1
|
Sung ZY, Liao YQ, Hou JH, Lai HH, Weng SM, Jao HW, Lu BJ, Chen CH. Advancements in fertility preservation strategies for pediatric male cancer patients: a review of cryopreservation and transplantation of immature testicular tissue. Reprod Biol Endocrinol 2024; 22:47. [PMID: 38637872 PMCID: PMC11025181 DOI: 10.1186/s12958-024-01219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/06/2024] [Indexed: 04/20/2024] Open
Abstract
Recently, there has been increasing emphasis on the gonadotoxic effects of cancer therapy in prepubertal boys. As advances in oncology treatments continue to enhance survival rates for prepubertal boys, the need for preserving their functional testicular tissue for future reproduction becomes increasingly vital. Therefore, we explore cutting-edge strategies in fertility preservation, focusing on the cryopreservation and transplantation of immature testicular tissue as a promising avenue. The evolution of cryopreservation techniques, from controlled slow freezing to more recent advancements in vitrification, with an assessment of their strengths and limitations was exhibited. Detailed analysis of cryoprotectants, exposure times, and protocols underscores their impact on immature testicular tissue viability. In transplantation strategy, studies have revealed that the scrotal site may be the preferred location for immature testicular tissue grafting in both autotransplantation and xenotransplantation scenarios. Moreover, the use of biomaterial scaffolds during graft transplantation has shown promise in enhancing graft survival and stimulating spermatogenesis in immature testicular tissue over time. This comprehensive review provides a holistic approach to optimize the preservation strategy of human immature testicular tissue in the future.
Collapse
Affiliation(s)
- Zih-Yi Sung
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Yong-Qi Liao
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Jung-Hsiu Hou
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Hong-Hsien Lai
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Sung-Ming Weng
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hai-Wei Jao
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Buo-Jia Lu
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Chi-Huang Chen
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan, ROC.
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.
| |
Collapse
|
2
|
Ye Q, Wang J, Wang B, Zhao M, Wu Z, Liu X. Establishment of an in Vitro Three-Dimensional Vascularized Micro-Tumor Model and Screening of Chemotherapeutic Drugs. Technol Cancer Res Treat 2024; 23:15330338241286755. [PMID: 39311637 PMCID: PMC11425739 DOI: 10.1177/15330338241286755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Breast cancer is the most common malignancy in women worldwide, and major challenges in its treatment include drug resistance and metastasis. Three-dimensional cell culture systems have received widespread attention in drug discovery studies but existing models have limitations, that warrant the development of a simple and repeatable three-dimensional culture model for high-throughput screening. In this study, we designed a simple, reproducible, and highly efficient microencapsulated device to co-culture MCF-7 cells and HUVECs in microcapsules to establish an in vitro vascularized micro-tumor model for chemotherapeutic drug screening. First, to construct a three-dimensional micro-tumor model, cell encapsulation devices were created using three different sizes of flat-mouthed needles. Immunohistochemistry and immunofluorescence assays were conducted to determine vascular lumen formation. Cell proliferation was detected using the Cell Counting Kit-8 assay. Finally, to observe the drug reactions between the models, anticancer drugs (doxorubicin or paclitaxel) were added 12 h after the two-dimensional cultured cells were plated or 7 days after cell growth in the core-shell microcapsules. Vascularized micro-tumors were obtained after 14 days of three-dimensional culture. The proliferation rate in the three-dimensional cultured cells was slower than that of two-dimensional cultured cells. Three-dimensional cultured cells were more resistant to anticancer drugs than two-dimensional cultured cells. This novel sample encapsulation device formed core-shell microcapsules and can be used to successfully construct 3D vascularized micro-tumors in vitro. The three-dimensional culture model may provide a platform for drug screening and is valuable for studying tumor development and angiogenesis.
Collapse
Affiliation(s)
- Qian Ye
- Department of Pathological Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Juanru Wang
- Department of Pathology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Boyang Wang
- Department of Pathological Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Min Zhao
- The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Zhengsheng Wu
- Department of Pathological Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaoli Liu
- Department of Pathological Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Liu Y, Liu H, Guo S, Qi J, Zhang R, Liu X, Sun L, Zong M, Cheng H, Wu X, Li B. Applications of Bacterial Cellulose-Based Composite Materials in Hard Tissue Regenerative Medicine. Tissue Eng Regen Med 2023; 20:1017-1039. [PMID: 37688748 PMCID: PMC10645761 DOI: 10.1007/s13770-023-00575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Cartilage, bone, and teeth, as the three primary hard tissues in the human body, have a significant application value in maintaining physical and mental health. Since the development of bacterial cellulose-based composite materials with excellent biomechanical strength and good biocompatibility, bacterial cellulose-based composites have been widely studied in hard tissue regenerative medicine. This paper provides an overview of the advantages of bacterial cellulose-based for hard tissue regeneration and reviews the recent progress in the preparation and research of bacterial cellulose-based composites in maxillofacial cartilage, dentistry, and bone. METHOD A systematic review was performed by searching the PubMed and Web of Science databases using selected keywords and Medical Subject Headings search terms. RESULTS Ideal hard tissue regenerative medicine materials should be biocompatible, biodegradable, non-toxic, easy to use, and not burdensome to the human body; In addition, they should have good plasticity and processability and can be prepared into materials of different shapes; In addition, it should have good biological activity, promoting cell proliferation and regeneration. Bacterial cellulose materials have corresponding advantages and disadvantages due to their inherent properties. However, after being combined with other materials (natural/ synthetic materials) to form composite materials, they basically meet the requirements of hard tissue regenerative medicine materials. We believe that it is worth being widely promoted in clinical applications in the future. CONCLUSION Bacterial cellulose-based composites hold great promise for clinical applications in hard tissue engineering. However, there are still several challenges that need to be addressed. Further research is needed to incorporate multiple disciplines and advance biological tissue engineering techniques. By enhancing the adhesion of materials to osteoblasts, providing cell stress stimulation through materials, and introducing controlled release systems into matrix materials, the practical application of bacterial cellulose-based composites in clinical settings will become more feasible in the near future.
Collapse
Affiliation(s)
- Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Haiyan Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Susu Guo
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jin Qi
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Ran Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Xiaoming Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Lingxiang Sun
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Mingrui Zong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Huaiyi Cheng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China.
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
4
|
Zhang S, Dong J, Pan R, Xu Z, Li M, Zang R. Structures, Properties, and Bioengineering Applications of Alginates and Hyaluronic Acid. Polymers (Basel) 2023; 15:2149. [PMID: 37177293 PMCID: PMC10181120 DOI: 10.3390/polym15092149] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In recent years, polymeric materials have been used in a wide range of applications in a variety of fields. In particular, in the field of bioengineering, the use of natural biomaterials offers a possible new avenue for the development of products with better biocompatibility, biodegradability, and non-toxicity. This paper reviews the structural and physicochemical properties of alginate and hyaluronic acid, as well as the applications of the modified cross-linked derivatives in tissue engineering and drug delivery. This paper summarizes the application of alginate and hyaluronic acid in bone tissue engineering, wound dressings, and drug carriers. We provide some ideas on how to replace or combine alginate-based composites with hyaluronic-acid-based composites in tissue engineering and drug delivery to achieve better eco-economic value.
Collapse
Affiliation(s)
- Shuping Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.D.)
| | | | | | | | | | | |
Collapse
|
5
|
Rocker AJ, Cavasin M, Johnson NR, Shandas R, Park D. Sulfonated Thermoresponsive Injectable Gel for Sequential Release of Therapeutic Proteins to Protect Cardiac Function after Myocardial Infarction. ACS Biomater Sci Eng 2022; 8:3883-3898. [PMID: 35950643 DOI: 10.1021/acsbiomaterials.2c00616] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myocardial infarction causes cardiomyocyte death and persistent inflammatory responses, which generate adverse pathological remodeling. Delivering therapeutic proteins from injectable materials in a controlled-release manner may present an effective biomedical approach for treating this disease. A thermoresponsive injectable gel composed of chitosan, conjugated with poly(N-isopropylacrylamide) and sulfonate groups, was developed for spatiotemporal protein delivery to protect cardiac function after myocardial infarction. The thermoresponsive gel delivered vascular endothelial growth factor (VEGF), interleukin-10 (IL-10), and platelet-derived growth factor (PDGF) in a sequential and sustained manner in vitro. An acute myocardial infarction mouse model was used to evaluate polymer biocompatibility and to determine therapeutic effects from the delivery system on cardiac function. Immunohistochemistry showed biocompatibility of the hydrogel, while the controlled delivery of the proteins reduced macrophage infiltration and increased vascularization. Echocardiography showed an improvement in ejection fraction and fractional shortening after injecting the thermal gel and proteins. A factorial design of experimental study was implemented to optimize the delivery system for the best combination and doses of proteins for further increasing stable vascularization and reducing inflammation using a subcutaneous injection mouse model. The results showed that VEGF, IL-10, and FGF-2 demonstrated significant contributions toward promoting long-term vascularization, while PDGF's effect was minimal.
Collapse
Affiliation(s)
- Adam J Rocker
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Maria Cavasin
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Noah R Johnson
- Department of Neurology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Robin Shandas
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
6
|
Zdiri K, Cayla A, Elamri A, Erard A, Salaun F. Alginate-Based Bio-Composites and Their Potential Applications. J Funct Biomater 2022; 13:jfb13030117. [PMID: 35997455 PMCID: PMC9397003 DOI: 10.3390/jfb13030117] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Over the last two decades, bio-polymer fibers have attracted attention for their uses in gene therapy, tissue engineering, wound-healing, and controlled drug delivery. The most commonly used bio-polymers are bio-sourced synthetic polymers such as poly (glycolic acid), poly (lactic acid), poly (e-caprolactone), copolymers of polyglycolide and poly (3-hydroxybutyrate), and natural polymers such as chitosan, soy protein, and alginate. Among all of the bio-polymer fibers, alginate is endowed with its ease of sol–gel transformation, remarkable ion exchange properties, and acid stability. Blending alginate fibers with a wide range of other materials has certainly opened many new opportunities for applications. This paper presents an overview on the modification of alginate fibers with nano-particles, adhesive peptides, and natural or synthetic polymers, in order to enhance their properties. The application of alginate fibers in several areas such as cosmetics, sensors, drug delivery, tissue engineering, and water treatment are investigated. The first section is a brief theoretical background regarding the definition, the source, and the structure of alginate. The second part deals with the physico-chemical, structural, and biological properties of alginate bio-polymers. The third part presents the spinning techniques and the effects of the process and solution parameters on the thermo-mechanical and physico-chemical properties of alginate fibers. Then, the fourth part presents the additives used as fillers in order to improve the properties of alginate fibers. Finally, the last section covers the practical applications of alginate composite fibers.
Collapse
Affiliation(s)
- Khmais Zdiri
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
- Laboratoire de Physique et Mécanique Textiles, École Nationale Supérieure d’Ingénieurs Sud-Alsace, Université de Haute Alsace, EA 4365, 68100 Mulhouse, France
- Correspondence:
| | - Aurélie Cayla
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
| | - Adel Elamri
- Unité de Recherche Matériaux et Procédés Textiles, École Nationale d’Ingénieurs de Monastir, Université de Monastir, UR17ES33, Monastir 5019, Tunisia
| | - Annaëlle Erard
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
| | - Fabien Salaun
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
| |
Collapse
|
7
|
Wang Y, Kankala RK, Ou C, Chen A, Yang Z. Advances in hydrogel-based vascularized tissues for tissue repair and drug screening. Bioact Mater 2022; 9:198-220. [PMID: 34820566 PMCID: PMC8586021 DOI: 10.1016/j.bioactmat.2021.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The construction of biomimetic vasculatures within the artificial tissue models or organs is highly required for conveying nutrients, oxygen, and waste products, for improving the survival of engineered tissues in vitro. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular biology have enabled the creation of three-dimensional (3D) tissues and organs composed of highly complex vascular systems. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the vascularization of tissues. Initially, the significance of vascular elements and the regeneration mechanisms of vascularization, including angiogenesis and vasculogenesis, are briefly introduced. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments in fabricating vascularized tissues or organs, in terms of tunable physical properties, high similarity in physiological environments, and alternative shaping mechanisms, among others. Furthermore, we discuss the utilization of such hydrogels-based vascularized tissues in various applications, including tissue regeneration, drug screening, and organ-on-chips. Finally, we put forward the key challenges, including multifunctionalities of hydrogels, selection of suitable cell phenotype, sophisticated engineering techniques, and clinical translation behind the development of the tissues with complex vasculatures towards their future development.
Collapse
Affiliation(s)
- Ying Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Caiwen Ou
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Zhilu Yang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| |
Collapse
|
8
|
Khan R, Haider S, Razak SIA, Haider A, Khan MUA, Wahit MU, Bukhari N, Ahmad A. Recent advances in renewable polymer/metal oxide systems used for tissue engineering. RENEWABLE POLYMERS AND POLYMER-METAL OXIDE COMPOSITES 2022:395-445. [DOI: 10.1016/b978-0-323-85155-8.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Troy E, Tilbury MA, Power AM, Wall JG. Nature-Based Biomaterials and Their Application in Biomedicine. Polymers (Basel) 2021; 13:3321. [PMID: 34641137 PMCID: PMC8513057 DOI: 10.3390/polym13193321] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Natural polymers, based on proteins or polysaccharides, have attracted increasing interest in recent years due to their broad potential uses in biomedicine. The chemical stability, structural versatility, biocompatibility and high availability of these materials lend them to diverse applications in areas such as tissue engineering, drug delivery and wound healing. Biomaterials purified from animal or plant sources have also been engineered to improve their structural properties or promote interactions with surrounding cells and tissues for improved in vivo performance, leading to novel applications as implantable devices, in controlled drug release and as surface coatings. This review describes biomaterials derived from and inspired by natural proteins and polysaccharides and highlights their promise across diverse biomedical fields. We outline current therapeutic applications of these nature-based materials and consider expected future developments in identifying and utilising innovative biomaterials in new biomedical applications.
Collapse
Affiliation(s)
- Eoin Troy
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
| | - Maura A. Tilbury
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
- SFI Centre for Medical Devices (CÚRAM), NUI Galway, H91 TK33 Galway, Ireland
| | - Anne Marie Power
- Zoology, School of Natural Sciences, NUI Galway, H91 TK33 Galway, Ireland;
| | - J. Gerard Wall
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
- SFI Centre for Medical Devices (CÚRAM), NUI Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
10
|
Serrano-Aroca Á, Ferrandis-Montesinos M, Wang R. Antiviral Properties of Alginate-Based Biomaterials: Promising Antiviral Agents against SARS-CoV-2. ACS APPLIED BIO MATERIALS 2021; 4:5897-5907. [PMID: 35006918 PMCID: PMC8291135 DOI: 10.1021/acsabm.1c00523] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/26/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic has made it essential to explore alternative antiviral materials. Alginate is a biodegradable, renewable, biocompatible, water-soluble and antiviral biopolymer with many potential biomedical applications. In this regard, this review shows 17 types of viruses that have been tested in contact with alginate and its related biomaterials. Most of these studies show that alginate-based materials possess little or no toxicity and are able to inhibit a wide variety of viruses affecting different organisms: in humans by the human immunodeficiency virus type 1, the hepatitis A, B, and C viruses, Sindbis virus, herpes simplex virus type 1 and 2, poliovirus type 1, rabies virus, rubella virus, and the influenza virus; in mice by the murine norovirus; in bacteria by the T4 coliphage, and in plants by the tobacco mosaic virus and the potato virus X. Many of these are enveloped positive-sense single-stranded RNA viruses, like SARS-CoV-2, which render alginate-based materials highly promising in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de
Investigación Traslacional San Alberto Magno, Universidad
Católica de Valencia San Vicente Mártir, c/Guillem de Castro
94, 46001 Valencia, Spain
| | - María Ferrandis-Montesinos
- Institute of Bioengineering, Universidad
Miguel Hernández, Campus de Elche, 03202 Elche, Alicante,
Spain
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese
Medicine, Institute of Chinese Medical Sciences, University of
Macau, Taipa, Macau 999078, China
| |
Collapse
|
11
|
Paz-Artigas L, Ziani K, Alcaine C, Báez-Díaz C, Blanco-Blázquez V, Pedraz JL, Ochoa I, Ciriza J. Benefits of cryopreservation as long-term storage method of encapsulated cardiosphere-derived cells for cardiac therapy: A biomechanical analysis. Int J Pharm 2021; 607:121014. [PMID: 34400275 DOI: 10.1016/j.ijpharm.2021.121014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Cardiosphere-derived cells (CDCs) encapsulated within alginate-poly-L-lysine-alginate (APA) microcapsules present a promising treatment alternative for myocardial infarction. However, clinical translatability of encapsulated CDCs requires robust long-term preservation of microcapsule and cell stability, since cell culture at 37 °C for long periods prior to patient implantation involve high resource, space and manpower costs, sometimes unaffordable for clinical facilities. Cryopreservation in liquid nitrogen is a well-established procedure to easily store cells with good recovery rate, but its effects on encapsulated cells are understudied. In this work, we assess both the biological response of CDCs and the mechanical stability of microcapsules after long-term (i.e., 60 days) cryopreservation and compare them to encapsulated CDCs cultured at 37 °C. We investigate for the first time the effects of cryopreservation on stiffness and topographical features of microcapsules for cell therapy. Our results show that functionality of encapsulated CDCs is optimum during 7 days at 37 °C, while cryopreservation seems to better guarantee the stability of both CDCs and APA microcapsules properties during longer storage than 15 days. These results point out cryopreservation as a suitable technique for long-term storage of encapsulated cells to be translated from the bench to the clinic.
Collapse
Affiliation(s)
- Laura Paz-Artigas
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
| | - Kaoutar Ziani
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Spain
| | - Clara Alcaine
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
| | - Claudia Báez-Díaz
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER CV), Spain
| | - Virginia Blanco-Blázquez
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER CV), Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Spain.
| | - Jesús Ciriza
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Spain.
| |
Collapse
|
12
|
Narasimhan B, Narasimhan H, Lorente-Ros M, Romeo FJ, Bhatia K, Aronow WS. Therapeutic angiogenesis in coronary artery disease: a review of mechanisms and current approaches. Expert Opin Investig Drugs 2021; 30:947-963. [PMID: 34346802 DOI: 10.1080/13543784.2021.1964471] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Despite tremendous advances, the shortcomings of current therapies for coronary disease are evidenced by the fact that it remains the leading cause of death in many parts of the world. There is hence a drive to develop novel therapies to tackle this disease. Therapeutic approaches to coronary angiogenesis have long been an area of interest in lieu of its incredible, albeit unrealized potential. AREAS COVERED This paper offers an overview of mechanisms of native angiogenesis and a description of angiogenic growth factors. It progresses to outline the advances in gene and stem cell therapy and provides a brief description of other investigational approaches to promote angiogenesis. Finally, the hurdles and limitations unique to this particular area of study are discussed. EXPERT OPINION An effective, sustained, and safe therapeutic option for angiogenesis truly could be the paradigm shift for cardiovascular medicine. Unfortunately, clinically meaningful therapeutic options remain elusive because promising animal studies have not been replicated in human trials. The sheer complexity of this process means that numerous major hurdles remain before therapeutic angiogenesis truly makes its way from the bench to the bedside.
Collapse
Affiliation(s)
- Bharat Narasimhan
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | | | - Marta Lorente-Ros
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | - Francisco Jose Romeo
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | - Kirtipal Bhatia
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| |
Collapse
|
13
|
Hu T, Lo ACY. Collagen-Alginate Composite Hydrogel: Application in Tissue Engineering and Biomedical Sciences. Polymers (Basel) 2021; 13:1852. [PMID: 34199641 PMCID: PMC8199729 DOI: 10.3390/polym13111852] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Alginate (ALG), a polysaccharide derived from brown seaweed, has been extensively investigated as a biomaterial not only in tissue engineering but also for numerous biomedical sciences owing to its wide availability, good compatibility, weak cytotoxicity, low cost, and ease of gelation. Nevertheless, alginate lacks cell-binding sites, limiting long-term cell survival and viability in 3D culture. Collagen (Col), a major component protein found in the extracellular matrix (ECM), exhibits excellent biocompatibility and weak immunogenicity. Furthermore, collagen contains cell-binding motifs, which facilitate cell attachment, interaction, and spreading, consequently maintaining cell viability and promoting cell proliferation. Recently, there has been a growing body of investigations into collagen-based hydrogel trying to overcome the poor mechanical properties of collagen. In particular, collagen-alginate composite (CAC) hydrogel has attracted much attention due to its excellent biocompatibility, gelling under mild conditions, low cytotoxicity, controllable mechanic properties, wider availability as well as ease of incorporation of other biomaterials and bioactive agents. This review aims to provide an overview of the properties of alginate and collagen. Moreover, the application of CAC hydrogel in tissue engineering and biomedical sciences is also discussed.
Collapse
Affiliation(s)
| | - Amy C. Y. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
14
|
Borrelli MA, Turnquist HR, Little SR. Biologics and their delivery systems: Trends in myocardial infarction. Adv Drug Deliv Rev 2021; 173:181-215. [PMID: 33775706 PMCID: PMC8178247 DOI: 10.1016/j.addr.2021.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is the leading cause of death around the world, in which myocardial infarction (MI) is a precipitating event. However, current therapies do not adequately address the multiple dysregulated systems following MI. Consequently, recent studies have developed novel biologic delivery systems to more effectively address these maladies. This review utilizes a scientometric summary of the recent literature to identify trends among biologic delivery systems designed to treat MI. Emphasis is placed on sustained or targeted release of biologics (e.g. growth factors, nucleic acids, stem cells, chemokines) from common delivery systems (e.g. microparticles, nanocarriers, injectable hydrogels, implantable patches). We also evaluate biologic delivery system trends in the entire regenerative medicine field to identify emerging approaches that may translate to the treatment of MI. Future developments include immune system targeting through soluble factor or chemokine delivery, and the development of advanced delivery systems that facilitate the synergistic delivery of biologics.
Collapse
Affiliation(s)
- Matthew A Borrelli
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA.
| | - Heth R Turnquist
- Starzl Transplantation Institute, 200 Darragh St, Pittsburgh, PA 15213, USA; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Pharmaceutical Science, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, USA; Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA.
| |
Collapse
|
15
|
Teng K, An Q, Chen Y, Zhang Y, Zhao Y. Recent Development of Alginate-Based Materials and Their Versatile Functions in Biomedicine, Flexible Electronics, and Environmental Uses. ACS Biomater Sci Eng 2021; 7:1302-1337. [PMID: 33764038 DOI: 10.1021/acsbiomaterials.1c00116] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alginate is a natural polysaccharide that is easily chemically modified or compounded with other components for various types of functionalities. The alginate derivatives are appealing not only because they are biocompatible so that they can be used in biomedicine or tissue engineering but also because of the prospering bioelectronics that require various biomaterials to interface between human tissues and electronics or to serve as electronic components themselves. The study of alginate-based materials, especially hydrogels, have repeatedly found new frontiers over recent years. In this Review, we document the basic properties of alginate, their chemical modification strategies, and the recent development of alginate-based functional composite materials. The newly thrived functions such as ionically conductive hydrogel or 3D or 4D cell culturing matrix are emphasized among other appealing potential applications. We expect that the documentation of relevant information will stimulate scientific efforts to further develop biocompatible electronics or smart materials and to help the research domain better address the medicine, energy, and environmental challenges faced by human societies.
Collapse
Affiliation(s)
- Kaixuan Teng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yao Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yantao Zhao
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, Beijing 100048, China.,Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, China
| |
Collapse
|
16
|
Characterization of encapsulated porcine cardiosphere-derived cells embedded in 3D alginate matrices. Int J Pharm 2021; 599:120454. [PMID: 33676988 DOI: 10.1016/j.ijpharm.2021.120454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/22/2022]
Abstract
Myocardial infarction is caused by an interruption of coronary blood flow, leading to one of the main death causes worldwide. Current therapeutic approaches are palliative and not able to solve the loss of cardiac tissue. Cardiosphere derived cells (CDCs) reduce scarring, and increase viable myocardium, with safety and adequate biodistribution, but show a low rate engraftment and survival after implantation. In order to solve the low retention, we propose the encapsulation of CDCs within three-dimensional alginate-poly-L-lysine-alginate matrix as therapy for cardiac regeneration. In this work, we demonstrate the encapsulation of CDCs in alginate matrix, with no decrease in viability over a month, and showing the preservation of CDCs phenotype, differentiation potential, gene expression profile and growth factor release after encapsulation, moving a step forward to clinical translation of CDCs therapy in regeneration in heart failure.
Collapse
|
17
|
Zhang Y, Pham HM, Munguia-Lopez JG, Kinsella JM, Tran SD. The Optimization of a Novel Hydrogel-Egg White-Alginate for 2.5D Tissue Engineering of Salivary Spheroid-Like Structure. Molecules 2020; 25:E5751. [PMID: 33291221 PMCID: PMC7730374 DOI: 10.3390/molecules25235751] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/24/2022] Open
Abstract
Hydrogels have been used for a variety of biomedical applications; in tissue engineering, they are commonly used as scaffolds to cultivate cells in a three-dimensional (3D) environment allowing the formation of organoids or cellular spheroids. Egg white-alginate (EWA) is a novel hydrogel which combines the advantages of both egg white and alginate; the egg white material provides extracellular matrix (ECM)-like proteins that can mimic the ECM microenvironment, while alginate can be tuned mechanically through its ionic crosslinking property to modify the scaffold's porosity, strength, and stiffness. In this study, a frozen calcium chloride (CaCl2) disk technique to homogenously crosslink alginate and egg white hydrogel is presented for 2.5D culture of human salivary cells. Different EWA formulations were prepared and biologically evaluated as a spheroid-like structure platform. Although all five EWA hydrogels showed biocompatibility, the EWA with 1.5% alginate presented the highest cell viability, while EWA with 3% alginate promoted the formation of larger size salivary spheroid-like structures. Our EWA hydrogel has the potential to be an alternative 3D culture scaffold that can be used for studies on drug-screening, cell migration, or as an in vitro disease model. In addition, EWA can be used as a potential source for cell transplantation (i.e., using this platform as an ex vivo environment for cell expansion). The low cost of producing EWA is an added advantage.
Collapse
Affiliation(s)
- Yuli Zhang
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (Y.Z.); (H.M.P.); (J.G.M.-L.)
| | - Hieu M. Pham
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (Y.Z.); (H.M.P.); (J.G.M.-L.)
| | - Jose G. Munguia-Lopez
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (Y.Z.); (H.M.P.); (J.G.M.-L.)
- Department of Bioengineering, McGill University, 3480 University Street, Montreal, QC H3A 0E9, Canada;
| | - Joseph M. Kinsella
- Department of Bioengineering, McGill University, 3480 University Street, Montreal, QC H3A 0E9, Canada;
| | - Simon D. Tran
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (Y.Z.); (H.M.P.); (J.G.M.-L.)
| |
Collapse
|
18
|
Rezaie Shirmard L, Ghofrani M, Bahari Javan N, Bayrami S, Tavassoli A, Rezaie A, Amini M, Kebriaee-Zadeh A, Rouini MR, Dinarvand R, Rafiee-Tehrani M, Dorkoosh FA. Improving the in-vivo biological activity of fingolimod loaded PHBV nanoparticles by using hydrophobically modified alginate. Drug Dev Ind Pharm 2020; 46:318-328. [PMID: 31976771 DOI: 10.1080/03639045.2020.1721524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Uncontrolled distribution of nanoparticles (NPs) within the body can significantly decrease the efficiency of drug therapy and is considered among the main restrictions of NPs application. The aim of this study was to develop a depot combination delivery system (CDS) containing fingolimod loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) NPs dispersed into a matrix of oleic acid-grafted-aminated alginate (OA-g-AAlg) to minimize the nonspecific biodistribution (BD) of PHBV NPs. OA-g-AAlg was synthesized in two step; First, Alg was aminated by using adipic dihydrazide (ADH). The degree of hyrazide group substitution of Alg was determined by trinitro-benzene-sulfonic acid (TNBS) assay. Second, OA was attached to AAlg through formation of an amide bond. Chemical structure of OA-g-AAlg was confirmed with FTIR and HNMR spectroscopy. Furthermore, rheological properties of OA-g-AAlg with different grafting ratios were evaluated. In-vitro release studies indicated that 47% of fingolimod was released from the CDS within 28 days. Blood and tissue samples were analyzed using liquid chromatography/tandem mass spectrometry following subcutaneous (SC) injection of fingolimod-CDS into Wistar rats. The elimination phase half-life of CDS-fingolimod was significantly higher than that of fingolimod (∼32 d vs. ∼20 h). To investigate the therapeutic efficacy, lymphocyte count was assessed over a 40 day period in Wistar rats. Peripheral blood lymphocyte count decreased from baseline by 27 ± 8% in 2 days after injection. Overall, the designed CDS represented promising results in improving the pharmacokinetic properties of fingolimod. Therefore, we believe that this sustained release formulation has a great potential to be applied to delivery of various therapeutics.
Collapse
Affiliation(s)
- Leila Rezaie Shirmard
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahdieh Ghofrani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nika Bahari Javan
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Bayrami
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdollah Tavassoli
- Department of Analytical chemistry, University of Mazandaran, Babolsar, Iran
| | - Amir Rezaie
- School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Kebriaee-Zadeh
- Department of Pharmacoeconomy and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Rouini
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Rafiee-Tehrani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Han X, Huang J, To AK, Lai JH, Xiao P, Wu EX, Xu J, Chan KW. CEST MRI detectable liposomal hydrogels for multiparametric monitoring in the brain at 3T. Theranostics 2020; 10:2215-2228. [PMID: 32089739 PMCID: PMC7019148 DOI: 10.7150/thno.40146] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023] Open
Abstract
Adjuvant treatment using local drug delivery is applied in treating glioblastoma multiforme (GBM) after tumor resection. However, there are no non-invasive imaging techniques available for tracking the compositional changes of hydrogel-based drug treatment. Methods: We developed Chemical Exchange Saturation Transfer Magnetic Resonance Imaging (CEST MRI) detectable and injectable liposomal hydrogel to monitor these events in vivo at 3T clinical field. Mechanical attributes of these hydrogels and their in vitro and in vivo CEST imaging properties were systematically studied. Results: The MRI detectable hydrogels were capable of generating multiparametric readouts for monitoring specific components of the hydrogel matrix simultaneously and independently. Herein, we report, for the first time, CEST contrast at -3.4 ppm provides an estimated number of liposomes and CEST contrast at 5 ppm provides an estimated amount of encapsulated drug. CEST contrast decreased by 1.57% at 5 ppm, while the contrast at -3.4 ppm remained constant over 3 d in vivo, demonstrating different release kinetics of these components from the hydrogel matrix. Furthermore, histology analysis confirmed that the CEST contrast at -3.4 ppm was associated with liposome concentrations. Conclusion: This multiparametric CEST imaging of individual compositional changes in liposomal hydrogels, formulated with clinical-grade materials at 3T and described in this study, has the potential to facilitate the refinement of adjuvant treatment for GBM.
Collapse
|
20
|
Yoon JP, Chung SW, Jung JW, Lee YS, Kim KI, Park GY, Kim HM, Choi JH. Is a Local Administration of Parathyroid Hormone Effective to Tendon-to-Bone Healing in a Rat Rotator Cuff Repair Model? J Orthop Res 2020; 38:82-91. [PMID: 31441073 DOI: 10.1002/jor.24452] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/02/2019] [Indexed: 02/04/2023]
Abstract
To evaluate the effect of local parathyroid hormone (PTH) administration on rotator cuff tendon-to-bone healing in a rat model compared with systemic PTH injection and untreated controls. PTH-alginate scaffold was prepared and sustained release of PTH was confirmed. Bilateral supraspinatus tendon repairs were performed in 39 rats (group 1, supraspinatus repair only; group 2, supraspinatus repair with systemic PTH injection; group 3, supraspinatus repair with local PTH administration via an absorbable scaffold; n = 13 each). Biomechanical (cross-sectional area, mode of failure, load to failure, and ultimate stress: right side) and histological analyses (hematoxylin and eosin stain, Masson's Trichrome stain Picrosirius red stain, Immunohistochemistry for BMP2, PTH1R, ColI, and ColIII: Left side) were performed to evaluate tendon-to-bone healing quality at 8 weeks after repair, and blood test (osteocalcin and procollagen type I N-terminal pro-peptide [PINP] levels) was performed in all rats. There was no intergroup difference in the healing failure rate (p = 0.910) or failure mode (p = 0.585). Biomechanically, subjects in groups 2 and 3 exhibited significantly larger cross-sectional areas and higher ultimate failure loads and ultimate stress than those in group 1 (all p < 0.05); however, no differences were noted between groups 2 and 3 (all p > 0.05). Histologically, groups 2 and 3 exhibited more organized tendon-to-bone interface structures with higher density, parallel orientation, and collagen fiber continuity than group 1 (all p < 0.05 except collagen fiber continuity in group 1 vs. 2); however, no differences in histological parameters between groups 2 and 3 (all p > 0.05). The protein levels of bone morphogenic protein 2, PTH 1 receptor, and collagen I and III and the serum level of PINP were increased in groups 2 and 3 versus group 1 (all p < 0.05) without showing differences between groups 2 and 3 (all p > 0.05). Local PTH administration using an absorbable scaffold improved the biomechanical and histological outcomes of rotator cuff tendon-to-bone healing comparable with systemic PTH injection at 8 weeks after repair in a rat model. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:82-91, 2020.
Collapse
Affiliation(s)
- Jong Pil Yoon
- Department of Orthopaedic Surgery, College of Medicine, Kyung Pook National University, Daegu, Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Korea
| | - Jae Wook Jung
- Department of Orthopaedic Surgery, College of Medicine, Kyung Pook National University, Daegu, Korea
| | - Yong-Soo Lee
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Korea
| | - Kwang-Il Kim
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Korea
| | - Ga Young Park
- Department of Bio-Fibers and Materials Science, College of Agriculture and Life Science, School of Medicine, KyungPook National University, Daegu, Korea
| | - Hun-Min Kim
- Department of Bio-Fibers and Materials Science, College of Agriculture and Life Science, School of Medicine, KyungPook National University, Daegu, Korea
| | - Jin-Hyun Choi
- Department of Bio-Fibers and Materials Science, College of Agriculture and Life Science, School of Medicine, KyungPook National University, Daegu, Korea
| |
Collapse
|
21
|
Kavitha N, Karunya TP, Kanchana S, Mohan K, Sivaramakrishnan R, Uthra S, Kapilan K, Yuvaraj D, Arumugam M. Formulation of alginate based hydrogel from brown seaweed, Turbinaria conoides for biomedical applications. Heliyon 2019; 5:e02916. [PMID: 31890939 PMCID: PMC6928261 DOI: 10.1016/j.heliyon.2019.e02916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/06/2019] [Accepted: 11/21/2019] [Indexed: 12/01/2022] Open
Abstract
Sodium Alginate (SA) is an excellent carrier in various drug delivery systems. In this study, SA was synthesized from brown seaweed, Turbinaria conoides with a yield of 31.3 ± 0.86%. The analysis of physicochemical properties of extracted alginate (ALG) determined its purity. The structural confirmations of ALG were studied through FTIR, XRD and SEM analysis. Formulation of ALG with collagen (COL) as a wound healing microfilm showed potential anti-inflammatory properties (81.3 ± 1.77%) and sustained drug release. Likewise, the ALG microbead encapsulated with an anticancer drug, Tamoxifen indicated an in vitro sustained release in the range of 62 ± 0.70% - 91 ± 0.56%. The overall swelling behavior of both the hydrogels, microfilm and microbead provides new opportunities for development of natural ALG in this therapeutic era.
Collapse
Affiliation(s)
- Naidu Kavitha
- CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, India, 608502
| | - Thennarasu Padmini Karunya
- Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, India, 600062
| | - Shankar Kanchana
- CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, India, 608502
| | - Kumar Mohan
- CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, India, 608502
| | | | - Selvaraj Uthra
- CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, India, 608502
| | - Kalimuthu Kapilan
- CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, India, 608502
| | - Dinakarkumar Yuvaraj
- Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, India, 600062
| | - Muthuvel Arumugam
- CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, India, 608502
| |
Collapse
|
22
|
McCarthy RR, Ullah MW, Booth P, Pei E, Yang G. The use of bacterial polysaccharides in bioprinting. Biotechnol Adv 2019; 37:107448. [DOI: 10.1016/j.biotechadv.2019.107448] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
|
23
|
Perić Kačarević Ž, Rider P, Alkildani S, Retnasingh S, Pejakić M, Schnettler R, Gosau M, Smeets R, Jung O, Barbeck M. An introduction to bone tissue engineering. Int J Artif Organs 2019; 43:69-86. [PMID: 31544576 DOI: 10.1177/0391398819876286] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone tissue has the capability to regenerate itself; however, defects of a critical size prevent the bone from regenerating and require additional support. To aid regeneration, bone scaffolds created out of autologous or allograft bone can be used, yet these produce problems such as fast degradation rates, reduced bioactivity, donor site morbidity or the risk of pathogen transmission. The development of bone tissue engineering has been used to create functional alternatives to regenerate bone. This can be achieved by producing bone tissue scaffolds that induce osteoconduction and integration, provide mechanical stability, and either integrate into the bone structure or degrade and are excreted by the body. A range of different biomaterials have been used to this end, each with their own advantages and disadvantages. This review will introduce the requirements of bone tissue engineering, beginning with the regeneration process of bone before exploring the requirements of bone tissue scaffolds. Aspects covered include the manufacturing process as well as the different materials used and the incorporation of bioactive molecules, growth factors and cells.
Collapse
Affiliation(s)
- Željka Perić Kačarević
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Patrick Rider
- Research and Development, botiss biomaterials GmbH, Berlin, Germany
| | - Said Alkildani
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman, Jordan
| | - Sujith Retnasingh
- Institute for Environmental Toxicology, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Marija Pejakić
- Department of Dental Medicine, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Reinhard Schnettler
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ole Jung
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mike Barbeck
- Research and Development, botiss biomaterials GmbH, Berlin, Germany.,Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,BerlinAnalytix GmbH, Berlin, Germany
| |
Collapse
|
24
|
Wei Z, Volkova E, Blatchley MR, Gerecht S. Hydrogel vehicles for sequential delivery of protein drugs to promote vascular regeneration. Adv Drug Deliv Rev 2019; 149-150:95-106. [PMID: 31421149 PMCID: PMC6889011 DOI: 10.1016/j.addr.2019.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/04/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
In recent years, as the mechanisms of vasculogenesis and angiogenesis have been uncovered, the functions of various pro-angiogenic growth factors (GFs) and cytokines have been identified. Therefore, therapeutic angiogenesis, by delivery of GFs, has been sought as a treatment for many vascular diseases. However, direct injection of these protein drugs has proven to have limited clinical success due to their short half-lives and systemic off-target effects. To overcome this, hydrogel carriers have been developed to conjugate single or multiple GFs with controllable, sustained, and localized delivery. However, these attempts have failed to account for the temporal complexity of natural angiogenic pathways, resulting in limited therapeutic effects. Recently, the emerging ideas of optimal sequential delivery of multiple GFs have been suggested to better mimic the biological processes and to enhance therapeutic angiogenesis. Incorporating sequential release into drug delivery platforms will likely promote the formation of neovasculature and generate vast therapeutic potential.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eugenia Volkova
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael R Blatchley
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Ong W, Pinese C, Chew SY. Scaffold-mediated sequential drug/gene delivery to promote nerve regeneration and remyelination following traumatic nerve injuries. Adv Drug Deliv Rev 2019; 149-150:19-48. [PMID: 30910595 DOI: 10.1016/j.addr.2019.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Neural tissue regeneration following traumatic injuries is often subpar. As a result, the field of neural tissue engineering has evolved to find therapeutic interventions and has seen promising outcomes. However, robust nerve and myelin regeneration remain elusive. One possible reason may be the fact that tissue regeneration often follows a complex sequence of events in a temporally-controlled manner. Although several other fields of tissue engineering have begun to recognise the importance of delivering two or more biomolecules sequentially for more complete tissue regeneration, such serial delivery of biomolecules in neural tissue engineering remains limited. This review aims to highlight the need for sequential delivery to enhance nerve regeneration and remyelination after traumatic injuries in the central nervous system, using spinal cord injuries as an example. In addition, possible methods to attain temporally-controlled drug/gene delivery are also discussed for effective neural tissue regeneration.
Collapse
|
26
|
Abstract
The ability to generate new microvessels in desired numbers and at desired locations has been a long-sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so-called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155-1212, 2019.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts, USA
| |
Collapse
|
27
|
Tissue Engineering Strategies for Intervertebral Disc Treatment Using Functional Polymers. Polymers (Basel) 2019; 11:polym11050872. [PMID: 31086085 PMCID: PMC6572548 DOI: 10.3390/polym11050872] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc (IVD) is the fibrocartilage between the vertebrae, allowing the spine to move steadily by bearing multidirectional complex loads. Aging or injury usually causes degeneration of IVD, which is one of the main reasons for low back pain prevalent worldwide and reduced quality of life. While various treatment strategies for degenerative IVD have been studied using in vitro studies, animal experiments, and clinical trials, there are unsolved limitations for endogenous regeneration of degenerative IVD. In this respect, several tissue engineering strategies that are based on the cell and scaffolds have been extensively researched with positive outcomes for regeneration of IVD tissues. Scaffolds made of functional polymers and their diverse forms mimicking the macro- and micro-structure of native IVD enhance the biological and mechanical properties of the scaffolds for IVD regeneration. In this review, we discuss diverse morphological and functional polymers and tissue engineering strategies for endogenous regeneration of degenerative IVD. Tissue engineering strategies using functional polymers are promising therapeutics for fundamental and endogenous regeneration of degenerative IVD.
Collapse
|
28
|
Spatiotemporal release of VEGF from biodegradable polylactic-co-glycolic acid microspheres induces angiogenesis in chick chorionic allantoic membrane assay. Int J Pharm 2019; 561:236-243. [PMID: 30853484 DOI: 10.1016/j.ijpharm.2019.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 11/20/2022]
Abstract
While vascular endothelial growth factor (VEGF) is an acknowledged potent pro-angiogenic agent there is a need to deliver it at an appropriate concentration for several days to achieve angiogenesis. The aim of this study was to produce microspheres of biodegradable polylactic-co-glycolic acid (PLGA) tailored to achieve sustained release of VEGF at an appropriate concentration over seven days, avoiding excessive unregulated release of VEGF that has been associated with the formation of leaky blood vessels. Several formulations were examined to produce microspheres loaded with both human serum albumin (HSA) and VEGF to achieve release of VEGF between 3 and 10 ng per ml for seven days to match the therapeutic window desired for angiogenesis. In vitro experiments showed an increase in endothelial cell proliferation in response to microspheres bearing VEGF. Similarly, when microspheres containing VEGF were added to the chorionic membrane of fertilised chicken eggs, there was an increase in the development of blood vessels over seven days in response, which was significant for microspheres bearing VEGF and HSA, but not VEGF alone. There was an increase in both blood vessel density and branching - both signs of proangiogenic activity. Further, there was clearly migration of cells to the VEGF loaded microspheres. In summary, we describe the development of an injectable delivery vehicle to achieve spatiotemporal release of physiologically relevant levels of VEGF for several days and demonstrate the angiogenic response to this. We propose that such a treatment vehicle would be suitable for the treatment of ischemic tissue or wounds.
Collapse
|
29
|
Stößlein S, Grunwald I, Stelten J, Hartwig A. In-situ determination of time-dependent alginate-hydrogel formation by mechanical texture analysis. Carbohydr Polym 2019; 205:287-294. [DOI: 10.1016/j.carbpol.2018.10.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022]
|
30
|
Kim DH, Min SG, Yoon JP, Park GY, Choi JH, Jung JW, Lee HJ, Kim HJ, Chung SW, Kim JY. Mechanical Augmentation With Absorbable Alginate Sheet Enhances Healing of the Rotator Cuff. Orthopedics 2019; 42:e104-e110. [PMID: 30540880 DOI: 10.3928/01477447-20181206-04] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/08/2018] [Indexed: 02/03/2023]
Abstract
For anatomical restoration of a repaired rotator cuff, mechanical augmentation of the repaired structure is essential. Using histological and biomechanical evaluation in a rat model, the authors sought to determine the efficacy of an absorbable alginate sheet at the supraspinatus tendon-to-bone repair site for healing of the rotator cuff tear. Forty adult (12 weeks old) male Sprague- Dawley wild-type rats were used in this study. The animals were randomly separated into 2 groups: group 1, conventional supraspinatus repair with acute repair; or group 2, supraspinatus repair with absorbable alginate sheet. Biomechanical and histological analyses were performed at 6 and 12 weeks after index rotator cuff surgery. Compared with group 1, group 2 exhibited a significantly greater mean ultimate failure load (group 1, 23.70±3.87 N; group 2, 61.44±43.67 N; P=.023) and mean ultimate stress (group 1, 2.83±0.50 MPa; group 2, 7.36±2.87 MPa; P=.020). However, 6-week outcomes were not significantly different. On histological scoring, compared with group 1, group 2 exhibited a significantly greater mean 6-week score (group 1, 4.10±1.72 points; group 2, 7.80±1.47 points; P<.001) and mean 12-week score (group 1, 3.50±1.00 points; group 2, 5.25±2.62 points; P=.020). Mechanical augmentation with absorbable alginate may improve tendon healing after surgical repair of the rotator cuff. [Orthopedics. 2019; 42(1):e104-e110.].
Collapse
|
31
|
Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB. Alginate Nanoparticles for Drug Delivery and Targeting. Curr Pharm Des 2019; 25:1312-1334. [PMID: 31465282 DOI: 10.2174/1381612825666190425163424] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022]
Abstract
Nanotechnology refers to the control, manipulation, study and manufacture of structures and devices at the nanometer size range. The small size, customized surface, improved solubility and multi-functionality of nanoparticles will continue to create new biomedical applications, as nanoparticles allow to dominate stability, solubility and bioavailability, as well controlled release of drugs. The type of a nanoparticle, and its related chemical, physical and morphological properties influence its interaction with living cells, as well as determine the route of clearance and possible toxic effects. This field requires cross-disciplinary research and gives opportunities to design and develop multifunctional devices, which allow the diagnosis and treatment of devastating diseases. Over the past few decades, biodegradable polymers have been studied for the fabrication of drug delivery systems. There was extensive development of biodegradable polymeric nanoparticles for drug delivery and tissue engineering, in view of their applications in controlling the release of drugs, stabilizing labile molecules from degradation and site-specific drug targeting. The primary aim is to reduce dosing frequency and prolong the therapeutic outcomes. For this purpose, inert excipients should be selected, being biopolymers, e.g. sodium alginate, commonly used in controlled drug delivery. Nanoparticles composed of alginate (known as anionic polysaccharide widely distributed in the cell walls of brown algae which, when in contact with water, forms a viscous gum) have emerged as one of the most extensively characterized biomaterials used for drug delivery and targeting a set of administration routes. Their advantages include not only the versatile physicochemical properties, which allow chemical modifications for site-specific targeting but also their biocompatibility and biodegradation profiles, as well as mucoadhesiveness. Furthermore, mechanical strength, gelation, and cell affinity can be modulated by combining alginate nanoparticles with other polymers, surface tailoring using specific targeting moieties and by chemical or physical cross-linking. However, for every physicochemical modification in the macromolecule/ nanoparticles, a new toxicological profile may be obtained. In this paper, the different aspects related to the use of alginate nanoparticles for drug delivery and targeting have been revised, as well as how their toxicological profile will determine the therapeutic outcome of the drug delivery system.
Collapse
Affiliation(s)
- Patricia Severino
- Universidade Tiradentes (Unit), Av. Murilo Dantas, 300, Farolandia, Aracaju-SE, CEP 49.032-490, Brazil
- Instituto de Tecnologia e Pesquisa, Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas, 300, Aracaju - SE, CEP 49.032-490, Brazil
| | - Classius F da Silva
- Universidade Federal de Sao Paulo, Instituto de Ciências Ambientais, Quimicas e Farmaceuticas, Departamento de Engenharia Quimica, Rua Sao Nicolau, 210, Diadema - SP, CEP 09.913-030, Brazil
| | - Luciana N Andrade
- Universidade Tiradentes (Unit), Av. Murilo Dantas, 300, Farolandia, Aracaju-SE, CEP 49.032-490, Brazil
- Instituto de Tecnologia e Pesquisa, Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas, 300, Aracaju - SE, CEP 49.032-490, Brazil
| | - Daniele de Lima Oliveira
- Universidade Tiradentes (Unit), Av. Murilo Dantas, 300, Farolandia, Aracaju-SE, CEP 49.032-490, Brazil
- Instituto de Tecnologia e Pesquisa, Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas, 300, Aracaju - SE, CEP 49.032-490, Brazil
| | - Joana Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| |
Collapse
|
32
|
He Y, Yu X, Chen Z, Li L. Stromal vascular fraction cells plus sustained release VEGF/Ang-1-PLGA microspheres improve fat graft survival in mice. J Cell Physiol 2018; 234:6136-6146. [PMID: 30238985 DOI: 10.1002/jcp.27368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/16/2018] [Indexed: 01/17/2023]
Abstract
Autologous fat transplantation is increasingly applied in plastic and reconstructive surgery. Stromal vascular fraction cells (SVFs) combined with angiogenic factors, such as VEGF (vascular endothelial growth factor A) and Ang-1 (angiogenin-1), can improve angiogenesis, which is a critical factor for graft survival. However, direct transplant with such a mixture is insufficient owing to the short half-life of angiogenic factors. In this study, we evaluated whether a double sustained release system of VEGF/ANG-1-PLGA (poly (lactic-co-glycolic acid)) microspheres plus SVFs can improve angiogenesis and graft survival after autologous fat transplantation. VEGF/ANG-1-PLGA-sustained release microspheres were fabricated by a modified double emulsion-solvent evaporation technique. Human aspirated fat was mixed with SVF suspension plus VEGF/ANG-1 sustained release microspheres (Group C), SVF suspension (Group B) alone, or Dulbecco's modified Eagle's medium as the control (Group A). Eighteen immunocompromised nude mice were injected with these three mixtures subcutaneously at random positions. After 8 weeks, the mean volume of grafts was greater in the SVFs plus VEGF/ANG-1-PLGA group than in the control and SVFs groups (1.08 ± 0.069 ml vs. 0.62 ± 0.036 ml, and 0.83 ± 0.059 ml, respectively). Histological assessments showed that lower fibrosis, but greater microvascular density in the SVFs plus VEGF/ANG-1-PLGA group than in the other groups, though the SVFs group also had an appropriate capillary density and reduced fibrosis. Our findings indicate that SVFs plus VEGF/ANG-1-PLGA-sustained release microspheres can improve angiogenesis and graft survival after autologous fat transplantation.
Collapse
Affiliation(s)
- Yucang He
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaofang Yu
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuojie Chen
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liqun Li
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
33
|
A novel anti-calcification method for bioprosthetic heart valves using dopamine-modified alginate. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2450-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Smith KE, Johnson RC, Papas KK. Update on cellular encapsulation. Xenotransplantation 2018; 25:e12399. [DOI: 10.1111/xen.12399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Kate E. Smith
- Department of Physiological Sciences; University of Arizona; Tucson AZ USA
- Department of Surgery; University of Arizona; Tucson AZ USA
| | | | | |
Collapse
|
35
|
Yoon JP, Lee CH, Jung JW, Lee HJ, Lee YS, Kim JY, Park GY, Choi JH, Chung SW. Sustained Delivery of Transforming Growth Factor β1 by Use of Absorbable Alginate Scaffold Enhances Rotator Cuff Healing in a Rabbit Model. Am J Sports Med 2018. [PMID: 29543511 DOI: 10.1177/0363546518757759] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The failure rate for healing after rotator cuff repair is relatively high. PURPOSE To establish a system for sustained release of transforming growth factor β1 (TGF-β1) using an alginate scaffold and evaluate the effects of the sustained release of TGF-β1 on rotator cuff healing in a rabbit model. STUDY DESIGN Controlled laboratory study. METHODS Before the in vivo animal study, a standard MTS assay was performed to evaluate cell proliferation and metabolic activity on the alginate scaffold. Additionally, an enzyme-linked immunosorbent assay was performed to confirm the capacity of the sustained release of TGF-β1-containing alginate scaffold. Once the in vitro studies were completed, bilateral supraspinatus tendon repairs were performed in 48 rabbits that were allocated to 3 groups (n = 16 each) (group 1, supraspinatus repair only; group 2, supraspinatus repair with TGF-β1 single injection; group 3, supraspinatus repair with TGF-β1 sustained release via an alginate-based delivery system). Biomechanical and histological analyses were performed to evaluate the quality of tendon-to-bone healing at 12 weeks after rotator cuff repair. RESULTS The cell proliferation rate of the alginate scaffold was 122.30% compared with the control (fresh medium) group, which confirmed that the alginate sheet had no cytotoxicity and enhanced cell proliferation. Additionally, the level of TGF-β1 was found to increase with time on the alginate scaffold. Biomechanically, group 3 exhibited a significantly heightened ultimate failure load compared with groups 1 and 2 (group 1, 74.89 ± 29.82 N; group 2, 80.02 ± 34.42 N; group 3, 108.32 ± 32.48 N; P = .011) and more prevalent midsubstance tear compared with group 1 ( P = .028). However, no statistical differences were found in the cross-sectional area of the supraspinatus tendon (group 1, 32.74 ± 9.38; group 2, 33.76 ± 8.89; group 3, 34.80 ± 14.52; P = .882) and ultimate stress (group 1, 2.62 ± 1.13 MPa; group 2, 2.99 ± 1.81 MPa; group 3, 3.62 ± 2.24 MPa; P = .317). Histologically, group 3 exhibited a significantly heightened modified total Bonar score (group 1, 5.00 ± 1.54; group 2, 6.12 ± 1.85; group 3, 7.50 ± 1.31; P = .001). In addition, the tendon-to-bone interface for group 3 demonstrated better collagen orientation, continuity, and organization, and the area of new fibrocartilage formation was more evident in group 3. CONCLUSION At 12 weeks after rotator cuff repair, the authors found improved biomechanical and histological outcomes for sustained release of TGF-β1 using alginate scaffold in a rabbit model. CLINICAL RELEVANCE The alginate-bound growth factor delivery system might improve healing after rotator cuff repair in humans.
Collapse
Affiliation(s)
- Jong Pil Yoon
- Department of Orthopaedic Surgery, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Chang-Hwa Lee
- Department of Orthopaedic Surgery, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Jae Wook Jung
- Department of Orthopaedic Surgery, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Hyun-Joo Lee
- Department of Orthopaedic Surgery, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Yong-Soo Lee
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Ja-Yeon Kim
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Ga Young Park
- Department of Bio-fibers and Materials Science, College of Agriculture and Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Hyun Choi
- Department of Bio-fibers and Materials Science, College of Agriculture and Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
36
|
Mir M, Ali MN, Barakullah A, Gulzar A, Arshad M, Fatima S, Asad M. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater 2018; 7:1-21. [PMID: 29446015 PMCID: PMC5823812 DOI: 10.1007/s40204-018-0083-4] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/27/2018] [Indexed: 12/21/2022] Open
Abstract
Wounds are of a variety of types and each category has its own distinctive healing requirements. This realization has spurred the development of a myriad of wound dressings, each with specific characteristics. It is unrealistic to expect a singular dressing to embrace all characteristics that would fulfill generic needs for wound healing. However, each dressing may approach the ideal requirements by deviating from the 'one size fits all approach', if it conforms strictly to the specifications of the wound and the patient. Indeed, a functional wound dressing should achieve healing of the wound with minimal time and cost expenditures. This article offers an insight into several different types of polymeric materials clinically used in wound dressings and the events taking place at cellular level, which aid the process of healing, while the biomaterial dressing interacts with the body tissue. Hence, the significance of using synthetic polymer films, foam dressings, hydrocolloids, alginate dressings, and hydrogels has been reviewed, and the properties of these materials that conform to wound-healing requirements have been explored. A special section on bioactive dressings and bioengineered skin substitutes that play an active part in healing process has been re-examined in this work.
Collapse
Affiliation(s)
- Mariam Mir
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Murtaza Najabat Ali
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan.
| | - Afifa Barakullah
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Ayesha Gulzar
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Munam Arshad
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Shizza Fatima
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Maliha Asad
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
37
|
Chang SH, Huang HH, Kang PL, Wu YC, Chang MH, Kuo SM. In vitro and in vivo study of the application of volvox spheres to co-culture vehicles in liver tissue engineering. Acta Biomater 2017; 63:261-273. [PMID: 28941653 DOI: 10.1016/j.actbio.2017.09.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/17/2017] [Accepted: 09/19/2017] [Indexed: 01/03/2023]
Abstract
Volvox sphere is a biomimetic concept of a natural Volvox, wherein a large outer sphere contains smaller inner spheres, which can encapsulate cells and provide a double-layer three-dimensional environment for culturing cells. This study simultaneously encapsulated rat mesenchymal stem cells (MSCs) and AML12 hepatocytes in volvox spheres and extensively evaluated the effects of various culturing modes on cell functions and fates. The results showed that compared with a static flask culture, MSCs encapsulated in volvox spheres differentiated into hepatocyte-like cells with a 2-fold increase in albumin (ALB) expression and a 2.5-fold increase in cytokeratin 18 expression in a dynamic bioreactor. Moreover, the restorative effects of volvox spheres encapsulating cells on retrorsine-exposed CCl4-induced liver injuries in rats were evaluated. The data presented significant reductions in AST and ALT levels after the implantation of volvox spheres encapsulating both MSCs and AML12 hepatocytes in vivo. In contrast to the negative control group, histopathological analysis demonstrated liver repair and formation of the new liver tissue in groups implanted with volvox spheres containing cells. These results demonstrate that liver cells implanted with volvox spheres encapsulating both MSCs and AML12 hepatocytes promote liver repair and liver tissue regeneration in liver failure caused by necrotizing agents such as retrorsine and CCl4. Hence, volvox spheres encapsulating MSCs and liver cells can be a promising and clinically effective therapy for liver injury. STATEMENT OF SIGNIFICANCE In this study, we used a volvox sphere, which is a unique design that mimics the natural Volvox, that consists of a large outer sphere that contains smaller inner spheres, which provide a three-dimensional environment to culture cells. The purpose of this study is to co-culture mesenchymal stem cells (MSCs) and AML12 liver cells in volvox spheres and evaluate two different culture methods, dynamic bioreactor and static culture flask,on the cultured cells. In addition, we aimed to evaluate the restorative effects of volvox spheres encapsulating MSCs and/or AML12 liver cells on rats with retrorsine-exposed CCl4-induced liver injuries. The results showed that MSCs encapsulated in volvox spheres differentiated into hepatocyte-like cells with a 2-fold increase in albumin expression and a 2.5-fold increase in cytokeratin 18 expression ina dynamic bioreactor. Moreover, the data presented significant reductions in AST and ALT levels after the implantation of volvox spheres encapsulating both MSCs and AML12 hepatocytes in vivo. In contrast to the negative control group, histopathological analysis demonstrated liver repair and formation of new liver tissue in groups implanted with volvox spheres containing cells. These results demonstrate that liver cells implanted with volvox spheres encapsulating both MSCs and AML12 hepatocytes promote liver repair and liver tissue regeneration in liver failure caused by necrotizing agents such as retrorsine and CCl4. Hence, volvox spheres encapsulating MSCs and liver cells can be a promising and clinically effective therapy for liver injury.
Collapse
Affiliation(s)
- Siou Han Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
| | - Han Hsiang Huang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Pei Leun Kang
- Cardiac Surgery, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Yu Chian Wu
- Kaohsiung Armed Force General Hospital, Department of Surgery, Division of General Surgery, Taiwan; National Kaohsiung University of Hospitality and Tourism, Taiwan
| | - Ming-Huang Chang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Shyh Ming Kuo
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan.
| |
Collapse
|
38
|
|
39
|
Vermeulen M, Poels J, de Michele F, des Rieux A, Wyns C. Restoring Fertility with Cryopreserved Prepubertal Testicular Tissue: Perspectives with Hydrogel Encapsulation, Nanotechnology, and Bioengineered Scaffolds. Ann Biomed Eng 2017; 45:1770-1781. [PMID: 28070774 DOI: 10.1007/s10439-017-1789-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
Abstract
New and improved oncological therapies are now able to cure more than 80% of cancer-affected children in Europe. However, such treatments are gonadotoxic and result in fertility issues, especially in boys who are not able to provide a sperm sample before starting chemo/radiotherapy because of their prepubertal state. For these boys, cryopreservation of immature testicular tissue (ITT) is the only available option, aiming to preserve spermatogonial stem cells (SSCs). Both slow-freezing and vitrification have been investigated to this end and are now applied in a clinical setting for SSC cryopreservation. Research now has to focus on methods that will allow fertility restoration. This review discusses different studies that have been conducted on ITT transplantation, including those using growth factor supplementation like free molecules, or tissue encapsulation with or without nanoparticles, as well as the possibility of developing a bioartificial testis that can be used for in vitro gamete production or in vivo transplantation.
Collapse
Affiliation(s)
- Maxime Vermeulen
- Gynecology-Andrology Research Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Jonathan Poels
- Gynecology-Andrology Research Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium.,Department of Gynecology-Andrology, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Francesca de Michele
- Gynecology-Andrology Research Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium.,Department of Gynecology-Andrology, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Anne des Rieux
- Advanced Drug Delivery and Biomaterials Unit, Louvain Drug Research Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.,Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Christine Wyns
- Gynecology-Andrology Research Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium. .,Department of Gynecology-Andrology, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.
| |
Collapse
|
40
|
Koh E, Jung YC, Woo HM, Kang BJ. Injectable alginate-microencapsulated canine adipose tissue-derived mesenchymal stem cells for enhanced viable cell retention. J Vet Med Sci 2017; 79:492-501. [PMID: 28070061 PMCID: PMC5383167 DOI: 10.1292/jvms.16-0456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to establish an optimized protocol for the production of alginate-encapsulated canine adipose-derived mesenchymal stem cells
(cASCs) and evaluate their suitability for clinical use, including viability, proliferation and in vivo cell retention. Alginate microbeads
were formed by vibrational technology and the production of injectable microbeads was performed using various parameters with standard methodology. Microbead
toxicity was tested in an animal model. Encapsulated cASCs were evaluated for viability and proliferation in vitro. HEK-293 cells, with or
without microencapsulation, were injected into the subcutaneous tissue of mice and were tracked using in vivo bioluminescent imaging to
evaluate the retention of transplanted cells. The optimized injectable microbeads were of uniform size and approximately 250 µm in diameter.
There was no strong evidence of in vivo toxicity for the alginate beads. The cells remained viable after encapsulation, and there was evidence
of in vitro proliferation within the microcapsules. In vivo bioluminescent imaging showed that alginate encapsulation improved
the retention of transplanted cells and the encapsulated cells remained viable in vivo for 7 days. Encapsulation enhances the retention of
viable cells in vivo and might represent a potential strategy to increase the therapeutic potency and efficacy of stem cells.
Collapse
Affiliation(s)
- Eunji Koh
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | | | | | | |
Collapse
|
41
|
Vigani B, Mastracci L, Grillo F, Perteghella S, Preda S, Crivelli B, Antonioli B, Galuzzi M, Tosca MC, Marazzi M, Torre ML, Chlapanidas T. Local biological effects of adipose stromal vascular fraction delivery systems after subcutaneous implantation in a murine model. J BIOACT COMPAT POL 2016; 31:600-612. [DOI: 10.1177/0883911516635841] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The aim of this study was to test alginate beads and silk fibroin non-woven mats as stromal vascular fraction delivery systems to support cell implantation for tissue repair and regeneration, through trophic and immunomodulant paracrine signaling. Furthermore, in vivo scaffold biocompatibility was histologically analyzed in a murine model at different time endpoints, with particular focus on construct-induced vascularization and neoangiogenesis. The fibroin mat induced a typical foreign body reaction, recruiting macrophages and giant cells and concurrently promoted neovascularization of the implanted construct. Conversely, alginate beads triggered a more circumscribed, chronic inflammatory reaction, which decreased over time. The combined in vivo implantation of alginate beads and fibroin mat with stromal vascular fraction promoted vascularization and integration of scaffolds into the surrounding subcutaneous environment. The new blood vessel ingrowth should, hopefully, support engineered cell viability and functionality, as well as the transport of soluble bioactive molecules. Due to their neovascularization properties, stromal vascular fraction administration, using alginate or fibroin scaffolds, is a new, promising, cost-effective tissue engineering approach.
Collapse
Affiliation(s)
- Barbara Vigani
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Luca Mastracci
- Pathology Section, Department of Surgical and Integrated Diagnostic Sciences (DISC), University of Genoa, IRCCS AOU San Martino—IST, Genoa, Italy
| | - Federica Grillo
- Pathology Section, Department of Surgical and Integrated Diagnostic Sciences (DISC), University of Genoa, IRCCS AOU San Martino—IST, Genoa, Italy
| | | | - Stefania Preda
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | - Barbara Antonioli
- Struttura Semplice Tissue Therapy, Niguarda Ca’ Granda Hospital, Milan, Italy
| | - Marta Galuzzi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
- Struttura Semplice Tissue Therapy, Niguarda Ca’ Granda Hospital, Milan, Italy
| | - Marta C Tosca
- Struttura Semplice Tissue Therapy, Niguarda Ca’ Granda Hospital, Milan, Italy
| | - Mario Marazzi
- Struttura Semplice Tissue Therapy, Niguarda Ca’ Granda Hospital, Milan, Italy
| | - Maria L Torre
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | |
Collapse
|
42
|
Poels J, Abou-Ghannam G, Decamps A, Leyman M, Rieux AD, Wyns C. Transplantation of testicular tissue in alginate hydrogel loaded with VEGF nanoparticles improves spermatogonial recovery. J Control Release 2016; 234:79-89. [DOI: 10.1016/j.jconrel.2016.05.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/24/2022]
|
43
|
Sobolik T, Su YJ, Ashby W, Schaffer DK, Wells S, Wikswo JP, Zijlstra A, Richmond A. Development of novel murine mammary imaging windows to examine wound healing effects on leukocyte trafficking in mammary tumors with intravital imaging. INTRAVITAL 2016; 5:e1125562. [PMID: 28243517 DOI: 10.1080/21659087.2015.1125562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/12/2015] [Accepted: 11/18/2015] [Indexed: 01/25/2023]
Abstract
We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment.
Collapse
Affiliation(s)
- Tammy Sobolik
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ying-Jun Su
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Will Ashby
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David K Schaffer
- Department of Physics and Astronomy and the Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, TN, USA
| | - Sam Wells
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, TN, USA
| | - John P Wikswo
- Department of Physics and Astronomy and the Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Andries Zijlstra
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
44
|
Sivashanmugam A, Arun Kumar R, Vishnu Priya M, Nair SV, Jayakumar R. An overview of injectable polymeric hydrogels for tissue engineering. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.05.014] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Sawkins MJ, Mistry P, Brown BN, Shakesheff KM, Bonassar LJ, Yang J. Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair. Biofabrication 2015; 7:035004. [PMID: 26133398 DOI: 10.1088/1758-5090/7/3/035004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rapid prototyping of bone tissue engineering constructs often utilizes elevated temperatures, organic solvents and/or UV light for materials processing. These harsh conditions may prevent the incorporation of cells and therapeutic proteins in the fabrication processes. Here we developed a method for using bioprinting to produce constructs from a thermoresponsive microparticulate material based on poly(lactic-co-glycolic acid) at ambient conditions. These constructs could be engineered with yield stresses of up to 1.22 MPa and Young's moduli of up to 57.3 MPa which are within the range of properties of human cancellous bone. Further study showed that protein-releasing microspheres could be incorporated into the bioprinted constructs. The release of the model protein lysozyme from bioprinted constructs was sustainted for a period of 15 days and a high degree of protein activity could be measured up to day 9. This work suggests that bioprinting is a viable route to the production of mechanically strong constructs for bone repair under mild conditions which allow the inclusion of viable cells and active proteins.
Collapse
Affiliation(s)
- M J Sawkins
- Tissue Engineering Group, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | | | | | | | | | | |
Collapse
|
46
|
Quinlan E, López-Noriega A, Thompson EM, Hibbitts A, Cryan SA, O'Brien FJ. Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen-hydroxyapatite scaffolds for promoting vascularization and bone repair. J Tissue Eng Regen Med 2015; 11:1097-1109. [DOI: 10.1002/term.2013] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Elaine Quinlan
- Tissue Engineering Research Group, Department of Anatomy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre, RCSI & TCD; Dublin 2 Ireland
| | - Adolfo López-Noriega
- Tissue Engineering Research Group, Department of Anatomy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- School of Pharmacy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre, RCSI & TCD; Dublin 2 Ireland
| | - Emmet M. Thompson
- Tissue Engineering Research Group, Department of Anatomy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre, RCSI & TCD; Dublin 2 Ireland
| | - Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre, RCSI & TCD; Dublin 2 Ireland
| | - Sally Ann Cryan
- Tissue Engineering Research Group, Department of Anatomy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- School of Pharmacy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of Anatomy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre, RCSI & TCD; Dublin 2 Ireland
| |
Collapse
|
47
|
Blatchley MR, Gerecht S. Acellular implantable and injectable hydrogels for vascular regeneration. Biomed Mater 2015; 10:034001. [DOI: 10.1088/1748-6041/10/3/034001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Izadifar M, Haddadi A, Chen X, Kelly ME. Rate-programming of nano-particulate delivery systems for smart bioactive scaffolds in tissue engineering. NANOTECHNOLOGY 2015; 26:012001. [PMID: 25474543 DOI: 10.1088/0957-4484/26/1/012001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Development of smart bioactive scaffolds is of importance in tissue engineering, where cell proliferation, differentiation and migration within scaffolds can be regulated by the interactions between cells and scaffold through the use of growth factors (GFs) and extra cellular matrix peptides. One challenge in this area is to spatiotemporally control the dose, sequence and profile of release of GFs so as to regulate cellular fates during tissue regeneration. This challenge would be addressed by rate-programming of nano-particulate delivery systems, where the release of GFs via polymeric nanoparticles is controlled by means of the methods of, such as externally-controlled and physicochemically/architecturally-modulated so as to mimic the profile of physiological GFs. Identifying and understanding such factors as the desired release profiles, mechanisms of release, physicochemical characteristics of polymeric nanoparticles, and externally-triggering stimuli are essential for designing and optimizing such delivery systems. This review surveys the recent studies on the desired release profiles of GFs in various tissue engineering applications, elucidates the major release mechanisms and critical factors affecting release profiles, and overviews the role played by the mathematical models for optimizing nano-particulate delivery systems. Potentials of stimuli responsive nanoparticles for spatiotemporal control of GF release are also presented, along with the recent advances in strategies for spatiotemporal control of GF delivery within tissue engineered scaffolds. The recommendation for the future studies to overcome challenges for developing sophisticated particulate delivery systems in tissue engineering is discussed prior to the presentation of conclusions drawn from this paper.
Collapse
Affiliation(s)
- Mohammad Izadifar
- Division of Biomedical Engineering, College of Engineering, 57 Campus Drive, University of Saskatchewan, Saskatoon, SK, S7N5A9, Canada
| | | | | | | |
Collapse
|
49
|
Low ZW, Chee PL, Kai D, Loh XJ. The role of hydrogen bonding in alginate/poly(acrylamide-co-dimethylacrylamide) and alginate/poly(ethylene glycol) methyl ether methacrylate-based tough hybrid hydrogels. RSC Adv 2015. [DOI: 10.1039/c5ra09926a] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hybrid hydrogels, with an elastic modulus and compressive toughness of 350 kPa and 70 J m−3, was synthesized and reported here.
Collapse
Affiliation(s)
- Zhi Wei Low
- Institute of Materials Research and Engineering (IMRE)
- A*STAR
- Singapore 117602
- Singapore
- Department of Materials Science and Engineering
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE)
- A*STAR
- Singapore 117602
- Singapore
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE)
- A*STAR
- Singapore 117602
- Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE)
- A*STAR
- Singapore 117602
- Singapore
- Department of Materials Science and Engineering
| |
Collapse
|
50
|
Shin YM, La WG, Lee MS, Yang HS, Lim YM. Extracellular matrix-inspired BMP-2-delivering biodegradable fibrous particles for bone tissue engineering. J Mater Chem B 2015; 3:8375-8382. [DOI: 10.1039/c5tb01310k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A heparin conjugated fibrous particle resembling the structure of an extracellular matrix was developed. The BMP-2 loaded particles promoted osteogenic differentiation and healing of a bone defect, in vitro and in vivo.
Collapse
Affiliation(s)
- Young Min Shin
- Research Division for Industry and Environment
- Advanced Radiation Technology Institute
- Korea Atomic Energy Research Institute
- 580-185 Republic of Korea
| | - Wan-Geun La
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine
- Dankook University
- Cheonan 330-714
- Republic of Korea
| | - Min Suk Lee
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine
- Dankook University
- Cheonan 330-714
- Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine
- Dankook University
- Cheonan 330-714
- Republic of Korea
| | - Youn-Mook Lim
- Research Division for Industry and Environment
- Advanced Radiation Technology Institute
- Korea Atomic Energy Research Institute
- 580-185 Republic of Korea
| |
Collapse
|