. BITC significantly preserved the antioxidants (glutathione GSH, superoxide dismutase SOD), nitric oxide (NO), and prostaglandin E2 (PGE2) contents, while decreasing the gastric mucosal malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), and myeloperoxidase (MPO) contents. Moreover, BITC remarkably upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), hemoxygenase-1 (HO-1), and NAD(P)H : quinone oxidoreductase (NQO1). In addition, BITC activates the expression of heat shock protein 70 (HSP-70) and downregulated the expression of nuclear factor-κB (NF-κB) and caspase-3 to promote gastric mucosal cell survival. To the best of our knowledge, this study is the first published report to implicate the suppression of inflammation, oxidative stress, and Nrf2 signaling pathway as a potential mechanism for the gastroprotective activity of BITC.
Collapse
Affiliation(s)
- Shymaa A El Badawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hanan A Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia. and Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Asmaa A Azouz
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
31
|
Azouz AA, Ali SE, Abd-Elsalam RM, Emam SR, Galal MK, Elmosalamy SH, Alsherbiny MA, Hassan BB, Li CG, El Badawy SA. Modulation of steroidogenesis by Actaea racemosa and vitamin C combination, in letrozole induced polycystic ovarian syndrome rat model: promising activity without the risk of hepatic adverse effect. Chin Med 2021; 16:36. [PMID: 33926485 PMCID: PMC8086310 DOI: 10.1186/s13020-021-00444-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Complementary remedies such as the Chinese herb ‘Sheng Ma’ (Black cohosh; Actaea racemosa ‘AR’) are being sought to overcome the shortcomings of conventional hormonal and surgical therapies developed for the treatment of polycystic ovary syndrome (PCOS). However, AR-induced hepatotoxicity necessitates a cautionary warning to be labeled on its products as recommended by the United States Pharmacopeia, where four out of seven hepatotoxic cases in Sweden were possibly associated with black cohosh products. Methods We investigated the effects, safety, and molecular targets of black cohosh ethanolic extract and/or vitamin C on ovarian functionality and oxidative response in hyperandrogenism-induced PCOS rats. A well-established rat model using oral letrozole, daily, for 21 days was employed. The rats then received the AR extract with and without vitamin C for 28 days. The hormonal evaluation, antioxidant status, histopathological examination, immunohistochemical analysis, cell proliferation, and the expression ratio of the aromatase (Cyp19α1) gene were evaluated. Additionally, holistic profiling of the AR arsenal of secondary metabolites was performed using ultra-high-performance liquid chromatography (UHPLC) coupled with quadrupole high-resolution time of flight mass spectrometry (QTOF-MS). Results Beneficial effects were exerted by AR in PCOS rats as antioxidant status, hormonal profile, lipid profile, glucose level, liver functions, and the induced Ki-67 expression in the granulosa, theca cell layers and interstitial stromal cells were all improved. Notably, the combination of AR with vitamin C was not only more effective in reversing the dysregulated levels of testosterone, luteinizing hormone, and mRNA level of Cyp19α1 gene in the PCOS rat, but also safer. The combination regulated both ovarian and hepatic malondialdehyde (MDA) and glutathione (GSH) levels with histological improvement observed in the liver and ovaries. In addition, the untargeted metabolomic profiling enabled the identification of 61 metabolites allocated in five major chemical classes. Conclusion This study demonstrated the benefit of the combinatorial effects of AR and vitamin C in mitigating the reproductive and metabolic disorders associated with PCOS with the elimination of AR hepatotoxic risk. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00444-z.
Collapse
Affiliation(s)
- Asmaa A Azouz
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sara E Ali
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Shimaa R Emam
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Mona K Galal
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sherif H Elmosalamy
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Muhammed A Alsherbiny
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 12613, Egypt. .,NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia.
| | - Bardes B Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Shymaa A El Badawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
32
|
Farag OM, Abd-Elsalam RM, El Badawy SA, Ogaly HA, Alsherbiny MA, Ahmed KA. Portulaca oleracea seeds' extract alleviates acrylamide-induced testicular dysfunction by promoting oxidative status and steroidogenic pathway in rats. BMC Complement Med Ther 2021; 21:122. [PMID: 33853605 PMCID: PMC8045344 DOI: 10.1186/s12906-021-03286-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/24/2021] [Indexed: 01/12/2023] Open
Abstract
Background Acrylamide (ACR) is a widespread industrial and food contaminant that garnered considerable attention for its carcinogenic, neurotoxic, and reproductive toxic effects. The antioxidant effects of Portulaca oleracea seeds extract (POS) and its fertility-enhancing effects were inspiring to evaluate the protective potential and pinpoint the mechanisms and molecular targets of the UPLC-MS fingerprinted POS extract on ACR-induced testicular toxicity in rats. Methods Male Wistar rats were divided into 6 equal groups of negative control, ACR model (10 mg/kg b.wt.), POS at doses of (200 and 400 mg/kg b.wt.) and POS-treated ACR groups. All treatments were given by oral dosing every day for 60 days. Results Administration of POS extract reversed the ACR-induced epididymides weight loss with improved semen quality and count, ameliorated the ACR-decreased testicular lesion scoring, testicular oxidative stress, testicular degeneration, Leydig cell apoptosis and the dysregulated PCNA and Caspase-3 expression in a dose-dependent manner. It upregulated the declined level of serum testosterone and the expression of steroidogenic genes such as CYP11A1 and 17β3-HSD with an obvious histologic improvement of the testes with re-establishment of the normal spermatogenic series, Sertoli and Leydig cells. Conclusions The supplementation with POS extract may provide a potential protective effect for ACR-induced testicular dysfunction which is mediated by its antioxidant, antiapoptotic and steroidogenic modulatory effects. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03286-2.
Collapse
Affiliation(s)
- Ola M Farag
- General Organization for Veterinary Services, Giza, Egypt
| | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Shymaa A El Badawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Hanan A Ogaly
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Muhammad A Alsherbiny
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 12613, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
33
|
Bhuyan DJ, Alsherbiny MA, Low MN, Zhou X, Kaur K, Li G, Li CG. Broad-spectrum pharmacological activity of Australian propolis and metabolomic-driven identification of marker metabolites of propolis samples from three continents. Food Funct 2021; 12:2498-2519. [PMID: 33683257 DOI: 10.1039/d1fo00127b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Propolis is a by-product of honeybee farming known for its broad therapeutic benefits around the world and is extensively used in the health food and beverage industry. Despite Australia being one of the world's megadiverse countries with rich flora and fauna, Australian propolis samples have not been explored adequately with most in vitro and in vivo studies centred on their Brazilian and Chinese counterparts. In view of this, our study was designed to investigate the chemical composition and anti-proliferative, antibacterial, antifungal, anti-inflammatory and antioxidant properties of Australian propolis (AP-1) extract to draw a comparison with Brazilian (BP-1) and Chinese propolis (CP-1) extracts. The AP-1 extract displayed significantly greater anti-proliferative activity against the MCF7 and the MDA-MB-231 metastatic breast adenocarcinoma cell lines compared to BP-1 and CP-1 (p < 0.05). Similar trends were also observed in the antibacterial (Escherichia coli and Staphylococcus aureus), anti-inflammatory (lipopolysaccharide-induced RAW264.7 macrophages) and antioxidant assays (ABTS, DPPH and CUPRAC) with AP-1 exhibiting more potent activity than BP-1 and CP-1. The ultra-high performance liquid chromatography (UPLC) coupled with quadrupole high-resolution time of flight mass spectrometry (qTOF-MS) and chemometrics implementing unsupervised PCA and supervised OPLS-DA analyses of the propolis samples from Australia, China and Brazil revealed 67 key discriminatory metabolites belonging to seven main chemical classes including flavonoids, triterpenes, acid derivatives, stilbenes, steroid derivatives, diterpenes and miscellaneous compounds. Additionally, seven common phenolic compounds were quantified in the samples. Further mechanistic studies are necessary to elucidate the modes of action of Australian propolis for its prospective use in the food, nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia.
| | | | | | | | | | | | | |
Collapse
|