1
|
Watson A, Fuess E, Laxalde J, Mitchell D. Glycyrrhizin intake higher than the current international guidelines has no detectable hypermineralocorticoid-like effect in dogs. J Anim Physiol Anim Nutr (Berl) 2024; 108:1906-1912. [PMID: 39087832 DOI: 10.1111/jpn.14030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
Glycyrrhizin-enriched extracts from licorice root are associated with numerous health benefits and are widely used in phytotherapy. There is evidence that ingesting glycyrrhizin beyond threshold concentrations can impact the metabolism of cortisol, inhibiting its conversion to an inactive form, cortisone, via 11-hydroxysteroid dehydrogenase. A consequence can be a form of hypermineralocorticoidism, with elevated potassium excretion and associated hypertension, as demonstrated in rats and humans. Here, 3 orally dosed concentrations of glycyrrhizin (0.2, 0.4 and 0.6 mg/kg bodyweight/day) were assessed over 28 days in dogs. As the current guidelines reflect a lack of reliable data in this species, our aim was to provide relevant information for doses above the current guidelines. The specific purpose of this study was to demonstrate that an intake of licorice with a known therapeutic benefit to dogs does not cause hypermineralocorticoidism in this species. No changes in blood pressure, nor electrolyte excretion were observed in the dogs given these three glycyrrhizin concentrations.
Collapse
Affiliation(s)
| | - Elizabeth Fuess
- Royal Canin, Pet Health Nutrition Center, Lewisburg, Ohio, USA
| | | | | |
Collapse
|
2
|
Hosaka S, Sugihara M, Okamura Y, Deguchi S, Kojima Y, Kataoka M, Yamashita S. Effect of particle size on gastric emptying of enteric-coated granules in fasted beagle dogs: Relationship with interdigestive migrating motor complex. J Pharm Sci 2024; 113:3112-3117. [PMID: 39067762 DOI: 10.1016/j.xphs.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
This study investigates the particle size threshold at which the interdigestive migrating motor complex (IMMC) becomes active in gastric emptying for fasted beagle dogs. Enteric-coated granules containing cetirizine dihydrochloride (CET) were prepared in three particle sizes, 200, 660, and 1,200 µm (D50). To mark IMMC timing and water movement from the stomach, enteric-coated aspirin tablets and acetaminophen solution were used. To six fasted beagle dogs with 50 mL of acetaminophen solution was administered each granule size as a multiple-unit and a single enteric-coated aspirin tablet (3-period crossover study). No significant difference in pharmacokinetic parameters of CET after oral administration of different particle sizes was observed. However, the appearance time of CET in plasma with smaller granules (200 and 660 µm) was significantly faster than that of salicylic acid (a major metabolite of aspirin) in all dogs. In the case of the largest granules (1,200 µm), no significant time difference was observed in the appearance of both compounds in plasma. Furthermore, in two dogs, both compounds appeared at the same time, implying IMMC-regulated gastric emptying for the largest CET granules. These results support a particle size threshold between 660 and 1,200 µm for gastric emptying without IMMC action in fasted beagle dogs.
Collapse
Affiliation(s)
- Shouichi Hosaka
- Sawai Pharmaceutical Co, Ltd., 5-2-30, Miyahara, Yodogawa-Ku, Osaka 532-0003, Japan
| | - Masahisa Sugihara
- Sawai Pharmaceutical Co, Ltd., 5-2-30, Miyahara, Yodogawa-Ku, Osaka 532-0003, Japan
| | - Yasufumi Okamura
- Sawai Pharmaceutical Co, Ltd., 5-2-30, Miyahara, Yodogawa-Ku, Osaka 532-0003, Japan
| | - Shuhei Deguchi
- Sawai Pharmaceutical Co, Ltd., 5-2-30, Miyahara, Yodogawa-Ku, Osaka 532-0003, Japan
| | - Yukiko Kojima
- Sawai Pharmaceutical Co, Ltd., 5-2-30, Miyahara, Yodogawa-Ku, Osaka 532-0003, Japan
| | - Makoto Kataoka
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Shinji Yamashita
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
3
|
Uno Y, Shimizu M, Yamazaki H. A variety of cytochrome P450 enzymes and flavin-containing monooxygenases in dogs and pigs commonly used as preclinical animal models. Biochem Pharmacol 2024; 228:116124. [PMID: 38490520 DOI: 10.1016/j.bcp.2024.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Drug oxygenation is mainly mediated by cytochromes P450 (P450s, CYPs) and flavin-containing monooxygenases (FMOs). Polymorphic variants of P450s and FMOs are known to influence drug metabolism. Species differences exist in terms of drug metabolism and can be important when determining the contributions of individual enzymes. The success of research into drug-metabolizing enzymes and their impacts on drug discovery and development has been remarkable. Dogs and pigs are often used as preclinical animal models. This research update provides information on P450 and FMO enzymes in dogs and pigs and makes comparisons with their human enzymes. Newly identified dog CYP3A98, a testosterone 6β- and estradiol 16α-hydroxylase, is abundantly expressed in small intestine and is likely the major CYP3A enzyme in small intestine, whereas dog CYP3A12 is the major CYP3A enzyme in liver. The roles of recently identified dog CYP2J2 and pig CYP2J33/34/35 were investigated. FMOs have been characterized in humans and several other species including dogs and pigs. P450 and FMO family members have been characterized also in cynomolgus macaques and common marmosets. P450s have industrial applications and have been the focus of attention of many pharmaceutical companies. The techniques used to investigate the roles of P450/FMO enzymes in drug oxidation and clinical treatments have not yet reached maturity and require further development. The findings summarized here provide a foundation for understanding individual pharmacokinetic and toxicological results in dogs and pigs as preclinical models and will help to further support understanding of the molecular mechanisms of human P450/FMO functionality.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Makiko Shimizu
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
4
|
Nagao I, Nakazawa M, Goyama T, Court MH, Ambrosini YM. Assessment of cytochrome P450 induction in canine intestinal organoid models. Xenobiotica 2024; 54:217-225. [PMID: 38441495 PMCID: PMC11178462 DOI: 10.1080/00498254.2024.2326973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/02/2024] [Indexed: 03/11/2024]
Abstract
Understanding cytochrome P450 (CYP) enzymes in the canine intestine is vital for predicting drug metabolism and developing safer oral medications. This study evaluates canine colonoids as a model to assess the expression and induction of essential intestinal CYP enzymes.Canine colonoids were cultured in expansion medium (EM) with Wnt-3A and in differentiation medium (DM) without Wnt-3A. We assessed the mRNA expression of CYP2B11, CYP2C21, CYP3A12, and CYP3A98 using qPCR and examined the effects of rifampicin and phenobarbital as inducers.Our findings show that DM significantly increased the mRNA expression of CYP3A98 and CYP2B11, but not CYP3A12, compared to EM. CYP2C21, not typically expressed in the intestine, remained unexpressed in colonoids. Rifampicin induced CYP3A98, aligning with pregnane x receptor (PXR) regulation, while phenobarbital did not, suggesting no constitutive androstane receptor (CAR) involvement. CYP2B11 did not respond to either inducer, suggesting alternative regulatory pathways in canine colonoids.This study is a pioneering effort to establish conditions for studying P450 expression in canine colonoids, confirming significant CYP3A98 expression in the canine intestine. It demonstrated colonoids can induce CYP activity post drug treatments. Further research is needed to enhance species-specific drug metabolism understanding and validate this model for broader applications.
Collapse
Affiliation(s)
- Itsuma Nagao
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United Sates of America
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Meg Nakazawa
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United Sates of America
| | - Takashi Goyama
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United Sates of America
| | - Michael H. Court
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United Sates of America
| | - Yoko M. Ambrosini
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United Sates of America
| |
Collapse
|
5
|
Ushirozako G, Murayama N, Tsukiyama-Kohara K, Yamazaki H, Uno Y. Tree shrew cytochrome P450 2E1 is a functional enzyme that metabolises chlorzoxazone and p-nitrophenol. Xenobiotica 2023; 53:573-580. [PMID: 37934191 DOI: 10.1080/00498254.2023.2280996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/05/2023] [Indexed: 11/08/2023]
Abstract
Cytochromes P450 (CYPs or P450s) are important enzymes for drug metabolism. Tree shrews are non-primate animal species used in various fields of biomedical research, including infection (especially hepatitis viruses), depression, and myopia. A recent tree shrew genome analysis indicated that the sequences and the numbers of P450 genes are similar to those of humans; however, P450s have not been adequately identified and analysed in this species.In this study, a novel CYP2E1 was isolated from tree shrew liver and was characterised in comparison with human, dog, and pig CYP2E1. Tree shrew CYP2E1 and human CYP2E1 showed high amino acid sequence identity (83%) and were closely related in a phylogenetic tree.Gene and genome structures of CYP2E1 were generally similar in humans, dogs, pigs, and tree shrews. Tissue expression patterns showed that tree shrew CYP2E1 mRNA was predominantly expressed in liver, just as for dog and pig CYP2E1 mRNAs. In tree shrews, recombinant CYP2E1 protein and liver microsomes metabolised chlorzoxazone and p-nitrophenol, probe substrates of human CYP2E1, just as they do in dogs and pigs.These results suggest that tree shrew CYP2E1 encodes a functional drug-metabolising enzyme that plays a role in the liver, similar to human CYP2E1.
Collapse
Affiliation(s)
- Genki Ushirozako
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan
| | | | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan
| | - Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Japan
| |
Collapse
|
6
|
Uno Y, Noda Y, Morikuni S, Murayama N, Yamazaki H. Liver microsomal cytochrome P450 3A-dependent drug oxidation activities in individual dogs. Xenobiotica 2023:1-9. [PMID: 37144920 DOI: 10.1080/00498254.2023.2211673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Drug oxidations are mediated mainly by cytochromes P450 (P450s or CYPs). CYP3As are an important P450 subfamily and include liver-specific CYP3A12 and intestine-specific CYP3A98 in dogs. Individual differences in drug oxidation activities were investigated, including correlations with immunoreactive CYP3A protein intensities and CYP3A mRNA expression levels in liver microsomes.Pooled and individual dog liver microsomes showed activities toward nifedipine, midazolam, alprazolam, and estradiol, but the levels of catalytic activities varied approximately twofold among the individual dogs. One dog harbored a CYP1A2 variant causing protein deletion, but showed higher activities than the other dogs toward nifedipine oxidation, midazolam 1'-hydroxylation, alprazolam 4-hydroxylation, estradiol 16α-hydroxylation activities, and caffeine C8-hydroxylation; the latter is used as a reference reaction for CYP1A.In individual dog liver microsomes, the intensities of the immunochemical bands with anti-human CYP3A4 and anti-rat CYP3A2 antibodies along with CYP3A12 and CYP3A26 mRNA expression levels showed good correlations (p < 0.05) with nifedipine oxidation, midazolam 1'- and 4-hydroxylation, alprazolam 1'- and 4-hydroxylation, and estradiol 16α-hydroxylation activities.These results suggest that the oxidation activities of dog liver microsomes toward nifedipine and other typical CYP3A-catalyzed drugs exhibit approximately twofold individual differences and were predominantly mediated by liver-specific CYP3A12 in the dogs.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Yutaro Noda
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Saho Morikuni
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
7
|
Jimenez TP, Zhu Z, Court MH. Association of cytochrome P450 2D15 (CYP2D15) nonsynonymous polymorphisms and exon 3 deleted RNA splice variant with CYP2D15 protein content and enzyme function in dog liver microsomes. J Vet Pharmacol Ther 2023; 46:77-90. [PMID: 36691326 DOI: 10.1111/jvp.13113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/25/2023]
Abstract
CYP2D15 is a major drug metabolizing P450 in canine liver. Like the human orthologue (CYP2D6), this enzyme is highly polymorphic with at least five common nonsynonymous variants reported that result in amino acid changes, including p.Ile109Val, p.Leu115Phe, p.Gly186Ser, p.Ile250Phe and p.Ile307Val. Furthermore, a mRNA splice variant of CYP2D15 has been found in canine liver that lacks the exon 3 gene region resulting in an inactive enzyme. The objective of this study was to evaluate whether any of these amino acid variants or the exon 3 deletion mRNA variant (exon3-delta) was associated with differences in CYP2D15-selective activities or protein content in a bank of canine livers. Livers were obtained from 25 Beagles and 34 dogs of various other breeds. CYP2D15-selective activities measured included dextromethorphan o-demethylation and tramadol o-demethylation. Reverse transcription PCR showed that 76% of livers (44/58) expressed both exon3-delta and normally spliced CYP2D15 RNA, while the remaining 24% (14/58) expressed only normally spliced RNA. The presence of exon3-delta was not correlated with CYP2D15 activities or protein content. Compared with wild-type livers, Beagle dog livers heterozygous for the p.Ile109Val and p.Gly186Ser variants showed from 40 to 50% reductions in median enzyme activities, while heterozygous p.Gly186Ser livers were associated with a 41% reduction in median CYP2D15 protein content (p < .05; Dunn's test). In the entire liver bank, livers homozygous for p.Ile109Val were also associated with a 40% reduction in median dextromethorphan O-demethylation activities versus wild-type livers (p < .05). These results identify several nonsynonymous CYP2D15 gene variants associated with variable CYP2D15 metabolism in canine liver.
Collapse
Affiliation(s)
- Tania Perez Jimenez
- Program in Individualized Medicine, Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Zhaohui Zhu
- Program in Individualized Medicine, Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Michael H Court
- Program in Individualized Medicine, Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
8
|
Uno Y, Jikuya S, Noda Y, Murayama N, Yamazaki H. A Comprehensive Investigation of Dog Cytochrome P450 3A (CYP3A) Reveals a Functional Role of Newly Identified CYP3A98 in Small Intestine. Drug Metab Dispos 2023; 51:38-45. [PMID: 35772769 DOI: 10.1124/dmd.121.000749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022] Open
Abstract
Dogs are frequently used in drug metabolism studies, and their important drug-metabolizing enzymes, including cytochromes P450 (P450), have been analyzed. In humans, CYP3A4 is an especially important P450 due to its abundance and major roles in liver and intestine. In the present study, dog CYP3A98 and CYP3A99 were identified and characterized, along with previously identified CYP3A12 and CYP3A26. The dog CYP3A cDNAs contained open reading frames of 503 amino acids and shared high sequence identity (78%-80%) with human CYP3As. Among the dog CYP3A mRNAs, CYP3A98 mRNA was expressed most abundantly in small intestine. In contrast, dog CYP3A12 and CYP3A26 mRNAs were expressed in liver, where CYP3A12 mRNA was the most abundant. The four CYP3A genes had similar gene structures and formed a gene cluster in the dog and human genomes. Metabolic assays of dog CYP3A proteins heterologously expressed in Escherichia coli indicated that the dog CYP3As tested were functional enzymes with respect to typical human CYP3A4 substrates. Dog CYP3A98 efficiently catalyzed oxidations of nifedipine, alprazolam, and midazolam, indicating major roles of CYP3A98 in the small intestine. Dog CYP3A12 and CYP3A26 metabolizing nifedipine and/or midazolam would play roles in these reactions in the liver. In contrast, dog CYP3A99 showed minimal mRNA expression and minimal metabolic activity, and its contribution to overall drug metabolism is, therefore, negligible. These results indicated that newly identified dog CYP3A98, a testosterone 6 β - and estradiol 16 α -hydroxylase, was abundantly expressed in the small intestine and is likely the major CYP3A in the small intestine in combination with liver-specific CYP3A12. SIGNIFICANCE STATEMENT: Novel dog cytochromes P450 3A98 (CYP3A98) and CYP3A99 were identified and characterized to be functional and highly identical to human CYP3A4. Known CYP3A12 and new CYP3A98 efficiently catalyzed estradiol 16α-hydroxylation and midazolam 1'-hydroxylation. CYP3A98 mRNA was expressed in small intestine, whereas CYP3A12 mRNA was predominant in liver. Dog hepatic CYP3A12 and intestinal CYP3A98 are the enzymes likely responsible for the metabolic clearances of orally administered drugs, unlike human CYP3A4/5, which are in both the liver and intestine.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Shiori Jikuya
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Yutaro Noda
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Norie Murayama
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Hiroshi Yamazaki
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| |
Collapse
|
9
|
P14-10 Metabolism of two anthraquinone dyes obtained from Cortinarius sanguineus. Toxicol Lett 2022. [DOI: 10.1016/j.toxlet.2022.07.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Uno Y, Ushirozako G, Uehara S, Murayama N, Fujiki Y, Kawaguchi H, Tsukiyama-Kohara K, Yamazaki H. Newly identified tree shrew cytochrome P450 2B6 (CYP2B6) and pig CYP2B6b are functional drug-metabolising enzymes. Xenobiotica 2022; 52:687-696. [PMID: 36286316 DOI: 10.1080/00498254.2022.2141153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tree shrews have high phylogenetic affinity to humans and are used in various fields of biomedical research, especially hepatitis virus infection; however, cytochromes P450 (P450s or CYPs) have not been investigated in this species.In this study, tree shrew CYP2B6 and pig CYP2B6b were newly identified and had amino acid sequences highly identical (80% and 78%, respectively) to human CYP2B6, containing sequence motifs characteristic of P450s.Phylogenetic analysis revealed that novel tree shrew CYP2B6 was more closely related to known human CYP2B6 than dog, pig, or rat CYP2Bs are.Among the tissue types analysed, tree shrew CYP2B6 mRNA was preferentially expressed in liver and lung, whereas pig CYP2B6b mRNA was preferentially expressed in jejunum and lung.Tree shrew CYP2B6 and pig CYP2B6b proteins heterologously expressed in Escherichia coli metabolised human CYP2B6 substrates efavirenz, ethoxycoumarin, propofol, and testosterone, suggesting that these novel CYP2Bs are functional drug-metabolizing enzymes in liver and/or lung.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Genki Ushirozako
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Yuki Fujiki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | | | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Center, Kagoshima University, Kagoshima, Japan.,Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| |
Collapse
|
11
|
Tonero ME, Li Z, Reinhart JM. Cytochrome P450 reaction phenotyping of itraconazole hydroxylation in the dog. J Vet Pharmacol Ther 2022; 45:255-264. [PMID: 35389533 DOI: 10.1111/jvp.13058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022]
Abstract
Itraconazole (ITZ) is an important drug in the treatment of superficial and deep mycoses in dogs. Its primary metabolite is hydroxy-itraconazole, which has antifungal activity similar to the parent compound. The purpose of this study was to identify the cytochrome P450 enzyme (CYP) isoform(s) responsible for ITZ hydroxylation in canine liver. Reaction kinetics for ITZ hydroxylation were determined in a panel of canine recombinant CYPs and dog liver microsomes (DLMs). Findings were confirmed using CYP isoform-specific inhibitors in rCYPs and DLMs. In rCYP experiments, CYP2D15 and CYP3A12 had highest activity for ITZ hydroxylation. In inhibitor experiments, quinidine and erythromycin inhibited ITZ hydroxylation in CYP2D15 and CYP3A12, respectively, in an isoform-specific manner. In DLMs, quinidine and erythromycin combined inhibited ITZ hydroxylation more than erythromycin alone but not quinidine alone. However, this may be related to inhibitor potency rather than the contribution of the individual CYP isoforms to the reaction. These findings support a role for CYP2D15 and CYP3A12 in ITZ biotransformation in canine liver.
Collapse
Affiliation(s)
- Matthew E Tonero
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, Illinois, USA
| | - Jennifer M Reinhart
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
12
|
Martinez MN, Mochel JP, Neuhoff S, Pade D. Comparison of Canine and Human Physiological Factors: Understanding Interspecies Differences that Impact Drug Pharmacokinetics. AAPS JOURNAL 2021; 23:59. [PMID: 33907906 DOI: 10.1208/s12248-021-00590-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
This review is a summary of factors affecting the drug pharmacokinetics (PK) of dogs versus humans. Identifying these interspecies differences can facilitate canine-human PK extrapolations while providing mechanistic insights into species-specific drug in vivo behavior. Such a cross-cutting perspective can be particularly useful when developing therapeutics targeting diseases shared between the two species such as cancer, diabetes, cognitive dysfunction, and inflammatory bowel disease. Furthermore, recognizing these differences also supports a reverse PK extrapolations from humans to dogs. To appreciate the canine-human differences that can affect drug absorption, distribution, metabolism, and elimination, this review provides a comparison of the physiology, drug transporter/enzyme location, abundance, activity, and specificity between dogs and humans. Supplemental material provides an in-depth discussion of certain topics, offering additional critical points to consider. Based upon an assessment of available state-of-the-art information, data gaps were identified. The hope is that this manuscript will encourage the research needed to support an understanding of similarities and differences in human versus canine drug PK.
Collapse
Affiliation(s)
- Marilyn N Martinez
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Food and Drug Administration, Rockville, Maryland, 20855, USA.
| | - Jonathan P Mochel
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, 50011, USA
| | - Sibylle Neuhoff
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Devendra Pade
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| |
Collapse
|
13
|
Xie Y, Zhang Y, Liu H, Xing J. Metabolic Retroversion of Piperaquine (PQ) via Hepatic Cytochrome P450-Mediated N-Oxidation and Reduction: Not an Important Contributor to the Prolonged Elimination of PQ. Drug Metab Dispos 2021; 49:379-388. [PMID: 33674271 DOI: 10.1124/dmd.120.000306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
As a partner antimalarial with an extremely long elimination half-life (∼30 days), piperaquine (PQ) is mainly metabolized into a pharmacologically active N-oxide metabolite [piperaquine N-oxide (PN1)] in humans. In the present work, the metabolic retroversion of PQ and PN1, potentially associated with decreased clearance of PQ, was studied. The results showed that interconversion existed for PQ and its metabolite PN1. The N-oxidation of PQ to PN1 was mainly mediated by CYP3A4, and PN1 can rapidly reduce back to PQ via cytochrome P450 (P450)/flavin-containing monooxygenase enzymes. In accordance with these findings, the P450 nonselective inhibitor (1-ABT) or CYP3A4 inhibitor (ketoconazole) inhibited the N-oxidation pathway in liver microsomes (>90%), and the reduction metabolism was inhibited by 1-ABT (>90%) or methimazole (∼50%). Based on in vitro physiologic and enzyme kinetic studies, quantitative prediction of hepatic clearance (CLH) of PQ was performed, which indicated its negligible decreased elimination in humans in the presence of futile cycling, with the unbound CLH decreasing by 2.5% (0.069 l/h per kilogram); however, a minor decrease in unbound CLH (by 12.8%) was found in mice (0.024 l/h per kilogram). After an oral dose of PQ (or PN1) to mice, the parent form predominated in the blood circulation, and PN1 (or PQ) was detected as a major metabolite. Other factors probably associated with delayed elimination of PQ (intestinal metabolism and enterohepatic circulation) did not play a key role in PQ elimination. These data suggested that the metabolic interconversion of PQ and its N-oxide metabolite contributes to but may not significantly prolong its duration in humans. SIGNIFICANCE STATEMENT: This paper investigated the interconversion metabolism of piperaquine (PQ) and its N-oxide metabolite in vitro as well as in mice. The metabolic profiles of PQ were reestablished by this futile cycling, which contributes to but may not significantly prolong its elimination in humans. Enzyme phenotyping indicated a low possibility of interaction of PQ during artemisinin drug-based combination therapy treatment.
Collapse
Affiliation(s)
- Yuewu Xie
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yunrui Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Huixiang Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
14
|
Zeng W, Gui L, Tan X, Zhu P, Hu Y, Wu Q, Li X, Yang L, Jia W, Liu C, Lan K. Tertiary Oxidation of Deoxycholate Is Predictive of CYP3A Activity in Dogs. Drug Metab Dispos 2021; 49:369-378. [PMID: 33674269 DOI: 10.1124/dmd.121.000385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Deoxycholic acid (DCA, 3α, 12α-dihydroxy-5β-cholan-24-oic acid) is the major circulating secondary bile acid, which is synthesized by gut flora in the lower gut and selectively oxidized by CYP3A into tertiary metabolites, including 1β,3α,12α-trihydroxy-5β-cholan-24-oic acid (DCA-1β-ol) and 3α,5β,12α-trihydroxy-5β-cholan-24-oic acid (DCA-5β-ol) in humans. Since DCA has the similar exogenous nature and disposition mechanisms as xenobiotics, this work aimed to investigate whether the tertiary oxidations of DCA are predictive of in vivo CYP3A activities in beagle dogs. In vitro metabolism of midazolam (MDZ) and DCA in recombinant canine CYP1A1, 1A2, 2B11, 2C21, 2C41, 2D15, 3A12, and 3A26 enzymes clarified that CYP3A12 was primarily responsible for either the oxidation elimination of MDZ or the regioselective oxidation metabolism of DCA into DCA-1β-ol and DCA-5β-ol in dog liver microsomes. Six male dogs completed the CYP3A intervention studies including phases of baseline, inhibition (ketoconazole treatments), recovery, and induction (rifampicin treatments). The oral MDZ clearance after a single dose was determined on the last day of the baseline, inhibition, and induction phases, and subjected to correlation analysis with the tertiary oxidation ratios of DCA detected in serum and urine samples. The results confirmed that the predosing serum ratios of DCA oxidation, DCA-5β-ol/DCA, and DCA-1β-ol/DCA were significantly and positively correlated both intraindividually and interindividually with oral MDZ clearance. It was therefore concluded that the tertiary oxidation of DCA is predictive of CYP3A activity in beagle dogs. Clinical transitional studies following the preclinical evidence are promising to provide novel biomarkers of the enterohepatic CYP3A activities. SIGNIFICANCE STATEMENT: Drug development, clinical pharmacology, and therapeutics are under insistent demands of endogenous CYP3A biomarkers that avoid unnecessary drug exposure and invasive sampling. This work has provided the first proof-of-concept preclinical evidence that the CYP3A catalyzed tertiary oxidation of deoxycholate, the major circulating secondary bile acid synthesized in the lower gut by bacteria, may be developed as novel in vivo biomarkers of the enterohepatic CYP3A activities.
Collapse
Affiliation(s)
- Wushuang Zeng
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Lanlan Gui
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Xianwen Tan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Pingping Zhu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Yiting Hu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Qingliang Wu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Xuejing Li
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Lian Yang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Wei Jia
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Changxiao Liu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Ke Lan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| |
Collapse
|
15
|
Jalkanen A, Lassheikki V, Torsti T, Gharib E, Lehtonen M, Juvonen RO. Tissue and interspecies comparison of catechol- O-methyltransferase mediated catalysis of 6- O-methylation of esculetin to scopoletin and its inhibition by entacapone and tolcapone. Xenobiotica 2020; 51:268-278. [PMID: 33289420 DOI: 10.1080/00498254.2020.1853850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Catechol-O-methyltransferase (COMT) methylates both endogenous and exogenous catechol compounds to inactive and safe metabolites. We first optimised conditions for a convenient and sensitive continuous fluorescence-based 6-O-methylation assay of esculetin, which we used for investigating the COMT activity in human, mouse, rat, dog, rabbit, and sheep liver cytosols and microsomes and in ten different rat tissues. Furthermore, we compared the inhibition potencies and mechanisms of two clinically used COMT inhibitors, entacapone and tolcapone, in these species. In most tissues, the COMT activity was at least three times higher in cytosol than in microsomes. In the rat, the highest COMT activity was found in the liver, followed by kidney, ileum, thymus, spleen, lung, pancreas, heart, brain, and finally, skeletal muscle. Entacapone and tolcapone were characterised as highly potent mixed type tight-binding inhibitors. The competitive inhibition type dominated over the uncompetitive inhibition with entacapone, whereas uncompetitive inhibition dominated with tolcapone. Rats, dogs, pigs, and sheep are high COMT activity species, in contrast to humans, mice, and rabbits; COMT activity is highest in the liver. Both entacapone and tolcapone are potent COMT inhibitors, but their inhibition mechanisms differ.
Collapse
Affiliation(s)
- Aaro Jalkanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Veera Lassheikki
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tommi Torsti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elham Gharib
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Risto O Juvonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
16
|
Zhang J, Guan Y, He L, Tao L, Zang Z, Zhu W, Chen L, Jin C. Influence of a combination of triptolide and ferulic acid on the activities of CYP450 enzymes and oxidative stress in HaCaT cells. Exp Ther Med 2020; 20:157. [PMID: 33093895 PMCID: PMC7571369 DOI: 10.3892/etm.2020.9286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Topical administration of triptolide (TP) is effective in the treatment of rheumatoid arthritis (RA), but it can also induce skin irritation. Previous studies have used data mining strategies to analyze the application of Tripterygium wilfordii in the treatment of RA and have shown that TP and ferulic acid (FA) can be used in combination due to their component compatibility. The aims of the present study were to investigate the mechanisms underlying the effects of TP treatment and to identify its effects on metabolism and oxidative damage in the skin. MTT assay results suggested that the HaCaT cell survival rate was significantly increased when the compatibility ratio of TP to FA was 1:100. Moreover, the combination of TP with FA (TP + FA) did not significantly affect the activities of the cytochrome P40 (CYP) enzymes CYP family 1 subfamily A member 2 (CYP1A2), CYP2E1 and CYP3A4, when used as a 'cocktail'. It was found that TP + FA significantly decreased the production levels of reactive oxygen species (ROS), superoxide dismutase and malondialdehyde in HaCaT cells, while significantly increasing levels of glutathione and catalase. In addition, TP + FA significantly increased nuclear factor erythroid 2-related factor 2 protein expression, compared with TP alone. Thus, the present results indicated that the underlying mechanism of TP + FA efficacy may be related to decreased ROS production level in HaCaT cells, increased production levels of key antioxidant factors and increased antioxidant activity of the epidermis, all of which were correlated with a protective effect against oxidative damage.
Collapse
Affiliation(s)
- Jianlin Zhang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Yongmei Guan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Liangfei He
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Ling Tao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Zhenhzong Zang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Lihua Chen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Chen Jin
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| |
Collapse
|
17
|
Martinez MN, Mochel JP, Pade D. Considerations in the extrapolation of drug toxicity between humans and dogs. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Synergistic Mechanisms of Constituents in Herbal Extracts during Intestinal Absorption: Focus on Natural Occurring Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12020128. [PMID: 32028739 PMCID: PMC7076514 DOI: 10.3390/pharmaceutics12020128] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
The systematic separation strategy has long and widely been applied in the research and development of herbal medicines. However, the pharmacological effects of many bioactive constituents are much weaker than those of the corresponding herbal extracts. Thus, there is a consensus that purer herbal extracts are sometimes less effective. Pharmacological loss of purified constituents is closely associated with their significantly reduced intestinal absorption after oral administration. In this review, pharmacokinetic synergies among constituents in herbal extracts during intestinal absorption were systematically summarized to broaden the general understanding of the pharmaceutical nature of herbal medicines. Briefly, some coexisting constituents including plant-produced primary and secondary metabolites, promote the intestinal absorption of active constituents by improving solubility, inhibiting first-pass elimination mediated by drug-metabolizing enzymes or drug transporters, increasing the membrane permeability of enterocytes, and reversibly opening the paracellular tight junction between enterocytes. Moreover, some coexisting constituents change the forms of bioactive constituents via mechanisms including the formation of natural nanoparticles. This review will focus on explaining this new synergistic mechanism. Thus, herbal extracts can be considered mixtures of bioactive compounds and pharmacokinetic synergists. This review may provide ideas and strategies for further research and development of herbal medicines.
Collapse
|
19
|
Juvonen RO, Pentikäinen O, Huuskonen J, Timonen J, Kärkkäinen O, Heikkinen A, Fashe M, Raunio H. In vitro sulfonation of 7-hydroxycoumarin derivatives in liver cytosol of human and six animal species. Xenobiotica 2020; 50:885-893. [PMID: 31903849 DOI: 10.1080/00498254.2020.1711544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Sulfonation is an important high affinity elimination pathway for phenolic compounds.In this study sulfonation of 7-hydroxycoumarin and 13 its derivatives were evaluated in liver cytosols of human and six animal species. 7-hydroxycoumarin and its derivatives are strongly fluorescent, and their sulfate conjugates are nonfluorescent at excitation 405 nm and emission 460 nm. A convenient fluorescence based kinetic assay of sulfonation was established.The sulfonation rate of most of the 7-hydroxycoumarin derivatives was low in liver cytosol of human and pig, whereas it was high with most compounds in dog and intermediate in rat, mouse, rabbit, and sheep. Sulfonation of the 7-hydroxycoumarin derivatives followed Michaelis-Menten kinetics with Km values of 0.1-12 µM, Vmax of 0.005-1.7 µmol/(min * g protein) and intrinsic clearance (Vmax/Km) of 0.004-1.9 L/(min * g cytosolic protein).Fluorescence based measurement of sulfonation of 7-hydroxycoumarin derivatives provides a sensitive and convenient high-throughput assay to determine sulfonation rate in different species and tissues and can be applied to evaluate sulfonation kinetics and inhibition.
Collapse
Affiliation(s)
- Risto O Juvonen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Olli Pentikäinen
- Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Juhani Huuskonen
- Department of Chemistry, University of Jyvaskyla, Jyvaskyla, Finland
| | - Juri Timonen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Olli Kärkkäinen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - Muluneh Fashe
- Reproductive & Developmental Biology Laboratory/Pharmacogenetics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Hannu Raunio
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
20
|
Juvonen RO, Heikkinen AT, Kärkkäinen O, Jehangir R, Huuskonen J, Troberg J, Raunio H, Pentikäinen OT, Finel M. In vitro glucuronidation of 7-hydroxycoumarin derivatives in intestine and liver microsomes of Beagle dogs. Eur J Pharm Sci 2019; 141:105118. [PMID: 31669387 DOI: 10.1016/j.ejps.2019.105118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022]
Abstract
Beagle dog is a standard animal model for evaluating nonclinical pharmacokinetics of new drug candidates. Glucuronidation in intestine and liver is an important first-pass drug metabolic pathway, especially for phenolic compounds. This study evaluated the glucuronidation characteristics of several 7-hydroxycoumarin derivatives in beagle dog's intestine and liver in vitro. To this end, glucuronidation rates of 7-hydroxycoumarin (compound 1), 7-hydroxy-4-trifluoromethylcoumarin (2), 6-methoxy-7-hydroxycoumarin (3), 7-hydroxy-3-(4-tolyl)coumarin (4), 3-(4-fluorophenyl)coumarin (5), 7-hydroxy-3-(4-hydroxyphenyl)coumarin (6), 7-hydroxy-3-(4-methoxyphenyl)coumarin (7), and 7-hydroxy-3-(1H-1,2,4-tirazole)coumarin (8) were determined in dog's intestine and liver microsomes, as well as recombinant dog UGT1A enzymes. The glucuronidation rates of 1, 2 and 3 were 3-10 times higher in liver than in small intestine microsomes, whereas glucuronidation rates of 5, 6, 7 and 8 were similar in microsomes from both tissues. In the colon, glucuronidation of 1 and 2 was 3-5 times faster than in small intestine. dUGT1A11 glucuronidated efficiently all the substrates and was more efficient catalyst for 8 than any other dUGT1A. Other active enzymes were dUGT1A2 that glucuronidated efficiently 2, 3, 4, 5, 6 and 7, while dUGT1A10 glucuronidated efficiently 1, 2, 3, 4, 5 and 7. Kinetic analyses revealed that the compounds' Km values varied between 1.1 (dUGT1A10 and 2) and 250 µM (dUGT1A7 and 4). The results further strengthen the concept that dog intestine has high capacity for glucuronidation, and that different dUGT1As mediate glucuronidation with distinct substrates selectivity in dog and human.
Collapse
Affiliation(s)
- Risto O Juvonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Box 1627, FI-70211 Kuopio, Finland.
| | | | - Olli Kärkkäinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Box 1627, FI-70211 Kuopio, Finland
| | - Rabia Jehangir
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Box 1627, FI-70211 Kuopio, Finland
| | - Juhani Huuskonen
- University of Jyvaskyla, Department of Chemistry, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland
| | - Johanna Troberg
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Hannu Raunio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Box 1627, FI-70211 Kuopio, Finland
| | - Olli T Pentikäinen
- Institute of Biomedicine, Faculty of Medicine, University of Turku, FI-20014 University of Turku, Finland
| | - Moshe Finel
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland
| |
Collapse
|
21
|
Martinez SE, Shi J, Zhu HJ, Perez Jimenez TE, Zhu Z, Court MH. Absolute Quantitation of Drug-Metabolizing Cytochrome P450 Enzymes and Accessory Proteins in Dog Liver Microsomes Using Label-Free Standard-Free Analysis Reveals Interbreed Variability. Drug Metab Dispos 2019; 47:1314-1324. [PMID: 31427433 DOI: 10.1124/dmd.119.088070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022] Open
Abstract
Dogs are commonly used in human and veterinary pharmaceutical development. Physiologically based pharmacokinetic modeling using recombinant cytochrome P450 (CYP) enzymes requires accurate estimates of CYP abundance, particularly in liver. However, such estimates are currently available for only seven CYPs, which were determined in a limited number of livers from one dog breed (beagle). In this study, we used a label-free shotgun proteomics method to quantitate 11 CYPs (including four CYPs not previously measured), cytochrome P450 oxidoreductase, and cytochrome b5 in liver microsomes from 59 dogs representing four different breeds and mixed-breed dogs. Validation included showing correlation with CYP marker activities, immunoquantified protein, as well as CYP1A2 and CYP2C41 null allele genotypes. Abundance values largely agreed with those previously published. Average CYP abundance was highest (>120 pmol/mg protein) for CYP2D15 and CYP3A12; intermediate (40-89 pmol/mg) for CYP1A2, CYP2B11, CYP2E1, and CYP2C21; and lowest (<12 pmol/mg) for CYP2A13, CYP2A25, CYP2C41, CYP3A26, and CYP1A1. The CYP2C41 gene was detected in 12 of 58 (21%) livers. CYP2C41 protein abundance averaged 8.2 pmol/mg in those livers, and was highest (19 pmol/mg) in the only liver with two CYP2C41 gene copies. CYP1A2 protein was not detected in the only liver homozygous for the CYP1A2 stop codon mutation. Large breed-associated differences were observed for CYP2B11 (P < 0.0001; ANOVA) but not for other CYPs. Research hounds and Beagles had the highest CYP2B11 abundance; mixed-breed dogs and Chihuahua were intermediate; whereas greyhounds had the lowest abundance. These results provide the most comprehensive estimates to date of CYP abundance and variability in canine liver. SIGNIFICANCE STATEMENT: This work provides the most comprehensive quantitative analysis to date of the drug-metabolizing cytochrome P450 proteome in dogs that will serve as a valuable reference for physiologically based scaling and modeling used in drug development and research. This study also revealed high interindividual variation and dog breed-associated differences in drug-metabolizing cytochrome P450 expression that may be important for predicting drug disposition variability among a genetically diverse canine population.
Collapse
Affiliation(s)
- Stephanie E Martinez
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Jian Shi
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Hao-Jie Zhu
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Tania E Perez Jimenez
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Zhaohui Zhu
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Michael H Court
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| |
Collapse
|
22
|
Madden JC, Pawar G, Cronin MT, Webb S, Tan YM, Paini A. In silico resources to assist in the development and evaluation of physiologically-based kinetic models. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Mealey KL, Martinez SE, Villarino NF, Court MH. Personalized medicine: going to the dogs? Hum Genet 2019; 138:467-481. [PMID: 31032534 DOI: 10.1007/s00439-019-02020-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
Abstract
Interindividual variation in drug response occurs in canine patients just as it does in human patients. Although canine pharmacogenetics still lags behind human pharmacogenetics, significant life-saving discoveries in the field have been made over the last 20 years, but much remains to be done. This article summarizes the available published data about the presence and impact of genetic polymorphisms on canine drug transporters, drug-metabolizing enzymes, drug receptors/targets, and plasma protein binding while comparing them to their human counterparts when applicable. In addition, precision medicine in cancer treatment as an application of canine pharmacogenetics and pertinent considerations for canine pharmacogenetics testing is reviewed. The field is poised to transition from single pharmacogene-based studies, pharmacogenetics, to pharmacogenomic-based studies to enhance our understanding of interindividual variation of drug response in dogs. Advances made in the field of canine pharmacogenetics will not only improve the health and well-being of dogs and dog breeds, but may provide insight into individual drug efficacy and toxicity in human patients as well.
Collapse
Affiliation(s)
- Katrina L Mealey
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA.
| | - Stephanie E Martinez
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Nicolas F Villarino
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Michael H Court
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| |
Collapse
|
24
|
Matsunaga N, Ufuk A, Morse BL, Bedwell DW, Bao J, Mohutsky MA, Hillgren KM, Hall SD, Houston JB, Galetin A. Hepatic Organic Anion Transporting Polypeptide-Mediated Clearance in the Beagle Dog: Assessing In Vitro-In Vivo Relationships and Applying Cross-Species Empirical Scaling Factors to Improve Prediction of Human Clearance. Drug Metab Dispos 2018; 47:215-226. [PMID: 30593544 DOI: 10.1124/dmd.118.084194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
In the present study, the beagle dog was evaluated as a preclinical model to investigate organic anion transporting polypeptide (OATP)-mediated hepatic clearance. In vitro studies were performed with nine OATP substrates in three lots of plated male dog hepatocytes ± OATP inhibitor cocktail to determine total uptake clearance (CLuptake) and total and unbound cell-to-medium concentration ratio (Kpuu). In vivo intrinsic hepatic clearances (CLint,H) were determined following intravenous drug administration (0.1 mg/kg) in male beagle dogs. The in vitro parameters were compared with those previously reported in plated human, monkey, and rat hepatocytes; the ability of cross-species scaling factors to improve prediction of human in vivo clearance was assessed. CLuptake in dog hepatocytes ranged from 9.4 to 135 µl/min/106 cells for fexofenadine and telmisartan, respectively. Active process contributed >75% to CLuptake for 5/9 drugs. Rosuvastatin and valsartan showed Kpuu > 10, whereas cerivastatin, pitavastatin, repaglinide, and telmisartan had Kpuu < 5. The extent of hepatocellular binding in dog was consistent with other preclinical species and humans. The bias (2.73-fold) obtained from comparison of predicted versus in vivo dog CLint,H was applied as an average empirical scaling factor (ESFav) for in vitro-in vivo extrapolation of human CLint,H The ESFav based on dog reduced underprediction of human CLint,H for the same data set (geometric mean fold error = 2.1), highlighting its utility as a preclinical model to investigate OATP-mediated uptake. The ESFav from all preclinical species resulted in comparable improvement of human clearance prediction, in contrast to drug-specific empirical scalars, rationalized by species differences in expression and/or relative contribution of particular transporters to drug hepatic uptake.
Collapse
Affiliation(s)
- Norikazu Matsunaga
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Ayşe Ufuk
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Bridget L Morse
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - David W Bedwell
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Jingqi Bao
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Michael A Mohutsky
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Kathleen M Hillgren
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Stephen D Hall
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| |
Collapse
|
25
|
Perez Jimenez TE, Kukanich B, Joo H, Mealey KL, Grubb TL, Greene SA, Court MH. Oral Coadministration of Fluconazole with Tramadol Markedly Increases Plasma and Urine Concentrations of Tramadol and the O-Desmethyltramadol Metabolite in Healthy Dogs. Drug Metab Dispos 2018; 47:15-25. [PMID: 30366901 DOI: 10.1124/dmd.118.083444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/24/2018] [Indexed: 01/11/2023] Open
Abstract
Tramadol is used frequently in the management of mild to moderate pain conditions in dogs. This use is controversial because multiple reports in treated dogs demonstrate very low plasma concentrations of O-desmethyltramadol (M1), the active metabolite. The objective of this study was to identify a drug that could be coadministered with tramadol to increase plasma M1 concentrations, thereby enhancing analgesic efficacy. In vitro studies were initially conducted to identify a compound that inhibited tramadol metabolism to N-desmethyltramadol (M2) and M1 metabolism to N,O-didesmethyltramadol (M5) without reducing tramadol metabolism to M1. A randomized crossover drug-drug interaction study was then conducted by administering this inhibitor or placebo with tramadol to 12 dogs. Blood and urine samples were collected to measure tramadol, tramadol metabolites, and inhibitor concentrations. After screening 86 compounds, fluconazole was the only drug found to inhibit M2 and M5 formation potently without reducing M1 formation. Four hours after tramadol administration to fluconazole-treated dogs, there were marked statistically significant (P < 0.001; Wilcoxon signed-rank test) increases in plasma tramadol (31-fold higher) and M1 (39-fold higher) concentrations when compared with placebo-treated dogs. Conversely, plasma M2 and M5 concentrations were significantly lower (11-fold and 3-fold, respectively; P < 0.01) in fluconazole-treated dogs. Metabolite concentrations in urine followed a similar pattern. This is the first study to demonstrate a potentially beneficial drug-drug interaction in dogs through enhancing plasma tramadol and M1 concentrations. Future studies are needed to determine whether adding fluconazole can enhance the analgesic efficacy of tramadol in healthy dogs and clinical patients experiencing pain.
Collapse
Affiliation(s)
- Tania E Perez Jimenez
- Program in Individualized Medicine, Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, Washington State University College of Veterinary Medicine, Pullman, Washington (T.E.P.J., K.L.M., T.L.G., S.A.G., M.H.C.); and Department of Anatomy and Physiology, Institute of Computational Comparative Medicine, Kansas State University College of Veterinary Medicine, Manhattan, Kansas (B.K., H.J.)
| | - Butch Kukanich
- Program in Individualized Medicine, Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, Washington State University College of Veterinary Medicine, Pullman, Washington (T.E.P.J., K.L.M., T.L.G., S.A.G., M.H.C.); and Department of Anatomy and Physiology, Institute of Computational Comparative Medicine, Kansas State University College of Veterinary Medicine, Manhattan, Kansas (B.K., H.J.)
| | - Hyun Joo
- Program in Individualized Medicine, Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, Washington State University College of Veterinary Medicine, Pullman, Washington (T.E.P.J., K.L.M., T.L.G., S.A.G., M.H.C.); and Department of Anatomy and Physiology, Institute of Computational Comparative Medicine, Kansas State University College of Veterinary Medicine, Manhattan, Kansas (B.K., H.J.)
| | - Katrina L Mealey
- Program in Individualized Medicine, Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, Washington State University College of Veterinary Medicine, Pullman, Washington (T.E.P.J., K.L.M., T.L.G., S.A.G., M.H.C.); and Department of Anatomy and Physiology, Institute of Computational Comparative Medicine, Kansas State University College of Veterinary Medicine, Manhattan, Kansas (B.K., H.J.)
| | - Tamara L Grubb
- Program in Individualized Medicine, Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, Washington State University College of Veterinary Medicine, Pullman, Washington (T.E.P.J., K.L.M., T.L.G., S.A.G., M.H.C.); and Department of Anatomy and Physiology, Institute of Computational Comparative Medicine, Kansas State University College of Veterinary Medicine, Manhattan, Kansas (B.K., H.J.)
| | - Stephen A Greene
- Program in Individualized Medicine, Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, Washington State University College of Veterinary Medicine, Pullman, Washington (T.E.P.J., K.L.M., T.L.G., S.A.G., M.H.C.); and Department of Anatomy and Physiology, Institute of Computational Comparative Medicine, Kansas State University College of Veterinary Medicine, Manhattan, Kansas (B.K., H.J.)
| | - Michael H Court
- Program in Individualized Medicine, Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, Washington State University College of Veterinary Medicine, Pullman, Washington (T.E.P.J., K.L.M., T.L.G., S.A.G., M.H.C.); and Department of Anatomy and Physiology, Institute of Computational Comparative Medicine, Kansas State University College of Veterinary Medicine, Manhattan, Kansas (B.K., H.J.)
| |
Collapse
|
26
|
Kondo T, Ikenaka Y, Nakayama SMM, Kawai YK, Mizukawa H, Mitani Y, Nomiyama K, Tanabe S, Ishizuka M. Uridine Diphosphate-Glucuronosyltransferase (UGT) 2B Subfamily Interspecies Differences in Carnivores. Toxicol Sci 2018; 158:90-100. [PMID: 28453659 DOI: 10.1093/toxsci/kfx072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are among the most important xenobiotic metabolizing enzymes that conjugate a wide range of chemicals. Previous studies showed that Felidae and Pinnipedia species have very low UGT activities toward some phenolic compounds because of the UGT1A6 pseudogene and small numbers of UGT1A isozymes. In addition to the UGT1As, UGT2Bs isozymes also conjugate various endogenous (eg, estrogens, androgens, and bile acids) and exogenous compounds (opioids, non-steroidal anti-inflammatory drugs, and environmental pollutants). However UGT2B activity and genetic background are unknown in carnivore species. Therefore, this study was performed to elucidate the species differences of UGT2Bs. Using typical substrates for UGT2Bs, UGT activity was measured in vitro. In addition, UGT2B genetic features are analyzed in silico. Results of UGT activity measurement indicate marked species differences between dogs and other carnivores (cats, Northern fur seals, Steller sea lions, Harbor seals, and Caspian seals). Dogs have very high Vmax/Km toward estradiol (17-glucuronide), estrone, lorazepam, oxazepam, and temazepam. Conversely, cats and pinniped species (especially Caspian seals and Harbor seals) have very low activities toward these substrates. The results of genetic synteny analysis indicate that Felidae and pinniped species have very small numbers of UGT2B isozymes (one or none) compared with dogs, rodents, and humans. Furthermore, Felidae species have the same nonsense mutation in UGT2B, which suggests that Felidae UGT2B31-like is also a pseudogene in addition to UGT1A6. These findings of lower activity of UGT2B suggest that Felidae and some pinniped species have very low UGT activity toward a wide range of chemicals. These results are important for Felidae and Pinnipedia species that are frequently exposed to drugs and environmental pollutants.
Collapse
Affiliation(s)
- Takamitsu Kondo
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan.,Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Yusuke K Kawai
- Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Hazuki Mizukawa
- Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Yoko Mitani
- Field Science Center for Northern Biosphere, Hokkaido University, N11, W10, Kita-ku, Sapporo 060-0811, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
27
|
Visser M, Zaya MJ, Locuson CW, Boothe DM, Merritt DA. Comparison of predicted intrinsic hepatic clearance of 30 pharmaceuticals in canine and feline liver microsomes. Xenobiotica 2018; 49:177-186. [PMID: 29405805 DOI: 10.1080/00498254.2018.1437933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. Known cytochrome P450 (CYP) substrates in humans are used in veterinary medicine, with limited knowledge of the similarity or variation in CYP metabolism. Comparison of canine and feline CYP metabolism via liver microsomes report that human CYP probes and inhibitors demonstrate differing rates of intrinsic clearance (CLint). 2. The purpose of this study was to utilize a high-throughput liver microsome substrate depletion assay, combined with microsomal and plasma protein binding to compare the predicted hepatic clearance (CLhep) of thirty therapeutic agents used off-label in canines and felines, using both the well-stirred and parallel tube models. 3. In canine liver microsomes, 3/30 substrates did not have quantifiable CLint, while midazolam and amitriptyline CLint was too rapid for accurate determination. A CLhep was calculated for 29/30 substrates in feline microsomes. Overall, canine CLhep was faster compared to the feline, with fold differences ranging from 2-20-fold. 4. A comparison between the well-stirred and parallel tube model indicates that the parallel tube model reports a slighter higher CLhep in both species. 5. The differences in CYP metabolism between canine and feline highlight the need for additional research into CYP expression and specificity.
Collapse
Affiliation(s)
- Marike Visser
- a VMRD Global Therapeutics, Zoetis , Kalamazoo , MI , USA
| | | | | | - Dawn M Boothe
- d College of Veterinary Medicine, Auburn University , Auburn , AL , USA
| | | |
Collapse
|
28
|
Visser M, Weber K, Rincon G, Merritt D. Use of RNA-seq to determine variation in canine cytochrome P450 mRNA expression between blood, liver, lung, kidney and duodenum in healthy beagles. J Vet Pharmacol Ther 2017; 40:583-590. [DOI: 10.1111/jvp.12400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/03/2017] [Indexed: 12/22/2022]
Affiliation(s)
- M. Visser
- Veterinary Medicine Research and Development, Metabolism & Safety; Zoetis; Kalamazoo MI USA
- Department of Anatomy, Physiology and Pharmacology; College of Veterinary Medicine; Auburn University; Auburn AL USA
| | - K. Weber
- Veterinary Medicine Research and Development, Genetics; Zoetis; Kalamazoo MI USA
| | - G. Rincon
- Veterinary Medicine Research and Development, Genetics; Zoetis; Kalamazoo MI USA
| | - D. Merritt
- Veterinary Medicine Research and Development, Metabolism & Safety; Zoetis; Kalamazoo MI USA
| |
Collapse
|
29
|
Scotcher D, Billington S, Brown J, Jones CR, Brown CDA, Rostami-Hodjegan A, Galetin A. Microsomal and Cytosolic Scaling Factors in Dog and Human Kidney Cortex and Application for In Vitro-In Vivo Extrapolation of Renal Metabolic Clearance. Drug Metab Dispos 2017; 45:556-568. [PMID: 28270564 PMCID: PMC5399648 DOI: 10.1124/dmd.117.075242] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/27/2017] [Indexed: 12/17/2022] Open
Abstract
In vitro-in vivo extrapolation of drug metabolism data obtained in enriched preparations of subcellular fractions rely on robust estimates of physiologically relevant scaling factors for the prediction of clearance in vivo. The purpose of the current study was to measure the microsomal and cytosolic protein per gram of kidney (MPPGK and CPPGK) in dog and human kidney cortex using appropriate protein recovery marker and evaluate functional activity of human cortex microsomes. Cytochrome P450 (CYP) content and glucose-6-phosphatase (G6Pase) activity were used as microsomal protein markers, whereas glutathione-S-transferase activity was a cytosolic marker. Functional activity of human microsomal samples was assessed by measuring mycophenolic acid glucuronidation. MPPGK was 33.9 and 44.0 mg/g in dog kidney cortex, and 41.1 and 63.6 mg/g in dog liver (n = 17), using P450 content and G6Pase activity, respectively. No trends were noted between kidney, liver, and intestinal scalars from the same animals. Species differences were evident, as human MPPGK and CPPGK were 26.2 and 53.3 mg/g in kidney cortex (n = 38), respectively. MPPGK was 2-fold greater than the commonly used in vitro-in vivo extrapolation scalar; this difference was attributed mainly to tissue source (mixed kidney regions versus cortex). Robust human MPPGK and CPPGK scalars were measured for the first time. The work emphasized the importance of regional differences (cortex versus whole kidney–specific MPPGK, tissue weight, and blood flow) and a need to account for these to improve assessment of renal metabolic clearance and its extrapolation to in vivo.
Collapse
Affiliation(s)
- Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester (D.S., A.R.-H., A.G.); Newcastle University, Newcastle (S.B., C.D.A.B.); Biobank, Central Manchester University Hospitals NHS Foundation Trust, Manchester (J.B.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom
| | - Sarah Billington
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester (D.S., A.R.-H., A.G.); Newcastle University, Newcastle (S.B., C.D.A.B.); Biobank, Central Manchester University Hospitals NHS Foundation Trust, Manchester (J.B.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom
| | - Jay Brown
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester (D.S., A.R.-H., A.G.); Newcastle University, Newcastle (S.B., C.D.A.B.); Biobank, Central Manchester University Hospitals NHS Foundation Trust, Manchester (J.B.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom
| | - Christopher R Jones
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester (D.S., A.R.-H., A.G.); Newcastle University, Newcastle (S.B., C.D.A.B.); Biobank, Central Manchester University Hospitals NHS Foundation Trust, Manchester (J.B.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom
| | - Colin D A Brown
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester (D.S., A.R.-H., A.G.); Newcastle University, Newcastle (S.B., C.D.A.B.); Biobank, Central Manchester University Hospitals NHS Foundation Trust, Manchester (J.B.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester (D.S., A.R.-H., A.G.); Newcastle University, Newcastle (S.B., C.D.A.B.); Biobank, Central Manchester University Hospitals NHS Foundation Trust, Manchester (J.B.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester (D.S., A.R.-H., A.G.); Newcastle University, Newcastle (S.B., C.D.A.B.); Biobank, Central Manchester University Hospitals NHS Foundation Trust, Manchester (J.B.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom
| |
Collapse
|
30
|
Hatley OJD, Jones CR, Galetin A, Rostami-Hodjegan A. Quantifying gut wall metabolism: methodology matters. Biopharm Drug Dispos 2017; 38:155-160. [PMID: 28039878 PMCID: PMC5412859 DOI: 10.1002/bdd.2062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Oliver J D Hatley
- Simcyp Ltd (A Certara Company), Blades Enterprise Centre, Sheffield, S2 4SU, UK
| | | | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Manchester, M13 9PT, UK
| | - Amin Rostami-Hodjegan
- Simcyp Ltd (A Certara Company), Blades Enterprise Centre, Sheffield, S2 4SU, UK.,Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
31
|
Rioux N, Duncan KW, Lantz RJ, Miao X, Chan-Penebre E, Moyer MP, Munchhof MJ, Copeland RA, Chesworth R, Waters NJ. Species differences in metabolism of EPZ015666, an oxetane-containing protein arginine methyltransferase-5 (PRMT5) inhibitor. Xenobiotica 2016; 46:268-77. [PMID: 26294260 DOI: 10.3109/00498254.2015.1072253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
1. Metabolite profiling and identification studies were conducted to understand the cross-species differences in the metabolic clearance of EPZ015666, a first-in-class protein arginine methyltransferase-5 (PRMT5) inhibitor, with anti-proliferative effects in preclinical models of Mantle Cell Lymphoma. EPZ015666 exhibited low clearance in human, mouse and rat liver microsomes, in part by introduction of a 3-substituted oxetane ring on the molecule. In contrast, a higher clearance was observed in dog liver microsomes (DLM) that translated to a higher in vivo clearance in dog compared with rodent. 2. Structure elucidation via high resolution, accurate mass LC-MS(n) revealed that the prominent metabolites of EPZ015666 were present in hepatocytes from all species, with the highest turnover rate in dogs. M1 and M2 resulted from oxidative oxetane ring scission, whereas M3 resulted from loss of the oxetane ring via an N-dealkylation reaction. 3. The formation of M1 and M2 in DLM was significantly abrogated in the presence of the specific CYP2D inhibitor, quinidine, and to a lesser extent by the CYP3A inhibitor, ketoconazole, corroborating data from human recombinant isozymes. 4. Our data indicate a marked species difference in the metabolism of the PRMT5 inhibitor EPZ015666, with oxetane ring scission the predominant metabolic pathway in dog mediated largely by CYP2D.
Collapse
|
32
|
Perez Jimenez TE, Mealey KL, Grubb TL, Greene SA, Court MH. Tramadol metabolism to O-desmethyl tramadol (M1) and N-desmethyl tramadol (M2) by dog liver microsomes: Species comparison and identification of responsible canine cytochrome P-450s (CYPs). Drug Metab Dispos 2016; 44:1963-1972. [PMID: 27758804 DOI: 10.1124/dmd.116.071902] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/05/2016] [Indexed: 12/20/2022] Open
Abstract
Tramadol is widely used to manage mild to moderately painful conditions in dogs. However, this use is controversial since clinical efficacy studies in dogs showed conflicting results, while pharmacokinetic studies demonstrated relatively low circulating concentrations of O-desmethyltramadol (M1). Analgesia has been attributed to the opioid effects of M1, while tramadol and the other major metabolite (N-desmethyltramadol, M2) are considered inactive at opioid receptors. The aims of this study were to determine whether cytochrome P450 (CYP) dependent M1 formation by dog liver microsomes is slower compared with cat and human liver microsomes; and identify the CYPs responsible for M1 and M2 formation in canine liver. Since tramadol is used as a racemic mixture of (+)- and (-)-stereoisomers, both (+)-tramadol and (-)- tramadol were evaluated as substrates. M1 formation from tramadol by liver microsomes from dogs was slower than from cats (3.9-fold), but faster than humans (7-fold). However, M2 formation by liver microsomes from dogs was faster than from cats (4.8-fold) and humans (19-fold). Recombinant canine CYP activities indicated that M1 was formed by CYP2D15, while M2 was largely formed by CYP2B11 and CYP3A12. This was confirmed by dog liver microsomes studies that showed selective inhibition of M1 formation by quinidine and M2 formation by chloramphenicol and CYP2B11 antiserum, and induction of M2 formation by phenobarbital. Findings were similar for both (+)-tramadol and (-)-tramadol. In conclusion, low circulating M1 concentrations in dogs is explained in part by low M1 formation and high M2 formation, which are mediated by CYP2D15 and CYP2B11/CYP3A12, respectively.
Collapse
|
33
|
Xie F, Ding X, Zhang QY. An update on the role of intestinal cytochrome P450 enzymes in drug disposition. Acta Pharm Sin B 2016; 6:374-383. [PMID: 27709006 PMCID: PMC5045550 DOI: 10.1016/j.apsb.2016.07.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/05/2022] Open
Abstract
Oral administration is the most commonly used route for drug treatment. Intestinal cytochrome P450 (CYP)-mediated metabolism can eliminate a large proportion of some orally administered drugs before they reach systemic circulation, while leaving the passage of other drugs unimpeded. A better understanding of the ability of intestinal P450 enzymes to metabolize various clinical drugs in both humans and preclinical animal species, including the identification of the CYP enzymes expressed, their regulation, and the relative importance of intestinal metabolism compared to hepatic metabolism, is important for improving bioavailability of current drugs and new drugs in development. Here, we briefly review the expression of drug-metabolizing P450 enzymes in the small intestine of humans and several preclinical animal species, and provide an update of the various factors or events that regulate intestinal P450 expression, including a cross talk between the liver and the intestine. We further compare various clinical and preclinical approaches for assessing the impact of intestinal drug metabolism on bioavailability, and discuss the utility of the intestinal epithelium–specific NADPH-cytochrome P450 reductase-null (IECN) mouse as a useful model for studying in vivo roles of intestinal P450 in the disposition of orally administered drugs.
Collapse
|
34
|
Nakamura K, Hirayama-Kurogi M, Ito S, Kuno T, Yoneyama T, Obuchi W, Terasaki T, Ohtsuki S. Large-scale multiplex absolute protein quantification of drug-metabolizing enzymes and transporters in human intestine, liver, and kidney microsomes by SWATH-MS: Comparison with MRM/SRM and HR-MRM/PRM. Proteomics 2016; 16:2106-17. [PMID: 27197958 DOI: 10.1002/pmic.201500433] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 05/02/2016] [Accepted: 05/16/2016] [Indexed: 12/21/2022]
Abstract
The purpose of the present study was to examine simultaneously the absolute protein amounts of 152 membrane and membrane-associated proteins, including 30 metabolizing enzymes and 107 transporters, in pooled microsomal fractions of human liver, kidney, and intestine by means of SWATH-MS with stable isotope-labeled internal standard peptides, and to compare the results with those obtained by MRM/SRM and high resolution (HR)-MRM/PRM. The protein expression levels of 27 metabolizing enzymes, 54 transporters, and six other membrane proteins were quantitated by SWATH-MS; other targets were below the lower limits of quantitation. Most of the values determined by SWATH-MS differed by less than 50% from those obtained by MRM/SRM or HR-MRM/PRM. Various metabolizing enzymes were expressed in liver microsomes more abundantly than in other microsomes. Ten, 13, and eight transporters listed as important for drugs by International Transporter Consortium were quantified in liver, kidney, and intestinal microsomes, respectively. Our results indicate that SWATH-MS enables large-scale multiplex absolute protein quantification while retaining similar quantitative capability to MRM/SRM or HR-MRM/PRM. SWATH-MS is expected to be useful methodology in the context of drug development for elucidating the molecular mechanisms of drug absorption, metabolism, and excretion in the human body based on protein profile information.
Collapse
Affiliation(s)
- Kenji Nakamura
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mio Hirayama-Kurogi
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Takuya Kuno
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Drug Metabolism and Pharmacokinetics, Drug Safety Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd, Tokushima, Japan
| | - Toshihiro Yoneyama
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Wataru Obuchi
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
35
|
Peters SA, Jones CR, Ungell AL, Hatley OJD. Predicting Drug Extraction in the Human Gut Wall: Assessing Contributions from Drug Metabolizing Enzymes and Transporter Proteins using Preclinical Models. Clin Pharmacokinet 2016; 55:673-96. [PMID: 26895020 PMCID: PMC4875961 DOI: 10.1007/s40262-015-0351-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intestinal metabolism can limit oral bioavailability of drugs and increase the risk of drug interactions. It is therefore important to be able to predict and quantify it in drug discovery and early development. In recent years, a plethora of models-in vivo, in situ and in vitro-have been discussed in the literature. The primary objective of this review is to summarize the current knowledge in the quantitative prediction of gut-wall metabolism. As well as discussing the successes of current models for intestinal metabolism, the challenges in the establishment of good preclinical models are highlighted, including species differences in the isoforms; regional abundances and activities of drug metabolizing enzymes; the interplay of enzyme-transporter proteins; and lack of knowledge on enzyme abundances and availability of empirical scaling factors. Due to its broad specificity and high abundance in the intestine, CYP3A is the enzyme that is frequently implicated in human gut metabolism and is therefore the major focus of this review. A strategy to assess the impact of gut wall metabolism on oral bioavailability during drug discovery and early development phases is presented. Current gaps in the mechanistic understanding and the prediction of gut metabolism are highlighted, with suggestions on how they can be overcome in the future.
Collapse
Affiliation(s)
- Sheila Annie Peters
- Translational Quantitative Pharmacology, BioPharma, R&D Global Early Development, Merck KGaA, Frankfurter Str. 250, F130/005, 64293, Darmstadt, Germany.
| | | | - Anna-Lena Ungell
- Investigative ADME, Non-Clinical Development, UCB New Medicines, BioPharma SPRL, Braine l'Alleud, Belgium
| | - Oliver J D Hatley
- Simcyp Limited (A Certara Company), Blades Enterprise Centre, Sheffield, UK
| |
Collapse
|
36
|
Giantin M, Baratto C, Marconato L, Vascellari M, Mutinelli F, Dacasto M, Granato A. Transcriptomic analysis identified up-regulation of a solute carrier transporter and UDP glucuronosyltransferases in dogs with aggressive cutaneous mast cell tumours. Vet J 2016; 212:36-43. [PMID: 27256023 DOI: 10.1016/j.tvjl.2016.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 03/10/2016] [Accepted: 03/27/2016] [Indexed: 11/17/2022]
Abstract
Gene expression analyses have been recently used in cancer research to identify genes associated with tumorigenesis and potential prognostic markers or therapeutic targets. In the present study, the transcriptome of dogs that had died because of mast cell tumours (MCTs) was characterised to identify a fingerprint having significant influence on prognosis determination and treatment selection. A dataset (GSE50433) obtained using a commercial canine DNA microarray platform was used. The transcriptome of seven biopsies obtained from dogs with histologically confirmed, surgically removed MCTs, treated with chemotherapy, and dead for MCT-related causes, was compared with the transcriptional portrait of 40 samples obtained from dogs with histologically confirmed, surgically removed MCTs and that were still alive at the end of the follow-up period. Among the differentially expressed genes (DEGs), eight transcripts were validated by quantitative real time PCR and their mRNA levels were measured in a cohort of 22 additional MCTs. Statistical analysis identified 375 DEGs (fold change 2, false discovery rate 5%). The functional annotation analysis indicated that the DEGs were associated with drug metabolism and cell cycle pathways. Particularly, members of solute carrier transporter (SLC) and UDP glucuronosyltransferase (UGT) gene families were identified as dysregulated. Principal component analysis (PCA) of the 22 additional MCTs identified the separate cluster dogs dead for MCT-related causes. SLCs and UGTs have been recently recognised in human cancer as important key factors in tumour progression and chemo-resistance. An in-depth analysis of their roles in aggressive canine MCT is warranted in future studies.
Collapse
Affiliation(s)
- Mery Giantin
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy.
| | - Chiara Baratto
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, I-35020 Legnaro (Padova), Italy
| | - Laura Marconato
- Centro Oncologico Veterinario, Via San Lorenzo 1/4, I-40037 Sasso Marconi (Bologna), Italy
| | - Marta Vascellari
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, I-35020 Legnaro (Padova), Italy
| | - Franco Mutinelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, I-35020 Legnaro (Padova), Italy
| | - Mauro Dacasto
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy
| | - Anna Granato
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, I-35020 Legnaro (Padova), Italy
| |
Collapse
|
37
|
Harwood MD, Achour B, Neuhoff S, Russell MR, Carlson G, Warhurst G. In Vitro-In Vivo Extrapolation Scaling Factors for Intestinal P-Glycoprotein and Breast Cancer Resistance Protein: Part I: A Cross-Laboratory Comparison of Transporter-Protein Abundances and Relative Expression Factors in Human Intestine and Caco-2 Cells. ACTA ACUST UNITED AC 2015; 44:297-307. [PMID: 26631742 DOI: 10.1124/dmd.115.067371] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022]
Abstract
Over the last 5 years the quantification of transporter-protein absolute abundances has dramatically increased in parallel to the expanded use of in vitro-in vivo extrapolation (IVIVE) and physiologically based pharmacokinetics (PBPK)-linked models, for decision-making in pharmaceutical company drug development pipelines and regulatory submissions. Although several research groups have developed laboratory-specific proteomic workflows, it is unclear if the large range of reported variability is founded on true interindividual variability or experimental variability resulting from sample preparation or the proteomic methodology used. To assess the potential for methodological bias on end-point abundance quantification, two independent laboratories, the University of Manchester (UoM) and Bertin Pharma (BPh), employing different proteomic workflows, quantified the absolute abundances of Na/K-ATPase, P-gp, and breast cancer resistance protein (BCRP) in the same set of biologic samples from human intestinal and Caco-2 cell membranes. Across all samples, P-gp abundances were significantly correlated (P = 0.04, Rs = 0.72) with a 2.4-fold higher abundance (P = 0.001) generated at UoM compared with BPh. There was a systematically higher BCRP abundance in Caco-2 cell samples quantified by BPh compared with UoM, but not in human intestinal samples. Consequently, a similar intestinal relative expression factor (REF), derived from distal jejunum and Caco-2 monolayer samples, between laboratories was found for P-gp. However, a 2-fold higher intestinal REF was generated by UoM (2.22) versus BPh (1.11). We demonstrate that differences in absolute protein abundance are evident between laboratories and they probably result from laboratory-specific methodologies relating to peptide choice.
Collapse
Affiliation(s)
- Matthew D Harwood
- Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (M.D.H., G.C., G.W.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Stopford Building, Manchester, United Kingdom (B.A., M.R.R., A.R-H.); Simcyp Limited (a Certara Company), Sheffield (M.D.H., S.N., A.R-H.), United Kingdom
| | - Brahim Achour
- Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (M.D.H., G.C., G.W.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Stopford Building, Manchester, United Kingdom (B.A., M.R.R., A.R-H.); Simcyp Limited (a Certara Company), Sheffield (M.D.H., S.N., A.R-H.), United Kingdom
| | - Sibylle Neuhoff
- Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (M.D.H., G.C., G.W.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Stopford Building, Manchester, United Kingdom (B.A., M.R.R., A.R-H.); Simcyp Limited (a Certara Company), Sheffield (M.D.H., S.N., A.R-H.), United Kingdom
| | - Matthew R Russell
- Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (M.D.H., G.C., G.W.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Stopford Building, Manchester, United Kingdom (B.A., M.R.R., A.R-H.); Simcyp Limited (a Certara Company), Sheffield (M.D.H., S.N., A.R-H.), United Kingdom
| | - Gordon Carlson
- Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (M.D.H., G.C., G.W.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Stopford Building, Manchester, United Kingdom (B.A., M.R.R., A.R-H.); Simcyp Limited (a Certara Company), Sheffield (M.D.H., S.N., A.R-H.), United Kingdom
| | - Geoffrey Warhurst
- Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (M.D.H., G.C., G.W.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Stopford Building, Manchester, United Kingdom (B.A., M.R.R., A.R-H.); Simcyp Limited (a Certara Company), Sheffield (M.D.H., S.N., A.R-H.), United Kingdom
| | | |
Collapse
|
38
|
Oswald H, Sharkey M, Pade D, Martinez MN. Canine gastrointestinal physiology: Breeds variations that can influence drug absorption. Eur J Pharm Biopharm 2015; 97:192-203. [DOI: 10.1016/j.ejpb.2015.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/01/2015] [Accepted: 09/20/2015] [Indexed: 12/12/2022]
|
39
|
Ebhardt HA, Root A, Sander C, Aebersold R. Applications of targeted proteomics in systems biology and translational medicine. Proteomics 2015; 15:3193-208. [PMID: 26097198 PMCID: PMC4758406 DOI: 10.1002/pmic.201500004] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/27/2015] [Accepted: 06/09/2015] [Indexed: 01/28/2023]
Abstract
Biological systems are composed of numerous components of which proteins are of particularly high functional significance. Network models are useful abstractions for studying these components in context. Network representations display molecules as nodes and their interactions as edges. Because they are difficult to directly measure, functional edges are frequently inferred from suitably structured datasets consisting of the accurate and consistent quantification of network nodes under a multitude of perturbed conditions. For the precise quantification of a finite list of proteins across a wide range of samples, targeted proteomics exemplified by selected/multiple reaction monitoring (SRM, MRM) mass spectrometry has proven useful and has been applied to a variety of questions in systems biology and clinical studies. Here, we survey the literature of studies using SRM-MS in systems biology and clinical proteomics. Systems biology studies frequently examine fundamental questions in network biology, whereas clinical studies frequently focus on biomarker discovery and validation in a variety of diseases including cardiovascular disease and cancer. Targeted proteomics promises to advance our understanding of biological networks and the phenotypic significance of specific network states and to advance biomarkers into clinical use.
Collapse
Affiliation(s)
- H Alexander Ebhardt
- Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Alex Root
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY, USA
| | - Chris Sander
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Heikkinen AT, Lignet F, Cutler P, Parrott N. The role of quantitative ADME proteomics to support construction of physiologically based pharmacokinetic models for use in small molecule drug development. Proteomics Clin Appl 2015; 9:732-44. [DOI: 10.1002/prca.201400147] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/16/2015] [Accepted: 02/05/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Aki T. Heikkinen
- School of Pharmacy; Faculty of Health Sciences; University of Eastern Finland; Kuopio Finland
| | - Floriane Lignet
- Pharmaceutical Sciences; Pharmaceutical Research & Early Development; Roche Innovation Center Basel; Basel Switzerland
| | - Paul Cutler
- Pharmaceutical Sciences; Pharmaceutical Research & Early Development; Roche Innovation Center Basel; Basel Switzerland
| | - Neil Parrott
- Pharmaceutical Sciences; Pharmaceutical Research & Early Development; Roche Innovation Center Basel; Basel Switzerland
| |
Collapse
|
41
|
Troberg J, Järvinen E, Muniz M, Sneitz N, Mosorin J, Hagström M, Finel M. Dog UDP-Glucuronosyltransferase Enzymes of Subfamily 1A: Cloning, Expression, and Activity. Drug Metab Dispos 2014; 43:107-18. [DOI: 10.1124/dmd.114.059303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|