1
|
Tanaka Y, Arai H, Hidaka A, Noda S, Imai K, Tsujisawa F, Yagi H, Sakuma S. In Vitro Digestion-In Situ Absorption Setup Employing a Physiologically Relevant Value of the Membrane Surface Area/Volume Ratio for Evaluating Performance of Lipid-Based Formulations: A Comparative Study with an In Vitro Digestion-Permeation Model. Mol Pharm 2024; 21:3459-3470. [PMID: 38809159 DOI: 10.1021/acs.molpharmaceut.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The aim of this study is to establish and test an in vitro digestion-in situ absorption model that can mimic in vivo drug flux by employing a physiologically relevant value of the membrane surface area (S)/volume (V) ratio for accurate prediction of oral drug absorption from lipid-based formulations (LBFs). Three different types of LBFs (Type IIIA-MC, Type IIIA-LC, and Type IV) loaded with cinnarizine (CNZ), a lipophilic weak base with borderline permeability, and a control suspension were prepared. Subsequently, a simultaneous in vitro digestion-permeation experiment was conducted using a side-by-side diffusion cell with a dialysis membrane having a low S/V value. During digestion, CNZ partially precipitated for Type IV, while it remained solubilized in the aqueous phase for Type IIIA-MC and Type IIIA-LC in the donor compartment. However, in vitro drug fluxes for Type IIIA-MC and Type IIIA-LC were lower than those for Type IV due to the reduced free fraction of CNZ in the donor compartment. In pharmacokinetic studies, a similar improvement in in vivo oral exposure relative to suspension was observed, regardless of the LBFs used. Consequently, a poor correlation was found between in vitro permeation and areas under the plasma concentration-time curve (AUCoral) (R2 = 0.087). A luminal concentration measurement study revealed that this discrepancy was attributed to the extremely high absorption rate of CNZ in the gastrointestinal tract compared to that across a dialysis membrane evaluated by the in vitro digestion-permeation model, i.e., the absorption of CNZ in vivo was completed regardless of the extent of the free fraction, owing to the rapid removal of CNZ from the intestine. Subsequently, we aimed to predict the oral absorption of CNZ from the same formulations using a model that demonstrated high drug flux by employing the physiologically relevant S/V value and rat jejunum segment as an absorption sink (for replicating in vivo intestinal permeability). Predigested formulations were injected into the rat intestinal loop, and AUCloop values were calculated from the plasma concentration-time profiles. A better correlation was found between AUCloop and AUCoral (R2 = 0.72), although AUCloop underestimated AUCoral for Type IV due to the precipitation of CNZ during the predigestion process. However, this result indicated the importance of mimicking the in vivo drug absorption rate in the predictive model. The method presented herein is valuable for the development of LBFs.
Collapse
Affiliation(s)
- Yusuke Tanaka
- Laboratory of Drug Delivery System, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Hinata Arai
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | - Aya Hidaka
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | - Saki Noda
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | - Ko Imai
- Laboratory of Drug Delivery System, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Fumiya Tsujisawa
- Laboratory of Drug Delivery System, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Haruya Yagi
- Laboratory of Drug Delivery System, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Shinji Sakuma
- Laboratory of Drug Delivery System, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
2
|
Kovačević M, Gašperlin M, Pobirk AZ. Lipid-based systems with precipitation inhibitors as formulation approach to improve the drug bioavailability and/or lower its dose: a review. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:201-227. [PMID: 38815207 DOI: 10.2478/acph-2024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Lipid-based systems, such as self-microemulsifying systems (SMEDDS) are attracting strong attention as a formulation approach to improve the bioavailability of poorly water-soluble drugs. By applying the "spring and parachute" strategy in designing supersaturable SMEDDS, it is possible to maintain the drug in the supersaturated state long enough to allow absorption of the complete dose, thus improving the drug's bio-availability. As such an approach allows the incorporation of larger amounts of the drug in equal or even lower volumes of SMEDDS, it also enables the production of smaller final dosage forms as well as decreased gastrointestinal irritation, being of particular importance when formulating dosage forms for children or the elderly. In this review, the technological approaches used to prolong the drug supersaturation are discussed regarding the type and concentration of polymers used in liquid and solid SMEDDS formulation. The addition of hypromellose derivatives, vinyl polymers, polyethylene glycol, polyoxyethylene, or polymetacrylate copolymers proved to be effective in inhibiting drug precipitation. Regarding the available literature, hypromellose has been the most commonly used polymeric precipitation inhibitor, added in a concentration of 5 % (m/m). However, the inhibiting ability is mainly governed not only by the physicochemical properties of the polymer but also by the API, therefore the choice of optimal precipitation inhibitor is recommended to be evaluated on an individual basis.
Collapse
Affiliation(s)
- Mila Kovačević
- 1University of Ljubljana, Faculty of Pharmacy 1000 Ljubljana Slovenia
| | - Mirjana Gašperlin
- 1University of Ljubljana, Faculty of Pharmacy 1000 Ljubljana Slovenia
| | | |
Collapse
|
3
|
Calero V, Rodrigues PM, Dias T, Ainla A, Vilaça A, Pastrana L, Xavier M, Gonçalves C. A miniaturised semi-dynamic in-vitro model of human digestion. Sci Rep 2024; 14:11923. [PMID: 38789470 PMCID: PMC11126663 DOI: 10.1038/s41598-024-54612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/14/2024] [Indexed: 05/26/2024] Open
Abstract
Reliable in-vitro digestion models that are able to successfully replicate the conditions found in the human gastrointestinal tract are key to assess the fate and efficiency of new formulations aimed for oral consumption. However, current in-vitro models either lack the capability to replicate crucial dynamics of digestion or require large volumes of sample/reagents, which can be scarce when working with nanomaterials under development. Here, we propose a miniaturised digestion system, a digestion-chip, based on incubation chambers integrated on a polymethylmethacrylate device. The digestion-chip incorporates key dynamic features of human digestion, such as gradual acidification and gradual addition of enzymes and simulated fluids in the gastric phase, and controlled gastric emptying, while maintaining low complexity and using small volumes of sample and reagents. In addition, the new approach integrates real-time automated closed-loop control of two key parameters, pH and temperature, during the two main phases of digestion (gastric and intestinal) with an accuracy down to ± 0.1 °C and ± 0.2 pH points. The experimental results demonstrate that the digestion-chip successfully replicates the gold standard static digestion INFOGEST protocol and that the semi-dynamic digestion kinetics can be reliably fitted to a first kinetic order model. These devices can be easily adapted to dynamic features in an automated, sensorised, and inexpensive platform and will enable reliable, low-cost and efficient assessment of the bioaccessibility of new and expensive drugs, bioactive ingredients or nanoengineered materials aimed for oral consumption, thereby avoiding unnecessary animal testing.
Collapse
Affiliation(s)
- Victor Calero
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, S/N, 4715-330, Braga, Portugal
| | - Patrícia M Rodrigues
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, S/N, 4715-330, Braga, Portugal
| | - Tiago Dias
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, S/N, 4715-330, Braga, Portugal
- Nova School of Science and Technology, Nova University of Lisbon, Lisbon, Portugal
| | - Alar Ainla
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, S/N, 4715-330, Braga, Portugal.
| | - Adriana Vilaça
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, S/N, 4715-330, Braga, Portugal
| | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, S/N, 4715-330, Braga, Portugal
| | - Miguel Xavier
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, S/N, 4715-330, Braga, Portugal.
| | - Catarina Gonçalves
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, S/N, 4715-330, Braga, Portugal.
| |
Collapse
|
4
|
Rezhdo O, West R, Kim M, Ng B, Saphier S, Carrier RL. Mathematical model of intestinal lipolysis of a long-chain triglyceride. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592066. [PMID: 38746383 PMCID: PMC11092624 DOI: 10.1101/2024.05.01.592066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Lipids are an important component of food and oral drug formulations. Upon release into gastrointestinal fluids, triglycerides, common components of foods and drug delivery systems, form emulsions and are digested into simpler amphiphilic lipids (e.g., fatty acids) that can associate with intestinal bile micelles and impact their drug solubilization capacity. Digestion of triglycerides is dynamic and dependent on lipid quantity and type, and quantities of other components in the intestinal environment (e.g., bile salts, lipases). The ability to predict lipid digestion kinetics in the intestine could enhance understanding of lipid impact on the fate of co-administered compounds (e.g., drugs, nutrients). In this study, we present a kinetic model that can predict the lipolysis of emulsions of triolein, a model long-chain triglyceride, as a function of triglyceride amount, droplet size, and quantity of pancreatic lipase in an intestinal environment containing bile micelles. The model is based on a Ping Pong Bi Bi mechanism coupled with quantitative analysis of partitioning of lipolysis products in colloids, including bile micelles, in solution. The agreement of lipolysis model predictions with experimental data suggests that the mechanism and proposed assumptions adequately represent triglyceride digestion in a simulated intestinal environment. In addition, we demonstrate the value of such a model over simpler, semi-mechanistic models reported in the literature. This lipolysis framework can serve as a basis for modeling digestion kinetics of different classes of triglycerides and other complex lipids as relevant in food and drug delivery systems.
Collapse
|
5
|
Desai HH, T M Serajuddin A. Development of lipid-based SEDDS using digestion products of long-chain triglyceride for high drug solubility: Formulation and dispersion testing. Int J Pharm 2024; 654:123953. [PMID: 38417725 DOI: 10.1016/j.ijpharm.2024.123953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
A self-emulsifying drug delivery system (SEDDS) containing long chain lipid digestion products (LDP) and surfactants was developed to increase solubility of two model weakly basic drugs, cinnarizine and ritonavir, in the formulation. A 1:1.2 w/w mixture of glyceryl monooleate (Capmul GMO-50; Abitec) and oleic acid was used as the digestion product, and a 1:1 w/w mixture of Tween 80 and Cremophor EL was the surfactant used. The ratio between LDP and surfactant was 1:1 w/w. Since the commercially available Capmul GMO-50 is not pure monoglyceride and contained di-and-triglycerides, the digestion product used would provide 1:2 stoichiometric molar ratio of monoglyceride and fatty acid after complete digestion in gastrointestinal fluid. Both cinnarizine and ritonavir had much higher solubility in oleic acid (536 and 72 mg/g, respectively) than that in glyceryl monooleate and glyceryl trioleate. Therefore, by incorporating oleic acid in place of glyceryl trioleate in the formulation, the solubility of cinnarizine and ritonavir could be increased by 5-fold and 3.5-fold, respectively, as compared to a formulation without the fatty acid. The formulation dispersed readily in aqueous media, and adding 3 mM sodium taurocholate, which is generally present in GI fluid, remarkably improved the dispersibility of SEDDS and reduced particle size of dispersions. Thus, the use of digestion products of long-chain triglycerides as components of SEDDS can enhance the drug loading of weakly basic compounds and increase dispersibility in GI fluids.
Collapse
Affiliation(s)
- Heta H Desai
- Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA; Present Address: Pace Life Sciences, 19 Presidential Way, Woburn, MA 01801, USA
| | - Abu T M Serajuddin
- Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| |
Collapse
|
6
|
Johannesson J, Pathare MM, Johansson M, Bergström CAS, Teleki A. Synergistic stabilization of emulsion gel by nanoparticles and surfactant enables 3D printing of lipid-rich solid oral dosage forms. J Colloid Interface Sci 2023; 650:1253-1264. [PMID: 37478742 DOI: 10.1016/j.jcis.2023.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/24/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023]
Abstract
Pharmaceutical formulation of oral dosage forms is continuously challenged by the low solubility of new drug candidates. Pickering emulsions, emulsions stabilized with solid particles, are a promising alternative to surfactants for developing long-term stable emulsions that can be tailored for controlled release of lipophilic drugs. In this work, a non-emulsifying lipid-based formulation (LBF) loaded with fenofibrate was formulated into an oil-in-water (O/W) emulsion synergistically stabilized by stearic acid and silica (SiO2) nanoparticles. The emulsion had a droplet size of 341 nm with SiO2 particles partially covering the oil-water interface. In vitro lipid digestion was faster for the emulsion compared to the corresponding LBF due to the larger total surface area available for digestion. Cellulose biopolymers were added to the emulsion to produce a gel for semi-solid extrusion (SSE) 3D printing into tablets. The emulsion gel showed suitable rheological attributes for SSE, with a trend of higher viscosity, yield stress, and storage modulus (G'), compared to a conventional self-emulsifying lipid-based emulsion gel. The developed emulsion gel allows for a non-emulsifying LBF to be transformed into solid dosage forms for rapid lipid digestion and drug release of a poorly water-soluble drug in the small intestine.
Collapse
Affiliation(s)
- Jenny Johannesson
- Department of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Malhar Manik Pathare
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Mathias Johansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala, Sweden
| | | | - Alexandra Teleki
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
7
|
Zupančič O, Kushwah V, Paudel A. Pancreatic lipase digestion: The forgotten barrier in oral administration of lipid-based delivery systems? J Control Release 2023; 362:381-395. [PMID: 37579977 DOI: 10.1016/j.jconrel.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
This review highlights the importance of controlling the digestion process of orally administered lipid-based delivery systems (LBDS) and their performance. Oral LBDS are prone to digestion via pancreatic lipase in the small intestine. Rapid or uncontrolled digestion may cause the loss of delivery system integrity, its structural changes, reduced solubilization capacity and physical stability issues. All these events can lead to uncontrolled drug release from the digested LBDS into the gastrointestinal environment, exposing the incorporated drug to precipitation or degradation by luminal proteases. To prevent this, the digestion rate of orally administered LBDS can be estimated by appropriate choice of the formulation type, excipient combinations and their ratios. In addition, in vitro digestion models like pH-stat are useful tools to evaluate the formulation digestion rate. Controlling digestion can be achieved by conventional lipase inhibitors like orlistat, sterically hindering of lipase adsorption on the delivery system surface with polyethylene glycol (PEG) chains, lipase desorption or saturation of the interface with surfactants as well as formulating LBDS with ester-free excipients. Recent in vivo studies demonstrated that digestion inhibition lead to altered pharmacokinetic profiles, where Cmax and Tmax were reduced in spite of same AUC compared to control or even improved oral bioavailability.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Varun Kushwah
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria; Graz University of Technology, Institute of Process and Particle Engineering, Inffeldgasse 13/3, 8010 Graz, Austria.
| |
Collapse
|
8
|
Reppas C, Kuentz M, Bauer-Brandl A, Carlert S, Dallmann A, Dietrich S, Dressman J, Ejskjaer L, Frechen S, Guidetti M, Holm R, Holzem FL, Karlsson Ε, Kostewicz E, Panbachi S, Paulus F, Senniksen MB, Stillhart C, Turner DB, Vertzoni M, Vrenken P, Zöller L, Griffin BT, O'Dwyer PJ. Leveraging the use of in vitro and computational methods to support the development of enabling oral drug products: An InPharma commentary. Eur J Pharm Sci 2023; 188:106505. [PMID: 37343604 DOI: 10.1016/j.ejps.2023.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
Due to the strong tendency towards poorly soluble drugs in modern development pipelines, enabling drug formulations such as amorphous solid dispersions, cyclodextrins, co-crystals and lipid-based formulations are frequently applied to solubilize or generate supersaturation in gastrointestinal fluids, thus enhancing oral drug absorption. Although many innovative in vitro and in silico tools have been introduced in recent years to aid development of enabling formulations, significant knowledge gaps still exist with respect to how best to implement them. As a result, the development strategy for enabling formulations varies considerably within the industry and many elements of empiricism remain. The InPharma network aims to advance a mechanistic, animal-free approach to the assessment of drug developability. This commentary focuses current status and next steps that will be taken in InPharma to identify and fully utilize 'best practice' in vitro and in silico tools for use in physiologically based biopharmaceutic models.
Collapse
Affiliation(s)
- Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Martin Kuentz
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz CH 4132, Switzerland
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | | | - André Dallmann
- Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Shirin Dietrich
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Lotte Ejskjaer
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Sebastian Frechen
- Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Matteo Guidetti
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark; Solvias AG, Department for Solid-State Development, Römerpark 2, 4303 Kaiseraugst, Switzerland
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Florentin Lukas Holzem
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark; Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | | | - Edmund Kostewicz
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Shaida Panbachi
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz CH 4132, Switzerland
| | - Felix Paulus
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Malte Bøgh Senniksen
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany; Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Cordula Stillhart
- Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | | | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Paul Vrenken
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece; Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Laurin Zöller
- AstraZeneca R&D, Gothenburg, Sweden; Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | | | | |
Collapse
|
9
|
Møller A, Schultz HB, Meola TR, Joyce P, Müllertz A, Prestidge CA. The Influence of Blonanserin Supersaturation in Liquid and Silica Stabilised Self-Nanoemulsifying Drug Delivery Systems on In Vitro Solubilisation. Pharmaceutics 2023; 15:pharmaceutics15010284. [PMID: 36678919 PMCID: PMC9864080 DOI: 10.3390/pharmaceutics15010284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Reformulating poorly water-soluble drugs as supersaturated lipid-based formulations achieves higher drug loading and potentially improves solubilisation and bioavailability. However, for the weak base blonanserin, silica solidified supersaturated lipid-based formulations have demonstrated reduced in vitro solubilisation compared to their liquid-state counterparts. Therefore, this study aimed to understand the influence of supersaturated drug load on blonanserin solubilisation from liquid and silica solidified supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS) during in vitro lipolysis. Stable liquid super-SNEDDS with varying drug loads (90-300% of the equilibrium solubility) were solidified by imbibition into porous silica microparticles (1:1 lipid: silica ratio). In vitro lipolysis revealed greater blonanserin solubilisation from liquid super-SNEDDS compared to solid at equivalent drug saturation levels, owing to strong silica-BLON/lipid interactions, evidenced by a significant decrease in blonanserin solubilisation upon addition of silica to a digesting liquid super-SNEDDS. An increase in solid super-SNEDDS drug loading led to increased solubilisation, owing to the increased drug:silica and drug:lipid ratios. Solidifying SNEDDS with silica enables the fabrication of powdered formulations with higher blonanserin loading and greater stability than liquid super-SNEDDS, however at the expense of drug solubilisation. These competing parameters need careful consideration in designing optimal super-SNEDDS for pre-clinical and clinical application.
Collapse
Affiliation(s)
- Amalie Møller
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Future Industries Institute, UniSA STEM, Mawson Lakes Campus, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Hayley B. Schultz
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Tahlia R. Meola
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Paul Joyce
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Bioneer:FARMA, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Clive A. Prestidge
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Correspondence: ; Tel.: +61-8-830-22438
| |
Collapse
|
10
|
Timur B, Usta DY, Teksin ZS. Investigation of the effect of colloidal structures formed during lipolysis of lipid-based formulation on exemestane permeability using the in vitro lipolysis-permeation model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Gao Y, Zhang Y, Hong Y, Wu F, Shen L, Wang Y, Lin X. Multifunctional Role of Silica in Pharmaceutical Formulations. AAPS PharmSciTech 2022; 23:90. [PMID: 35296944 DOI: 10.1208/s12249-022-02237-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
Due to the high surface area, adjustable surface and pore structures, and excellent biocompatibility, nano- and micro-sized silica have certainly attracted the attention of many researchers in the medical fields. This review focuses on the multifunctional roles of silica in different pharmaceutical formulations including solid preparations, liquid drugs, and advanced drug delivery systems. For traditional solid preparations, it can improve compactibility and flowability, promote disintegration, adjust hygroscopicity, and prevent excessive adhesion. As for liquid drugs and preparations, like volatile oil, ethers, vitamins, and self-emulsifying drug delivery systems, silica with adjustable pore structures is a good adsorbent for solidification. Also, silica with various particle sizes, surface characteristics, pore structure, and surface modification controlled by different synthesis methods has gained wide attention owing to its unparalleled advantages for drug delivery and disease diagnosis. We also collate the latest pharmaceutical applications of silica sorted out by formulations. Finally, we point out the thorny issues for application and survey future trends pertaining to silica in an effort to provide a comprehensive overview of its future development in the medical fields. Graphical Abstract.
Collapse
|
12
|
Guruge AG, Warren DB, Benameur H, Ford L, Williams HD, Jannin V, Pouton CW, Chalmers DK. Computational and Experimental Models of Type III Lipid-Based Formulations of Loratadine Containing Complex Nonionic Surfactants. Mol Pharm 2021; 18:4354-4370. [PMID: 34807627 DOI: 10.1021/acs.molpharmaceut.1c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type III lipid-based formulations (LBFs) combine poorly water-soluble drugs with oils, surfactants, and cosolvents to deliver the drugs into the systemic circulation. However, the solubility of the drug can be influenced by the colloidal phases formed in the gastrointestinal tract as the formulation is dispersed and makes contact with bile and other materials present within the GI tract. Thus, an understanding of the phase behavior of LBFs in the gut is critical for designing efficient LBFs. Molecular dynamics (MD) simulation is a powerful tool for the study of colloidal systems. In this study, we modeled the internal structures of five type III LBFs of loratadine containing poly(ethylene oxide) nonionic surfactants polysorbate 80 and polyoxyl hydrogenated castor oil (Kolliphor RH40) using long-timescale MD simulations (0.4-1.7 μs). We also conducted experimental investigations (dilution of formulations with water) including commercial Claritin liquid softgel capsules. The simulations show that LBFs form continuous phase, water-swollen reverse micelles, and bicontinuous and phase-separated systems at different dilutions, which correlate with the experimental observations. This study supports the use of MD simulation as a predictive tool to determine the fate of LBFs composed of medium-chain lipids, polyethylene oxide surfactants, and polymers.
Collapse
Affiliation(s)
- Amali G Guruge
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Dallas B Warren
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | - Leigh Ford
- Lonza Pharma Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Hywel D Williams
- Lonza Pharma Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Vincent Jannin
- Lonza Pharma Sciences, 10 Rue Timken, Colmar 68027, France
| | - Colin W Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - David K Chalmers
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
13
|
Warren DB, Haque S, McInerney MP, Corbett KM, Kastrati E, Ford L, Williams HD, Jannin V, Benameur H, Porter CJH, Chalmers DK, Pouton CW. Molecular Dynamics Simulations and Experimental Results Provide Insight into Clinical Performance Differences between Sandimmune® and Neoral® Lipid-Based Formulations. Pharm Res 2021; 38:1531-1547. [PMID: 34561814 DOI: 10.1007/s11095-021-03099-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/21/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Molecular dynamics (MD) simulations provide an in silico method to study the structure of lipid-based formulations (LBFs) and the incorporation of poorly water-soluble drugs within such formulations. In order to validate the ability of MD to effectively model the properties of LBFs, this work investigates the well-known cyclosporine A formulations, Sandimmune® and Neoral®. Sandimmune® exhibits poor dispersibility and its absorption from the gastrointestinal tract is enhanced when administered after food, whereas Neoral® disperses comparatively well and shows no food effect. METHODS MD simulations were performed of both LBFs to investigate the differences observed in fasted and fed conditions. These conditions were also tested using an in vitro experimental model of dispersion and digestion. RESULTS These MD simulations were able to show that the food effect observed for Sandimmune® can be explained by large changes in drug solubilization on addition of bile. In contrast, Neoral® is well dispersed in water or in simulated fasted conditions, and this dispersion is relatively unchanged on moving to fed conditions. These differences were confirmed using dispersion and digestion in vitro experimental model. CONCLUSIONS The current data suggests that MD simulations are a potential method to model the fate of LBFs in the gastrointestinal tract, predict their dispersion and digestion, investigate behaviour of APIs within the formulations, and provide insights into the clinical performance of LBFs.
Collapse
Affiliation(s)
- Dallas B Warren
- Monash Institute of Pharmaceutical Sciences, Melbourne, Australia.
| | - Shadabul Haque
- Monash Institute of Pharmaceutical Sciences, Melbourne, Australia
| | | | - Karen M Corbett
- Monash Institute of Pharmaceutical Sciences, Melbourne, Australia
| | - Endri Kastrati
- Monash Institute of Pharmaceutical Sciences, Melbourne, Australia
| | - Leigh Ford
- Lonza Pharma, Biotech & Nutrition, Melbourne, Australia
| | | | | | | | | | - David K Chalmers
- Monash Institute of Pharmaceutical Sciences, Melbourne, Australia.
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Melbourne, Australia.
| |
Collapse
|
14
|
Lipophilic Salts and Lipid-Based Formulations for Bridging the Food Effect Gap of Venetoclax. J Pharm Sci 2021; 111:164-174. [PMID: 34516990 DOI: 10.1016/j.xphs.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 01/31/2023]
Abstract
Lipid based formulations (LBF) have shown to overcome food dependent bioavailability for some poorly water-soluble drugs. However, the utility of LBFs can be limited by low dose loading due to a low drug solubility in LBF vehicles. This study investigated the solubility and drug loading increases in LBFs using lipophilic counterions to form lipophilic salts of venetoclax. Venetoclax docusate was formed from venetoclax free base and verified by 1H NMR. Formation of stable venetoclax-fatty acid associations with either oleic acid or decanoic acid were attempted, however, the molecular associations were less consistent based on 1H NMR. Venetoclax docusate displayed a up to 6.2-fold higher solubility in self-emulsifying drug delivery systems (SEDDS) when compared to the venetoclax free base solubility resulting in a higher dose loading. A subsequent bioavailability study in landrace pigs demonstrated a 2.5-fold higher bioavailability for the lipophilic salt containing long chain SEDDS compared to the commercially available solid dispersion Venclyxto® in the fasted state. The bioavailability of all lipophilic salt SEDDS in the fasted state was similar to Venclyxto® in the fed state. This study confirmed that lipophilic drug salts increase the dose loading in LBFs and showed that lipophilic salt-SEDDS combinations may be able to overcome bioavailability limitations of drugs with low inherent dose loading in lipid vehicles. Furthermore, the present study demonstrated the utility of a LBF approach, in combination with lipophilic salts, to overcome food dependent variable oral bioavailability of drugs.
Collapse
|
15
|
The influence of lipid digestion on the fate of orally administered drug delivery vehicles. Biochem Soc Trans 2021; 49:1749-1761. [PMID: 34431506 PMCID: PMC8421046 DOI: 10.1042/bst20210168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022]
Abstract
This review will focus on orally administered lipid-based drug delivery vehicles and specifically the influence of lipid digestion on the structure of the carrier lipids and their entrained drug cargoes. Digestion of the formulation lipids, which are typically apolar triglycerides, generates amphiphilic monoglycerides and fatty acids that can self-assemble into a diverse array of liquid crystalline structures. Tracking the dynamic changes in self-assembly of the lipid digestion products during digestion has recently been made possible using synchrotron-based small angle X-ray scattering. The influence of lipid chain length and degree of unsaturation on the resulting lipid structuring will be described in the context of the critical packing parameter theory. The chemical and structural transformation of the formulation lipids can also have a dramatic impact on the physical state of drugs co-administered with the formulation. It is often assumed that the best strategy for drug development is to maximise drug solubility in the undigested formulation lipids and to incorporate additives to maintain drug solubility during digestion. However, it is possible to improve drug absorption using lipid digestion in cases where the solubility of the dosed drug or one of its polymorphic forms is greater in the digested lipids. Three different fates for drugs administered with digestible lipid-based formulations will be discussed: (1) where the drug is more soluble in the undigested formulation lipids; (2) where the drug undergoes a polymorphic transformation during lipid digestion; and (3) where the drug is more soluble in the digested formulation lipids.
Collapse
|
16
|
Supersaturation and Solubilization upon In Vitro Digestion of Fenofibrate Type I Lipid Formulations: Effect of Droplet Size, Surfactant Concentration and Lipid Type. Pharmaceutics 2021; 13:pharmaceutics13081287. [PMID: 34452248 PMCID: PMC8399075 DOI: 10.3390/pharmaceutics13081287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
Lipid-based formulations (LBF) enhance oral drug absorption by promoting drug solubilization and supersaturation. The aim of the study was to determine the effect of the lipid carrier type, drop size and surfactant concentration on the rate of fenofibrate release in a bicarbonate-based in vitro digestion model. The effect of the lipid carrier was studied by preparing type I LBF with drop size ≈ 2 µm, based on medium-chain triglycerides (MCT), sunflower oil (SFO), coconut oil (CNO) and cocoa butter (CB). The drop size and surfactant concentration effects were assessed by studying MCT and SFO-based formulations with a drop size between 400 nm and 14 µm and surfactant concentrations of 1 or 10%. A filtration through a 200 nm filter followed by HPLC analysis was used to determine the aqueous fenofibrate, whereas lipid digestion was followed by gas chromatography. Shorter-chain triglycerides were key in promoting a faster drug release. The fenofibrate release from long-chain triglyceride formulations (SFO, CNO and CB) was governed by solubilization and was enhanced at a smaller droplet size and higher surfactant concentration. In contrast, supersaturation was observed after the digestion of MCT emulsions. In this case, a smaller drop size and higher surfactant had negative effects: lower peak fenofibrate concentrations and a faster onset of precipitation were observed. The study provides new mechanistic insights on drug solubilization and supersaturation after LBF digestion, and may support the development of new in silico prediction models.
Collapse
|
17
|
Huang Y, Yu Q, Chen Z, Wu W, Zhu Q, Lu Y. In vitro and in vivo correlation for lipid-based formulations: Current status and future perspectives. Acta Pharm Sin B 2021; 11:2469-2487. [PMID: 34522595 PMCID: PMC8424225 DOI: 10.1016/j.apsb.2021.03.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/03/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid-based formulations (LBFs) have demonstrated a great potential in enhancing the oral absorption of poorly water-soluble drugs. However, construction of in vitro and in vivo correlations (IVIVCs) for LBFs is quite challenging, owing to a complex in vivo processing of these formulations. In this paper, we start with a brief introduction on the gastrointestinal digestion of lipid/LBFs and its relation to enhanced oral drug absorption; based on the concept of IVIVCs, the current status of in vitro models to establish IVIVCs for LBFs is reviewed, while future perspectives in this field are discussed. In vitro tests, which facilitate the understanding and prediction of the in vivo performance of solid dosage forms, frequently fail to mimic the in vivo processing of LBFs, leading to inconsistent results. In vitro digestion models, which more closely simulate gastrointestinal physiology, are a more promising option. Despite some successes in IVIVC modeling, the accuracy and consistency of these models are yet to be validated, particularly for human data. A reliable IVIVC model can not only reduce the risk, time, and cost of formulation development but can also contribute to the formulation design and optimization, thus promoting the clinical translation of LBFs.
Collapse
Key Words
- ANN, artificial neural network
- AUC, area under the curve
- Absorption
- BCS, biopharmaceutics classification system
- BE, bioequivalence
- CETP, cholesterol ester transfer protein
- Cmax, peak plasma concentration
- DDS, drug delivery system
- FDA, US Food and Drug Administration
- GI, gastrointestinal
- HLB, hydrophilic–lipophilic balance
- IVIVC, in vitro and in vivo correlation
- IVIVR, in vitro and in vivo relationship
- In silico prediction
- In vitro and in vivo correlations
- LBF, lipid-based formulation
- LCT, long-chain triglyceride
- Lipid-based formulation
- Lipolysis
- MCT, medium-chain triglyceride
- Model
- Oral delivery
- PBPK, physiologically based pharmacokinetic
- PK, pharmacokinetic
- Perspectives
- SCT, short-chain triglyceride
- SEDDS, self-emulsifying drug delivery system
- SGF, simulated gastric fluid
- SIF, simulated intestinal fluid
- SLS, sodium lauryl sulfate
- SMEDDS, self-microemulsifying drug delivery system
- SNEDDS, self-nanoemulsifying drug delivery system
- TIM, TNO gastrointestinal model
- TNO, Netherlands Organization for Applied Scientific Research
- Tmax, time to reach the peak plasma concentration
Collapse
|
18
|
Aloisio C, Shah AV, Longhi M, Serajuddin ATM. Development of self-microemulsifying lipid-based formulations of trans-resveratrol by systematically constructing lipid-surfactant-water phase diagrams using long-chain lipids. Drug Dev Ind Pharm 2021; 47:897-907. [PMID: 34033503 DOI: 10.1080/03639045.2021.1934866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of this work was to develop self-microemulsifying lipid-based formulations of trans-resveratrol in cod liver oil, a long chain lipid, to increase its solubility, dissolution rate and oral bioavailability. Ternary phase diagrams of cod liver oil with surfactant and water as well as pseudo-ternary phase diagrams of the same by mixing cod liver oil (triglyceride) with glycerol monooleate (monoglyeride) were constructed to identify regions where microemulsions were formed. Kolliphor RH 40, Tween 80 and their 1:1-mixtures were evaluated as surfactants. No organic cosolvents were added. It was observed that cod liver oil alone did not form microemulsion with any of the surfactants used, and a 1:1 mixture of cod liver oil and glycerol monooleate was necessary to enable the formation of microemulsion. Among the surfactants, Kolliphor RH 40 provided the maximum microemulsification effect. Several formulations containing 6:4, 1:1, and 4:6 w/w ratios of lipid to surfactant using the 1:1 mixture of cod liver oil and glycerol monooleate as lipid components and Kolliphor RH 40 or its mixture with Tween 80 as surfactants were identified, and trans-resveratrol solubility in these formulations were determined. Drug concentrations used in the formulations were 80% of saturation solubility, and no organic cosolvents were used in any formulations to increase drug solubility or enable emulsification. In vitro dispersion testing in 250 mL of 0.01 N HCl (pH 2) according to the USP method 2 at 50 RPM showed that the formulations rapidly dispersed in aqueous media forming microemulsions and there was no drug precipitation.
Collapse
Affiliation(s)
- Carolina Aloisio
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.,Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, Córdoba, Argentina
| | - Ankita V Shah
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.,Freund-Vector Corporation, Marion, IA, USA
| | - Marcela Longhi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, Córdoba, Argentina
| | - Abu T M Serajuddin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| |
Collapse
|
19
|
Mechanisms of drug solubilization by polar lipids in biorelevant media. Eur J Pharm Sci 2021; 159:105733. [PMID: 33497822 DOI: 10.1016/j.ejps.2021.105733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/16/2020] [Accepted: 01/19/2021] [Indexed: 01/23/2023]
Abstract
Despite the widespread use of lipid excipients in both academic research and oral formulation development, rational selection guidelines are still missing. In the current study, we aimed to establish a link between the molecular structure of commonly used polar lipids and drug solubilization in biorelevant media. The solubilization of fenofibrate by 13 phospholipids, 11 fatty acids and 2 monoglycerides was studied by an in vitro model of the upper GI tract. The main trends were verified with progesterone and danazol. It was revealed that to alter drug solubilization in biorelevant media, the polar lipids must form mixed colloidal aggregates with the bile. Such aggregates are formed when: (1) the polar lipid is used at a sufficiently high concentration (relative to its mixed critical micellar concentration) and (2) its hydrophobic chain has a melting temperature (Tm) < 37 °C. When these two conditions are met, the increased polar lipid chain length increases the drug solubilization capacity. Hence, long chain (C18) unsaturated polar lipids show best drug solubilization, due to the combination of long chain length and low Tm. Polar lipids with Tm significantly higher than 37 °C (e.g. C16 and C18 saturated compounds) do not impact drug solubilization in biorelevant media, due to limited association in mixed colloidal aggregates. The hydrophilic head group also has a dramatic impact on the drug solubilization enhancement, with polar lipids performance decreasing in the order [choline phospholipids] > [monoglycerides] > [fatty acids]. As both the acyl chain and head group types are structural features of the polar lipids, and not of the solubilized drugs, the described trends in drug solubilization should hold true for a variety of hydrophobic molecules.
Collapse
|
20
|
Chen XL, Liang XL, Zhao GW, Zeng QY, Dong W, Ou LQ, Zhang HN, Jiang QY, Liao ZG. Improvement of the bioavailability of curcumin by a supersaturatable self nanoemulsifying drug delivery system with incorporation of a hydrophilic polymer: in vitro and in vivo characterisation. J Pharm Pharmacol 2021; 73:641-652. [PMID: 33772289 DOI: 10.1093/jpp/rgaa073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The current study was focused on preparing curcumin (CUR) supersaturated self-nano-emulsion (PI-CUR-SNEDDS) using hydrophilic polymer and to study the influence of polymer precipitation inhibitor on the physicochemical and biopharmaceutical properties of the PI-CUR-SNEDDS. METHODS PI-CUR-SNEDDS were prepared using hydrophilic polymer in order to maintain the supersaturation of CUR in nano-emulsion solution, artificial gastrointestinal fluid (AGF), and the precipitates formed, and characterised by in vitro dispersion tests, in vitro intestinal absorption and in vivo pharmacokinetic and compared with CUR-SNEDDS. KEY FINDINGS PI-CUR-SNEDDS prepared with 2% hydroxypropyl methylcellulose 55-60 (HPMC55-60) as precipitation inhibitor (PI) significantly improved the viscosity, physical stability and CUR's equilibrium solubility of nanoemulsion. HPMC55-60 and CUR interact in AGF through intermolecular interactions, form hydrogen bonds, and produce amorphous precipitates. Compared with CUR-SNEDDS, the proportion of CUR in the hydrophilic phase increased by about 3-fold, and apparent permeability coefficient (Papp) in duodenum, jejunum, ileum, and colon increased by 2.30, 3.65, 1.54 and 2.08-fold, respectively, and the area under the plasma concentration-time curve0-12h of PI-CUR-SNEDDS also increased by 3.50-fold. CONCLUSIONS Our results suggested that HPMC55-60 maintained the CUR supersaturation state by forming hydrogen bonds with CUR, increasing the solution's viscosity and drug solubilisation, thus improving the absorption and bioavailability of CUR.
Collapse
Affiliation(s)
- Xu-Long Chen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xin-Li Liang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Guo-Wei Zhao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qing-Yun Zeng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wei Dong
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Li-Quan Ou
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hao-Nan Zhang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qie-Ying Jiang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zheng-Gen Liao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
21
|
Tanaka Y, Nguyen TH, Suys EJA, Porter CJH. Digestion of Lipid-Based Formulations Not Only Mediates Changes to Absorption of Poorly Soluble Drugs Due to Differences in Solubilization But Also Reflects Changes to Thermodynamic Activity and Permeability. Mol Pharm 2021; 18:1768-1778. [PMID: 33729806 DOI: 10.1021/acs.molpharmaceut.1c00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of this study was to evaluate the effect of lipid digestion on the permeability and absorption of orally administered saquinavir (SQV), a biopharmaceutics classification system (BCS) class IV drug, in different lipid-based formulations. Three LBFs were prepared: a mixed short- and medium-chain lipid-based formulation (SMCF), a medium-chain lipid-based formulation (MCF), and a long-chain lipid-based formulation (LCF). SQV was loaded into these LBFs at 26.7 mg/g. To evaluate the pharmacokinetics of SQV in vivo, drug-loaded formulations were predispersed in purified water at 3% w/w and orally administered to rats. A low dose (0.8 mg/rat) was employed to limit confounding effects on drug solubilization, and consistent with this design, presolubilization of SQV in the LBFs did not increase in vivo exposure compared to a control suspension formulation. The areas under the plasma concentration-time curve were, however, significantly lower after administration of SQV as MCF and LCF compared to SMCF. To evaluate the key mechanisms underpinning absorption, each LBF containing SQV was digested, and the flux of SQV from the digests across a dialysis membrane was evaluated in in vitro permeation experiments. This study revealed that the absorption profiles were driven by the free concentration of SQV and that this varied due to differences in SQV solubilization in the digestion products generated by LBF digestion. The apparent first-order permeation rate constants of SQV (kapp,total) were estimated by dividing the flux of SQV in the dialysis membrane experiments by the concentration of total SQV on the donor side. kapp,total values strongly correlated with in vivo AUC. The data provide one of the first studies of the effect of digestion products on the free concentration of a drug in the GI fluid and oral absorption. This simple permeation model may be a useful tool for the evaluation of the impact of lipid digestion on apparent drug permeability from lipid-based formulations. These effects should be assessed alongside, and in addition to, the more well-known effects of lipids on enhancing intestinal solubilization of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Yusuke Tanaka
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | | | | | | |
Collapse
|
22
|
Johannesson J, Khan J, Hubert M, Teleki A, Bergström CA. 3D-printing of solid lipid tablets from emulsion gels. Int J Pharm 2021; 597:120304. [DOI: 10.1016/j.ijpharm.2021.120304] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/18/2023]
|
23
|
Møller A, Schultz HB, Meola TR, Müllertz A, Prestidge CA. The Influence of Solidification on the in vitro Solubilisation of Blonanserin Loaded Supersaturated Lipid-Based Oral Formulations. Eur J Pharm Sci 2021; 157:105640. [PMID: 33189902 DOI: 10.1016/j.ejps.2020.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/12/2020] [Accepted: 11/07/2020] [Indexed: 11/30/2022]
Abstract
Supersaturated silica-lipid hybrids have previously demonstrated improved in vitro solubilisation and in vivo oral bioavailability of poorly water-soluble drugs, however were only fabricated using a single lipid (LFCS type I formulations) and were not compared to their liquid precursors. This study investigated the influence of lipid formulation classification (type I vs. type II vs. type IIIA/SNEDDS) and physical state (liquid LBF vs. solidified with silica) on the in vitro solubilisation of the poorly soluble, weak base, anti-psychotic drug, blonanserin (BLON), from a supersaturated lipid-based formulation (LBF). Stable liquid supersaturated LBF were fabricated using BLON (loaded at 150% of its equilibrium solubility), and solidified through encapsulation within porous silica microparticles at a 1:1 ratio. Their physicochemical properties and in vitro solubilisation during lipolysis were compared. Supersaturated BLON was encapsulated in the non-crystalline form. All supersaturated LBF improved the solubilisation of pure BLON during lipolysis regardless of their lipid formulation type or their physical state (1.7- to 13.4-fold). SNEDDS achieved greater solubilisation than the type II formulations (1.4- to 1.7-fold). Furthermore, the liquid precursors achieved greater solubilisation than the silica solidified formulations (4.5- to 5.7-fold). Additionally, in an attempt to increase BLON solubilisation, a spray-dried SNEDDS and dual-loaded solidified super-SNEDDS solidified with silica pre-loaded with BLON was developed, however did not significantly improve solubilisation. Liquid SNEDDS were identified as the optimal oral supersaturated LBF strategy for BLON based on in vitro lipolysis studies. Solidification of LBF using silica is a viable strategy for improving stability, however for drugs such as BLON, solidification may impede in vitro release and solubilisation.
Collapse
Affiliation(s)
- Amalie Møller
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; UniSA: Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Hayley B Schultz
- UniSA: Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes 5095, Australia
| | - Tahlia R Meola
- UniSA: Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes 5095, Australia
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; Bioneer:FARMA, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Clive A Prestidge
- UniSA: Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes 5095, Australia.
| |
Collapse
|
24
|
Effects of Lipid Digestion and Drug Permeation/Re-Dissolution on Absorption of Orally Administered Ritonavir as Different Lipid-Based Formulations. Eur J Pharm Sci 2021; 157:105604. [PMID: 33098990 DOI: 10.1016/j.ejps.2020.105604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/25/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
The aim of this study is to clarify absorption mechanisms after oral administration of ritonavir (RTV) from different types of lipid-based formulations (LBFs) with particular emphasis on the effect of lipid digestion and drug permeation/re-dissolution on the oral absorption. Four LBFs were prepared; three contained either long-chain (LC) or medium-chain (MC) lipids [lipid formulation classification system (LFCS) Type II-LC, Type IIIA-MC, and Type IIIB-MC] and the fourth contained only surfactant and co-solvent (Type IV). The solubility of RTV in those LBFs was determined and drug subsequently loaded at 85% w/w of the saturated solubility in the formulations. Then, each LBF containing drug was added into a model rat intestinal fluid at approximately 2.5% w/v for evaluation using an in vitro digestion model. In vitro digestion study showed the ability of Type II-LC and Type IIIA-MC to support continued solubilization of RTV, and moderate supersaturation was observed in Type IIIA-MC. In contrast, RTV partly precipitated in the Type IIIB-MC during digestion, and the Type IV formulation lost its solubilization capacity rapidly upon dispersion, leading to drastic precipitation. Oral administration of RTV as Type IIIA-MC to rats showed significantly higher area under the plasma concentration-time curve compared to control suspension, whereas it was not improved with Type II-LC administration despite complete solubilization of RTV during digestion. From the results of in vitro permeation across dialysis membrane (a molecular weight cutoff of > 1000 Da), this may be attributed to the lowered free concentration in the gastrointestinal tract owing to incorporation of RTV into the undigested LC lipid. Oral absorption drastically increased with Type IIIB-MC and Type IV despite the observed moderate and drastic precipitation, respectively. Powder X-ray diffraction analysis revealed that the precipitate was amorphous. Therefore, improved re-solubilization may partly contribute to improved absorption. The present study revealed detailed absorption mechanisms from LBFs with different compositions. Our findings may be useful for selecting appropriate excipients to design optimal LBFs for poorly water-soluble drugs.
Collapse
|
25
|
Bennett-Lenane H, Koehl NJ, O'Dwyer PJ, Box KJ, O'Shea JP, Griffin BT. Applying Computational Predictions of Biorelevant Solubility Ratio Upon Self-Emulsifying Lipid-Based Formulations Dispersion to Predict Dose Number. J Pharm Sci 2020; 110:164-175. [PMID: 33144233 DOI: 10.1016/j.xphs.2020.10.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 11/26/2022]
Abstract
Computational approaches are increasingly utilised in development of bio-enabling formulations, including self-emulsifying drug delivery systems (SEDDS), facilitating early indicators of success. This study investigated if in silico predictions of drug solubility gain i.e. solubility ratios (SR), after dispersion of a SEDDS in biorelevant media could be predicted from drug properties. Apparent solubility upon dispersion of two SEDDS in FaSSIF was measured for 30 structurally diverse poorly water soluble drugs. Increased drug solubility upon SEDDS dispersion was observed in all cases, with higher SRs observed for cationic and neutral versus anionic drugs at pH 6.5. Molecular descriptors and solid-state properties were used as inputs during partial least squares (PLS) modelling resulting in predictive models for SRMC (r2 = 0.81) and SRLC (r2 = 0.77). Multiple linear regression (MLR) facilitated generation of simplified SR equations with high predictivity (SRMC r2 = 0.74; SRLC r2 = 0.69), requiring only three drug properties; partition coefficient at pH 6.5 (logD6.5), melting point (Tm) and aromatic bonds as fraction of total bonds (F-AromB). Through using the equations to inform developability classification system (DCS) classes for drugs that have already been licensed as lipid-based formulations, merits for development with SEDDS was predicted for 2/3 drugs.
Collapse
Affiliation(s)
| | - Niklas J Koehl
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Patrick J O'Dwyer
- School of Pharmacy, University College Cork, Cork, Ireland; Pion Inc. (UK) Ltd, Forest Row, East Sussex, UK
| | - Karl J Box
- Pion Inc. (UK) Ltd, Forest Row, East Sussex, UK
| | | | | |
Collapse
|
26
|
Ilie AR, Griffin BT, Vertzoni M, Kuentz M, Cuyckens F, Wuyts K, Kolakovic R, Holm R. Toward simplified oral lipid-based drug delivery using mono-/di-glycerides as single component excipients. Drug Dev Ind Pharm 2020; 46:2051-2060. [PMID: 33124918 DOI: 10.1080/03639045.2020.1843475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study aimed to systematically explore compositional effects for a series of lipid systems, on the in vitro drug solubilization and in vivo bioavailability of three poorly water-soluble drugs with different physico-chemical properties. SIGNIFICANCE While many lipid-based drug products have successfully reached the market, there is still a level of uncertainty on the design guidelines for such drug products with limited understanding on the influence of composition on in vitro and in vivo performance. METHODS AND RESULTS Lipid-based drug delivery systems were prepared using either single excipient systems based on partially digested triglycerides (i.e. mono- and/or di-glycerides) or increasingly complex systems by incorporating surfactants and/or triglycerides. These lipid systems were evaluated for both in vitro and in vivo behavior. Results indicated that simple single component long chain lipid systems are more beneficial for the absorption of the weak acid celecoxib and the weak base cinnarizine compared to equivalent single component medium chain lipid systems. Similarly, a two-component system produced by incorporating small amount of hydrophilic surfactant yields similar overall pharmacokinetic effects. The lipid drug delivery systems based on medium chain lipid excipients improved the in vivo exposure of the neutral drug JNJ-2A. The higher in vivo bioavailability of long chain lipid systems compared to medium chain lipid systems was in agreement with in vitro dilution and dispersion studies for celecoxib and cinnarizine. CONCLUSIONS The present study demonstrated the benefits of using mono-/di-glycerides as single component excipients in LBDDS to streamline formulation screening and improve oral bioavailability for the three tested poorly water-soluble drugs.
Collapse
Affiliation(s)
- Alexandra-Roxana Ilie
- Drug Product Development, Janssen Research and Development, Beerse, Belgium.,School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Filip Cuyckens
- Drug Metabolism & Pharmacokinetics, Janssen Research and Development, Beerse, Belgium
| | - Koen Wuyts
- Drug Metabolism & Pharmacokinetics, Janssen Research and Development, Beerse, Belgium
| | - Ruzica Kolakovic
- Drug Product Development, Janssen Research and Development, Beerse, Belgium
| | - René Holm
- Drug Product Development, Janssen Research and Development, Beerse, Belgium.,Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
27
|
Koehl NJ, Holm R, Kuentz M, Jannin V, Griffin BT. Exploring the Impact of Surfactant Type and Digestion: Highly Digestible Surfactants Improve Oral Bioavailability of Nilotinib. Mol Pharm 2020; 17:3202-3213. [PMID: 32649208 DOI: 10.1021/acs.molpharmaceut.0c00305] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The scientific rationale for selection of the surfactant type during oral formulation development requires an in-depth understanding of the interplay between surfactant characteristics and biopharmaceutical factors. Currently, however, there is a lack of comprehensive knowledge of how surfactant properties, such as hydrophilic-lipophilic balance (HLB), digestibility, and fatty acid (FA) chain length, translate into in vivo performance. In the present study, the relationship between surfactant properties, in vitro characteristics, and in vivo bioavailability was systematically evaluated. An in vitro lipolysis model was used to study the digestibility of a variety of nonionic surfactants. Eight surfactants and one surfactant mixture were selected for further analysis using the model poorly water-soluble drug nilotinib. In vitro lipolysis of all nilotinib formulations was performed, followed by an in vivo pharmacokinetic evaluation in rats. The in vitro lipolysis studies showed that medium-chain FA-based surfactants were more readily digested compared to long-chain surfactants. The in vivo study demonstrated that a Tween 20 formulation significantly enhanced the absolute bioavailability of nilotinib up to 5.2-fold relative to an aqueous suspension. In general, surfactants that were highly digestible in vitro tended to display higher bioavailability of nilotinib in vivo. The bioavailability may additionally be related to the FA chain length of digestible surfactants with an improved exposure in the case of medium-chain FA-based surfactants. There was no apparent relationship between the HLB value of surfactants and the in vivo bioavailability of nilotinib. The impact of this study's findings suggests that when designing surfactant-based formulations to enhance oral bioavailability of the poorly water-soluble drug nilotinib, highly digestible, medium chain-based surfactants are preferred. Additionally, for low-permeability drugs such as nilotinib, which is subject to efflux by intestinal P-glycoprotein, the biopharmaceutical effects of surfactants merit further consideration.
Collapse
Affiliation(s)
- Niklas J Koehl
- School of Pharmacy, University College Cork, T12 YN60 Cork, Ireland
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium.,Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Vincent Jannin
- Gattefossé SAS, 36 Chemin de Genas, 69804 Saint-Priest Cedex, France
| | | |
Collapse
|
28
|
Almasri R, Joyce P, Schultz HB, Thomas N, Bremmell KE, Prestidge CA. Porous Nanostructure, Lipid Composition, and Degree of Drug Supersaturation Modulate In Vitro Fenofibrate Solubilization in Silica-Lipid Hybrids. Pharmaceutics 2020; 12:pharmaceutics12070687. [PMID: 32708197 PMCID: PMC7408050 DOI: 10.3390/pharmaceutics12070687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/08/2023] Open
Abstract
The unique nanostructured matrix obtained by silica-lipid hybrids (SLHs) is well known to improve the dissolution, absorption, and bioavailability of poorly water-soluble drugs (PWSDs). The aim of this study was to investigate the impact of: (i) drug load: 3–22.7% w/w, (ii) lipid type: medium-chain triglyceride (Captex 300) and mono and diester of caprylic acid (Capmul PG8), and (iii) silica nanostructure: spray dried fumed silica (FS) and mesoporous silica (MPS), on the in vitro dissolution, solubilization, and solid-state stability of the model drug fenofibrate (FEN). Greater FEN crystallinity was detected at higher drug loads and within the MPS formulations. Furthermore, an increased rate and extent of dissolution was achieved by FS formulations when compared to crystalline FEN (5–10-fold), a commercial product; APO-fenofibrate (2.4–4-fold) and corresponding MPS formulations (2–4-fold). Precipitation of FEN during in vitro lipolysis restricted data interpretation, however a synergistic effect between MPS and Captex 300 in enhancing FEN aqueous solubilization was attained. It was concluded that a balance between in vitro performance and drug loading is key, and the optimum drug load was determined to be between 7–16% w/w, which corresponds to (200–400% equilibrium solubility in lipid Seq). This study provides valuable insight into the impact of key characteristics of SLHs, in constructing optimized solid-state lipid-based formulations for the oral delivery of PWSDs.
Collapse
Affiliation(s)
- Ruba Almasri
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Paul Joyce
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Hayley B. Schultz
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Nicky Thomas
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Kristen E. Bremmell
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Clive A. Prestidge
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
- Correspondence: ; Tel.: +61-8830-22438
| |
Collapse
|
29
|
Supersaturated Lipid-Based Formulations to Enhance the Oral Bioavailability of Venetoclax. Pharmaceutics 2020; 12:pharmaceutics12060564. [PMID: 32570753 PMCID: PMC7355533 DOI: 10.3390/pharmaceutics12060564] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Increasing numbers of beyond Rule-of-Five drugs are emerging from discovery pipelines, generating a need for bio-enabling formulation approaches, such as lipid-based formulations (LBF), to ensure maximal in vivo exposure. However, many drug candidates display insufficient lipid solubility, leading to dose-loading limitations in LBFs. The aim of this study was to explore the potential of supersaturated LBFs (sLBF) for the beyond Rule-of-Five drug venetoclax. Temperature-induced sLBFs of venetoclax were obtained in olive oil, Captex® 1000, Peceol® and Capmul MCM®, respectively. A Peceol®-based sLBF displayed the highest drug loading and was therefore evaluated further. In vitro lipolysis demonstrated that the Peceol®-based sLBF was able to generate higher venetoclax concentrations in the aqueous phase compared to a Peceol®-based suspension and an aqueous suspension. A subsequent bioavailability study in pigs demonstrated for sLBF a 3.8-fold and 2.1-fold higher bioavailability compared to the drug powder and Peceol®-based suspension, respectively. In conclusion, sLBF is a promising bio-enabling formulation approach to enhance in vivo exposure of beyond Rule-of-Five drugs, such as venetoclax. The in vitro lipolysis results correctly predicted a higher exposure of the sLBF in vivo. The findings of this study are of particular relevance to pre-clinical drug development, where maximum exposure is required.
Collapse
|
30
|
Park H, Ha ES, Kim MS. Current Status of Supersaturable Self-Emulsifying Drug Delivery Systems. Pharmaceutics 2020; 12:pharmaceutics12040365. [PMID: 32316199 PMCID: PMC7238279 DOI: 10.3390/pharmaceutics12040365] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Self-emulsifying drug delivery systems (SEDDSs) are a vital strategy to enhance the bioavailability (BA) of formulations of poorly water-soluble compounds. However, these formulations have certain limitations, including in vivo drug precipitation, poor in vitro in vivo correlation due to a lack of predictive in vitro tests, issues in handling of liquid formulation, and physico-chemical instability of drug and/or vehicle components. To overcome these limitations, which restrict the potential usage of such systems, the supersaturable SEDDSs (su-SEDDSs) have gained attention based on the fact that the inclusion of precipitation inhibitors (PIs) within SEDDSs helps maintain drug supersaturation after dispersion and digestion in the gastrointestinal tract. This improves the BA of drugs and reduces the variability of exposure. In addition, the formulation of solid su-SEDDSs has helped to overcome disadvantages of liquid or capsule dosage form. This review article discusses, in detail, the current status of su-SEDDSs that overcome the limitations of conventional SEDDSs. It discusses the definition and range of su-SEDDSs, the principle mechanisms underlying precipitation inhibition and enhanced in vivo absorption, drug application cases, biorelevance in vitro digestion models, and the development of liquid su-SEDDSs to solid dosage forms. This review also describes the effects of various physiological factors and the potential interactions between PIs and lipid, lipase or lipid digested products on the in vivo performance of su-SEDDSs. In particular, several considerations relating to the properties of PIs are discussed from various perspectives.
Collapse
|
31
|
Tanaka Y, Tay E, Nguyen TH, Porter CJH. Quantifying In Vivo Luminal Drug Solubilization -Supersaturation-Precipitation Profiles to Explain the Performance of Lipid Based Formulations. Pharm Res 2020; 37:47. [DOI: 10.1007/s11095-020-2762-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/15/2020] [Indexed: 01/02/2023]
|
32
|
Elkhabaz A, Sarkar S, Simpson GJ, Taylor LS. Characterization of Phase Transformations for Amorphous Solid Dispersions of a Weakly Basic Drug upon Dissolution in Biorelevant Media. Pharm Res 2019; 36:174. [DOI: 10.1007/s11095-019-2718-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022]
|
33
|
Pham A, Gavin PD, Libinaki R, Ramirez G, Khan JT, Boyd BJ. Differential Effects of TPM, A Phosphorylated Tocopherol Mixture, and Other Tocopherol Derivatives as Excipients for Enhancing the Solubilization of Co-Enzyme Q10 as a Lipophilic Drug During Digestion of Lipid- Based Formulations. Curr Drug Deliv 2019; 16:628-636. [PMID: 31385769 DOI: 10.2174/1567201816666190806114022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/27/2019] [Accepted: 06/23/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND The tocopherol-based excipient, TPM, when incorporated into a medium-chain triglyceride (MCT)-based lipid formulation, has been previously shown to improve the solubilization of Coenzyme Q10 (CoQ10) during in vitro digestion which is strongly correlated with enhanced exposure in vivo. METHODS The current study aimed to gain further understanding of the MCT + TPM co-formulation, by assessing the formulation performance under fasted and fed in vitro digestion conditions, with different drug and excipient loading levels. Natural and synthetic-derived TPM were equivalent, and with d-α- tocopherol polyethylene glycol 1000 succinate (TPGS) outperformed other derivatives in enhancing the solubilisation of CoQ10 during digestion. RESULT Fed conditions significantly improved the solubility of CoQ10 during in vitro digestion of the formulation in comparison with fasted conditions. The addition of TPM at 10% (w/w) of the total MCT + TPM provided optimal performance in terms of CoQ10 solubilization during digestion. CONCLUSION The results further highlights the potential of TPM as an additive in lipid formulations to improve the solubilization and oral bioavailability of poorly water-soluble compounds.
Collapse
Affiliation(s)
- Anna Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Pde, Parkville, Victoria 3052, Australia
| | - Paul D Gavin
- Phosphagenics Limited, 11 Duerdin Street, Clayton VIC 3168, Australia
| | - Roksan Libinaki
- Phosphagenics Limited, 11 Duerdin Street, Clayton VIC 3168, Australia
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Pde, Parkville, Victoria 3052, Australia
| | - Jamal T Khan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Pde, Parkville, Victoria 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Pde, Parkville, Victoria 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Pde, Parkville, Victoria 3052, Australia
| |
Collapse
|
34
|
Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur J Pharm Sci 2019; 137:104967. [PMID: 31252052 DOI: 10.1016/j.ejps.2019.104967] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/27/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022]
Abstract
Poorly water-soluble drugs continue to be a problematic, yet important class of pharmaceutical compounds for treatment of a wide range of diseases. Their prevalence in discovery is still high, and their development is usually limited by our lack of a complete understanding of how the complex chemical, physiological and biochemical processes that occur between administration and absorption individually and together impact on bioavailability. This review defines the challenge presented by these drugs, outlines contemporary strategies to solve this challenge, and consequent in silico and in vitro evaluation of the delivery technologies for poorly water-soluble drugs. The next steps and unmet needs are proposed to present a roadmap for future studies for the field to consider enabling progress in delivery of poorly water-soluble compounds.
Collapse
|
35
|
Ha ES, Lee SK, Choi DH, Jeong SH, Hwang SJ, Kim MS. Application of diethylene glycol monoethyl ether in solubilization of poorly water-soluble drugs. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00454-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Berthelsen R, Klitgaard M, Rades T, Müllertz A. In vitro digestion models to evaluate lipid based drug delivery systems; present status and current trends. Adv Drug Deliv Rev 2019; 142:35-49. [PMID: 31265861 DOI: 10.1016/j.addr.2019.06.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/07/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022]
Abstract
During the past two decades, a range of in vitro models simulating the digestion processes occurring in the stomach and small intestine have been developed to characterize lipid based drug delivery systems (LbDDSs). This review describes the presently existing range of in vitro digestion models and their use in the field of oral drug delivery. The models are evaluated in terms of their suitability to assess LbDDSs, and their ability to produce in vitro - in vivo correlations (IVIVCs). While the pH-stat lipolysis model is by far the most commonly utilized in vitro digestion model in relation to characterizing LbDDSs, a series of recent studies have shown a lack of IVIVCs limiting its future use. Presently, no single in vitro digestion model exists which is able to predict the in vivo performance of various LbDDSs. However, recent research has shown the potential of combined digestion-permeation models as well as species specific digestion models.
Collapse
Affiliation(s)
- Ragna Berthelsen
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Mette Klitgaard
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Thomas Rades
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Anette Müllertz
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
37
|
Holm R. Bridging the gaps between academic research and industrial product developments of lipid-based formulations. Adv Drug Deliv Rev 2019; 142:118-127. [PMID: 30682399 DOI: 10.1016/j.addr.2019.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/14/2018] [Accepted: 01/19/2019] [Indexed: 01/01/2023]
Abstract
Lipid-based formulations, including self-emulsifying drug delivery systems (SEDDS), are an interesting formulation technology that enables the clinical use of compounds for which a low aqueous solubility may be a limitation. From an academic perspective, the technology is interesting on several levels: what drives solubility, what determines bioperformance, what is the potential for solidification etc. From an industrial perspective, >35 lipid-based formulations are available and there is an unknown number of projects in the pipeline. Hence, while there is scientific interest from both academic and industrial perspectives, the agendas/needs in the two settings are different. From an industrial perspective, risks are associated with uncertainty; hence the more that is known about a technology the better - knowledge that in principle can be generated in both the academia and industry. This focuses on the development of lipid-based formulations and the knowledge gaps that could be investigated -with the hope that all stakeholders in the field of lipid-based formulations, including academia, industry, CRO's, lipid excipient manufacturers etc., would share their insight, so that this technology can be even further developed. Some of the gaps discussed include the selection of compounds suited for lipid-based formulations, which potential modifications that could be investigated, e.g., lipophilic salts, what is a relevant definition of accelerated stability studies, how best to construct an industrial development program of a lipid-based formulation, etc.
Collapse
Affiliation(s)
- René Holm
- Drug Product Development, Janssen R&D, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium; Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark.
| |
Collapse
|
38
|
New Insights into Using Lipid Based Suspensions for 'Brick Dust' Molecules: Case Study of Nilotinib. Pharm Res 2019; 36:56. [PMID: 30796596 DOI: 10.1007/s11095-019-2590-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/11/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE Lipid suspensions have been shown to be a suitable bio-enabling formulation approach for highly lipophilic or 'grease ball' drug molecules, but studies on 'brick dust' drugs are lacking. This study explored the utility of lipid suspensions for enhancing oral bioavailability of the rather hydrophobic drug nilotinib in vivo in rats. METHODS Four lipid suspensions were developed containing long chain triglycerides, medium chain triglyceride, long chain monoglycerides and medium chain monoglycerides and in vivo bioavailability was compared to an aqueous suspension. Additionally, in vitro lipolysis and wettability tests were conducted. RESULTS Nilotinib lipid suspensions did not show a bioavailability increase compared to an aqueous suspension. The bioavailability was lower for triglyceride suspensions, relative to both monoglyceride and an aqueous suspension. The long chain monoglyceride displayed a significantly higher bioavailability relative to triglycerides. In vitro lipolysis results suggested entrapment of nilotinib crystals within poorly dispersible triglycerides, leading to slower nilotinib release and absorption. This was further supported by higher wettability of nilotinib by lipids. CONCLUSION Monoglycerides improved oral bioavailability of nilotinib in rats, relative to triglycerides. For 'brick dust' drugs formulated as lipid suspensions, poorly dispersible formulations may delay the release of drug crystals from the formulation leading to reduced absorption. Graphical Abstract An aqueous and four lipid suspensions have been evaluated in in vitro and in vivo to gain insights into the potential benefits and limitations of lipid suspensions.
Collapse
|
39
|
Swarnakar NK, Venkatesan N, Betageri G. Critical In Vitro Characterization Methods of Lipid-Based Formulations for Oral Delivery: a Comprehensive Review. AAPS PharmSciTech 2018; 20:16. [PMID: 30569266 DOI: 10.1208/s12249-018-1239-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022] Open
Abstract
Lipids have been extensively used in formulations to enhance dissolution and bioavailability of poorly water-soluble as well as water-soluble drug molecules. The digestion of lipid-based formulations, in the presence of bile salts, phospholipids, and cholesterol, changes the lipid composition in vivo, resulting in the formation of different colloidal phases in the intestine. Therefore, in vitro characterization and evaluation of such formulations are critical in developing a successful formulation. This review covers comprehensive discussion on in vitro characterization techniques such as solubility, drug entrapment, thermal characterization, dissolution, and digestion of lipid-based formulations.
Collapse
|
40
|
Suys EJA, Warren DB, Pham AC, Nowell CJ, Clulow AJ, Benameur H, Porter CJH, Pouton CW, Chalmers DK. A Nonionic Polyethylene Oxide (PEO) Surfactant Model: Experimental and Molecular Dynamics Studies of Kolliphor EL. J Pharm Sci 2018; 108:193-204. [PMID: 30502483 DOI: 10.1016/j.xphs.2018.11.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 01/22/2023]
Abstract
Polyethoxylated, nonionic surfactants are important constituents of many drug formulations, including lipid-based formulations. In an effort to better understand the behavior of formulation excipients at the molecular level, we have developed molecular dynamics (MD) models for the widely used surfactant Kolliphor EL (KOL), a triricinoleate ester of ethoxylated glycerol. In this work, we have developed models based on a single, representative molecular component modeled with 2 force field variations based on the GROMOS 53A6DBW and 2016H66 force field parameters for polyethoxylate chains. To compare the computational models to experimental measurements, we investigated the phase behavior of KOL using nephelometry, dynamic light scattering, cross-polarized microscopy, small-angle X-ray scattering, and cryogenic transmission electron microscopy. The potential for digestion of KOL was also evaluated using an in vitro digestion experiment. We found that the size and spherical morphology of the KOL colloids at low concentrations was reproduced by the MD models as well as the growing interactions between the aggregates to from rod-like structures at high concentrations. We believe that this model reproduces the phase behavior of KOL relevant to drug absorption and that it can be used in whole formulation simulations to accelerate the formulation development.
Collapse
Affiliation(s)
- Estelle J A Suys
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia
| | - Dallas B Warren
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia
| | - Anna C Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia
| | - Cameron J Nowell
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia
| | | | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia
| | - Colin W Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia.
| | - David K Chalmers
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia.
| |
Collapse
|
41
|
Alskär LC, Keemink J, Johannesson J, Porter CJH, Bergström CAS. Impact of Drug Physicochemical Properties on Lipolysis-Triggered Drug Supersaturation and Precipitation from Lipid-Based Formulations. Mol Pharm 2018; 15:4733-4744. [PMID: 30142268 PMCID: PMC6209313 DOI: 10.1021/acs.molpharmaceut.8b00699] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In
this study we investigated lipolysis-triggered supersaturation
and precipitation of a set of model compounds formulated in lipid-based
formulations (LBFs). The purpose was to explore the relationship between
precipitated solid form and inherent physicochemical properties of
the drug. Eight drugs were studied after formulation in three LBFs,
representing lipid-rich (extensively digestible) to surfactant-rich
(less digestible) formulations. In vitro lipolysis
of drug-loaded LBFs were conducted, and the amount of dissolved and
precipitated drug was quantified. Solid form of the precipitated drug
was characterized with polarized light microscopy (PLM) and Raman
spectroscopy. A significant solubility increase for the weak bases
in the presence of digestion products was observed, in contrast to
the neutral and acidic compounds for which the solubility decreased.
The fold-increase in solubility was linked to the degree of ionization
of the weak bases and thus their attraction to free fatty acids. A
high level of supersaturation was needed to cause precipitation. For
the weak bases, the dose number indicated that precipitation would
not occur during lipolysis; hence, these compounds were not included
in further studies. The solid state analysis proved that danazol and
griseofulvin precipitated in a crystalline form, while niclosamide
precipitated as a hydrate. Felodipine and indomethacin crystals were
visible in the PLM, whereas the Raman spectra showed presence
of amorphous drug, indicating amorphous precipitation that quickly
crystallized. The solid state analysis was combined with literature
data to allow analysis of the relationship between solid form and
the physicochemical properties of the drug. It was found that low
molecular weight and high melting temperature increases the probability
of crystalline precipitation, whereas precipitation in an amorphous
form was favored by high molecular weight, low melting temperature,
and positive charge.
Collapse
Affiliation(s)
- Linda C Alskär
- Department of Pharmacy , Uppsala University , Uppsala Biomedical Center P.O. Box 580, SE-751 23 Uppsala , Sweden
| | - Janneke Keemink
- Department of Pharmacy , Uppsala University , Uppsala Biomedical Center P.O. Box 580, SE-751 23 Uppsala , Sweden
| | - Jenny Johannesson
- Department of Pharmacy , Uppsala University , Uppsala Biomedical Center P.O. Box 580, SE-751 23 Uppsala , Sweden
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics , Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Christel A S Bergström
- Department of Pharmacy , Uppsala University , Uppsala Biomedical Center P.O. Box 580, SE-751 23 Uppsala , Sweden.,Drug Delivery, Disposition and Dynamics , Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| |
Collapse
|
42
|
Addition of Cationic Surfactants to Lipid-Based Formulations of Poorly Water-Soluble Acidic Drugs Alters the Phase Distribution and the Solid-State Form of the Precipitate Upon In Vitro Lipolysis. J Pharm Sci 2018; 107:2420-2427. [DOI: 10.1016/j.xphs.2018.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/27/2018] [Accepted: 04/17/2018] [Indexed: 12/29/2022]
|
43
|
Salim M, Khan J, Ramirez G, Clulow AJ, Hawley A, Ramachandruni H, Boyd BJ. Interactions of Artefenomel (OZ439) with Milk during Digestion: Insights into Digestion-Driven Solubilization and Polymorphic Transformations. Mol Pharm 2018; 15:3535-3544. [DOI: 10.1021/acs.molpharmaceut.8b00541] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jamal Khan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Andrew J. Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS beamline, Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3169, Australia
| | - Hanu Ramachandruni
- Medicines for Malaria Venture, 20, Route de Pré-Bois, 1215 Geneva 15, Switzerland
| | - Ben J. Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
44
|
Suys EJA, Chalmers DK, Pouton CW, Porter CJH. Polymeric Precipitation Inhibitors Promote Fenofibrate Supersaturation and Enhance Drug Absorption from a Type IV Lipid-Based Formulation. Mol Pharm 2018; 15:2355-2371. [PMID: 29659287 DOI: 10.1021/acs.molpharmaceut.8b00206] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of lipid-based formulations (LBFs) to increase the solubilization, and prolong the supersaturation, of poorly water-soluble drugs (PWSDs) in the gastrointestinal (GI) fluids has generated significant interest in the past decade. One mechanism to enhance the utility of LBFs is to prolong supersaturation via the addition of polymers that inhibit drug precipitation (polymeric precipitation inhibitors or PPIs) to the formulation. In this work, we have evaluated the performance of a range of PPIs and have identified PPIs that are sufficiently soluble in LBF to allow the construction of single phase formulations. An in vitro model was first employed to assess drug (fenofibrate) solubilization and supersaturation on LBF dispersion and digestion. An in vitro-in situ model was subsequently employed to simultaneously evaluate the impact of PPI enhanced drug supersaturation on drug absorption in rats. The stabilizing effect of the polymers was polymer specific and most pronounced at higher drug loads. Polymers that were soluble in LBF allowed simple processing as single phase formulations, while formulations containing more hydrophilic polymers required polymer suspension in the formulation. The lipid-soluble polymers Eudragit (EU) RL100 and poly(propylene glycol) bis(2-aminopropyl ether) (PPGAE) and the water-soluble polymer hydroxypropylmethyl cellulose (HPMC) E4M were identified as the most effective PPIs in delaying fenofibrate precipitation in vitro. An in vitro model of lipid digestion was subsequently coupled directly to an in situ single pass intestinal perfusion assay to evaluate the influence of PPIs on fenofibrate absorption from LBFs in vivo. This coupled model allowed for real-time evaluation of the impact of supersaturation stabilization on absorptive drug flux and provided better discrimination between the different PPIs and formulations. In the presence of the in situ absorption sink, increased fenofibrate supersaturation resulted in increased drug exposure, and a good correlation was found between the degree of in vitro supersaturation and in vivo drug exposure. An improved in vitro-in vivo correlation was apparent when comparing the same formulation under different supersaturation conditions. These observations directly exemplify the potential utility of PPIs in promoting drug absorption from LBF, via stabilization of supersaturation, and further confirm that relatively brief periods of supersaturation may be sufficient to promote drug absorption, at least for highly permeable drugs such as fenofibrate.
Collapse
|
45
|
Sassene PJ, Fanø M, Mu H, Rades T, Aquistapace S, Schmitt B, Cruz-Hernandez C, Wooster TJ, Müllertz A. Comparison of lipases for in vitro models of gastric digestion: lipolysis using two infant formulas as model substrates. Food Funct 2018; 7:3989-3998. [PMID: 27711870 DOI: 10.1039/c6fo00158k] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to find a lipase suitable as a surrogate for Human Gastric Lipase (HGL), since the development of predictive gastrointestinal lipolysis models are hampered by the lack of a lipase with similar digestive properties as HGL. Three potential surrogates for HGL; Rhizopus Oryzae Lipase (ROL), Rabbit Gastric Lipase (RGL) and recombinant HGL (rHGL), were used to catalyze the in vitro digestion of two infant formulas (a medium-chain triacylglyceride enriched formula (MC-IF) and a predominantly long-chain triacylglyceride formula (LC-IF)). Digesta were withdrawn after 0, 5, 15, 30, 60 min of gastric digestion and after 90 or 180 min of intestinal digestion with or without the presence of pancreatic enzymes, respectively. The digesta were analyzed by scanning electron microscopy and gas chromatography to quantify the release of fatty acids (FAs). Digestions of both formulas, catalyzed by ROL, showed that the extent of gastric digestion was higher than expected from previously published in vivo data. ROL was furthermore insensitive to FA chain length and all FAs were released at the same pace. RGL and rHGL favoured the release of MC-FAs in both formulas, but rHGL did also release some LC-FAs during digestion of MC-IF, whereas RGL only released MC-FAs. Digestion of a MC-IF by HGL in vivo showed that MC-FAs are preferentially released, but some LC-FAs are also released. Thus of the tested lipase rHGL replicated the digestive properties of HGL the best and is a suitable surrogate for HGL for use in in vitro gastrointestinal lipolysis models.
Collapse
Affiliation(s)
- P J Sassene
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - M Fanø
- Bioneer:Farma, University of Copenhagen, Copenhagen, Denmark
| | - H Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - T Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | - B Schmitt
- Nestlé Research Center, Lausanne, Switzerland
| | | | - T J Wooster
- Nestlé Research Center, Lausanne, Switzerland
| | - A Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. and Bioneer:Farma, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Chamieh J, Merdassi H, Rossi JC, Jannin V, Demarne F, Cottet H. Size characterization of lipid-based self-emulsifying pharmaceutical excipients during lipolysis using Taylor dispersion analysis with fluorescence detection. Int J Pharm 2018; 537:94-101. [DOI: 10.1016/j.ijpharm.2017.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/25/2022]
|
47
|
Do drug release studies from SEDDS make any sense? J Control Release 2018; 271:55-59. [DOI: 10.1016/j.jconrel.2017.12.027] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 11/20/2022]
|
48
|
Chen XQ, Ziemba T, Huang C, Chang M, Xu C, Qiao JX, Wang TC, Finlay HJ, Salvati ME, Adam LP, Gudmundsson O, Hageman MJ. Oral Delivery of Highly Lipophilic, Poorly Water-Soluble Drugs: Self-Emulsifying Drug Delivery Systems to Improve Oral Absorption and Enable High-Dose Toxicology Studies of a Cholesteryl Ester Transfer Protein Inhibitor in Preclinical Species. J Pharm Sci 2018; 107:1352-1360. [PMID: 29317226 DOI: 10.1016/j.xphs.2018.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/06/2017] [Accepted: 01/03/2018] [Indexed: 01/09/2023]
Abstract
BMS-A is an inhibitor of cholesteryl ester transfer protein and is a highly lipophilic compound (clogP 10.5) with poor aqueous solubility (<0.0001 mg/mL at pH 6.5). The compound exhibits low oral exposure when dosed as cosolvent solution formulations. The purpose of this study was to evaluate lipid-based formulations for enabling high-dose toxicology studies and enhancing toxicology margins of BMS-A in preclinical studies in nonrodent species. The solubility of BMS-A was screened in lipid and cosolvent/surfactant excipients, and prototype formulations were developed. In vitro tests showed that fine/microemulsions were formed after aqueous dilution of lipid formulations, and BMS-A was transferred from oil phase to aqueous phase with enhanced solubility following lipid digestion. When dosed in dogs at 200 mg/kg, a Gelucire-based formulation exhibited more than 10-fold higher exposure compared to the solution formulation and was thus selected for toxicology studies in dogs. For monkeys, an olive oil formulation was developed, and the exposure was about 7-fold higher than that from the solution. In summary, lipid-based drug delivery could be applied in early stages of drug discovery to enhance oral exposure and enable preclinical toxicology studies of highly lipophilic compounds, while facilitating the candidate selection of a molecule which is more specifically designed for bioperformance in a lipid-based drug delivery strategy.
Collapse
Affiliation(s)
- Xue-Qing Chen
- Discovery Pharmaceutics, Bristol-Myers Squibb, Princeton, New Jersey 08540.
| | - Theresa Ziemba
- Discovery Pharmaceutics, Bristol-Myers Squibb, Princeton, New Jersey 08540
| | - Christine Huang
- Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Princeton, New Jersey 08540
| | - Ming Chang
- Clinical Pharmacology and Pharmacometrics, Bristol-Myers Squibb, Pennington, New Jersey 08534
| | - Carrie Xu
- Bioanalytical Sciences, Bristol-Myers Squibb, Princeton, New Jersey 08540
| | - Jennifer X Qiao
- Discovery Chemistry, Bristol-Myers Squibb, Pennington, New Jersey 08540
| | - Tammy C Wang
- Discovery Chemistry, Bristol-Myers Squibb, Pennington, New Jersey 08540
| | - Heather J Finlay
- Discovery Chemistry, Bristol-Myers Squibb, Pennington, New Jersey 08540
| | - Mark E Salvati
- Discovery Chemistry, Bristol-Myers Squibb, Pennington, New Jersey 08540
| | - Leonard P Adam
- Discovery Biology, Bristol-Myers Squibb, Pennington, New Jersey 08540
| | - Olafur Gudmundsson
- Discovery Pharmaceutics, Bristol-Myers Squibb, Princeton, New Jersey 08540
| | - Michael J Hageman
- Discovery Pharmaceutics, Bristol-Myers Squibb, Princeton, New Jersey 08540
| |
Collapse
|
49
|
Evaluation of the digestibility of solid lipid nanoparticles of glyceryl dibehenate produced by two techniques: Ultrasonication and spray-flash evaporation. Eur J Pharm Sci 2018; 111:91-95. [DOI: 10.1016/j.ejps.2017.09.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/24/2017] [Accepted: 09/27/2017] [Indexed: 11/20/2022]
|
50
|
Quan G, Niu B, Singh V, Zhou Y, Wu CY, Pan X, Wu C. Supersaturable solid self-microemulsifying drug delivery system: precipitation inhibition and bioavailability enhancement. Int J Nanomedicine 2017; 12:8801-8811. [PMID: 29263669 PMCID: PMC5732552 DOI: 10.2147/ijn.s149717] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Solid self-emulsifying drug delivery system (SSEDDS), which incorporates liquid SEDDS into a solid dosage form, has been recently introduced to improve the oral bioavail-ability of poorly water-soluble drugs. However, supersaturated drug generated by SSEDDS is thermodynamically unstable and tends to precipitate rapidly prior to absorption, resulting in compromised bioavailability. The aim of this study was to construct a novel supersaturated SSEDDS (super-SSEDDS) by combining SSEDDS with appropriate precipitation inhibitor. Fenofibrate (FNB), a sparingly soluble drug, was selected as a model drug in this study. An optimized SSEDDS was prepared by solvent evaporation by using mesoporous silica Santa Barbara Amorphous-15 as the inert carrier. Supersaturation assay was conducted to evaluate the precipitation inhibition capacity of different polymers, and the results showed that Soluplus® could retard the FNB precipitation more effectively and sustain a higher apparent concentration for ~120 min. This effect was also clearly observed in the dissolution profiles of FNB from SSEDDS under supersaturated condition. The study of the mechanism suggested that the inhibition effect might be achieved both thermodynamically and kinetically. The area under the concentration–time curve of the super-SSEDDS was 1.4-fold greater than that of SSEDDS in the absence of Soluplus, based on an in vivo pharmacokinetic study conducted in beagle dogs. This study has demonstrated that the approach of combining SSEDDS with Soluplus as a supersaturation stabilizer constitutes a potential tool to improve the absorption of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Guilan Quan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Boyi Niu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Vikramjeet Singh
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yixian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuan-Yu Wu
- Department of Chemical and Process Engineering, University of Surrey, Guildford, UK
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|