1
|
Ashique S, Mishra N, Mohanto S, Gowda BJ, Kumar S, Raikar AS, Masand P, Garg A, Goswami P, Kahwa I. Overview of processed excipients in ocular drug delivery: Opportunities so far and bottlenecks. Heliyon 2024; 10:e23810. [PMID: 38226207 PMCID: PMC10788286 DOI: 10.1016/j.heliyon.2023.e23810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Ocular drug delivery presents a unique set of challenges owing to the complex anatomy and physiology of the eye. Processed excipients have emerged as crucial components in overcoming these challenges and improving the efficacy and safety of ocular drug delivery systems. This comprehensive overview examines the opportunities that processed excipients offer in enhancing drug delivery to the eye. By analyzing the current landscape, this review highlights the successful applications of processed excipients, such as micro- and nano-formulations, sustained-release systems, and targeted delivery strategies. Furthermore, this article delves into the bottlenecks that have impeded the widespread adoption of these excipients, including formulation stability, biocompatibility, regulatory constraints, and cost-effectiveness. Through a critical evaluation of existing research and industry practices, this review aims to provide insights into the potential avenues for innovation and development in ocular drug delivery, with a focus on addressing the existing challenges associated with processed excipients. This synthesis contributes to a deeper understanding of the promising role of processed excipients in improving ocular drug delivery systems and encourages further research and development in this rapidly evolving field.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - B.H. Jaswanth Gowda
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| | - Shubneesh Kumar
- Department of Pharmaceutics, Bharat Institute of Technology, School of Pharmacy, Meerut 250103, UP, India
| | - Amisha S. Raikar
- Department of Pharmaceutics, PES Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403401, India
| | - Priya Masand
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, (MIET), NH-58, Delhi-Roorkee Highway, Meerut, Uttar Pradesh 250005, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Priyanka Goswami
- Department of Pharmacognosy, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar 382355, Gujarat, India
- Maharashtra Educational Society's H.K. College of Pharmacy, Mumbai: 400102.India
| | - Ivan Kahwa
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
- Pharm-Bio Technology and Traditional Medicine Centre, Mbarara University of Science and Technology, P. O Box 1410, Mbarara, Uganda
| |
Collapse
|
2
|
Tasdemiroglu Y, Gourdie RG, He JQ. In vivo degradation forms, anti-degradation strategies, and clinical applications of therapeutic peptides in non-infectious chronic diseases. Eur J Pharmacol 2022; 932:175192. [PMID: 35981605 DOI: 10.1016/j.ejphar.2022.175192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
Current medicinal treatments for diseases comprise largely of two categories: small molecular (chemical) (e.g., aspirin) and larger molecular (peptides/proteins, e.g., insulin) drugs. Whilst both types of therapeutics can effectively treat different diseases, ranging from well-understood (in view of pathogenesis and treatment) examples (e.g., flu), to less-understood chronic diseases (e.g., diabetes), classical small molecule drugs often possess significant side-effects (a major cause of drug withdrawal from market) due to their low- or non-specific targeting. By contrast, therapeutic peptides, which comprise short sequences from naturally occurring peptides/proteins, commonly demonstrate high target specificity, well-characterized modes-of-action, and low or non-toxicity in vivo. Unfortunately, due to their small size, linear permutation, and lack of tertiary structure, peptidic drugs are easily subject to rapid degradation or loss in vivo through chemical and physical routines, thus resulting in a short half-life and reduced therapeutic efficacy, a major drawback that can reduce therapeutic efficiency. However, recent studies demonstrate that the short half-life of peptidic drugs can be significantly extended by various means, including use of enantiomeric or non-natural amino acids (AAs) (e.g., L-AAs replacement with D-AAs), chemical conjugation [e.g., with polyethylene glycol], and encapsulation (e.g., in exosomes). In this context, we provide an overview of the major in vivo degradation forms of small therapeutic peptides in the plasma and anti-degradation strategies. We also update on the progress of small peptide therapeutics that are either currently in clinical trials or are being successfully used in clinical therapies for patients with non-infectious diseases, such as diabetes, multiple sclerosis, and cancer.
Collapse
Affiliation(s)
- Yagmur Tasdemiroglu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Robert G Gourdie
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, 24016, USA
| | - Jia-Qiang He
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
3
|
Bhilare NV, Marulkar VS, Kumar D, Chatap VK, Patil KS, Shirote PJ. An insight into prodrug strategy for the treatment of Alzheimer’s disease. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02859-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Ciprofloxacin self-dissolvable Soluplus based polymeric films: a novel proposal to improve the management of eye infections. Drug Deliv Transl Res 2021; 11:608-625. [PMID: 33528829 PMCID: PMC7852484 DOI: 10.1007/s13346-020-00887-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 01/31/2023]
Abstract
Infections of the eye are among the leading causes of vision impairment and vision loss worldwide. The ability of a drug to access the anterior parts of the eye is negligible after systemic administration. Effective drug delivery to the eye is a major challenge due to the presence of protective mechanisms and physiological barriers that result in low ocular availability after topical application. The main purpose of this work was the improvement of the corneal and conjunctival permeation of the antibiotic Ciprofloxacin, a wide spectrum antibiotic used for the most common eye infection, using a self-dissolving polymeric film. Films were prepared by the solvent casting technique, using polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft co-polymer (Soluplus), polyvynyl alcohol, and propylene glycol. Films were homogeneous in drug content and thickness, as demonstrated by adapting the Swiss Roll technique followed by microscopy observation. These films proved in vitro to control the release of the Ciprofloxacin. Ex vivo permeability studies using Franz diffusion cells and porcine cornea and sclera showed an effective permeability of the drug without inducing irritation of the tissues. Films swelled in contact with artificial tears forming an in situ gel over 20 min, which will improve drug contact and reduce the need of multiple dosing. The antibiotic activity was also tested in vitro in five types of bacterial cultures, assuring the pharmacological efficacy of the films. The developed films are a promising drug delivery system to topically treat or prevent ocular infections.
Collapse
|
5
|
Sebastián-Morelló M, Alambiaga-Caravaca AM, Calatayud-Pascual MA, Rodilla V, Balaguer-Fernández C, Miranda M, López-Castellano A. Ex-Vivo Trans-Corneal and Trans-Scleral Diffusion Studies with Ocular Formulations of Glutathione as an Antioxidant Treatment for Ocular Diseases. Pharmaceutics 2020; 12:pharmaceutics12090861. [PMID: 32927681 PMCID: PMC7558315 DOI: 10.3390/pharmaceutics12090861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 01/11/2023] Open
Abstract
Exposure to sunlight and contact with atmospheric oxygen makes the eye particularly susceptible to oxidative stress, which can potentially produce cellular damage. In physiological conditions, there are several antioxidant defense mechanisms within the eye. Glutathione (GSH) is the most important antioxidant in the eye; GSH deficit has been linked to several ocular pathologies. The aim of this study was to explore the potential for newly developed formulations allowing controlled delivery of antioxidants such as GSH and vitamin C (Vit C) directly to the eye. We have investigated the stability of antioxidants in aqueous solution and assessed ex-vivo the diffusion of GSH through two ocular membranes, namely cornea and sclera, either in solution or included in a semisolid insert. We have also carried out the hen’s egg-chlorioallantoic membrane test (HET-CAM) to evaluate the ocular irritancy of the different antioxidant solutions. Our results showed that GSH is stable for up to 30 days at 4 °C in darkness and it is not an irritant to the eye. The diffusion studies revealed that the manufactured formulation, a semisolid insert containing GSH, could deliver this tripeptide directly to the eye in a sustained manner.
Collapse
Affiliation(s)
| | | | | | - Vicent Rodilla
- Correspondence: (V.R.); (A.L.-C.); Tel.: +34-961-369-00 (ext. 64527) (V.R.); +34-961-369-00 (ext. 64427) (A.L.-C.)
| | | | | | - Alicia López-Castellano
- Correspondence: (V.R.); (A.L.-C.); Tel.: +34-961-369-00 (ext. 64527) (V.R.); +34-961-369-00 (ext. 64427) (A.L.-C.)
| |
Collapse
|
6
|
Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug Metab Toxicol 2020; 16:885-906. [PMID: 32729364 DOI: 10.1080/17425255.2020.1803278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ocular barriers hinder drug delivery and reduce drug bioavailability. This article focuses on enhancing drug absorption across the corneal and conjunctival epithelium. Both, transporter targeted prodrug formulations and nanomicellar strategy is proven to enhance the drug permeation of therapeutic agents across various ocular barriers. These strategies can increase aqueous drug solubility and stability of many hydrophobic drugs for topical ophthalmic formulations. AREAS COVERED The article discusses various ocular barriers, ocular influx, and efflux transporters. It elaborates various prodrug strategies used for enhancing drug absorption. Along with this, the article also describes nanomicellar formulation, its characteristic and advantages, and applications in for anterior and posterior segment drug delivery. EXPERT OPINION Prodrugs and nanomicellar formulations provide an effective strategy for improving drug absorption and drug bioavailability across various ocular barriers. It will be exciting to see the efficacy of nanomicelles for treating back of the eye disorders after their topical application. This is considered as a holy grail of ocular drug delivery due to the dynamic and static ocular barriers, restricting posterior entry of topically applied drug formulations.
Collapse
Affiliation(s)
- Vrinda Gote
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| | - Michael Ansong
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| | - Dhananjay Pal
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| |
Collapse
|
7
|
Patil A, Lakhani P, Taskar P, Avula B, Majumdar S. Carboxyvinyl Polymer and Guar-Borate Gelling System Containing Natamycin Loaded PEGylated Nanolipid Carriers Exhibit Improved Ocular Pharmacokinetic Parameters. J Ocul Pharmacol Ther 2020; 36:410-420. [PMID: 32315560 DOI: 10.1089/jop.2019.0140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Purpose: Natamycin (NTM) ophthalmic suspension is the only FDA-approved formulation commercially available for treating ocular fungal infections. However, precorneal residence times and losses/drainage remain the foremost challenges associated with current ocular antifungal pharmacotherapy. In our previous investigations, NTM loaded polyethylene glycol nanolipid carriers (NTM-PNLCs) showed enhanced corneal permeation, both in vitro and in vivo. To further improve the corneal retention of NTM-PNLCs, this study aimed to develop a gelling system composed of carboxyvinyl polymer, guar gum, and boric acid in which the NTM-PNLCs were loaded. Methods: A 23 factorial design was employed in formulating and optimizing the gelling system for NTM-PNLCs, where the independent factors were the gelling excipients (guar gum, boric acid, and Carbopol® 940) and dependent variables were gelling time, gel depot collapse time, rheology, firmness, and work of adhesion. Optimized gel was evaluated for transcorneal permeation using rabbit cornea, in vitro; and tear pharmacokinetics and ocular biodistribution in male New Zealand White rabbits, in vivo. Results: Optimized NTM-PNLC-GEL was found to exhibit shear thinning rheology, adequate firmness, and spreadability, and formed a depot that did not collapse immediately. In addition, the in vitro transcorneal evaluation studies indicated that the NTM-PNLC-GEL exhibited a lower/slower flux and rate in comparison to Natacyn® suspension. NTM-PNLC-GEL (0.3%), at a 16-fold lower dose, exhibited mean residence time and elimination half-life comparable to Natacyn (5%), and provided similar in vivo concentrations in the innermost tissues of the eye. Conclusion: The data indicate that the NTM-PNLC-GEL formulation could serve as an alternative during ophthalmic antifungal therapy.
Collapse
Affiliation(s)
- Akash Patil
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Prit Lakhani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Pranjal Taskar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Bharathi Avula
- National Center for Natural Products Research, University of Mississippi, University, Mississippi, USA
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
8
|
Abstract
OBJECTIVES Ocular surface disease frequently coexists with glaucoma and may be initiated or exacerbated by topical glaucoma medications. We performed a review of current literature to assess the prevalence, causes, and treatment of ocular surface disease in glaucoma patients, specifically those on topical therapy. METHODS A Pubmed database search was conducted. A total of 720 articles published from 1972 to 2018 were found in relation with ocular surface disease, glaucoma, and glaucoma medications. Of these, 102 articles were included in this analysis. We included primary and empirical studies for patients on topical glaucoma medications. Exclusion criteria included case reports, non-English studies, and articles unrelated to the primary subject of this review. RESULTS Ocular surface disease among normal and glaucomatous eyes was evaluated based on diagnostic testing including clinical examination and questionnaires to determine visual function and quality of life. Glaucoma medications can be associated with toxicities to the ocular surface, most often due to the nature of the preservative included in the medication; however, the incidence of toxicity can be mitigated by the use of preservative free medications, decreased preservative medications, or treatment of dry eye disease. Treatment of glaucoma with laser trabeculoplasty or minimally invasive glaucoma surgeries that spare the conjunctiva and the cornea may avoid or decrease reliance on topical glaucoma medications, potentially avoiding the initiation or progression of ocular surface disease. CONCLUSIONS Recognition and treatment of ocular surface disease in glaucoma patients may improve patient quality of life and medication adherence. This may ultimately improve glaucoma treatment outcomes.
Collapse
|
9
|
Varela-Garcia A, Concheiro A, Alvarez-Lorenzo C. Soluplus micelles for acyclovir ocular delivery: Formulation and cornea and sclera permeability. Int J Pharm 2018; 552:39-47. [DOI: 10.1016/j.ijpharm.2018.09.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/07/2018] [Accepted: 09/21/2018] [Indexed: 01/02/2023]
|
10
|
Dumouchel JL, Chemuturi N, Milton MN, Camenisch G, Chastain J, Walles M, Sasseville V, Gunduz M, Iyer GR, Argikar UA. Models and Approaches Describing the Metabolism, Transport, and Toxicity of Drugs Administered by the Ocular Route. Drug Metab Dispos 2018; 46:1670-1683. [PMID: 30111625 DOI: 10.1124/dmd.118.082974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/10/2018] [Indexed: 02/13/2025] Open
Abstract
The eye is a complex organ with a series of anatomic barriers that provide protection from physical and chemical injury while maintaining homeostasis and function. The physiology of the eye is multifaceted, with dynamic flows and clearance mechanisms. This review highlights that in vitro ocular transport and metabolism models are confined by the availability of clinically relevant absorption, distribution, metabolism, and excretion (ADME) data. In vitro ocular transport models used for pharmacology and toxicity poorly predict ocular exposure. Although ocular cell lines cannot replicate in vivo conditions, these models can help rank-order new chemical entities in discovery. Historic ocular metabolism of small molecules was assumed to be inconsequential or assessed using authentic standards. While various in vitro models have been cited, no single system is perfect, and many must be used in combination. Several studies document the use of laboratory animals for the prediction of ocular pharmacokinetics in humans. This review focuses on the use of human-relevant and human-derived models which can be utilized in discovery and development to understand ocular disposition of new chemical entities. The benefits and caveats of each model are discussed. Furthermore, ADME case studies are summarized retrospectively and capture the ADME data collected for health authorities in the absence of definitive guidelines. Finally, we discuss the novel technologies and a hypothesis-driven ocular drug classification system to provide a holistic perspective on the ADME properties of drugs administered by the ocular route.
Collapse
Affiliation(s)
- Jennifer L Dumouchel
- Pharmacokinetic Sciences (J.L.D., N.C., M.N.M., J.C., M.G., G.R.I., U.A.A.) and Preclinical Safety (V.S.), Novartis Institutes for BioMedical Research, Cambridge, Massachusetts; and Novartis Institutes for BioMedical Research, Basel, Switzerland (G.C., M.W.)
| | - Nagendra Chemuturi
- Pharmacokinetic Sciences (J.L.D., N.C., M.N.M., J.C., M.G., G.R.I., U.A.A.) and Preclinical Safety (V.S.), Novartis Institutes for BioMedical Research, Cambridge, Massachusetts; and Novartis Institutes for BioMedical Research, Basel, Switzerland (G.C., M.W.)
| | - Mark N Milton
- Pharmacokinetic Sciences (J.L.D., N.C., M.N.M., J.C., M.G., G.R.I., U.A.A.) and Preclinical Safety (V.S.), Novartis Institutes for BioMedical Research, Cambridge, Massachusetts; and Novartis Institutes for BioMedical Research, Basel, Switzerland (G.C., M.W.)
| | - Gian Camenisch
- Pharmacokinetic Sciences (J.L.D., N.C., M.N.M., J.C., M.G., G.R.I., U.A.A.) and Preclinical Safety (V.S.), Novartis Institutes for BioMedical Research, Cambridge, Massachusetts; and Novartis Institutes for BioMedical Research, Basel, Switzerland (G.C., M.W.)
| | - James Chastain
- Pharmacokinetic Sciences (J.L.D., N.C., M.N.M., J.C., M.G., G.R.I., U.A.A.) and Preclinical Safety (V.S.), Novartis Institutes for BioMedical Research, Cambridge, Massachusetts; and Novartis Institutes for BioMedical Research, Basel, Switzerland (G.C., M.W.)
| | - Markus Walles
- Pharmacokinetic Sciences (J.L.D., N.C., M.N.M., J.C., M.G., G.R.I., U.A.A.) and Preclinical Safety (V.S.), Novartis Institutes for BioMedical Research, Cambridge, Massachusetts; and Novartis Institutes for BioMedical Research, Basel, Switzerland (G.C., M.W.)
| | - Vito Sasseville
- Pharmacokinetic Sciences (J.L.D., N.C., M.N.M., J.C., M.G., G.R.I., U.A.A.) and Preclinical Safety (V.S.), Novartis Institutes for BioMedical Research, Cambridge, Massachusetts; and Novartis Institutes for BioMedical Research, Basel, Switzerland (G.C., M.W.)
| | - Mithat Gunduz
- Pharmacokinetic Sciences (J.L.D., N.C., M.N.M., J.C., M.G., G.R.I., U.A.A.) and Preclinical Safety (V.S.), Novartis Institutes for BioMedical Research, Cambridge, Massachusetts; and Novartis Institutes for BioMedical Research, Basel, Switzerland (G.C., M.W.)
| | - Ganesh R Iyer
- Pharmacokinetic Sciences (J.L.D., N.C., M.N.M., J.C., M.G., G.R.I., U.A.A.) and Preclinical Safety (V.S.), Novartis Institutes for BioMedical Research, Cambridge, Massachusetts; and Novartis Institutes for BioMedical Research, Basel, Switzerland (G.C., M.W.)
| | - Upendra A Argikar
- Pharmacokinetic Sciences (J.L.D., N.C., M.N.M., J.C., M.G., G.R.I., U.A.A.) and Preclinical Safety (V.S.), Novartis Institutes for BioMedical Research, Cambridge, Massachusetts; and Novartis Institutes for BioMedical Research, Basel, Switzerland (G.C., M.W.)
| |
Collapse
|
11
|
Chen Y, Kalia YN. Short-duration ocular iontophoresis of ionizable aciclovir prodrugs: A new approach to treat herpes simplex infections in the anterior and posterior segments of the eye. Int J Pharm 2018; 536:292-300. [DOI: 10.1016/j.ijpharm.2017.11.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/25/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023]
|
12
|
Sebastián-Morelló M, Calatayud-Pascual MA, Rodilla V, Balaguer-Fernández C, López-Castellano A. Ex vivo rabbit cornea diffusion studies with a soluble insert of moxifloxacin. Drug Deliv Transl Res 2017; 8:132-139. [DOI: 10.1007/s13346-017-0443-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Agrahari V, Mandal A, Agrahari V, Trinh HM, Joseph M, Ray A, Hadji H, Mitra R, Pal D, Mitra AK. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res 2017; 6:735-754. [PMID: 27798766 DOI: 10.1007/s13346-016-0339-2] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The eye is a distinctive organ with protective anatomy and physiology. Several pharmacokinetics compartment models of ocular drug delivery have been developed for describing the absorption, distribution, and elimination of ocular drugs in the eye. Determining pharmacokinetics parameters in ocular tissues is a major challenge because of the complex anatomy and dynamic physiological barrier of the eye. In this review, pharmacokinetics of these compartments exploring different drugs, delivery systems, and routes of administration is discussed including factors affecting intraocular bioavailability. Factors such as precorneal fluid drainage, drug binding to tear proteins, systemic drug absorption, corneal factors, melanin binding, and drug metabolism render ocular delivery challenging and are elaborated in this manuscript. Several compartment models are discussed; these are developed in ocular drug delivery to study the pharmacokinetics parameters. There are several transporters present in both anterior and posterior segments of the eye which play a significant role in ocular pharmacokinetics and are summarized briefly. Moreover, several ocular pharmacokinetics animal models and relevant studies are reviewed and discussed in addition to the pharmacokinetics of various ocular formulations.
Collapse
Affiliation(s)
- Vibhuti Agrahari
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Abhirup Mandal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Vivek Agrahari
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA.,Bayer HealthCare LLC, Shawnee, KS, 66216, USA
| | - Hoang M Trinh
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Mary Joseph
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Animikh Ray
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Hicheme Hadji
- Faculty of Pharmacy, University of Algiers, Algiers, Algeria
| | - Ranjana Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Dhananjay Pal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Ashim K Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA.
| |
Collapse
|
14
|
Adelli GR, Bhagav P, Taskar P, Hingorani T, Pettaway S, Gul W, ElSohly MA, Repka MA, Majumdar S. Development of a Δ9-Tetrahydrocannabinol Amino Acid-Dicarboxylate Prodrug With Improved Ocular Bioavailability. Invest Ophthalmol Vis Sci 2017; 58:2167-2179. [PMID: 28399267 PMCID: PMC5389743 DOI: 10.1167/iovs.16-20757] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose The aim of the present study was to evaluate the utility of the relatively hydrophilic Δ9-tetrahydrocannabinol (THC) prodrugs, mono and di-valine esters (THC-Val and THC-Val-Val) and the amino acid (valine)-dicarboxylic acid (hemisuccinate) ester (THC-Val-HS), with respect to ocular penetration and intraocular pressure (IOP) lowering activity. THC, timolol, and pilocarpine eye drops were used as controls. Methods THC-Val, THC-Val-Val, and THC-Val-HS were synthesized and chemically characterized. Aqueous solubility and in vitro transcorneal permeability of THC and the prodrugs, in the presence of various surfactants and cyclodextrins, were determined. Two formulations were evaluated for therapeutic activity in the α-chymotrypsin induced rabbit glaucoma model, and the results were compared against controls comprising of THC emulsion and marketed timolol maleate and pilocarpine eye drops. Results THC-Val-HS demonstrated markedly improved solubility (96-fold) and in vitro permeability compared to THC. Selected formulations containing THC-Val-HS effectively delivered THC to the anterior segment ocular tissues in the anesthetized rabbits: 62.1 ng/100 μL of aqueous humor (AH) and 51.4 ng/50 mg of iris ciliary bodies (IC) (total THC). The duration and extent of IOP lowering induced by THC-Val-HS was 1 hour longer and 10% greater, respectively, than that obtained with THC and was comparable with the pilocarpine eye drops. Timolol ophthalmic drops, however, exhibited a longer duration of activity. Both THC and THC-Val-HS were detected in the ocular tissues following multiple dosing of THC-Val-HS in conscious animals. The concentration of THC in the iris-ciliary bodies at the 60- and 120-minute time points (53 and 57.4 ng/50 mg) were significantly greater than that of THC-Val-HS (24.2 and 11.3 ng/50 mg). Moreover, at the two time points studied, the concentration of THC was observed to increase or stay relatively constant, whereas THC-Val-HS concentration decreased by at least 50%. A similar trend was observed in the retina-choroid tissues. Conclusions A combination of prodrug derivatization and formulation development approaches significantly improved the penetration of THC into the anterior segment of the eye following topical application. Enhanced ocular penetration resulted in significantly improved IOP-lowering activity.
Collapse
Affiliation(s)
- Goutham R Adelli
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, United States
| | - Prakash Bhagav
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, United States
| | - Pranjal Taskar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, United States
| | - Tushar Hingorani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, United States
| | - Sara Pettaway
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi, United States
| | - Waseem Gul
- ElSohly Laboratories, Inc., Oxford, Mississippi, United States
| | - Mahmoud A ElSohly
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, United States 3ElSohly Laboratories, Inc., Oxford, Mississippi, United States
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, United States 4Research Institute of Pharmaceutical Sciences, University of Mississippi, University, Mississippi, United States
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, United States
| |
Collapse
|
15
|
Adelli GR, Balguri SP, Bhagav P, Raman V, Majumdar S. Diclofenac sodium ion exchange resin complex loaded melt cast films for sustained release ocular delivery. Drug Deliv 2017; 24:370-379. [PMID: 28165833 PMCID: PMC8253122 DOI: 10.1080/10717544.2016.1256000] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purpose: The goal of the present study is to develop polymeric matrix films loaded with a combination of free diclofenac sodium (DFSfree) and DFS:Ion exchange resin complexes (DFS:IR) for immediate and sustained release profiles, respectively. Methods: Effect of ratio of DFS and IR on the DFS:IR complexation efficiency was studied using batch processing. DFS:IR complex, DFSfree, or a combination of DFSfree + DFS:IR loaded matrix films were prepared by melt-cast technology. DFS content was 20% w/w in these matrix films. In vitro transcorneal permeability from the film formulations were compared against DFS solution, using a side-by-side diffusion apparatus, over a 6 h period. Ocular disposition of DFS from the solution, films and corresponding suspensions were evaluated in conscious New Zealand albino rabbits, 4 h and 8 h post-topical administration. All in vivo studies were carried out as per the University of Mississippi IACUC approved protocol. Results: Complexation efficiency of DFS:IR was found to be 99% with a 1:1 ratio of DFS:IR. DFS release from DFS:IR suspension and the film were best-fit to a Higuchi model. In vitro transcorneal flux with the DFSfree + DFS:IR(1:1)(1 + 1) was twice that of only DFS:IR(1:1) film. In vivo, DFS solution and DFS:IR(1:1) suspension formulations were not able to maintain therapeutic DFS levels in the aqueous humor (AH). Both DFSfree and DFSfree + DFS:IR(1:1)(3 + 1) loaded matrix films were able to achieve and maintain high DFS concentrations in the AH, but elimination of DFS from the ocular tissues was much faster with the DFSfree formulation. Conclusion: DFSfree + DFS:IR combination loaded matrix films were able to deliver and maintain therapeutic DFS concentrations in the anterior ocular chamber for up to 8 h. Thus, free drug/IR complex loaded matrix films could be a potential topical ocular delivery platform for achieving immediate and sustained release characteristics.
Collapse
Affiliation(s)
- Goutham R Adelli
- a Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University , MS , USA
| | - Sai Prachetan Balguri
- a Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University , MS , USA
| | - Prakash Bhagav
- a Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University , MS , USA
| | - Vijayasankar Raman
- b National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University , MS , USA , and
| | - Soumyajit Majumdar
- a Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University , MS , USA.,c Research Institute of Pharmaceutical Sciences, The University of Mississippi, University , MS , USA
| |
Collapse
|
16
|
Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur J Pharm Biopharm 2016; 109:224-235. [PMID: 27793755 DOI: 10.1016/j.ejpb.2016.10.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/10/2016] [Accepted: 10/23/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE The objective of the present study was to formulate indomethacin (IN)-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) and to investigate their potential use in topical ocular delivery. METHODS IN SLNs (0.1% w/v) and NLCs (0.8% w/v) were prepared, characterized and evaluated. Their in vitro release and flux profiles across the cornea and sclera-choroid-RPE (trans-SCR) tissues and in vivo ocular tissue distribution were assessed. Furthermore, chitosan chloride (CS) (mol. wt.<200kDa), a cationic and water-soluble penetration enhancer, was used to modify the surface of the SLNs, and its effect was investigated through in vitro transmembrane penetration and in vivo distribution tissue studies. RESULTS For the IN-SLNs, IN-CS-SLNs and IN-NLCs, the particle size was 226±5, 265±8, and 227±11nm, respectively; the zeta potential was -22±0.8, 27±1.2, and -12.2±2.3mV, respectively; the polydispersity index (PDI) was 0.17, 0.30, and 0.23, respectively; and the entrapment efficiency (EE) was 81±0.9, 91.5±3.2 and 99.8±0.2%, respectively. The surface modification of the SLNs with CS increased the ocular penetration of IN. The NLCs maintained significantly higher IN concentrations in all ocular tissues tested compared to the other formulations evaluated in vivo. CONCLUSION The results suggest that lipid-based particulate systems can serve as viable vehicles for ocular delivery. The NLC formulations demonstrated increased drug loading capability, entrapment and delivery to anterior and posterior segment ocular tissues.
Collapse
|
17
|
Influence of drug loading and type of ointment base on the in vitro performance of acyclovir ophthalmic ointment. Int J Pharm 2015; 495:783-91. [DOI: 10.1016/j.ijpharm.2015.08.096] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 11/20/2022]
|
18
|
Sheng Y, Yang X, Pal D, Mitra AK. Prodrug approach to improve absorption of prednisolone. Int J Pharm 2015; 487:242-9. [PMID: 25888804 DOI: 10.1016/j.ijpharm.2015.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/02/2015] [Accepted: 04/12/2015] [Indexed: 01/11/2023]
Abstract
Amino acid and dipeptide prodrugs have been developed to examine their potential in enhancing aqueous solubility and permeability as well as to bypass P-glycoprotein (P-gp) mediated cellular efflux of prednisolone. Prodrugs have been synthesized and identified with LC/MS/MS and NMR. Prodrugs displayed significantly higher aqueous solubility relative to prednisolone. These compounds also exhibited higher stability under acidic conditions relative to basic medium. [14]-Erythromycin uptake remained unaltered in the presence of valine-valine-prednisolone (VVP) indicating lower affinity toward P-gp. Moreover, VVP generated significantly higher transepithelial permeability across MDCK-MDR1 cells compared to prednisolone. Importantly, [3H]-GlySar uptake diminished significantly in the presence of VVP indicating high affinity toward peptide transporters. Moreover, prednisolone was regenerated from VVP due to enzymatic hydrolysis in SIRC cell homogenate. Results obtained from these studies clearly suggest that peptide transporter targeted prodrugs is a viable strategy to improve aqueous solubility and overcome P-gp mediated cellular efflux of prednisolone.
Collapse
Affiliation(s)
- Ye Sheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Xiaoyan Yang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Dhananjay Pal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Ashim K Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
19
|
Adelli GR, Hingorani T, Punyamurthula N, Balguri SP, Majumdar S. Evaluation of topical hesperetin matrix film for back-of-the-eye delivery. Eur J Pharm Biopharm 2015; 92:74-82. [PMID: 25728824 DOI: 10.1016/j.ejpb.2015.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE The goal of the present study was to develop a poly (ethylene oxide) N10 (PEO N10) based melt-cast matrix system for efficient and prolonged delivery of hesperetin (HT), a promising bioflavonoid, to the posterior segment of the eye through the topical route. METHODS HT film was prepared by melt-cast method using PEO N10 and cut into 4mm×2mm segments, each weighing 8mg. This film was evaluated with respect to in vitro release rates and also transmembrane delivery across Spectra/Por® membrane (MWCO: 10,000 Daltons) and isolated rabbit corneas. Ocular tissue concentrations were also determined postapplication of the film in ex vivo and in vivo models. RESULTS HT release from the film was determined to be about 95.3% within 2h. In vitro transcorneal flux was observed to be 0.58±0.05μg/min/cm(2) across the isolated rabbit cornea. High levels of HT were detected in the retina-choroid (RC) and vitreous humor (VH) in the ex vivo model following topical application of the film. Significant levels of HT were observed in both anterior and posterior segment ocular tissues 1h post topical application of the 10 and 20%w/w HT films on the rabbit eye. Moreover, HT was detected in the VH and RC even after 6h following topical application of the film in vivo. CONCLUSION The results from this study suggest that the melt-cast films can serve as a viable platform for sustained topical delivery of bioflavonoids, and other therapeutic agents, into the back-of-the eye tissues.
Collapse
Affiliation(s)
- Goutham R Adelli
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS, USA
| | - Tushar Hingorani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS, USA
| | - Nagendra Punyamurthula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS, USA
| | - Sai Prachetan Balguri
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS, USA
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS, USA; Research Institute of Pharmaceutical Sciences, The University of Mississippi, MS, USA; National Center for Natural Product Research, The University of Mississippi, MS, USA.
| |
Collapse
|
20
|
Sharaf MG, Cetinel S, Heckler L, Damji K, Unsworth L, Montemagno C. Nanotechnology-Based Approaches for Ophthalmology Applications: Therapeutic and Diagnostic Strategies. Asia Pac J Ophthalmol (Phila) 2014; 3:172-80. [PMID: 26107588 DOI: 10.1097/apo.0000000000000059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The purpose of this article was to review recent advances in applications of nanotechnology in ophthalmology. DESIGN Literature review. METHODS Research articles about nanotechnology-based treatments for particular eye diseases and diagnostic technologies were searched through Web of Science, and the most recent advances were reported. RESULTS Nanotechnology enabled to improve drug and gene delivery systems, medicine solubility and short half-life in biological systems, controlled release, targeted delivery, bioavailability, diffusion limitations, and biocompatibility so far. These promising achievements are the assurance of next-generation treatment technologies. As well as treatment, nanofabrications systems such as microelectromechanical manufacturing systems removed the limitations of nanodevice generations and led the development of diagnostic tools such as intraocular pressure monitors and biosensors. CONCLUSIONS The pursuit of personalized medicine approaches for combating ocular diseases may be possible only through the development of nanotechnology platforms that include molecular-level engineering. Nanoparticle engineering is a common thread; herein, we attempt to show unmodified nanoparticles as well as interesting and representative biomimetic strategies can be used for specific diseases. Finally, through combining microelectromechanical and nanoelectromechanical manufacturing system strategies, interesting manufacturing and sensor development can be accomplished for early detection and, in some cases, treatment of ocular diseases.
Collapse
Affiliation(s)
- Mehdi Ghaffari Sharaf
- From the *Chemical & Materials Engineering, †Ingenuity Lab, and ‡Ophthalmology and Visual Sciences, University of Alberta; and §National Institute of Nanotechnology, National Research Council, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Xu Q, Kambhampati SP, Kannan RM. Nanotechnology approaches for ocular drug delivery. Middle East Afr J Ophthalmol 2014; 20:26-37. [PMID: 23580849 PMCID: PMC3617524 DOI: 10.4103/0974-9233.106384] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Blindness is a major health concern worldwide that has a powerful impact on afflicted individuals and their families, and is associated with enormous socio-economical consequences. The Middle East is heavily impacted by blindness, and the problem there is augmented by an increasing incidence of diabetes in the population. An appropriate drug/gene delivery system that can sustain and deliver therapeutics to the target tissues and cells is a key need for ocular therapies. The application of nanotechnology in medicine is undergoing rapid progress, and the recent developments in nanomedicine-based therapeutic approaches may bring significant benefits to address the leading causes of blindness associated with cataract, glaucoma, diabetic retinopathy and retinal degeneration. In this brief review, we highlight some promising nanomedicine-based therapeutic approaches for drug and gene delivery to the anterior and posterior segments.
Collapse
Affiliation(s)
- Qingguo Xu
- Department of Ophthalmology, Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
22
|
Kadam RS, Ramamoorthy P, LaFlamme DJ, McKinsey TA, Kompella UB. Hypoxia alters ocular drug transporter expression and activity in rat and calf models: implications for drug delivery. Mol Pharm 2013; 10:2350-61. [PMID: 23607566 PMCID: PMC3973437 DOI: 10.1021/mp3007133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chronic hypoxia, a key stimulus for neovascularization, has been implicated in the pathology of proliferative diabetic retinopathy, retinopathy of prematurity, and wet age related macular degeneration. The aim of the present study was to determine the effect of chronic hypoxia on drug transporter mRNA expression and activity in ocular barriers. Sprague-Dawley rats were exposed to hypobaric hypoxia (PB = 380 mmHg) for 6 weeks, and neonatal calves were maintained under hypobaric hypoxia (PB = 445 mmHg) for 2 weeks. Age matched controls for rats, and calves were maintained at ambient altitude and normoxia. The effect of hypoxia on transporter expression was analyzed by qRT-PCR analysis of transporter mRNA expression in hypoxic and control rat choroid-retina. The effect of hypoxia on the activity of PEPT, OCT, ATB(0+), and MCT transporters was evaluated using in vitro transport studies of model transporter substrates across calf cornea and sclera-choroid-RPE (SCRPE). Quantitative gene expression analysis of 84 transporters in rat choroid-retina showed that 29 transporter genes were up regulated or down regulated by ≥1.5-fold in hypoxia. Nine ATP binding cassette (ABC) families of efflux transporters including MRP3, MRP4, MRP5, MRP6, MRP7, Abca17, Abc2, Abc3, and RGD1562128 were up-regulated. For solute carrier family transporters, 11 transporters including SLC10a1, SLC16a3, SLC22a7, SLC22a8, SLC29a1, SLC29a2, SLC2a1, SLC3a2, SLC5a4, SLC7a11, and SLC7a4 were up regulated, while 4 transporters including SLC22a2, SLC22a9, SLC28a1, and SLC7a9 were down-regulated in hypoxia. Of the three aquaporin (Aqp) water channels, Aqp-9 was down-regulated, and Aqp-1 was up-regulated during hypoxia. Gene expression analysis showed down regulation of OCT-1, OCT-2, and ATB(0+) and up regulation of MCT-3 in hypoxic rat choroid-retina, without any effect on the expression of PEPT-1 and PEPT-2. Functional activity assays of PEPT, OCT, ATB(0+), and MCT transporters in calf ocular tissues showed that PEPT, OCT, and ATB(0+) functional activity was down-regulated, whereas MCT functional activity was up-regulated in hypoxic cornea and SCRPE. Gene expression analysis of these transporters in rat tissues was consistent with the functional transport assays except for PEPT transporters. Chronic hypoxia results in significant alterations in the mRNA expression and functional activity of solute transporters in ocular tissues.
Collapse
Affiliation(s)
- Rajendra S. Kadam
- Pharmaceutical Sciences and Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | | | - Timothy A. McKinsey
- Division of Cardiology and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Uday B. Kompella
- Pharmaceutical Sciences and Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
23
|
Kadam RS, Vooturi SK, Kompella UB. Immunohistochemical and functional characterization of peptide, organic cation, neutral and basic amino acid, and monocarboxylate drug transporters in human ocular tissues. Drug Metab Dispos 2013; 41:466-74. [PMID: 23169611 PMCID: PMC3558866 DOI: 10.1124/dmd.112.045674] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 11/20/2012] [Indexed: 01/11/2023] Open
Abstract
Since there is paucity of information on solute transporters in human ocular tissues, the aim of this study was immunohistochemical and functional characterization of peptide transporters (PEPT), organic cation transporters (OCTs), neutral and basic amino acid transporters (ATB(0,+)), and monocarboxylate transporters (MCTs) in human ocular barriers. Immunohistochemical localization of transporters was achieved using 5-µm-thick paraffin-embedded sections of whole human eyes. In vitro transport studies were carried out across human cornea and sclera-choroid-retinal pigment epithelium (SCRPE) using a cassette of specific substrates in the presence and absence of inhibitors to determine the role of transporters in transtissue solute delivery. Immunohistochemistry showed the expression of PEPT-1, PEPT-2, ATB(0,+), OCT-1, OCT-2, MCT-1, and MCT-3 in human ocular tissues. PEPT-1, PEPT-2, OCT-1, MCT-1, and ATB(0,+) expression was evident in the cornea, conjunctiva, ciliary epithelium, and neural retina. Expression of PEPT-1, PEPT-2, and OCT-1 was evident in choroid tissue as well. OCT-2 expression could be seen in the corneal and conjunctival epithelia, whereas MCT-3 expression was confined to the RPE layer. OCT-2 expression was evident in conjunctival blood vessel walls, whereas PEPT-1, PEPT-2, and OCT-1 were expressed in the choroid. Preliminary transport studies indicated inward transport of Gly-Sar (PEPT substrate), 1-methyl-4-phenylpyridinium (MPP+) (OCT substrate), and l-tryptophan (ATB(0,+) substrate) across cornea as well as SCRPE. For phenylacetic acid (MCT substrate), transporter-mediated inward transport across the cornea and outward transport across SCRPE were evident. Thus, PEPT, OCT, and ATB(0,+) are influx transporters present in human ocular barriers, and they can potentially be used for transporter-guided retinal drug delivery after topical, transscleral, and systemic administrations.
Collapse
Affiliation(s)
- Rajendra S Kadam
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | |
Collapse
|
24
|
Song J, Bi H, Xie X, Guo J, Wang X, Liu D. Natural borneol enhances geniposide ophthalmic absorption in rabbits. Int J Pharm 2013; 445:163-70. [PMID: 23376228 DOI: 10.1016/j.ijpharm.2013.01.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/19/2012] [Accepted: 01/24/2013] [Indexed: 01/29/2023]
Abstract
The purpose of this study was to investigate the effects of natural borneol (NB) on the pharmacokinetics and bioavailability of ophthalmic administered geniposide (Ge) in rabbits. In vitro permeability characteristics of Ge in excised rabbit corneas were evaluated using Franz-type cells. The effect of NB on Ge pharmacokinetic profiles in vivo was studied with microdialysis. Concentrations of Ge were determined with reversed-phase high performance liquid chromatography (HPLC) following ophthalmic administration of Ge alone or with NB (0.01%, 0.02%, and 0.04%) or 0.5% ethylendiaminetetraacetic acid (EDTA). Ocular irritation was evaluated using the Draize method and histological examination. Ge solution alone (control solution) had limited corneal permeability. The ratio of the apparent permeability coefficient (Papp) with respect to the control solution significantly increased by approximately 1.6-, 2.0-, and 2.4-fold at NB concentrations of 0.01, 0.02, and 0.04%, respectively. The Papp for Ge with 0.5% EDTA (positive control) was approximately 1.7-fold higher than that for control solution. Compared to control solution, Ge exhibited a 1.46-, 2.16-, and 2.47-fold greater AUC0-6h, and 2.0-, 3.5-, and 4.4-fold greater Cmax, with 0.01, 0.02, and 0.04% NB, respectively, while Tmax remained unchanged. In conclusion, the ocular bioavailability of Ge significantly increased in the presence of NB.
Collapse
Affiliation(s)
- Jike Song
- Shandong University of Traditional Chinese Medicine, 16369#, Jingshi Road, Jinan 250014, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Patel M, Dalvi P, Gokulgandhi M, Kesh S, Kohli T, Pal D, Mitra AK. Functional characterization and molecular expression of large neutral amino acid transporter (LAT1) in human prostate cancer cells. Int J Pharm 2012; 443:245-53. [PMID: 23270998 DOI: 10.1016/j.ijpharm.2012.12.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/15/2012] [Accepted: 12/17/2012] [Indexed: 01/12/2023]
Abstract
The primary objective of this study is to functionally characterize and provide molecular evidence of large neutral amino acid transporter (LAT1) in human derived prostate cancer cells (PC-3). We carried out the uptake of [3H]-tyrosine to assess the functional activity of LAT1. Reverse transcription-polymerase chain reaction (RT-PCR) analysis is carried out to confirm the molecular expression of LAT1. [3H]-tyrosine uptake is found to be time dependent and linear up to 60 min. The uptake process does not exhibit any dependence on sodium ions, pH and energy. However, it is temperature dependent and found maximal at physiological temperature. The uptake of [3H]-tyrosine demonstrates saturable kinetics with K(m) and V(max) values of 34 ± 3 μM and 0.70 ± 0.02 nanomoles/min/mg protein, respectively. It is strongly inhibited by large neutral (phenylalanine, tryptophan, leucine, isoleucine) and small neutral (alanine, serine, cysteine) but not by basic (lysine and arginine) and acidic (aspartic and glutamic acid) amino acids. Isoleucine-quinidine (Ile-quinidine) prodrug generates a significant inhibitory effect on [3H]-tyrosine uptake suggesting that it is recognized by LAT1. RT-PCR analysis provided a product band at 658 and 840 bp, specific to LAT1 and LAT2, respectively. For the first time, this study demonstrates that LAT1, primarily responsible for the uptake of large neutral amino acids, is functionally active in PC-3 cells. Significant increase in the uptake generated by Ile-quinidine relative to quinidine suggests that LAT1 can be utilized for enhancing the cellular permeation of poor cell permeable anticancer drugs. Furthermore, this cell line can be utilized as an excellent in vitro model for studying the interaction of large neutral amino acid conjugated drugs with LAT1 transporter.
Collapse
Affiliation(s)
- Mitesh Patel
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Barot M, Bagui M, Gokulgandhi MR, Mitra AK. Prodrug strategies in ocular drug delivery. Med Chem 2012; 8:753-68. [PMID: 22530907 DOI: 10.2174/157340612801216283] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 03/07/2012] [Accepted: 03/22/2012] [Indexed: 11/22/2022]
Abstract
Poor bioavailability of topically instilled drug is the major concern in the field of ocular drug delivery. Efflux transporters, static and dynamic ocular barriers often possess rate limiting factors for ocular drug therapy. Different formulation strategies like suspension, ointment, gels, nanoparticles, implants, dendrimers and liposomes have been employed in order to improve drug permeation and retention by evading rate limiting factors at the site of absorption. Chemical modification such as prodrug targeting various nutrient transporters (amino acids, peptide and vitamin) has evolved a great deal of interest to improve ocular drug delivery. In this review, we have discussed various prodrug strategies which have been widely applied for enhancing therapeutic efficacy of ophthalmic drugs. The purpose of this review is to provide an update on the utilization of prodrug concept in ocular drug delivery. In addition, this review will highlight ongoing academic and industrial research and development in terms of ocular prodrug design and delivery.
Collapse
Affiliation(s)
- Megha Barot
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Eye drops have long been the primary ocular drug delivery dosage form used to treat ocular disorders ranging from superficial conditions to intravitreal diseases. The ocular anatomical structure and physiological protective mechanisms are one of the most formidable barriers to drug penetration that have significantly reduced the drug's efficacy and target selectivity while sometimes causing ocular tissue damage. There are many new and innovative advances in ocular drug delivery due to better understanding of the structure and function of the eye, the nature of its diseases, and how to overcome or utilize its protective barrier(s), which resulted in increased bioavailability and longer duration of action of the administered drugs, therefore, more effective disease management. We seek in this article to present a comprehensive overview of the basic required knowledge about the barriers for drug delivery to the eye and the major breakthroughs and advances in ocular drug delivery to the anterior, posterior and intravitreal segments of the eye.
Collapse
Affiliation(s)
- Mutasem Rawas-Qalaji
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | | |
Collapse
|
28
|
Kwak EY, Shim WS, Chang JE, Chong S, Kim DD, Chung SJ, Shim CK. Enhanced intracellular accumulation of a non-nucleoside anti-cancer agent via increased uptake of its valine ester prodrug through amino acid transporters. Xenobiotica 2012; 42:603-13. [DOI: 10.3109/00498254.2011.646339] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Stella B, Arpicco S, Rocco F, Burgalassi S, Nicosia N, Tampucci S, Chetoni P, Cattel L. Nonpolymeric nanoassemblies for ocular administration of acyclovir: Pharmacokinetic evaluation in rabbits. Eur J Pharm Biopharm 2012; 80:39-45. [DOI: 10.1016/j.ejpb.2011.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 09/30/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
|
30
|
Hingorani T, Gul W, Elsohly M, Repka MA, Majumdar S. Effect of ion pairing on in vitro transcorneal permeability of a Δ(9) -tetrahydrocannabinol prodrug: potential in glaucoma therapy. J Pharm Sci 2011; 101:616-26. [PMID: 21989812 DOI: 10.1002/jps.22791] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 08/10/2011] [Accepted: 09/27/2011] [Indexed: 01/14/2023]
Abstract
The aim of the present study was to evaluate and improve the in vitro transcorneal permeability characteristics of Δ(9) -tetrahydrocannabinol (THC) through prodrug derivatization and formulation approaches. In vitro corneal permeability of THC and its hemisuccinate (THC-HS) and hemiglutarate (THC-HG) ester prodrugs and WIN 55-212-2 (WIN), a synthetic cannabinoid, was determined using isolated rabbit cornea. The formulations studied included hydroxypropyl beta cyclodextrin (HPβCD) or randomly methylated beta cyclodextrin (RMβCD), as well as prodrug-ion-pair complexes with l-arginine or tromethamine. Corneal permeability of WIN was found to be two-fold higher than THC in the presence of HPβCD. THC-HS and THC-HG exhibited pH-dependent permeability. In the presence of HPβCD, at pH 5 (donor solution pH), both prodrugs exhibited six-fold higher permeability compared with THC. However, permeability of the prodrugs was about three-fold lower than that of THC at pH 7.4. RMβCD, at pH 7.4, led to a significant improvement in permeability. Formation of ion-pair complexes markedly improved the solubility and permeability of THC-HG (sevenfold and threefold greater permeability compared with THC and WIN, respectively) at pH 7.4. The in vitro results demonstrate that the use of an ion-pair complex of THC-HG could be an effective strategy for topical delivery of THC.
Collapse
Affiliation(s)
- Tushar Hingorani
- Department of Pharmaceutics, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA
| | | | | | | | | |
Collapse
|
31
|
Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS JOURNAL 2010; 12:348-60. [PMID: 20437123 DOI: 10.1208/s12248-010-9183-3] [Citation(s) in RCA: 778] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 02/24/2010] [Indexed: 12/11/2022]
Abstract
Ocular drug delivery has been a major challenge to pharmacologists and drug delivery scientists due to its unique anatomy and physiology. Static barriers (different layers of cornea, sclera, and retina including blood aqueous and blood-retinal barriers), dynamic barriers (choroidal and conjunctival blood flow, lymphatic clearance, and tear dilution), and efflux pumps in conjunction pose a significant challenge for delivery of a drug alone or in a dosage form, especially to the posterior segment. Identification of influx transporters on various ocular tissues and designing a transporter-targeted delivery of a parent drug has gathered momentum in recent years. Parallelly, colloidal dosage forms such as nanoparticles, nanomicelles, liposomes, and microemulsions have been widely explored to overcome various static and dynamic barriers. Novel drug delivery strategies such as bioadhesive gels and fibrin sealant-based approaches were developed to sustain drug levels at the target site. Designing noninvasive sustained drug delivery systems and exploring the feasibility of topical application to deliver drugs to the posterior segment may drastically improve drug delivery in the years to come. Current developments in the field of ophthalmic drug delivery promise a significant improvement in overcoming the challenges posed by various anterior and posterior segment diseases.
Collapse
Affiliation(s)
- Ripal Gaudana
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte St., Kansas City, Missouri 64108-2718, USA
| | | | | | | |
Collapse
|
32
|
Majumdar S, Hingorani T, Srirangam R. Evaluation of active and passive transport processes in corneas extracted from preserved rabbit eyes. J Pharm Sci 2010; 99:1921-30. [PMID: 19890936 DOI: 10.1002/jps.21979] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vitro transcorneal permeability studies are an important screening tool in drug development. The objective of this research is to examine the feasibility of using corneas isolated from preserved rabbit eyes as a model for permeability evaluation. Eyes from male New Zealand White rabbits were used immediately or were stored overnight in phosphate-buffered saline (PBS) or Hanks balanced salt solution (HBSS) over wet ice. Integrity of isolated corneas was evaluated by measuring the TEER and by determining the permeability of paracellular and transcellular markers. Active transport was assessed by measuring transcorneal permeability of selected amino acids. Esterase activity was estimated using p-nitrophenyl assay. In all cases, corneas from freshly enucleated eyes were compared to those isolated from the day-old preserved eyes. Transcellular and paracellular passive diffusion was not affected by the storage medium and observed to be similar in the fresh and preserved eye models. However, amino acid transporters demonstrated lower functional activity in corneas excised from eyes preserved in PBS. Moreover, preserved eyes displayed almost 1.5-fold lower esterase activity in the corneal tissue. Thus, corneas isolated from day-old eyes, preserved in HBSS, closely mimics freshly excised rabbit corneas in terms of both active and passive transport characteristics but possesses slightly reduced enzymatic activity.
Collapse
Affiliation(s)
- Soumyajit Majumdar
- Department of Pharmaceutics, School of Pharmacy, University of Mississippi, University, Mississippi 38677, USA.
| | | | | |
Collapse
|
33
|
Sarpietro MG, Micieli D, Rocco F, Ceruti M, Castelli F. Conjugation of squalene to acyclovir improves the affinity for biomembrane models. Int J Pharm 2009; 382:73-9. [PMID: 19686827 DOI: 10.1016/j.ijpharm.2009.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/31/2009] [Accepted: 08/07/2009] [Indexed: 11/28/2022]
Abstract
Differential scanning calorimetry was used to study the interaction of acyclovir and its prodrug squalenoyl-acyclovir (obtained by conjugation of 1,1',2-tris-nor-squalene acid (squaleneCOOH) with acyclovir) with biomembrane models made of DMPC multilamellar vesicles with the aim to verify whether a stronger interaction of the prodrug with respect to the free drug can be obtained. Multilamellar vesicles were prepared in the presence of increasing molar fractions of acyclovir, squaleneCOOH or prodrug and the effect of the compounds on the thermotropic behavior of vesicles was researched, revealing no effect of acyclovir but a strong effect of squaleneCOOH and prodrug. To evaluate if acyclovir, squaleneCOOH and prodrug can be absorbed by the biomembrane model, an experiment was carried out in which the considered compounds were left in contact with the biomembrane model and their eventual uptake was evaluated analyzing the effect on the thermotropic behavior of the biomembrane model. A very small uptake was revealed for all the compounds. To check the potential use of liposomes as a delivery system for the prodrug, the biomembrane models were incubated with liposomes loaded with the compounds and the compounds transferring from the loaded liposomes to the unloaded biomembrane model was followed. The results suggest that liposomes could be used to deliver the squalenoyl-acyclovir to the biomembrane model.
Collapse
Affiliation(s)
- Maria Grazia Sarpietro
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | | | | | | | | |
Collapse
|
34
|
Majumdar S, Hippalgaonkar K, Srirangam R. Vitreal kinetics of quinidine in rabbits in the presence of topically coadministered P-glycoprotein substrates/modulators. Drug Metab Dispos 2009; 37:1718-25. [PMID: 19406953 PMCID: PMC2712438 DOI: 10.1124/dmd.108.026450] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 04/29/2009] [Indexed: 12/21/2022] Open
Abstract
The purpose of this study was to investigate whether topically administered P-glycoprotein (P-gp) substrates/modulators can alter vitreal kinetics of intravitreally administered quinidine. Male New Zealand rabbits were used under anesthesia. Vitreal kinetics of intravitreally administered quinidine (0.75-microg dose) was determined alone and in the presence of verapamil (coadministered topically/intravitreally) or prednisolone hemisuccinate sodium (PHS) (coadministered topically). In the presence of topically instilled verapamil (1% w/v), elimination half-life (t(1/2)) (176 +/- 7 min), apparent elimination rate constant (lambda(z)) (0.0039 +/- 0.0001 min(-1)), and mean retention time (MRT) (143 +/- 30 min) of intravitreally administered quinidine were significantly different from those of the control (105 +/- 11 min, 0.0066 +/- 0.0007 min(-1), and 83 +/- 13 min, respectively). A 2-fold increase in the t(1/2) with a corresponding decrease in lambda(z) and a 1.5-fold increase in the MRT of quinidine were observed in the presence of topically coadministered 2% w/v PHS. Intravitreal coadministration of quinidine and verapamil resulted in a significant increase in t(1/2) (159 +/- 9 min) and a decrease in lambda(z) (0.0043 +/- 0.0002 min(-1)) of quinidine. The vitreal pharmacokinetic parameters of sodium fluorescein, alone or in the presence of topically instilled verapamil, did not show any statistically significant difference, indicating that ocular barrier integrity was not affected by topical verapamil administration. Results from this study suggest that topically applied P-gp substrates/modulators can alter vitreal pharmacokinetics of intravitreally administered P-gp substrates, possibly through the inhibition of P-gp expressed on the basolateral membrane of the retinal pigmented epithelium.
Collapse
Affiliation(s)
- Soumyajit Majumdar
- Department of Pharmaceutics, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | | | | |
Collapse
|
35
|
Mitra AK. Role of transporters in ocular drug delivery system. Pharm Res 2009; 26:1192-6. [PMID: 19291373 DOI: 10.1007/s11095-009-9862-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 02/20/2009] [Indexed: 01/13/2023]
|