1
|
Ranjan A, Duryodhan VS, Patil ND. A comparative study of passive drug diffusion through human skin via intercellular and sweat duct route: effect of aging. Drug Deliv Transl Res 2024; 14:2558-2577. [PMID: 38363485 DOI: 10.1007/s13346-024-01529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2024] [Indexed: 02/17/2024]
Abstract
A method of drug delivery that could provide control over medicine reaching the bloodstream for systemic circulation would be of immense importance. This work presents a comparative study of the temporal and spatial variation of drugs diffusing passively through two separate routes of human skin, namely intercellular (ICR) and sweat duct route (SDR). An analysis is carried out for two age groups (young < 40 years and old > 60 years of age). Governing equations based on Fick's law for mass transfer have been solved numerically using an in-house developed code. The code has been validated thoroughly with numerical and experimental work from the literature. Each skin route is modeled into three compartments sandwiched between the donor and receiver compartments. To understand the role of diffusion and partition coefficient on drug permeation, four drugs, namely hydrocortisone, trans-cinnamic acid, caffeine, and benzoic acid, are considered. The drug diffusion rate is found greater through ICR as compared to SDR. Further, the amount of drugs diffusing through both routes increases with age. Desirable drug characteristic is inferred to be a lower value of partition coefficient and a higher value of diffusion coefficient. This study could lead to real-time assessment of drugs reaching the bloodstream and beyond.
Collapse
Affiliation(s)
- Aditya Ranjan
- Department of Mechanical Engineering, Indian Institute of Technology Bhilai, Bhilai, 491001, India
| | - Vijay S Duryodhan
- Department of Mechanical Engineering, Indian Institute of Technology Bhilai, Bhilai, 491001, India
| | - Nagesh D Patil
- Department of Mechanical Engineering and Department of Bioscience & Biomedical Engineering, Indian Institute of Technology Bhilai, Bhilai, 491001, India.
| |
Collapse
|
2
|
Lourenço D, Miranda M, Sousa JJ, Vitorino C. Therapeutic-driven framework for bioequivalence assessment of complex topical generic drug products. Int J Pharm 2024; 661:124398. [PMID: 38964491 DOI: 10.1016/j.ijpharm.2024.124398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Despite the continuous research on understanding how topical drugs and the skin interact, the development of a topical generic product remains a challenge. Due to their local action effect rather than systemic, establishing suitable frameworks for documenting bioequivalence between reference and test formulations is anything but straightforward. In previous years, clinical endpoint trials were considered the gold standard method to demonstrate bioequivalence between topical products. Nevertheless, significant financial and time resources were required to be allocated owing to the inherent complexity of these studies. To address this problem, regulatory authorities have begun to accept alternative approaches that could lead to a biowaiver, avoiding the need for clinical endpoint trials. These alternatives encompass various in vitro and/or in vivo techniques that have been analysed and the benefits and drawbacks of each method have been considered. Furthermore, other factors like the integration of a quality by design framework to ensure a comprehensive understanding of the product and process quality attributes have also been taken into account. This review delves into international regulatory recommendations for semisolid topical products, with a focus on those established by the European Medicines Agency, as well as the Food and Drug Administration. Both approaches were carefully examined, discussing aspects such as acceptance criteria, sample size, and microstructure evaluation. Additionally, novel and innovative therapeutic-driven approaches based on in vitro disease models for the rapid and effective development of topical generic products are presented.
Collapse
Affiliation(s)
- Diogo Lourenço
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Margarida Miranda
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
3
|
Herbig ME, Evers DH, Gorissen S, Köllmer M. Rational Design of Topical Semi-Solid Dosage Forms-How Far Are We? Pharmaceutics 2023; 15:1822. [PMID: 37514009 PMCID: PMC10386014 DOI: 10.3390/pharmaceutics15071822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Specific aspects of semi-solid dosage forms for topical application include the nature of the barrier to be overcome, aspects of susceptibility to physical and chemical instability, and a greater influence of sensory perception. Advances in understanding the driving forces of skin penetration as well as the design principles and inner structure of formulations, provide a good basis for the more rational design of such dosage forms, which still often follow more traditional design approaches. This review analyses the opportunities and constraints of rational formulation design approaches in the industrial development of new topical drugs. As the selection of drug candidates with favorable physicochemical properties increases the speed and probability of success, models for drug selection based on theoretical and experimental approaches are discussed. This paper reviews how progress in the scientific understanding of mechanisms and vehicle-influence of skin penetration can be used for rational formulation design. The characterization of semi-solid formulations is discussed with a special focus on modern rheological approaches and analytical methods for investigating and optimizing the chemical stability of active ingredients in consideration of applicable guidelines. In conclusion, the combination of a good understanding of scientific principles combined with early consideration of regulatory requirements for product quality are enablers for the successful development of innovative and robust semi-solid formulations for topical application.
Collapse
|
4
|
Maciel Tabosa MA, Vitry P, Zarmpi P, Bunge AL, Belsey NA, Tsikritsis D, Woodman TJ, White KAJ, Delgado-Charro MB, Guy RH. Quantification of Chemical Uptake into the Skin by Vibrational Spectroscopies and Stratum Corneum Sampling. Mol Pharm 2023; 20:2527-2535. [PMID: 37053523 PMCID: PMC10155209 DOI: 10.1021/acs.molpharmaceut.2c01109] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Evaluation of the bioavailability of drugs intended to act within the skin following the application of complex topical products requires the application of multiple experimental tools, which must be quantitative, validated, and, ideally and ultimately, sufficiently minimally invasive to permit use in vivo. The objective here is to show that both infrared (IR) and Raman spectroscopies can assess the uptake of a chemical into the stratum corneum (SC) that correlates directly with its quantification by the adhesive tape-stripping method. Experiments were performed ex vivo using excised porcine skin and measured chemical disposition in the SC as functions of application time and formulation composition. The quantity of chemicals in the SC removed on each tape-strip was determined from the individually measured IR and Raman signal intensities of a specific molecular vibration at a frequency where the skin is spectroscopically silent and by a subsequent conventional extraction and chromatographic analysis. Correlations between the spectroscopic results and the chemical quantification on the tape-strips were good, and the effects of longer application times and the use of different vehicles were clearly delineated by the different measurement techniques. Based on this initial investigation, it is now possible to explore the extent to which the spectroscopic approach (and Raman in particular) may be used to interrogate chemical disposition deeper in the skin and beyond the SC.
Collapse
Affiliation(s)
| | - Pauline Vitry
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Panagiota Zarmpi
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Annette L Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Natalie A Belsey
- Chemical and Biological Sciences Department, National Physical Laboratory, Teddington TW11 0LW, U.K
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, U.K
| | - Dimitrios Tsikritsis
- Chemical and Biological Sciences Department, National Physical Laboratory, Teddington TW11 0LW, U.K
| | - Timothy J Woodman
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - K A Jane White
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | | | - Richard H Guy
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
5
|
Birngruber T, Tiffner KI, Mautner SI, Sinner FM. Dermal open flow microperfusion for PK-based clinical bioequivalence studies of topical drug products. Front Pharmacol 2022; 13:1061178. [PMID: 36483734 PMCID: PMC9723326 DOI: 10.3389/fphar.2022.1061178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 07/21/2024] Open
Abstract
Topically applied drug products have experienced an extraordinary price increase in the United States, mostly due to a lack of generic products. Generic drug development is hindered by high costs and risks associated with clinical endpoint studies required to show bioequivalence (BE) of prospective generic products relative to their reference products. There is a continued need for cost- and time-efficient alternatives to clinical endpoint studies to determine BE of topically applied dermal drug products. Cutaneous PK-based BE studies present such an alternative and dOFM (dermal open flow microperfusion) has already been successfully used in several verifications studies to show an accurate and sensitive assessment of the rate and extent at which drugs become available in the skin. dOFM technology is discussed as well as the dOFM setup of clinical pilot and main studies to achieve BE assessment with a minimum number of participants and an outlook is given on the use of dOFM technology for other drug products.
Collapse
Affiliation(s)
| | | | | | - Frank M. Sinner
- HEALTH—Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
| |
Collapse
|
6
|
Raney SG, Ghosh P, Ramezanli T, Lehman PA, Franz TJ. Cutaneous Pharmacokinetic Approaches to Compare Bioavailability and/or Bioequivalence for Topical Drug Products. Dermatol Clin 2022; 40:319-332. [PMID: 35750415 DOI: 10.1016/j.det.2022.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The evaluation of bioequivalence (BE) involves comparing the test product to its reference product in a study whose fundamental scientific principles allow inferring of the clinical performance of the products. Several test methods have been discussed and developed to evaluate topical bioavailability (BA) and BE. Pharmacokinetics-based approaches characterize the rate and extent to which an active ingredient becomes available at or near its site of action in the skin. Such methodologies are considered to be among the most accurate, sensitive, and reproducible approaches for determining the BA or BE of a product.
Collapse
Affiliation(s)
- Sam G Raney
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Priyanka Ghosh
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Tannaz Ramezanli
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Paul A Lehman
- QPS Holdings, LLC, 3 Innovation Way, Suite 240, Newark, DE 19711, USA
| | | |
Collapse
|
7
|
Hummer J, Birngruber T, Sinner F, Page L, Toner F, Roper CS, Moore DJ, Baker MB, Boncheva Bettex M. Optimization of topical formulations using a combination of in vitro methods to quantify the transdermal passive diffusion of drugs. Int J Pharm 2022; 620:121737. [PMID: 35413396 DOI: 10.1016/j.ijpharm.2022.121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
This paper describes a new approach to the early-stage optimization of topical products and selection of lead formulation candidates. It demonstrates the application of open flow microperfusion in vitro in conjunction with the Franz diffusion cell to compare time-resolved, 24-hour profiles of diclofenac passive diffusion through all skin layers (including the skin barrier, dermis, and subcutis) resulting from nine topical formulations of different composition. The technique was successfully validated for in vitro sampling of diclofenac in interstitial fluid. A multi-compartmental model integrating the two datasets was analyzed and revealed that the passive diffusion of diclofenac through the dermis and subcutis does not correlate with its diffusion through the skin barrier and cannot be predicted using Franz diffusion cell data alone. The combined application of the two techniques provides a new, convenient tool for product development and selection enabling the comparison of topical formulation candidates and their impact on drug delivery through all skin layers. This approach can also generate the experimental data required to improve the robustness of mechanistic PBPK models, and when combined with clinical sampling via open flow microperfusion - for the development of better in vivo-in vitro correlative models.
Collapse
Affiliation(s)
- Joanna Hummer
- Joanneum Research Forschungsgesellschaft mbH, Health-Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Thomas Birngruber
- Joanneum Research Forschungsgesellschaft mbH, Health-Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Frank Sinner
- Joanneum Research Forschungsgesellschaft mbH, Health-Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Leanne Page
- Charles River Laboratories, Tranent, Edinburgh, EH33 2NE, UK
| | - Frank Toner
- Charles River Laboratories, Tranent, Edinburgh, EH33 2NE, UK
| | - Clive S Roper
- Roper Toxicology Consulting Limited, 6 St Colme Street, Edinburgh, EH3 6AD, UK
| | - David J Moore
- GSK Consumer Healthcare, 184 Liberty Corner Rd, Warren, NJ 07059, USA
| | - Mark B Baker
- GSK Consumer Healthcare SARL, Route de l'Etraz 2, Case postale 1279, 1260 Nyon 1, Switzerland
| | - Mila Boncheva Bettex
- GSK Consumer Healthcare SARL, Route de l'Etraz 2, Case postale 1279, 1260 Nyon 1, Switzerland.
| |
Collapse
|
8
|
Holzer-Geissler JCJ, Schwingenschuh S, Zacharias M, Einsiedler J, Kainz S, Reisenegger P, Holecek C, Hofmann E, Wolff-Winiski B, Fahrngruber H, Birngruber T, Kamolz LP, Kotzbeck P. The Impact of Prolonged Inflammation on Wound Healing. Biomedicines 2022; 10:biomedicines10040856. [PMID: 35453606 PMCID: PMC9025535 DOI: 10.3390/biomedicines10040856] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
The treatment of chronic wounds still challenges modern medicine because of these wounds’ heterogenic pathophysiology. Processes such as inflammation, ischemia and bacterial infection play major roles in the progression of a chronic wound. In recent years, preclinical wound models have been used to understand the underlying processes of chronic wound formation. However, the wound models used to investigate chronic wounds often lack translatability from preclinical models to patients, and often do not take exaggerated inflammation into consideration. Therefore, we aimed to investigate prolonged inflammation in a porcine wound model by using resiquimod, a TLR7 and TLR8 agonist. Pigs received full thickness excisional wounds, where resiquimod was applied daily for 6 days, and untreated wounds served as controls. Dressing change, visual documentation and wound scoring were performed daily. Biopsies were collected for histological as well as gene expression analysis. Resiquimod application on full thickness wounds induced a visible inflammation of wounds, resulting in delayed wound healing compared to non-treated control wounds. Gene expression analysis revealed high levels of IL6, MMP1 and CD68 expression after resiquimod application, and histological analysis showed increased immune cell infiltration. By using resiquimod, we were able to show that prolonged inflammation delayed wound healing, which is often observed in chronic wounds in patients. The model we used shows the importance of inflammation in wound healing and gives an insight into the progression of chronic wounds.
Collapse
Affiliation(s)
- Judith C. J. Holzer-Geissler
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.C.J.H.-G.); (E.H.); (L.-P.K.)
- COREMED-Cooperative Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria;
| | - Simon Schwingenschuh
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria; (S.S.); (S.K.); (P.R.); (C.H.); (T.B.)
| | - Martin Zacharias
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Johanna Einsiedler
- COREMED-Cooperative Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria;
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Sonja Kainz
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria; (S.S.); (S.K.); (P.R.); (C.H.); (T.B.)
| | - Peter Reisenegger
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria; (S.S.); (S.K.); (P.R.); (C.H.); (T.B.)
| | - Christian Holecek
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria; (S.S.); (S.K.); (P.R.); (C.H.); (T.B.)
| | - Elisabeth Hofmann
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.C.J.H.-G.); (E.H.); (L.-P.K.)
- COREMED-Cooperative Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria;
| | | | | | - Thomas Birngruber
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria; (S.S.); (S.K.); (P.R.); (C.H.); (T.B.)
| | - Lars-Peter Kamolz
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.C.J.H.-G.); (E.H.); (L.-P.K.)
- COREMED-Cooperative Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria;
| | - Petra Kotzbeck
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.C.J.H.-G.); (E.H.); (L.-P.K.)
- COREMED-Cooperative Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria;
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
- Correspondence: or ; Tel.: +43-316-876-6000
| |
Collapse
|
9
|
Foessl I, Haudum CW, Vidakovic I, Prassl R, Franz J, Mautner SI, Kainz S, Hofmann E, Obermayer-Pietsch B, Birngruber T, Kotzbeck P. miRNAs as Regulators of the Early Local Response to Burn Injuries. Int J Mol Sci 2021; 22:ijms22179209. [PMID: 34502118 PMCID: PMC8430593 DOI: 10.3390/ijms22179209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022] Open
Abstract
In burn injuries, risk factors and limitations to treatment success are difficult to assess clinically. However, local cellular responses are characterized by specific gene-expression patterns. MicroRNAs (miRNAs) are single-stranded, non-coding RNAs that regulate mRNA expression on a posttranscriptional level. Secreted through exosome-like vesicles (ELV), miRNAs are intracellular signalers and epigenetic regulators. To date, their role in the regulation of the early burn response remains unclear. Here, we identified 43 miRNAs as potential regulators of the early burn response through the bioinformatics analysis of an existing dataset. We used an established human ex vivo skin model of a deep partial-thickness burn to characterize ELVs and miRNAs in dermal interstitial fluid (dISF). Moreover, we identified miR-497-5p as stably downregulated in tissue and dISF in the early phase after a burn injury. MiR-218-5p and miR-212-3p were downregulated in dISF, but not in tissue. Target genes of the miRNAs were mainly upregulated in tissue post-burn. The altered levels of miRNAs in dISF of thermally injured skin mark them as new biomarker candidates for burn injuries. To our knowledge, this is the first study to report miRNAs altered in the dISF in the early phase of deep partial-thickness burns.
Collapse
Affiliation(s)
- Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria; (C.W.H.); (J.F.); (S.I.M.); (B.O.-P.); (P.K.)
- Correspondence: ; Tel.: +43-316-385-72936
| | - Christoph Walter Haudum
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria; (C.W.H.); (J.F.); (S.I.M.); (B.O.-P.); (P.K.)
- CBmed GmbH—Center for Biomarker Research in Medicine, 8010 Graz, Austria
| | - Ivan Vidakovic
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Division of Biophysics, Medical University of Graz, 8010 Graz, Austria; (I.V.); (R.P.)
| | - Ruth Prassl
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Division of Biophysics, Medical University of Graz, 8010 Graz, Austria; (I.V.); (R.P.)
| | - Joakim Franz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria; (C.W.H.); (J.F.); (S.I.M.); (B.O.-P.); (P.K.)
- CBmed GmbH—Center for Biomarker Research in Medicine, 8010 Graz, Austria
| | - Selma I. Mautner
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria; (C.W.H.); (J.F.); (S.I.M.); (B.O.-P.); (P.K.)
- HEALTH—Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria; (S.K.); (T.B.)
| | - Sonja Kainz
- HEALTH—Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria; (S.K.); (T.B.)
| | - Elisabeth Hofmann
- Department of Surgery, Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University of Graz, 8036 Graz, Austria;
| | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria; (C.W.H.); (J.F.); (S.I.M.); (B.O.-P.); (P.K.)
| | - Thomas Birngruber
- HEALTH—Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria; (S.K.); (T.B.)
| | - Petra Kotzbeck
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria; (C.W.H.); (J.F.); (S.I.M.); (B.O.-P.); (P.K.)
- Department of Surgery, Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University of Graz, 8036 Graz, Austria;
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
| |
Collapse
|
10
|
Lubda M, Zander M, Salazar A, Kolmar H, von Hagen J. Comparison of Membrane Depth Determination Techniques for Active Ingredient Skin Penetration Studies Using Microdialysis. Skin Pharmacol Physiol 2021; 34:203-213. [PMID: 34023823 DOI: 10.1159/000515113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/06/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The skin is a major physical barrier to the environment, and thus, percutaneous delivery of active ingredients to the dermal target site faces a unique set of hurdles. The efficacy of these active ingredients is governed by their release into the underlying epidermal and dermal tissue, especially when administered topically. OBJECTIVE The aim of this study was to understand if different physicochemical properties influence the skin penetration of active ingredients and the depth to which they penetrate into the dermis. METHODS A microdialysis (MD) setup was used to compare the percutaneous penetration in superficial and deep implanted MD membranes in porcine skin. The precise MD membrane depth was determined using histological sectioning paired with microscopy, ultrasound, and a novel computed tomographic approach. RESULTS In study A, the measured depth of the superficial and deep implanted MD membranes was compared using histological sectioning, ultrasound, and computed tomography. Experimental determination of the depth up to which penetration occurs was found to be crucial to percutaneous penetration studies. In study B, the lipophilic differences of the active ingredients and its influences on the penetration was tested using hydrophilic caffeine and lipophilic LIP1 as model compounds, which have an identical molecular weight with different lipophilic characteristics. It is assumed that the lipophilic characteristics of active ingredients influence their penetration and thus governs the concentration of these molecules reaching their target site. CONCLUSION The transdermal penetration of caffeine was found to exceed that of LIP1 through the hydrophilic environment of the dermis. Thus, the findings of this study show that the precise MD dermis localization and the physicochemical properties, such as lipophilicity, influence the penetration rate of active ingredients and lay the foundation for creating optimized transdermal delivery systems.
Collapse
Affiliation(s)
- Markus Lubda
- Cosmetic Functionals, Merck KGaA, Darmstadt, Germany.,Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Maximilian Zander
- Cosmetic Functionals, Merck KGaA, Darmstadt, Germany.,Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | | | - Harald Kolmar
- Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | | |
Collapse
|
11
|
Chaturvedi S, Garg A. An insight of techniques for the assessment of permeation flux across the skin for optimization of topical and transdermal drug delivery systems. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Kuzma BA, Senemar S, Ramezanli T, Ghosh P, Raney SG, Stagni G. Evaluation of local bioavailability of metronidazole from topical formulations using dermal microdialysis: Preliminary study in a Yucatan mini-pig model. Eur J Pharm Sci 2021; 159:105741. [PMID: 33540039 DOI: 10.1016/j.ejps.2021.105741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/31/2022]
Abstract
Dermal microdialysis (dMD) can measure the rate and extent to which a topically administered active pharmaceutical ingredient (API) becomes available in the dermis. Using multiple test-sites on the same subject, and replicate probes at each test-site, it is feasible to compare the cutaneous pharmacokinetics of an API from different topical dermatological drug products in parallel on the same subject with this technique. This study design would help to reduce variability. However, there are technical considerations related to the dMD experimental methods that must be characterized and optimized to ensure that an in vivo dMD study is selective, sensitive, discriminating, and reproducible. The goals of this study were to assess: the minimum distance required between test-sites to prevent cross-talk between probes due to potential lateral-diffusion; the sensitivity of the dMD method to detect differences in the local concentration of metronidazole (MTZ) among single escalating doses; the ability to discriminate between the two different formulations; and the stability of the dMD-probes over 48 h. Results indicate that lateral-diffusion and systemic redistribution of the API following topical application of the drug product were negligible, thus MTZ measured by dMD can be selectively attributed to the dermal bioavailability of the API from the applied topical dose. The dMD methodology was able to detect differences in the bioavailability of MTZ from the cream compared to the gel when applied at the same dose, as well as among different doses of the same formulation over a 48-hour sampling duration; therefore, the method is sensitive. The percentage loss of D3-MTZ from the probe compared to its original concentration in the perfusate indicates that the probe performance was stable over the 48 h.
Collapse
Affiliation(s)
- Benjamin A Kuzma
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, NY, USA
| | - Sharareh Senemar
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, NY, USA
| | - Tannaz Ramezanli
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Priyanka Ghosh
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sam G Raney
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Grazia Stagni
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, NY, USA.
| |
Collapse
|
13
|
Eirefelt S, Hummer J, Basse LH, Bertelsen M, Johansson F, Birngruber T, Sinner F, Larsen J, Nielsen SF, Lambert M. Evaluating Dermal Pharmacokinetics and Pharmacodymanic Effect of Soft Topical PDE4 Inhibitors: Open Flow Microperfusion and Skin Biopsies. Pharm Res 2020; 37:243. [PMID: 33188482 DOI: 10.1007/s11095-020-02962-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To investigate the difference in clinical efficacy in AD patients between two topical PDE4 inhibitors using dermal open flow microperfusion and cAMP as a pharmacodynamic read-out in fresh human skin explants. METHODS Clinical formulations were applied to intact or barrier disrupted human skin explants and both skin biopsy samples and dermal interstitial fluid was sampled for measuring drug concentration. Furthermore, cAMP levels were determined in the skin biopsies as a measure of target engagement. RESULTS Elevated cAMP levels were observed with LEO 29102 while no evidence of target engagement was obtained with LEO 39652. In barrier impaired skin the dISF concentration of LEO 29102 was 2100 nM while only 33 nM for LEO 39652. For both compounds the concentrations measured in skin punch biopsies were 7-33-fold higher than the dISF concentrations. CONCLUSIONS Low unbound drug concentration in dISF in combination with minimal target engagement of LEO 39652 in barrier impaired human skin explants supports that lack of clinical efficacy of LEO 39652 in AD patients is likely due to insufficient drug availability at the target. We conclude that dOFM together with a pharmacodynamic target engagement biomarker are strong techniques for establishing skin PK/PD relations and that skin biopsies should be used with caution.
Collapse
Affiliation(s)
- Stefan Eirefelt
- LEO Pharma Global Research & Development, Industriparken 55, 2750, Ballerup, Denmark
| | - Joanna Hummer
- Joanneum Research Forschungsgesellschaft mbH, Health-Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010, Graz, Austria
| | - Line Hollesen Basse
- Discovery & Development PKPD, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Malene Bertelsen
- LEO Pharma Global Research & Development, Industriparken 55, 2750, Ballerup, Denmark
| | - Fredrik Johansson
- LEO Pharma Global Research & Development, Industriparken 55, 2750, Ballerup, Denmark
| | - Thomas Birngruber
- Joanneum Research Forschungsgesellschaft mbH, Health-Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010, Graz, Austria
| | - Frank Sinner
- Joanneum Research Forschungsgesellschaft mbH, Health-Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010, Graz, Austria
| | - Jens Larsen
- LEO Pharma Global Research & Development, Industriparken 55, 2750, Ballerup, Denmark
| | - Simon Feldbæk Nielsen
- LEO Pharma Global Research & Development, Industriparken 55, 2750, Ballerup, Denmark
| | - Maja Lambert
- LEO Pharma Global Research & Development, Industriparken 55, 2750, Ballerup, Denmark.
| |
Collapse
|
14
|
Santos LL, Swofford NJ, Santiago BG. In Vitro Permeation Test (IVPT) for Pharmacokinetic Assessment of Topical Dermatological Formulations. ACTA ACUST UNITED AC 2020; 91:e79. [PMID: 32991075 DOI: 10.1002/cpph.79] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In vitro assessment of topical (dermal) pharmacokinetics is a critical aspect of the drug development process for semi-solid products (e.g., solutions, foams, sprays, creams, gels, lotions, ointments), allowing for informed selection of new chemical entities, optimization of prototype formulations during the nonclinical stage, and determination of bioequivalence of generics. It can also serve as a tool to further understand the impact of different excipients on drug delivery, product quality, and formulation microstructure when used in parallel with other techniques, such as analyses of rheology, viscosity, microscopic characteristics, release rate, particle size, and oil droplet size distribution. The in vitro permeation test (IVPT), also known as in vitro skin penetration/permeation test, typically uses ex vivo human skin in conjunction with diffusion cells, such as Franz (or vertical) or Bronaugh (or flow-through) diffusion cells, and is the technique of choice for dermal pharmacokinetics assessment. Successful execution of the IVPT also involves the development and use of fit-for-purpose bioanalytical methods and procedures. The protocols described herein provide detailed steps for execution of the IVPT utilizing flow-through diffusion cells and for key aspects of the development of a liquid chromatography-tandem mass spectrometry method intended for analysis of the generated samples (epidermis, dermis, and receptor solution). © 2020 Wiley Periodicals LLC. Basic Protocol 1: In vitro permeation test Support Protocol: Dermatoming of ex vivo human skin Basic Protocol 2: Bioanalytical methodology in the context of the in vitro permeation test.
Collapse
Affiliation(s)
- Leandro L Santos
- Dermatology Unit, Topical Drug Delivery & DMPK, GlaxoSmithKline, Collegeville, Pennsylvania.,Current affiliation: Incyte Corporation, Inflammation & AutoImmunity, Clinical Research, Wilmington, Delaware
| | - Nathaniel J Swofford
- Dermatology Unit, Topical Drug Delivery & DMPK, GlaxoSmithKline, Collegeville, Pennsylvania.,Current affiliation: Functional Genomics, High-Throughput Biology and Imaging, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Brandon G Santiago
- Dermatology Unit, Topical Drug Delivery & DMPK, GlaxoSmithKline, Collegeville, Pennsylvania.,Current affiliation: Bioanalysis, Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania
| |
Collapse
|
15
|
Feizpour A, Marstrand T, Bastholm L, Eirefelt S, Evans CL. Label-Free Quantification of Pharmacokinetics in Skin with Stimulated Raman Scattering Microscopy and Deep Learning. J Invest Dermatol 2020; 141:395-403. [PMID: 32710899 DOI: 10.1016/j.jid.2020.06.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/11/2020] [Accepted: 06/30/2020] [Indexed: 01/07/2023]
Abstract
The treatment of inflammatory skin conditions relies on a deep understanding of how drugs and tissue behave and interact. Although numerous methods have been developed that aim to follow and quantify topical drug pharmacokinetics, these tools can come with limitations, assumptions, and trade-offs that do not allow for real-time tracking of drug flow and flux on the cellular level in situ. We have developed a quantitative imaging toolkit that makes use of stimulated Raman scattering microscopy and deep learning-based computational image analysis to quantify the uptake of specific drug molecules in skin without the need for labels. Analysis powered by trained convolutional neural networks precisely identified features such as cells, cell junctions, and cell types within skin to enable multifactorial analysis of skin pharmacokinetics. We imaged and quantified the flow and flux of small molecule drugs through the layers and structures of ex vivo nude mouse ear skin and extracted pharmacokinetic parameters through convolutional neural network-based image processing, including relative area under the curve accumulation, time of maximum drug concentration, and in situ partition ratios. This approach, which facilitates the direct observation and quantification of pharmacokinetics, can be used to glean mechanistic insight into underlying phenomena in skin pharmacokinetics.
Collapse
Affiliation(s)
- Amin Feizpour
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | | | | | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
16
|
Choice and characterization of preclinical models - Towards understanding wound healing. Burns 2019; 46:251-253. [PMID: 31859090 DOI: 10.1016/j.burns.2019.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 11/23/2022]
|
17
|
Kotzbeck P, Hofmann E, Nischwitz SP, Kamolz LP. Differentiating local and systemic inflammatory responses to burn injuries. Burns 2019; 45:1934-1935. [DOI: 10.1016/j.burns.2018.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
|
18
|
Baumann KY, Church MK, Clough GF, Quist SR, Schmelz M, Skov PS, Anderson CD, Tannert LK, Giménez-Arnau AM, Frischbutter S, Scheffel J, Maurer M. Skin microdialysis: methods, applications and future opportunities-an EAACI position paper. Clin Transl Allergy 2019; 9:24. [PMID: 31007896 PMCID: PMC6456961 DOI: 10.1186/s13601-019-0262-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022] Open
Abstract
Skin microdialysis (SMD) is a versatile sampling technique that can be used to recover soluble endogenous and exogenous molecules from the extracellular compartment of human skin. Due to its minimally invasive character, SMD can be applied in both clinical and preclinical settings. Despite being available since the 1990s, the technique has still not reached its full potential use as a tool to explore pathophysiological mechanisms of allergic and inflammatory reactions in the skin. Therefore, an EAACI Task Force on SMD was formed to disseminate knowledge about the technique and its many applications. This position paper from the task force provides an overview of the current use of SMD in the investigation of the pathogenesis of chronic inflammatory skin diseases, such as atopic dermatitis, chronic urticaria, psoriasis, and in studies of cutaneous events during type 1 hypersensitivity reactions. Furthermore, this paper covers drug hypersensitivity, UVB-induced- and neurogenic inflammation, and drug penetration investigated by SMD. The aim of this paper is to encourage the use of SMD and to make the technique easily accessible by providing an overview of methodology and applications, supported by standardized operating procedures for SMD in vivo and ex vivo.
Collapse
Affiliation(s)
- Katrine Y Baumann
- RefLab ApS, Copenhagen, Denmark.,2Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Martin K Church
- 3Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Sven Roy Quist
- 5Clinic of Dermatology, Otto-von-Guericke University, Magdeburg, Germany.,Skin Center MDZ, Mainz, Germany
| | - Martin Schmelz
- 7Department of Experimental Pain Research, CBTM, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Per Stahl Skov
- RefLab ApS, Copenhagen, Denmark.,8Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, Odense, Denmark
| | - Chris D Anderson
- 9Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Line Kring Tannert
- 8Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, Odense, Denmark
| | - Ana Maria Giménez-Arnau
- 10Department of Dermatology, Hospital del Mar, Institut Mar d'Investigacions Mèdiques, Universitat Autònoma, Barcelona, Spain
| | - Stefan Frischbutter
- 3Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jörg Scheffel
- 3Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Marcus Maurer
- 3Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
19
|
Altendorfer-Kroath T, Schimek D, Eberl A, Rauter G, Ratzer M, Raml R, Sinner F, Birngruber T. Comparison of cerebral Open Flow Microperfusion and Microdialysis when sampling small lipophilic and small hydrophilic substances. J Neurosci Methods 2018; 311:394-401. [PMID: 30266621 DOI: 10.1016/j.jneumeth.2018.09.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Assessment of drug concentration in the brain interstitial fluid (ISF) is crucial for development of brain active drugs, which are mainly small, lipophilic substances able to cross the blood-brain barrier (BBB). We aimed to compare the applicability of cerebral Open Flow Microperfusion (cOFM) and Microdialysis (MD) to sample the lipophilic substance amitriptyline (AMI), its metabolites Hydroxyamitriptyline (HYA), Nortriptyline (NOR), Amitriptyline-N-Oxide (ANO), deuterated water (D2O) and the hydrophilic substance sodium fluorescein (Naf) in brain ISF. NEW METHOD: cOFM has been refined to yield increased spatial resolution and performance. COMPARISON OF COFM AND MD AND RESULTS Performance of cOFM and MD was assessed by in vivo AUC ratios of probe samples (AUCCOFM/AUCMD) and the in vivo relative recovery of D2O (RRvv,D2O). Adsorption of AMI and Naf to MD and cOFM was assessed by the in vitro relative recovery (RRvt) prior to the in vivo experiments. The in vivo AUC ratio of AMI and RRvv,D2O was about two times higher for cOFM than for MD (AUCOFM/AUCMD = 2.0, RRvv,D2O(cOFM)/RRvv,D2O(MD) = 2.1). cOFM detected all investigated AMI metabolites except NOR. MD did not detect HYA, NOR, ANO and Naf. In vitro adsorption of AMI and Naf to the MD membrane was strong (RRvt,AMI = 4.4%, RRvt,Naf = 1.5%) but unspecific adsorption to cOFM was negligibly small (RRvt,AMI = 98% and RRvt,Naf = 98%). CONCLUSIONS cOFM showed better performance when sampling AMI and its metabolites, Naf and D2O, and had an about two times higher RRvv,D2O than MD. MD did not detect HYA, NOR, ANO and Naf, most likely due to membrane adsorption.
Collapse
Affiliation(s)
- Thomas Altendorfer-Kroath
- JOANNEUM RESEARCH Forschungsgesellschaft mbH, HEALTH - Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Denise Schimek
- JOANNEUM RESEARCH Forschungsgesellschaft mbH, HEALTH - Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Anita Eberl
- JOANNEUM RESEARCH Forschungsgesellschaft mbH, HEALTH - Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Günther Rauter
- Medical University of Graz, Division of Biomedical Research, Roseggerweg 48, 8036 Graz, Austria
| | - Maria Ratzer
- JOANNEUM RESEARCH Forschungsgesellschaft mbH, HEALTH - Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Reingard Raml
- JOANNEUM RESEARCH Forschungsgesellschaft mbH, HEALTH - Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Frank Sinner
- JOANNEUM RESEARCH Forschungsgesellschaft mbH, HEALTH - Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria; Medical University of Graz, Division of Endocrinology and Diabetology, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Thomas Birngruber
- JOANNEUM RESEARCH Forschungsgesellschaft mbH, HEALTH - Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria.
| |
Collapse
|
20
|
Frederiksen M, Stapleton HM, Vorkamp K, Webster TF, Jensen NM, Sørensen JA, Nielsen F, Knudsen LE, Sørensen LS, Clausen PA, Nielsen JB. Dermal uptake and percutaneous penetration of organophosphate esters in a human skin ex vivo model. CHEMOSPHERE 2018; 197:185-192. [PMID: 29353672 DOI: 10.1016/j.chemosphere.2018.01.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 05/22/2023]
Abstract
Organophosphate esters (OPEs) are used as flame retardants, plasticizers, and as hydraulic fluids. They are present in indoor environments in high concentrations compared with other flame retardants, and human exposure is ubiquitous. In this study we provide data for estimating dermal uptake for eight OPEs and ranking in OPEs risk assessment. Dermal uptake and percutaneous penetration of the OPEs were studied in a Franz diffusion cell system using human skin dosed with a mixture of OPEs in an ethanol:toluene (4:1) solution. Large variation in penetration profiles was observed between the OPEs. The chlorinated OPEs tris(2-chloroisopropyl) phosphate (TCIPP), and in particular tris(2-chloroethyl) phosphate (TCEP), penetrated the skin quite rapidly while tris(1,3-dichlor-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) tended to build up in the skin tissue and only smaller amounts permeated through the skin. For tris(isobutyl) phosphate (TIBP), tris(n-butyl) phosphate (TNBP), and tris(methylphenyl) phosphate (TMPP) the mass balance was not stable over time indicating possible degradation during the experimental period of 72 h. The rates at which OPEs permeated through the skin decreased in the order TCEP > TCIPP ≥ TBOEP > TIBP ≥ TNBP > TDCIPP > TPHP > TMPP. Generally, the permeation coefficient, kp, decreased with increasing log Kow, whereas lag time and skin deposition increased with log Kow. The present data indicate that dermal uptake is a non-negligible human exposure pathway for the majority of the studied OPEs.
Collapse
Affiliation(s)
- Marie Frederiksen
- Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2400, Copenhagen SV, Denmark; National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen Ø, Denmark.
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, LSRC Box 90328, Durham, NC 27708, USA
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, 715 Albany St, Boston, MA 02118, USA
| | - Niels Martin Jensen
- Department of Plastic and Reconstructive Surgery, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Jens Ahm Sørensen
- Department of Plastic and Reconstructive Surgery, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Flemming Nielsen
- Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000, Odense C, Denmark
| | - Lisbeth E Knudsen
- Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, 2100, Copenhagen Ø, Denmark
| | - Lars S Sørensen
- Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2400, Copenhagen SV, Denmark
| | - Per Axel Clausen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen Ø, Denmark
| | - Jesper B Nielsen
- Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000, Odense C, Denmark
| |
Collapse
|
21
|
Fernández-Campos F, Obach M, Moreno M, García A, González J. Pharmaceutical development of a generic corticoid semisolid formulation. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Schwingenschuh S, Scharfetter H, Martinsen ØG, Boulgaropoulos B, Augustin T, Tiffner KI, Dragatin C, Raml R, Hoefferer C, Prandl EC, Sinner F, Hajnsek M. Assessment of skin permeability to topically applied drugs by skin impedance and admittance. Physiol Meas 2017; 38:N138-N150. [PMID: 28967873 DOI: 10.1088/1361-6579/aa904e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Pharmacokinetic and pharmacodynamic studies of topically applied drugs are commonly performed by sampling of interstitial fluid with dermal open flow microperfusion and subsequent analysis of the samples. However, the reliability of results from the measured concentration-time profile of the penetrating drug suffers from highly variable skin permeability to topically applied drugs that is mainly caused by inter- and intra-subject variations of the stratum corneum. Thus, statistically significant results can only be achieved by performing high numbers of experiments. To reduce the expenditures needed for such high experiment numbers we aimed to assess the correlation between skin permeability and skin impedance/skin admittance. APPROACH We performed an ex vivo drug penetration study with human skin, based on the hypothesis that inter-subject variations of the respective concentration-time profiles can be correlated with variations of the passive electrical properties of the skin. Therefore, skin impedance and skin admittance were related to the skin permeability to the model drug Clobetasol-17-proprionate. MAIN RESULTS The measured low frequency skin impedance and the skin admittance correlated linearly with the drug concentration-time profiles from dermal sampling. SIGNIFICANCE Skin permeability can be assessed by measuring the passive electrical properties of the skin, which enables correction of skin permeability variations. This allows reduction of experiment numbers in future pharmacokinetic and pharmacodynamic studies with human skin ex vivo and in vivo and leads to diminished study costs.
Collapse
Affiliation(s)
- Simon Schwingenschuh
- Joanneum Research, HEALTH-Institute for Biomedicine and Health Sciences, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Microdialysis of Large Molecules. J Pharm Sci 2016; 105:3233-3242. [DOI: 10.1016/j.xphs.2016.08.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/01/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022]
|
24
|
Erdő F, Hashimoto N, Karvaly G, Nakamichi N, Kato Y. Critical evaluation and methodological positioning of the transdermal microdialysis technique. A review. J Control Release 2016; 233:147-61. [DOI: 10.1016/j.jconrel.2016.05.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 01/28/2023]
|
25
|
Kinetics of Clobetasol-17-Propionate in Psoriatic Lesional and Non-Lesional Skin Assessed by Dermal Open Flow Microperfusion with Time and Space Resolution. Pharm Res 2016; 33:2229-38. [PMID: 27271272 PMCID: PMC4967091 DOI: 10.1007/s11095-016-1960-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/27/2016] [Indexed: 01/28/2023]
Abstract
Purpose To evaluate the kinetics of topically applied clobetasol-17-propionate (CP-17) in lesional and non-lesional psoriatic skin when released from a commercially available low-strength cream using in vivo dermal open-flow microperfusion (dOFM). Methods Twelve patients received Dermovate® cream (CP-17, 0.05%) on small lesional and non-lesional skin test sites for 14 days, once daily. On day 1 and 14, dOFM samples were continuously taken in the dermis for 24 h post-dose and analyzed by LC-MS/MS. Probe depths were assessed by 50 MHz ultrasound scanning. Results Mixed-effects modelling identified skin condition, treatment duration and probe-depth as kinetics determining variables. The time- and depth-resolved intradermal data revealed (i) slower penetration of CP-17 into lesional than into non-lesional skin, (ii) normalized (faster) skin penetration after repeated dosing, and (iii) no CP-17 accumulation within the dermis independently of the skin condition. Conclusions Intradermal investigation of a highly lipophilic drug released from low-strength cream was successfully performed by using dOFM and timely and spatially, i.e., probe-depth dependent, resolved kinetic data were delivered. These data support the assumption that the thickened psoriatic stratum corneum might act as trap compartment which lowers the skin penetration rate for lipophilic topical drugs. Electronic supplementary material The online version of this article (doi:10.1007/s11095-016-1960-y) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Birngruber T, Sinner F. Cerebral open flow microperfusion (cOFM) an innovative interface to brain tissue. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 20:19-25. [PMID: 27986219 DOI: 10.1016/j.ddtec.2016.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Cerebral open flow microperfusion (cOFM) is a new in-vivo technique for continuous sampling of the interstitial fluid in brain tissue. cOFM can be used to monitor substance transport across the blood-brain barrier (pharmacokinetics) and to investigate metabolic changes in brain tissue after drug application (pharmacodynamics). The possibility of long-term implantation into the brain makes cOFM an outstanding tool in the development of brain relevant pharmaceutics.
Collapse
Affiliation(s)
- Thomas Birngruber
- Joanneum Research GmbH, HEALTH - Institute for Biomedicine and Health Sciences, Neue Stiftingtalstrasse 2, 8010 Graz, Austria.
| | - Frank Sinner
- Joanneum Research GmbH, HEALTH - Institute for Biomedicine and Health Sciences, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; Medical University of Graz, Department of Internal Medicine, Division of Endocrinology and Diabetology, Auenbruggerplatz 15, 8036 Graz, Austria
| |
Collapse
|
27
|
Bodenlenz M, Ellmerer M, Schaupp L, Jacobsen LV, Plank J, Brunner GA, Wutte A, Aigner B, Mautner SI, Pieber TR. Bioavailability of insulin detemir and human insulin at the level of peripheral interstitial fluid in humans, assessed by open-flow microperfusion. Diabetes Obes Metab 2015; 17:1166-72. [PMID: 26260082 DOI: 10.1111/dom.12551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/30/2015] [Accepted: 08/06/2015] [Indexed: 11/28/2022]
Abstract
AIMS To find an explanation for the lower potency of insulin detemir observed in humans compared with unmodified human insulin by investigating insulin detemir and human insulin concentrations directly at the level of peripheral insulin-sensitive tissues in humans in vivo. METHODS Euglycaemic-hyperinsulinaemic clamp experiments were performed in healthy volunteers. Human insulin was administered i.v. at 6 pmol/kg/min and insulin detemir at 60 pmol/kg/min, achieving a comparable steady-state pharmacodynamic action. In addition, insulin detemir was doubled to 120 pmol/kg/min. Minimally invasive open-flow microperfusion (OFM) sampling methodology was combined with inulin calibration to quantify human insulin and insulin detemir in the interstitial fluid (ISF) of subcutaneous adipose and skeletal muscle tissue. RESULTS The human insulin concentration in the ISF was ∼115 pmol/l or ∼30% of the serum concentration, whereas the insulin detemir concentration in the ISF was ∼680 pmol/l or ∼2% of the serum concentration. The molar insulin detemir interstitial concentration was five to six times higher than the human insulin interstitial concentration and metabolic clearance of insulin detemir from serum was substantially reduced compared with human insulin. CONCLUSIONS OFM proved useful for target tissue measurements of human insulin and the analogue insulin detemir. Our tissue data confirm a highly effective retention of insulin detemir in the vascular compartment. The higher insulin detemir relative to human insulin tissue concentrations at comparable pharmacodynamics, however, indicate that the lower potency of insulin detemir in humans is attributable to a reduced effect in peripheral insulin-sensitive tissues and is consistent with the reduced in vitro receptor affinity.
Collapse
MESH Headings
- Adult
- Biological Availability
- Calibration
- Cross-Over Studies
- Dose-Response Relationship, Drug
- Extracellular Fluid/metabolism
- Glucose Clamp Technique
- Humans
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/blood
- Hypoglycemic Agents/metabolism
- Hypoglycemic Agents/pharmacokinetics
- Infusions, Intravenous
- Insulin Detemir/administration & dosage
- Insulin Detemir/blood
- Insulin Detemir/metabolism
- Insulin Detemir/pharmacokinetics
- Insulin, Regular, Human/administration & dosage
- Insulin, Regular, Human/blood
- Insulin, Regular, Human/metabolism
- Insulin, Regular, Human/pharmacokinetics
- Inulin/administration & dosage
- Inulin/blood
- Inulin/metabolism
- Inulin/pharmacokinetics
- Lipoylation
- Male
- Metabolic Clearance Rate
- Muscle, Skeletal/metabolism
- Subcutaneous Fat/metabolism
- Tissue Distribution
- Young Adult
Collapse
Affiliation(s)
- M Bodenlenz
- HEALTH, Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Graz, Austria
| | - M Ellmerer
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - L Schaupp
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - J Plank
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - G A Brunner
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - A Wutte
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - B Aigner
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Division of General Dermatology, Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - S I Mautner
- HEALTH, Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Graz, Austria
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - T R Pieber
- HEALTH, Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Graz, Austria
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
28
|
Höfferer C, Tutkur D, Fledelius C, Brand CL, Alsted TJ, Damgaard J, Nishimura E, Jeppesen CB, Mautner SI, Pieber TR, Sinner F. Open flow microperfusion: pharmacokinetics of human insulin and insulin detemir in the interstitial fluid of subcutaneous adipose tissue. Diabetes Obes Metab 2015; 17:121-7. [PMID: 25243522 DOI: 10.1111/dom.12394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/08/2014] [Accepted: 09/16/2014] [Indexed: 11/30/2022]
Abstract
AIMS To compare the time profile of insulin detemir and human insulin concentrations in the interstitial fluid (ISF) of subcutaneous adipose tissue during constant i.v. infusion and to investigate the relationship between the pharmacokinetics of both insulin molecules in plasma and the ISF of subcutaneous adipose tissue. METHODS During a 6-h hyperinsulinaemic-euglycaemic clamp (plasma glucose level 8 mmol/l) human insulin (21 and 42 pmol/min/kg) or insulin detemir (209 and 417 pmol/min/kg) were infused i.v. in eight rats per dose level. Open flow microperfusion (OFM) was used to continuously assess interstitial insulin concentrations in subcutaneous adipose tissue. RESULTS At the lower infusion rate, insulin detemir appeared significantly later in the ISF than in the plasma (p < 0.05) and also appeared later in the ISF relative to human insulin (p < 0.005). CONCLUSIONS By using OFM we were able to monitor albumin-bound insulin detemir directly in the ISF of subcutaneous tissue and confirm its delayed transendothelial passage to a peripheral site of action.
Collapse
Affiliation(s)
- C Höfferer
- Joanneum Research, Institute for Biomedicine and Health Sciences, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Birngruber T, Raml R, Gladdines W, Gatschelhofer C, Gander E, Ghosh A, Kroath T, Gaillard PJ, Pieber TR, Sinner F. Enhanced Doxorubicin Delivery to the Brain Administered Through Glutathione PEGylated Liposomal Doxorubicin (2B3-101) as Compared with Generic Caelyx,®/Doxil®—A Cerebral Open Flow Microperfusion Pilot Study. J Pharm Sci 2014; 103:1945-1948. [DOI: 10.1002/jps.23994] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 12/19/2022]
|
30
|
Birngruber T, Ghosh A, Hochmeister S, Asslaber M, Kroath T, Pieber TR, Sinner F. Long-term implanted cOFM probe causes minimal tissue reaction in the brain. PLoS One 2014; 9:e90221. [PMID: 24621608 PMCID: PMC3951198 DOI: 10.1371/journal.pone.0090221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/27/2014] [Indexed: 02/07/2023] Open
Abstract
This study investigated the histological tissue reaction to long-term implanted cerebral open flow microperfusion (cOFM) probes in the frontal lobe of the rat brain. Most probe-based cerebral fluid sampling techniques are limited in application time due to the formation of a glial scar that hinders substance exchange between brain tissue and the probe. A glial scar not only functions as a diffusion barrier but also alters metabolism and signaling in extracellular brain fluid. cOFM is a recently developed probe-based technique to continuously sample extracellular brain fluid with an intact blood-brain barrier. After probe implantation, a 2 week healing period is needed for blood-brain barrier reestablishment. Therefore, cOFM probes need to stay in place and functional for at least 15 days after implantation to ensure functionality. Probe design and probe materials are optimized to evoke minimal tissue reaction even after a long implantation period. Qualitative and quantitative histological tissue analysis revealed no continuous glial scar formation around the cOFM probe 30 days after implantation and only a minor tissue reaction regardless of perfusion of the probe.
Collapse
Affiliation(s)
- Thomas Birngruber
- HEALTH – Institute of Biomedicine and Health Sciences, JOANNEUM RESEARCH, Graz, Austria
| | - Arijit Ghosh
- Division of Endocrinology and Metabolism, Medical University of Graz, Graz, Austria
| | - Sonja Hochmeister
- Division of General Neurology, Medical University of Graz, Graz, Austria
| | - Martin Asslaber
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Thomas Kroath
- HEALTH – Institute of Biomedicine and Health Sciences, JOANNEUM RESEARCH, Graz, Austria
| | - Thomas R. Pieber
- HEALTH – Institute of Biomedicine and Health Sciences, JOANNEUM RESEARCH, Graz, Austria
- Division of Endocrinology and Metabolism, Medical University of Graz, Graz, Austria
| | - Frank Sinner
- HEALTH – Institute of Biomedicine and Health Sciences, JOANNEUM RESEARCH, Graz, Austria
- Division of Endocrinology and Metabolism, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
31
|
Mukker JK, Singh RP, Derendorf H. Determination of Atypical Nonlinear Plasma–Protein-Binding Behavior of Tigecycline Using an In Vitro Microdialysis Technique. J Pharm Sci 2014; 103:1013-9. [DOI: 10.1002/jps.23872] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 11/10/2022]
|
32
|
Holmgaard R, Benfeldt E, Nielsen JB. Percutaneous Penetration - Methodological Considerations. Basic Clin Pharmacol Toxicol 2014; 115:101-9. [DOI: 10.1111/bcpt.12188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/18/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Rikke Holmgaard
- Department of Orthopedic Surgery; Køge Sygehus; Køge Denmark
| | - Eva Benfeldt
- Department of Dermatology; University of Copenhagen; Roskilde Hospital; Roskilde Denmark
| | - Jesper B. Nielsen
- Institute of Public Health; University of Southern Denmark; Odense Denmark
| |
Collapse
|
33
|
Birngruber T, Ghosh A, Perez-Yarza V, Kroath T, Ratzer M, Pieber TR, Sinner F. Cerebral open flow microperfusion: A newin vivotechnique for continuous measurement of substance transport across the intact blood-brain barrier. Clin Exp Pharmacol Physiol 2013; 40:864-71. [DOI: 10.1111/1440-1681.12174] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 08/09/2013] [Accepted: 09/11/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas Birngruber
- Joanneum Research GmbH; HEALTH-Institute for Biomedicine and Health Sciences; Graz Austria
| | - Arijit Ghosh
- Department of Internal Medicine; Division of Endocrinology and Metabolism; Medical University of Graz; Graz Austria
| | - Veronica Perez-Yarza
- Department of Internal Medicine; Division of Endocrinology and Metabolism; Medical University of Graz; Graz Austria
| | - Thomas Kroath
- Joanneum Research GmbH; HEALTH-Institute for Biomedicine and Health Sciences; Graz Austria
| | - Maria Ratzer
- Joanneum Research GmbH; HEALTH-Institute for Biomedicine and Health Sciences; Graz Austria
| | - Thomas R Pieber
- Joanneum Research GmbH; HEALTH-Institute for Biomedicine and Health Sciences; Graz Austria
- Department of Internal Medicine; Division of Endocrinology and Metabolism; Medical University of Graz; Graz Austria
| | - Frank Sinner
- Joanneum Research GmbH; HEALTH-Institute for Biomedicine and Health Sciences; Graz Austria
- Department of Internal Medicine; Division of Endocrinology and Metabolism; Medical University of Graz; Graz Austria
| |
Collapse
|
34
|
Gaillard PJ, Visser CC, de Boer M, Appeldoorn CCM, Rip J. Blood-to-Brain Drug Delivery Using Nanocarriers. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-1-4614-9105-7_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Bodenlenz M, Aigner B, Dragatin C, Liebenberger L, Zahiragic S, Höfferer C, Birngruber T, Priedl J, Feichtner F, Schaupp L, Korsatko S, Ratzer M, Magnes C, Pieber TR, Sinner F. Clinical applicability of dOFM devices for dermal sampling. Skin Res Technol 2013; 19:474-83. [PMID: 23581539 DOI: 10.1111/srt.12071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Sampling the dermal interstitial fluid (ISF) allows the pharmacokinetics and pharmacodynamics of dermatological drugs to be studied directly at their site of action. Dermal open-flow microperfusion (dOFM) is a recently developed technique that can provide minimally invasive, continuous, membrane-free (thus unfiltered) access to the dermal ISF. Herein, we evaluate the clinical applicability and reliability of novel wearable dOFM devices in a clinical setting. METHODS Physicians inserted 141 membrane-free dOFM probes into the dermis of 17 healthy and psoriatic volunteers and sampled dermal ISF for 25 h by using wearable push-pull pumps. The tolerability, applicability, reproducibility, and reliability of multiple insertions and 25 h continuous sampling was assessed by pain scoring, physician feedback, ultrasound probe depth measurements, and 25 h-drift and variability of the sodium relative recovery. RESULTS Insertion pain was moderate and decreased with each additional probe. Probe insertion was precise, although slightly deeper in lesional skin. The wearable push-pull pump enabled uninterrupted ISF sampling over 25 h with low variability. The relative recovery was drift-free and highly reproducible. CONCLUSION dOFM sampling devices are tolerable and reliable for prolonged continuous dermal sampling in a multiprobe clinical setting. These devices should enable the study of a wide range of drugs and their biomarkers in the skin.
Collapse
Affiliation(s)
- M Bodenlenz
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H., Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|