1
|
Yin Q, Zhang Y, Xie X, Hou M, Chen X, Ding J. Navigating the future of gastric cancer treatment: a review on the impact of antibody-drug conjugates. Cell Death Discov 2025; 11:144. [PMID: 40188055 PMCID: PMC11972320 DOI: 10.1038/s41420-025-02429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
Gastric cancer, marked by its high incidence and poor prognosis, demands the urgent development of novel and effective treatment strategies, especially for patients ineligible for surgery or those who have had limited success with chemotherapy, radiotherapy and targeted therapies. Recently, antibody-drug conjugates (ADCs) have become a key area of investigation due to their high specificity and potent antitumor effects. These therapies combine monoclonal antibodies, designed to bind to tumor-specific antigens, with cytotoxic agents that selectively target and destroy malignant cells. ADCs have generated significant interest in clinical trials as a promising approach to improve both treatment efficacy and patient outcomes in gastric cancer. However, their clinical application is not without challenges and limitations that must be addressed. This review discusses the recent progress in the use of ADCs for gastric cancer treatment.
Collapse
Affiliation(s)
- Qingling Yin
- GuiZhou University Medical College, Guiyang, 550025, Guizhou, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Yanlong Zhang
- GuiZhou University Medical College, Guiyang, 550025, Guizhou, China
| | - Xueqing Xie
- GuiZhou University Medical College, Guiyang, 550025, Guizhou, China
| | - Meijun Hou
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, 563006, China
| | - Xunsheng Chen
- Department of Gastrointestinal Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guiyang, China
| | - Jie Ding
- Department of Gastrointestinal Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guiyang, China.
| |
Collapse
|
2
|
Balla J, Siddi C, Scherma M, Fadda P, Dedoni S. Antibody conjugates in neuroblastoma: a step forward in precision medicine. Front Oncol 2025; 15:1548524. [PMID: 40129921 PMCID: PMC11931395 DOI: 10.3389/fonc.2025.1548524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/07/2025] [Indexed: 03/26/2025] Open
Abstract
Neuroblastoma (NB) is a pediatric cancer that often manifests in a high-risk form and is characterized by frequent relapses and resistance to conventional therapies. This underscores the urgent need for more effective and targeted treatment strategies. One promising avenue has been the identification of unique or overexpressed surface antigens on neoplastic cells, which has facilitated the development of antibody conjugates and related technologies. These include antibody-drug conjugates (ADCs) and immunotoxins (ITs), which deliver cytotoxic agents directly to tumor cells, as well as antibody-fluorophore conjugates (AFCs), which bind to surface antigens with high specificity to target malignant tumors. Additionally, radioimmunotherapy (RIT) allows the precise delivery of radioactive isotopes linked to a monoclonal antibody directly to the tumor cells. ADCs, ITs, and RIT represent a novel class of anti-cancer agents offering precision therapy with reduced systemic toxicity, enabling longer and potentially more effective treatment regimens. Meanwhile, AFCs are valuable tools in diagnostics, aiding in detecting and characterizing malignant tissues. Despite advancements in antibody conjugates for NB, significant challenges persist, including optimizing payload delivery, mitigating off-target effects, and addressing tumor heterogeneity. Future research should also prioritize refining and integrating these technologies into multimodal treatment protocols to improve outcomes for pediatric NB patients.
Collapse
Affiliation(s)
- Jihane Balla
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Carlotta Siddi
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Simona Dedoni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Pougoue Ketchemen J, Njotu FN, Babeker H, Monzer A, Nwangele E, Tikum AF, Henning N, Hassani N, Frye S, Perron R, Byrne C, Didychuk C, Qi Q, Bannister L, Doroudi A, Fonge H. Complete Remissions of HER2-Positive Trastuzumab-Resistant Xenografts Using a Potent [225Ac]Ac-Labeled Anti-HER2 Antibody-Drug Radioconjugate. Clin Cancer Res 2025; 31:685-696. [PMID: 39670857 DOI: 10.1158/1078-0432.ccr-24-1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
PURPOSE There is overwhelming interest to use actinium-225 ([225Ac]Ac) to develop targeted α therapies. Antibody-drug conjugates (ADC) are highly cytotoxic. Combining [225Ac]Ac with an ADC to develop an antibody-drug radioconjugate [225Ac]Ac-macropa-trastuzumab(T)-PEG6-emtansine (DM1), is expected to be more effective than its ADC (T-PEG6-DM1) against breast cancer. EXPERIMENTAL DESIGN [89Zr]Zr-p-isothiocyanatobenzyl desferrioxamine (DFO)-T-PEG6-DM1 (imaging) and [225Ac]Ac-macropa-T-PEG6-DM1 (radiotherapy) were developed. Biodistribution and safety evaluations of [225Ac]Ac-macropa-T-PEG6-DM1 were carried out in non-tumor-bearing BALB/c mice. MicroPET imaging and biodistribution were done using [89Zr]Zr-DFO-T-PEG6-DM1, and radiotherapy using [225Ac]Ac-macropa-T-PEG6-DM1 was carried out in athymic BALB/c nude mice bearing trastuzumab-resistant HCC1954 and trastuzumab-DM1 (T-DM1)/trastuzumab-resistant JIMT-1 tumor-bearing mice. RESULTS After 7 days of incubation at 37°C, [225Ac]Ac-macropa-T-PEG6-DM1 was stable in both human serum (89.2% ± 0.9%) and PBS (82.8% ± 0.4%). T-PEG6-DM1 (8 mg/kg) and [225Ac]Ac-macropa-T-PEG6-DM1 (3 × 18 kBq) administered separately in non-tumor-bearing mice 10 days apart were well tolerated biochemically and hematologically. Imaging and biodistribution showed high tumor uptake of [89Zr]Zr-DFO-T-PEG6-DM1 in tumor-bearing mice at 120 hours after injection: 38.1% ± 2.8% IA/g (HCC1954) and 14.6% ± 1% IA/g (JIMT-1). In HCC1954 tumor-bearing mice, all treatment groups had complete remission (8/8), indicative of the responsiveness of the xenograft to T-DM1-based treatments, whereas for JIMT-1 xenografts (having 1/8 complete remission) at 23 days after treatment, tumor volumes were 332.1 ± 77.5 vs. 244.6 ± 63 vs. 417.9 ± 62.1 vs. 102.4 ± 18.5 for the saline (negative control), T-DM1 (positive control), T-PEG6-DM1, and [225Ac]Ac-macropa-T-PEG6-DM1, respectively. CONCLUSIONS [225Ac]Ac-macropa-T-PEG6-DM1 is more potent than ADC against trastuzumab-resistant breast cancer and necessitates clinical translation.
Collapse
Affiliation(s)
- Jessica Pougoue Ketchemen
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
- Faculté de Pharmacie, Université Laval, Québec, Canada
| | - Fabrice Ngoh Njotu
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Hanan Babeker
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Alissar Monzer
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Emmanuel Nwangele
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Anjong Florence Tikum
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Nikita Henning
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Nava Hassani
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Sarah Frye
- Canadian Nuclear Laboratories, Radiobiology and Health Branch, Chalk River, Canada
| | - Randy Perron
- Canadian Nuclear Laboratories, Radiobiology and Health Branch, Chalk River, Canada
| | - Chris Byrne
- Canadian Nuclear Laboratories, Radiobiology and Health Branch, Chalk River, Canada
| | - Candice Didychuk
- Canadian Nuclear Laboratories, Radiobiology and Health Branch, Chalk River, Canada
| | - Qi Qi
- Canadian Nuclear Laboratories, Radiobiology and Health Branch, Chalk River, Canada
| | - Laura Bannister
- Canadian Nuclear Laboratories, Radiobiology and Health Branch, Chalk River, Canada
| | - Alireza Doroudi
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Department of Medical Imaging, Royal University Hospital Saskatoon, Saskatoon, Canada
| |
Collapse
|
4
|
Li S, Zhao X, Fu K, Zhu S, Pan C, Yang C, Wang F, To KK, Fu L. Resistance to antibody-drug conjugates: A review. Acta Pharm Sin B 2025; 15:737-756. [PMID: 40177568 PMCID: PMC11959940 DOI: 10.1016/j.apsb.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 04/05/2025] Open
Abstract
Antibody-drug conjugates (ADCs) are antitumor drugs composed of monoclonal antibodies and cytotoxic payload covalently coupled by a linker. Currently, 15 ADCs have been clinically approved worldwide. More than 100 clinical trials at different phases are underway to investigate the newly developed ADCs. ADCs represent one of the fastest growing classes of targeted antitumor drugs in oncology drug development. It takes advantage of the specific targeting of tumor-specific antigen by antibodies to deliver cytotoxic chemotherapeutic drugs precisely to tumor cells, thereby producing promising antitumor efficacy and favorable adverse effect profiles. However, emergence of drug resistance has severely hindered the clinical efficacy of ADCs. In this review, we introduce the structure and mechanism of ADCs, describe the development of ADCs, summarized the latest research about the mechanisms of ADC resistance, discussed the strategies to overcome ADCs resistance, and predicted biomarkers for treatment response to ADC, aiming to contribute to the development of ADCs in the future.
Collapse
Affiliation(s)
- Sijia Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xinyu Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shuangli Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kenneth K.W. To
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong 999077, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
5
|
Zheng M, An S, Park IG, Kim J, Kim WS, Noh M, Sung JH. Differential Expression of CXCL12 in Human and Mouse Hair: Androgens Induce CXCL12 in Human Dermal Papilla and Dermal Sheath Cup. Int J Mol Sci 2024; 26:95. [PMID: 39795953 PMCID: PMC11719931 DOI: 10.3390/ijms26010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
We previously demonstrated that C-X-C Motif Chemokine Ligand 12 (CXCL12) is primarily secreted by dermal fibroblasts in response to androgens and induces hair miniaturization in the mouse androgenic alopecia (AGA) model. However, the direct effects of androgen-induced CXCL12 on dermal papilla cells (DPCs) and dermal sheath cup cells (DSCs) have not been demonstrated. First, we compared single-cell RNA sequencing data between mouse and human skin, and the results show that CXCL12 is highly co-expressed with the androgen receptor (AR) in the DPCs and DSCs of only human hair. Immunohistochemistry also showed that CXCL12 is co-expressed with the AR in the DPCs and DSCs of human hair follicles. In human hair organ culture, androgens also increased CXCL12 expression in DPCs and DSCs and reduced hair length, while the CXCL12 antibody increased hair length via AR inactivation. CXCL12 mRNA was upregulated by androgen treatment in primary human DPCs and DSCs. On the contrary, AR inhibitors or siRNA treatment reduced CXCL12 expression. Collectively, these results suggest that CXCL12 is co-expressed with the AR in the DPCs and DSCs of human hair follicles; therefore, inhibition of CXCL12 using antibodies is a promising strategy for AGA treatment.
Collapse
Affiliation(s)
- Mei Zheng
- Epi Biotech Co., Ltd., Incheon 21983, Republic of Korea;
| | - Seungchan An
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea; (S.A.); (I.G.P.)
| | - In Guk Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea; (S.A.); (I.G.P.)
| | - Jino Kim
- New Hair Institute, Seoul 06134, Republic of Korea;
| | - Won-Serk Kim
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea;
| | - Minsoo Noh
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea; (S.A.); (I.G.P.)
| | - Jong-Hyuk Sung
- Epi Biotech Co., Ltd., Incheon 21983, Republic of Korea;
| |
Collapse
|
6
|
Malemnganba T, Pandey AK, Mishra A, Mehrotra S, Prajapati VK. Exploring immunotherapy with antibody-drug conjugates in solid tumor oncology. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 144:259-286. [PMID: 39978968 DOI: 10.1016/bs.apcsb.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Immunotherapy has emerged as a hallmark of hope in the formidable battle against solid tumors such as breast cancer, colorectal cancer, etc., with antibody-drug conjugates (ADCs) starting a new era of precision medicine. This chapter delves into the dynamic landscape of immunotherapeutic strategies, focusing on the transformative potential of ADCs. ADCs represent a combination of chemotherapy and immunotherapy, more innovative chemotherapy. We emphasize the intricate interplay between tumor biology and therapeutic intervention, uncovering the mechanisms underlying ADC efficacy and the hurdles they must overcome. Each facet of ADC development is carefully examined, from the delicate balance between payload potency and safety to the quest for enhanced tumor penetration. We also elucidate the synergistic potential of combining ADCs with existing modalities, including chemotherapy and radiation therapy, to amplify therapeutic outcomes while mitigating adverse effects. As we navigate the complexities of solid tumor oncology, a profound understanding of the immunotherapeutic potential of ADCs is gained, offering hope for a cure for patients and clinicians alike. Henceforth, we delve into this transformative journey as we advance in solid tumor treatment regimens using immunotherapy with ADCs, poised at the forefront of oncological innovation.
Collapse
Affiliation(s)
- Takhellambam Malemnganba
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Anurag Kumar Pandey
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
7
|
Grairi M, Le Borgne M. Antibody-drug conjugates: prospects for the next generation. Drug Discov Today 2024; 29:104241. [PMID: 39542204 DOI: 10.1016/j.drudis.2024.104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
The concept of a 'magic bullet' was first introduced by Paul Ehrlich in the early 1900s, he foresaw the advent of targeted therapies and the specific killing of harmful cells and/or microorganisms. However, these therapies were only used in the clinic after the second half of the 20th century with the development of specific monoclonal antibodies. To date, 13 antibody-drug conjugates (ADCs) are commercially available. Many advances have been made by modifying one or several of the three main components of an ADC, namely the antibody, the cleavable or non-cleavable linker or the payload, and by integrating conjugation chemistry. Despite these efforts, some problems have emerged and thus limit their effectiveness. New strategies could overcome these problems and identify the next generation of ADC.
Collapse
Affiliation(s)
- Meriem Grairi
- Institut des Sciences Pharmaceutiques et Biologiques (ISPB), Faculté de Pharmacie, Université Claude Bernard Lyon 1, Univ Lyon, 69373 Lyon, France
| | - Marc Le Borgne
- Institut des Sciences Pharmaceutiques et Biologiques (ISPB), Faculté de Pharmacie, Université Claude Bernard Lyon 1, Univ Lyon, 69373 Lyon, France; Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373 Lyon, France.
| |
Collapse
|
8
|
An S, Zheng M, Park IG, Park SG, Noh M, Sung JH. Humanized CXCL12 antibody delays onset and modulates immune response in alopecia areata mice: insights from single-cell RNA sequencing. Front Immunol 2024; 15:1444777. [PMID: 39483478 PMCID: PMC11524852 DOI: 10.3389/fimmu.2024.1444777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
It has been demonstrated that CXCL12 inhibits hair growth via CXCR4, and its neutralizing antibody (Ab) increases hair growth in alopecia areata (AA). However, the molecular mechanisms have not been fully elucidated. In the present study, we further prepared humanized CXCL12 Ab for AA treatment and investigated underlying molecular mechanisms using single-cell RNA sequencing. Subcutaneous injection of humanized CXCL12 Ab significantly delayed AA onset in mice, and dorsal skin was analyzed. T cells and dendritic cells/macrophages were increased in the AA model, but decreased after CXCL12 Ab treatment. Pseudobulk RNA sequencing identified 153 differentially expressed genes that were upregulated in AA model and downregulated after Ab treatment. Gene ontology analysis revealed that immune cell chemotaxis and cellular response to type II interferon were upregulated in AA model but downregulated after Ab treatment. We further identified key immune cell-related genes such as Ifng, Cd8a, Ccr5, Ccl4, Ccl5, and Il21r, which were colocalized with Cxcr4 in T cells and regulated by CXCL12 Ab treatment. Notably, CD8+ T cells were significantly increased and activated via Jak/Stat pathway in the AA model but inactivated after CXCL12 Ab treatment. Collectively, these results indicate that humanized CXCL12 Ab is promising for AA treatment via immune modulatory effects.
Collapse
MESH Headings
- Animals
- Alopecia Areata/immunology
- Alopecia Areata/genetics
- Alopecia Areata/drug therapy
- Mice
- Chemokine CXCL12/genetics
- Single-Cell Analysis
- Disease Models, Animal
- Humans
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Sequence Analysis, RNA
- Receptors, CXCR4/genetics
- Receptors, CXCR4/immunology
- Receptors, CXCR4/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- Female
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Seungchan An
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Mei Zheng
- Epi Biotech Co., Ltd., R&D Center, Incheon, Republic of Korea
| | - In Guk Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Sang Gyu Park
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jong-Hyuk Sung
- Epi Biotech Co., Ltd., R&D Center, Incheon, Republic of Korea
| |
Collapse
|
9
|
Dume B, Licarete E, Banciu M. Advancing cancer treatments: The role of oligonucleotide-based therapies in driving progress. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102256. [PMID: 39045515 PMCID: PMC11264197 DOI: 10.1016/j.omtn.2024.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Although recent advancements in cancer immunology have resulted in the approval of numerous immunotherapies, minimal progress has been observed in addressing hard-to-treat cancers. In this context, therapeutic oligonucleotides, including interfering RNAs, antisense oligonucleotides, aptamers, and DNAzymes, have gained a central role in cancer therapeutic approaches due to their capacity to regulate gene expression and protein function with reduced toxicity compared with conventional chemotherapeutics. Nevertheless, systemic administration of naked oligonucleotides faces many extra- and intracellular challenges that can be overcome by using effective delivery systems. Thus, viral and non-viral carriers can improve oligonucleotide stability and intracellular uptake, enhance tumor accumulation, and increase the probability of endosomal escape while minimizing other adverse effects. Therefore, gaining more insight into fundamental mechanisms of actions of various oligonucleotides and the challenges posed by naked oligonucleotide administration, this article provides a comprehensive review of the recent progress on oligonucleotide delivery systems and an overview of completed and ongoing cancer clinical trials that can shape future oncological treatments.
Collapse
Affiliation(s)
- Bogdan Dume
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Zeng H, Ning W, Liu X, Luo W, Xia N. Unlocking the potential of bispecific ADCs for targeted cancer therapy. Front Med 2024; 18:597-621. [PMID: 39039315 DOI: 10.1007/s11684-024-1072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/08/2024] [Indexed: 07/24/2024]
Abstract
Antibody-drug conjugates (ADCs) are biologically targeted drugs composed of antibodies and cytotoxic drugs connected by linkers. These innovative compounds enable precise drug delivery to tumor cells, minimizing harm to normal tissues and offering excellent prospects for cancer treatment. However, monoclonal antibody-based ADCs still present challenges, especially in terms of balancing efficacy and safety. Bispecific antibodies are alternatives to monoclonal antibodies and exhibit superior internalization and selectivity, producing ADCs with increased safety and therapeutic efficacy. In this review, we present available evidence and future prospects regarding the use of bispecific ADCs for cancer treatment, including a comprehensive overview of bispecific ADCs that are currently in clinical trials. We offer insights into the future development of bispecific ADCs to provide novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Hongye Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
11
|
Medina Pérez VM, Baselga M, Schuhmacher AJ. Single-Domain Antibodies as Antibody-Drug Conjugates: From Promise to Practice-A Systematic Review. Cancers (Basel) 2024; 16:2681. [PMID: 39123409 PMCID: PMC11311928 DOI: 10.3390/cancers16152681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) represent potent cancer therapies that deliver highly toxic drugs to tumor cells precisely, thus allowing for targeted treatment and significantly reducing off-target effects. Despite their effectiveness, ADCs can face limitations due to acquired resistance and potential side effects. OBJECTIVES This study focuses on advances in various ADC components to improve both the efficacy and safety of these agents, and includes the analysis of several novel ADC formats. This work assesses whether the unique features of VHHs-such as their small size, enhanced tissue penetration, stability, and cost-effectiveness-make them a viable alternative to conventional antibodies for ADCs and reviews their current status in ADC development. METHODS Following PRISMA guidelines, this study focused on VHHs as components of ADCs, examining advancements and prospects from 1 January 2014 to 30 June 2024. Searches were conducted in PubMed, Cochrane Library, ScienceDirect and LILACS using specific terms related to ADCs and single-domain antibodies. Retrieved articles were rigorously evaluated, excluding duplicates and non-qualifying studies. The selected peer-reviewed articles were analyzed for quality and synthesized to highlight advancements, methods, payloads, and future directions in ADC research. RESULTS VHHs offer significant advantages for drug conjugation over conventional antibodies due to their smaller size and structure, which enhance tissue penetration and enable access to previously inaccessible epitopes. Their superior stability, solubility, and manufacturability facilitate cost-effective production and expand the range of targetable antigens. Additionally, some VHHs can naturally cross the blood-brain barrier or be easily modified to favor their penetration, making them promising for targeting brain tumors and metastases. Although no VHH-drug conjugates (nADC or nanoADC) are currently in the clinical arena, preclinical studies have explored various conjugation methods and linkers. CONCLUSIONS While ADCs are transforming cancer treatment, their unique mechanisms and associated toxicities challenge traditional views on bioavailability and vary with different tumor types. Severe toxicities, often linked to compound instability, off-target effects, and nonspecific blood cell interactions, highlight the need for better understanding. Conversely, the rapid distribution, tumor penetration, and clearance of VHHs could be advantageous, potentially reducing toxicity by minimizing prolonged exposure. These attributes make single-domain antibodies strong candidates for the next generation of ADCs, potentially enhancing both efficacy and safety.
Collapse
Affiliation(s)
- Víctor Manuel Medina Pérez
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Marta Baselga
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Alberto J. Schuhmacher
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Fundación Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain
| |
Collapse
|
12
|
Paul S, Konig MF, Pardoll DM, Bettegowda C, Papadopoulos N, Wright KM, Gabelli SB, Ho M, van Elsas A, Zhou S. Cancer therapy with antibodies. Nat Rev Cancer 2024; 24:399-426. [PMID: 38740967 PMCID: PMC11180426 DOI: 10.1038/s41568-024-00690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 05/16/2024]
Abstract
The greatest challenge in cancer therapy is to eradicate cancer cells with minimal damage to normal cells. Targeted therapy has been developed to meet that challenge, showing a substantially increased therapeutic index compared with conventional cancer therapies. Antibodies are important members of the family of targeted therapeutic agents because of their extraordinarily high specificity to the target antigens. Therapeutic antibodies use a range of mechanisms that directly or indirectly kill the cancer cells. Early antibodies were developed to directly antagonize targets on cancer cells. This was followed by advancements in linker technologies that allowed the production of antibody-drug conjugates (ADCs) that guide cytotoxic payloads to the cancer cells. Improvement in our understanding of the biology of T cells led to the production of immune checkpoint-inhibiting antibodies that indirectly kill the cancer cells through activation of the T cells. Even more recently, bispecific antibodies were synthetically designed to redirect the T cells of a patient to kill the cancer cells. In this Review, we summarize the different approaches used by therapeutic antibodies to target cancer cells. We discuss their mechanisms of action, the structural basis for target specificity, clinical applications and the ongoing research to improve efficacy and reduce toxicity.
Collapse
Affiliation(s)
- Suman Paul
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Maximilian F Konig
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Katharine M Wright
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA
| | - Sandra B Gabelli
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA.
| | - Mitchell Ho
- Antibody Engineering Program, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | | - Shibin Zhou
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Shen H, Zhang C, Li S, Liang Y, Lee LT, Aggarwal N, Wun KS, Liu J, Nadarajan SP, Weng C, Ling H, Tay JK, Wang DY, Yao SQ, Hwang IY, Lee YS, Chang MW. Prodrug-conjugated tumor-seeking commensals for targeted cancer therapy. Nat Commun 2024; 15:4343. [PMID: 38773197 PMCID: PMC11109227 DOI: 10.1038/s41467-024-48661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
Prodrugs have been explored as an alternative to conventional chemotherapy; however, their target specificity remains limited. The tumor microenvironment harbors a range of microorganisms that potentially serve as tumor-targeting vectors for delivering prodrugs. In this study, we harness bacteria-cancer interactions native to the tumor microbiome to achieve high target specificity for prodrug delivery. We identify an oral commensal strain of Lactobacillus plantarum with an intrinsic cancer-binding mechanism and engineer the strain to enable the surface loading of anticancer prodrugs, with nasopharyngeal carcinoma (NPC) as a model cancer. The engineered commensals show specific binding to NPC via OppA-mediated recognition of surface heparan sulfate, and the loaded prodrugs are activated by tumor-associated biosignals to release SN-38, a chemotherapy compound, near NPC. In vitro experiments demonstrate that the prodrug-loaded microbes significantly increase the potency of SN-38 against NPC cell lines, up to 10-fold. In a mouse xenograft model, intravenous injection of the engineered L. plantarum leads to bacterial colonization in NPC tumors and a 67% inhibition in tumor growth, enhancing the efficacy of SN-38 by 54%.
Collapse
Affiliation(s)
- Haosheng Shen
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Changyu Zhang
- Ningbo Institute of Dalian University of Technology, Ningbo, China
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Shengjie Li
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuanmei Liang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Ting Lee
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Nikhil Aggarwal
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Kwok Soon Wun
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Saravanan Prabhu Nadarajan
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cheng Weng
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Hua Ling
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Wilmar International Limited, Singapore, Singapore
| | - Joshua K Tay
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - In Young Hwang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Food, Chemical and Biotechnology, Singapore Institute of Technology, Singapore, Singapore.
| | - Yung Seng Lee
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National Centre for Engineering Biology (NCEB), Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
14
|
Ma X, Wang M, Ying T, Wu Y. Reforming solid tumor treatment: the emerging potential of smaller format antibody-drug conjugate. Antib Ther 2024; 7:114-122. [PMID: 38566971 PMCID: PMC10983081 DOI: 10.1093/abt/tbae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 04/04/2024] Open
Abstract
In recent years, substantial therapeutic efficacy of antibody-drug conjugates (ADCs) has been validated through approvals of 16 ADCs for the treatment of malignant tumors. However, realization of the maximum clinical use of ADCs requires surmounting extant challenges, mainly the limitations in tumor penetration capabilities when targeting solid tumors. To resolve the hurdle of suboptimal tumor penetration, miniaturized antibody fragments with engineered formats have been harnessed for ADC assembly. By virtue of their reduced molecular sizes, antibody fragment-drug conjugates hold considerable promise for efficacious delivery of cytotoxic agents, thus conferring superior therapeutic outcomes. This review will focus on current advancements in novel ADC development utilizing smaller antibody formats from ~6 to 80 kDa, with particular emphasis on single-domain antibodies, which have been widely applied in novel ADC design. Additionally, strategies to optimize clinical translation are discussed, including half-life extension, acceleration of internalization, and reduction of immunogenic potential.
Collapse
Affiliation(s)
- Xiaojie Ma
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mingkai Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Fudan University, Shanghai 200032, China
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Zhang M, Zuo Y, Chen S, Li Y, Xing Y, Yang L, Wang H, Guo R. Antibody-drug conjugates in urothelial carcinoma: scientometric analysis and clinical trials analysis. Front Oncol 2024; 14:1323366. [PMID: 38665947 PMCID: PMC11044263 DOI: 10.3389/fonc.2024.1323366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 04/28/2024] Open
Abstract
In 2020, bladder cancer, which commonly presents as urothelial carcinoma, became the 10th most common malignancy. For patients with metastatic urothelial carcinoma, the standard first-line treatment remains platinum-based chemotherapy, with immunotherapy serving as an alternative in cases of programmed death ligand 1 expression. However, treatment options become limited upon resistance to platinum and programmed death 1 or programmed death ligand 1 agents. Since the FDA's approval of Enfortumab Vedotin and Sacituzumab Govitecan, the therapeutic landscape has expanded, heralding a shift towards antibody-drug conjugates as potential first-line therapies. Our review employed a robust scientometric approach to assess 475 publications on antibody-drug conjugates in urothelial carcinoma, revealing a surge in related studies since 2018, predominantly led by U.S. institutions. Moreover, 89 clinical trials were examined, with 36 in Phase II and 13 in Phase III, exploring antibody-drug conjugates as both monotherapies and in combination with other agents. Promisingly, novel targets like HER-2 and EpCAM exhibit substantial therapeutic potential. These findings affirm the increasing significance of antibody-drug conjugates in urothelial carcinoma treatment, transitioning them from posterior-line to frontline therapies. Future research is poised to focus on new therapeutic targets, combination therapy optimization, treatment personalization, exploration of double antibody-coupled drugs, and strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Jilin University, Changchun, China
| | - Yuanye Zuo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Siyi Chen
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yaonan Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Xing
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
17
|
Zheng M, Kim MH, Park SG, Kim WS, Oh SH, Sung JH. CXCL12 Neutralizing Antibody Promotes Hair Growth in Androgenic Alopecia and Alopecia Areata. Int J Mol Sci 2024; 25:1705. [PMID: 38338982 PMCID: PMC10855715 DOI: 10.3390/ijms25031705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
We had previously investigated the expression and functional role of C-X-C Motif Chemokine Ligand 12 (CXCL12) during the hair cycle progression. CXCL12 was highly expressed in stromal cells such as dermal fibroblasts (DFs) and inhibition of CXCL12 increased hair growth. Therefore, we further investigated whether a CXCL12 neutralizing antibody (αCXCL12) is effective for androgenic alopecia (AGA) and alopecia areata (AA) and studied the underlying molecular mechanism for treating these diseases. In the AGA model, CXCL12 is highly expressed in DFs. Subcutaneous (s.c.) injection of αCXCL12 significantly induced hair growth in AGA mice, and treatment with αCXCL12 attenuated the androgen-induced hair damage in hair organ culture. Androgens increased the secretion of CXCL12 from DFs through the androgen receptor (AR). Secreted CXCL12 from DFs increased the expression of the AR and C-X-C Motif Chemokine Receptor 4 (CXCR4) in dermal papilla cells (DPCs), which induced hair loss in AGA. Likewise, CXCL12 expression is increased in AA mice, while s.c. injection of αCXCL12 significantly inhibited hair loss in AA mice and reduced the number of CD8+, MHC-I+, and MHC-II+ cells in the skin. In addition, injection of αCXCL12 also prevented the onset of AA and reduced the number of CD8+ cells. Interferon-γ (IFNγ) treatment increased the secretion of CXCL12 from DFs through the signal transducer and activator of transcription 3 (STAT3) pathway, and αCXCL12 treatment protected the hair follicle from IFNγ in hair organ culture. Collectively, these results indicate that CXCL12 is involved in the progression of AGA and AA and antibody therapy for CXCL12 is promising for hair loss treatment.
Collapse
Affiliation(s)
- Mei Zheng
- Epi Biotech Co., Ltd., Incheon 21983, Republic of Korea; (M.Z.); (M.-H.K.)
| | - Min-Ho Kim
- Epi Biotech Co., Ltd., Incheon 21983, Republic of Korea; (M.Z.); (M.-H.K.)
| | - Sang-Gyu Park
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea;
| | - Won-Serk Kim
- Department of Dermatology, School of Medicine, Sungkyunkwan University, Kangbuk Samsung Hospital, Seoul 03181, Republic of Korea;
| | - Sang-Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jong-Hyuk Sung
- Epi Biotech Co., Ltd., Incheon 21983, Republic of Korea; (M.Z.); (M.-H.K.)
| |
Collapse
|
18
|
Savoy EA, Olatunji FP, Fulton MD, Kesic BN, Herman JW, Romero O, Maniatopoulos M, Berkman CE. PSMA-targeted small-molecule drug-conjugates with valine-citrulline and phosphoramidate cleavable linkers. Bioorg Med Chem Lett 2024; 98:129573. [PMID: 38052377 DOI: 10.1016/j.bmcl.2023.129573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
In this study, we present a modular synthesis and evaluation of two prostate-specific membrane antigen (PSMA) targeted small molecule drug conjugates (SMDCs) incorporating the potent chemotherapeutic agent monomethyl auristatin E (MMAE). These SMDCs are distinguished by their cleavable linker modules: one utilizing the widely known valine-citrulline linker, susceptible to cleavage by cathepsin B, and the other featuring a novel acid-labile phosphoramidate-based (PhosAm) linker. Both SMDCs maintained nanomolar affinity to PSMA. Furthermore, we confirmed the selective release of the payload and observed chemotherapeutic efficacy specifically within PSMA-positive prostate cancer cells, while maintaining cell viability in PSMA-negative cells. These findings not only validate the efficacy of our approach but also highlight the potential of the innovative pH-responsive PhosAm linker. This study contributes significantly to the field and also paves the way for future advancements in targeted cancer therapy.
Collapse
Affiliation(s)
- Emily A Savoy
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, USA
| | - Feyisola P Olatunji
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, USA
| | - Melody D Fulton
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, USA
| | - Brittany N Kesic
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, USA
| | - Jacob W Herman
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, USA
| | - Oscar Romero
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, USA
| | | | - Clifford E Berkman
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, USA.
| |
Collapse
|
19
|
Kumari S, Raj S, Babu MA, Bhatti GK, Bhatti JS. Antibody-drug conjugates in cancer therapy: innovations, challenges, and future directions. Arch Pharm Res 2024; 47:40-65. [PMID: 38153656 DOI: 10.1007/s12272-023-01479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The emergence of antibody-drug conjugates (ADCs) as a potential therapeutic avenue in cancer treatment has garnered significant attention. By combining the selective specificity of monoclonal antibodies with the cytotoxicity of drug molecules, ADCs aim to increase the therapeutic index, selectively targeting cancer cells while minimizing systemic toxicity. Various ADCs have been licensed for clinical usage, with ongoing research paving the way for additional options. However, the manufacture of ADCs faces several challenges. These include identifying suitable target antigens, enhancing antibodies, linkers, and payloads, and managing resistance mechanisms and side effects. This review focuses on the strategies to overcome these hurdles, such as site-specific conjugation techniques, novel antibody formats, and combination therapy. Our focus lies on current advancements in antibody engineering, linker technology, and cytotoxic payloads while addressing the challenges associated with ADC development. Furthermore, we explore the future potential of personalized medicine, leveraging individual patients' molecular profiles, to propel ADC treatments forward. As our understanding of the molecular mechanisms driving cancer progression continues to expand, we anticipate the development of new ADCs that offer more effective and personalized therapeutic options for cancer patients.
Collapse
Affiliation(s)
- Shivangi Kumari
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Sonam Raj
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
20
|
Xi J, Liu K, Peng Z, Dai X, Wang Y, Cai C, Yang D, Yan C, Li X. Toxic warhead-armed antibody for targeted treatment of glioblastoma. Crit Rev Oncol Hematol 2024; 193:104205. [PMID: 38036153 DOI: 10.1016/j.critrevonc.2023.104205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Glioblastoma is a fatal intracranial tumor with a poor prognosis, exhibiting uninterrupted malignant progression, widespread invasion throughout the brain leading to the destruction of normal brain tissue and inevitable death. Monoclonal antibodies alone or conjugated with cytotoxic payloads to treat patients with different solid tumors showed effective. This treatment strategy is being explored for patients with glioblastoma (GBM) to obtain meaningful clinical responses and offer new drug options for the treatment of this devastating disease. In this review, we summarize clinical data (from pubmed.gov database and clinicaltrial.gov database) on the efficacy and toxicity of naked antibodies and antibody-drug conjugates (ADCs) against multiple targets on GBM, elucidate the mechanisms that ADCs act at the site of GBM lesions. Finally, we discuss the potential strategies for ADC therapies currently used to treat GBM patients.
Collapse
Affiliation(s)
- Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaolin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
21
|
De Santis P, Sanna V, Perrone M, Guarini C, Santoro AN, Laface C, Carrozzo D, Oliva GR, Fancellu A, Fedele P. Antibody-Drug Conjugates in HR+ Breast Cancer: Where Are We Now and Where Are We Heading? J Clin Med 2023; 12:7325. [PMID: 38068376 PMCID: PMC10707239 DOI: 10.3390/jcm12237325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/04/2025] Open
Abstract
Hormone receptor-positive (HR+) breast cancer (BC) accounts for about 60-70% of all diagnosed BCs, and endocrine therapy has long been the hallmark of systemic treatment for this tumor subtype. However, the therapeutic paradigm of luminal BC has been overcome due to recent evidence of antibody-drug conjugate (ADC) activity (such as trastuzumab deruxtecan and sacituzumab govitecan) in pretreated metastatic HR+ BC patients. Therefore, nowadays, the identification of patients who can benefit more from this approach represents a new challenge, as does the management of new toxicities and the integration of these drugs into the therapeutic algorithm of HR+ metastatic BC patients.
Collapse
Affiliation(s)
- Pierluigi De Santis
- Oncology Unit, Francavilla Fontana Ceglie Messapica Hospital District, 72021 Francavilla Fontana, Italy; (P.D.S.)
| | - Valeria Sanna
- Unit of Medical Oncology, A.O.U. Sassari, 07100 Sassari, Italy;
| | - Martina Perrone
- Oncology Unit, Francavilla Fontana Ceglie Messapica Hospital District, 72021 Francavilla Fontana, Italy; (P.D.S.)
| | - Chiara Guarini
- Oncology Unit, Francavilla Fontana Ceglie Messapica Hospital District, 72021 Francavilla Fontana, Italy; (P.D.S.)
| | - Anna Natalizia Santoro
- Oncology Unit, Francavilla Fontana Ceglie Messapica Hospital District, 72021 Francavilla Fontana, Italy; (P.D.S.)
| | - Carmelo Laface
- Oncology Unit, Francavilla Fontana Ceglie Messapica Hospital District, 72021 Francavilla Fontana, Italy; (P.D.S.)
| | - Daniela Carrozzo
- Oncology Unit, Francavilla Fontana Ceglie Messapica Hospital District, 72021 Francavilla Fontana, Italy; (P.D.S.)
| | - Gaia Rachele Oliva
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Alessandro Fancellu
- Unit of General Surgery, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Palma Fedele
- Oncology Unit, Francavilla Fontana Ceglie Messapica Hospital District, 72021 Francavilla Fontana, Italy; (P.D.S.)
| |
Collapse
|
22
|
Zhuang W, Zhang W, Wang L, Xie L, Feng J, Zhang B, Hu Y. Generation of a Novel SORT1×HER2 Bispecific Antibody-Drug Conjugate Targeting HER2-Low-Expression Tumor. Int J Mol Sci 2023; 24:16056. [PMID: 38003245 PMCID: PMC10671096 DOI: 10.3390/ijms242216056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is considered an ideal antibody-drug conjugate (ADC) target because the gene is overexpressed in many tumors compared to normal tissues. Multiple anti-HER2 ADCs conjugated with different toxic payloads bring benefits to patients with high HER2 expression. However, HER2-targeted ADC technology needs further optimization to improve its effect for the treatment of patients with low HER2 expression. We hypothesized that bispecific antibody-drug conjugate (bsADC) targeting HER2 and Sortilin-1 (SORT1) would overcome this limitation. SORT1 is a suitable target for pairing with HER2 to generate a bispecific antibody (BsAb) since the gene is co-expressed with HER2 in tumors and possesses rapid internalization. We developed a BsAb (bsSORT1×HER2) that exhibited strong binding and internalization activity on HER2-low-expression tumor cells and facilitated higher HER2 degradation. The bsSORT1×HER2 was further conjugated with DXd to generate a bsADC (bsSORT1×HER2-DXd) that showed strong cytotoxicity on HER2-low-expression tumor cells and antitumor efficacy in an MDA-MB-231 xenograft mice model. These results demonstrated that employment of a SORT1×HER2-targeted bsADC may be promising to improve the antitumor efficacy of HER2-targeted ADC for the treatment of tumors with low HER2 expression.
Collapse
Affiliation(s)
- Weiliang Zhuang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Wei Zhang
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liping Xie
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Jun Feng
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Youjia Hu
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| |
Collapse
|
23
|
Kon E, Ad-El N, Hazan-Halevy I, Stotsky-Oterin L, Peer D. Targeting cancer with mRNA-lipid nanoparticles: key considerations and future prospects. Nat Rev Clin Oncol 2023; 20:739-754. [PMID: 37587254 DOI: 10.1038/s41571-023-00811-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Harnessing mRNA-lipid nanoparticles (LNPs) to treat patients with cancer has been an ongoing research area that started before these versatile nanoparticles were successfully used as COVID-19 vaccines. Currently, efforts are underway to harness this platform for oncology therapeutics, mainly focusing on cancer vaccines targeting multiple neoantigens or direct intratumoural injections of mRNA-LNPs encoding pro-inflammatory cytokines. In this Review, we describe the opportunities of using mRNA-LNPs in oncology applications and discuss the challenges for successfully translating the findings of preclinical studies of these nanoparticles into the clinic. We critically appraise the potential of various mRNA-LNP targeting and delivery strategies, considering physiological, technological and manufacturing challenges. We explore these approaches in the context of the potential clinical applications best suited to each approach and highlight the obstacles that currently need to be addressed to achieve these applications. Finally, we provide insights from preclinical and clinical studies that are leading to this powerful platform being considered the next frontier in oncology treatment.
Collapse
Affiliation(s)
- Edo Kon
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Nitay Ad-El
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Hazan-Halevy
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Lior Stotsky-Oterin
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
24
|
Porębska N, Ciura K, Chorążewska A, Zakrzewska M, Otlewski J, Opaliński Ł. Multivalent protein-drug conjugates - An emerging strategy for the upgraded precision and efficiency of drug delivery to cancer cells. Biotechnol Adv 2023; 67:108213. [PMID: 37453463 DOI: 10.1016/j.biotechadv.2023.108213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/20/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
With almost 20 million new cases per year, cancer constitutes one of the most important challenges for public health systems. Unlike traditional chemotherapy, targeted anti-cancer strategies employ sophisticated therapeutics to precisely identify and attack cancer cells, limiting the impact of drugs on healthy cells and thereby minimizing the unwanted side effects of therapy. Protein drug conjugates (PDCs) are a rapidly growing group of targeted therapeutics, composed of a cancer-recognition factor covalently coupled to a cytotoxic drug. Several PDCs, mainly in the form of antibody-drug conjugates (ADCs) that employ monoclonal antibodies as cancer-recognition molecules, are used in the clinic and many PDCs are currently in clinical trials. Highly selective, strong and stable interaction of the PDC with the tumor marker, combined with efficient, rapid endocytosis of the receptor/PDC complex and its subsequent effective delivery to lysosomes, is critical for the efficacy of targeted cancer therapy with PDCs. However, the bivalent architecture of contemporary clinical PDCs is not optimal for tumor receptor recognition or PDCs internalization. In this review, we focus on multivalent PDCs, which represent a rapidly evolving and highly promising therapeutics that overcome most of the limitations of current bivalent PDCs, enhancing the precision and efficiency of drug delivery to cancer cells. We present an expanding set of protein scaffolds used to generate multivalent PDCs that, in addition to folding into well-defined multivalent molecular structures, enable site-specific conjugation of the cytotoxic drug to ensure PDC homogeneity. We provide an overview of the architectures of multivalent PDCs developed to date, emphasizing their efficacy in the targeted treatment of various cancers.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Krzysztof Ciura
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Aleksandra Chorążewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
25
|
Riccardi F, Dal Bo M, Macor P, Toffoli G. A comprehensive overview on antibody-drug conjugates: from the conceptualization to cancer therapy. Front Pharmacol 2023; 14:1274088. [PMID: 37790810 PMCID: PMC10544916 DOI: 10.3389/fphar.2023.1274088] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023] Open
Abstract
Antibody-Drug Conjugates (ADCs) represent an innovative class of potent anti-cancer compounds that are widely used in the treatment of hematologic malignancies and solid tumors. Unlike conventional chemotherapeutic drug-based therapies, that are mainly associated with modest specificity and therapeutic benefit, the three key components that form an ADC (a monoclonal antibody bound to a cytotoxic drug via a chemical linker moiety) achieve remarkable improvement in terms of targeted killing of cancer cells and, while sparing healthy tissues, a reduction in systemic side effects caused by off-tumor toxicity. Based on their beneficial mechanism of action, 15 ADCs have been approved to date by the market approval by the Food and Drug Administration (FDA), the European Medicines Agency (EMA) and/or other international governmental agencies for use in clinical oncology, and hundreds are undergoing evaluation in the preclinical and clinical phases. Here, our aim is to provide a comprehensive overview of the key features revolving around ADC therapeutic strategy including their structural and targeting properties, mechanism of action, the role of the tumor microenvironment and review the approved ADCs in clinical oncology, providing discussion regarding their toxicity profile, clinical manifestations and use in novel combination therapies. Finally, we briefly review ADCs in other pathological contexts and provide key information regarding ADC manufacturing and analytical characterization.
Collapse
Affiliation(s)
- Federico Riccardi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| |
Collapse
|
26
|
Gonzalez-Ochoa E, Veneziani AC, Oza AM. Mirvetuximab Soravtansine in Platinum-Resistant Ovarian Cancer. Clin Med Insights Oncol 2023; 17:11795549231187264. [PMID: 37528890 PMCID: PMC10387675 DOI: 10.1177/11795549231187264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/25/2023] [Indexed: 08/03/2023] Open
Abstract
Ovarian cancer is the second leading cause of death from gynecologic malignancies worldwide. Management of platinum-resistant disease is challenging and clinical outcomes with standard chemotherapy are poor. Over the past decades, significant efforts have been made to understand drug resistance and develop strategies to overcome treatment failure. Antibody drug conjugates (ADCs) are a rapidly growing class of oncologic therapeutics, which combine the ability to target tumor-specific antigens with the cytotoxic effects of chemotherapy. Mirvetuximab soravtansine is an ADC comprising an IgG1 monoclonal antibody against the folate receptor alpha (FRα) conjugated to the cytotoxic maytansinoid effector molecule DM4 that has shown promising clinical activity in patients with FR-α-positive ovarian cancer. This review summarizes current evidence of mirvetuximab soravtansine in platinum-resistant ovarian cancer, focusing on clinical activity, toxicity, and future directions.
Collapse
Affiliation(s)
- Eduardo Gonzalez-Ochoa
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ana C Veneziani
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Qiu S, Zhang J, Wang Z, Lan H, Hou J, Zhang N, Wang X, Lu H. Targeting Trop-2 in cancer: Recent research progress and clinical application. Biochim Biophys Acta Rev Cancer 2023; 1878:188902. [PMID: 37121444 DOI: 10.1016/j.bbcan.2023.188902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
The development of new antitumor drugs depends mainly upon targeting tumor cells precisely. Trophoblast surface antigen 2 (Trop-2) is a type I transmembrane glycoprotein involved in Ca2+ signaling in tumor cells. It is highly expressed in various tumor tissues than in normal tissues and represents a novel and promising molecular target for caner targeted therapy. Up to now, the mechanisms and functions associated with Trop-2 have been extensively studied in a variety of solid tumors. According to these findings, Trop-2 plays an important role in cell proliferation, apoptosis, cell adhesion, epithelial-mesenchymal transition, as well as tumorigenesis and tumor progression. In addition, Trop-2 related drugs are also being developed widely. There are a number of Trop-2 related ADC drugs that have demonstrated potent antitumor activity and are currently been studied, such as Sacituzumab Govitecan (SG) and Datopotamab Deruxtecan (Dato-Dxd). In this study, we reviewed the progress of Trop-2 research in solid tumors. We also sorted out the composition and rationale of Trop-2 related drugs and summarized the related clinical trials. Finally, we discussed the current status of Trop-2 research and expanded our perspectives on its future research directions. Importantly, we found that Trop-2 targeted ADCs have great potential for combination with other antitumor therapies. Trop-2 targeted ADCs can reprogramme tumor microenvironment through multiple signaling pathways, ultimately activating antitumor immunity.
Collapse
Affiliation(s)
- Shuying Qiu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Jianping Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Zhuo Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Hui Lan
- Department of Medical Oncology, Affiliated Lishui Hospital of Zhejiang University/Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Jili Hou
- Department of Medical Oncology, Zhuji People's Hospital of Zhejiang Province, Zhuji, China
| | - Nan Zhang
- Department of Medical Oncology, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
28
|
Li Z, Guo S, Xue H, Li L, Guo Y, Duan S, Zhu H. Efficacy and safety of trastuzumab deruxtecan in the treatment of HER2-low/positive advanced breast cancer: a single-arm meta-analysis. Front Pharmacol 2023; 14:1183514. [PMID: 37426807 PMCID: PMC10324614 DOI: 10.3389/fphar.2023.1183514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Background: Clinical trials have shown that the use of trastuzumab deruxtecan (DS-8201) alone is expected to provide novel therapeutic options for HER2-low/positive patients. Nevertheless, there are some variations in the efficacy of trial results, with potential risks at the safety level. Most DS-8201 trials in HER2 advanced breast cancer (ABC) have been conducted in the form of small-sample nonrandomized controlled studies, resulting in a lack of validated indicators to evaluate the efficacy and safety of DS-8201. Thus, this meta-analysis aimed to pool the results of various trials of DS-8201 alone to explore the efficacy and safety of DS-8201 in patients with HER2-low/positive advanced breast cancer. Methods: Relevant studies were searched in seven databases, including Embase, PubMed, Web of Science, Cochrane Library, CNKI, VIP database and WanFang data, to collect single-arm studies on DS-8201 for HER2-low/positive ABC. MINORS was adopted for quality assessment and STATA 16.0 for data analysis. Results: Ten studies involving 1,108 patients were included in this meta-analysis. As for the tumor response rate, the pooled ORR and DCR of all studies reached 57% (95% CI: 47%-67%) and 92% (95% CI: 89%-96%) respectively, and the pooled ORRs of the HER2-low expression group and the HER2-positive expression group were 46% (95% CI: 35%-56%) and 64% (95% CI: 54%-74%). Only the low expression group achieved median survival time, with a pooled median PFS and median OS of 9.24 (95% CI: 7.54-10.94) months and 23.87 (95% CI: 21.56-26.17) months, respectively. The most common treatment-related adverse events from DS-8201 were nausea (all grades: 62%; ≥ grade III: 5%), fatigue (all grade: 44%; ≥ grade III: 6%), and alopecia (all grades: 38%; ≥ grade III: 0.5%). Drug-related interstitial lung disease or pneumonitis occurred in 13% of the 1,108 patients, with only a 1% incidence of AE ≥ grade III. Conclusion: The present study suggests that DS-8201 is effective and safe in the treatment of ABC with low or positive HER2 expression, providing additional relevant information for its clinical application. However, further strengthening of the pairs is needed, as well as more clinical studies to support individualized treatment. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023390316.
Collapse
Affiliation(s)
- Zongyu Li
- Clinical Medical Research Institute, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- School of Medicine, Shihezi University of China, Shihezi Xinjiang Production and Construction Corps, Shihezi, China
| | - Shangwen Guo
- Clinical Medical Research Institute, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- School of Medicine, Shihezi University of China, Shihezi Xinjiang Production and Construction Corps, Shihezi, China
| | - Haoyi Xue
- School of Medicine, Shihezi University of China, Shihezi Xinjiang Production and Construction Corps, Shihezi, China
| | - Luying Li
- School of Medicine, Shihezi University of China, Shihezi Xinjiang Production and Construction Corps, Shihezi, China
| | - Yuyuan Guo
- School of Medicine, Shihezi University of China, Shihezi Xinjiang Production and Construction Corps, Shihezi, China
| | - Sinuo Duan
- School of Medicine, Shihezi University of China, Shihezi Xinjiang Production and Construction Corps, Shihezi, China
| | - He Zhu
- Clinical Medical Research Institute, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
29
|
Samantasinghar A, Sunildutt NP, Ahmed F, Soomro AM, Salih ARC, Parihar P, Memon FH, Kim KH, Kang IS, Choi KH. A comprehensive review of key factors affecting the efficacy of antibody drug conjugate. Biomed Pharmacother 2023; 161:114408. [PMID: 36841027 DOI: 10.1016/j.biopha.2023.114408] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
Antibody Drug Conjugate (ADC) is an emerging technology to overcome the limitations of chemotherapy by selectively targeting the cancer cells. ADC binds with an antigen, specifically over expressed on the surface of cancer cells, results decrease in bystander effect and increase in therapeutic index. The potency of an ideal ADC is entirely depending on several physicochemical factors such as site of conjugation, molecular weight, linker length, Steric hinderance, half-life, conjugation method, binding energy and so on. Inspite of the fact that there is more than 100 of ADCs are in clinical trial only 14 ADCs are approved by FDA for clinical use. However, to design an ideal ADC is still challenging and there is much more to be done. Here in this review, we have discussed the key components along with their significant role or contribution towards the efficacy of an ADC. Moreover, we also explained about the recent advancement in the conjugation method. Additionally, we spotlit the mode of action of an ADC, recent challenges, and future perspective regarding ADC. The profound knowledge regarding key components and their properties will help in the synthesis or production of different engineered ADCs. Therefore, contributes to develop an ADC with low safety concern and high therapeutic index. We hope this review will improve the understanding and encourage the practicing of research in anticancer ADCs development.
Collapse
Affiliation(s)
| | | | - Faheem Ahmed
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | | | | | - Pratibha Parihar
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | - Fida Hussain Memon
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | | | - In Suk Kang
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea.
| |
Collapse
|
30
|
Wu Y, Li W, Chen X, Wang H, Su S, Xu Y, Deng X, Yang T, Wei M, Li L, Liu Y, Yang J, Li W. DOG1 as a novel antibody-drug conjugate target for the treatment of multiple gastrointestinal tumors and liver metastasis. Front Immunol 2023; 14:1051506. [PMID: 36776873 PMCID: PMC9909470 DOI: 10.3389/fimmu.2023.1051506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Discovered On Gastrointestinal stromal tumors protein 1 (DOG1), a major calcium-activated chloride channel, has been used as a common diagnostic marker for gastrointestinal stromal tumors. However, the therapeutic application of DOG1 was not well defined. Here, we aim to investigate its potential as a therapeutic target for an antibody-drug conjugate (ADC) in various cancers of the alimentary tract and metastasis. The DOG1 expression profile was determined among TCGA samples and tissue microarrays. High levels of DOG1 expression were ubiquitously observed in multiple cancer samples from the alimentary tract determined by TCGA samples and tissue microarrays. Circulating tumor cells isolated from metastatic colon cancer patients were also positive for DOG1 expression. The mechanisms of anti-DOG1 antibody were investigated by dual-luciferase reporter assay. The anti-DOG1 antibody could inhibit proliferation and metastasis via p53 signaling in limited cancer cell lines. The anti-DOG1 antibody was conjugated with a microtubule inhibitor DM4, to construct a new anti-DOG1-DM4-ADC to strengthen its activity. The anti-DOG1-DM4-ADC showed cytotoxicity at the nanomolar level in vitro. In the murine xenograft tumor models, treatment of anti-DOG1-DM4-ADC achieved a significant tumor growth inhibition rate. Our study indicates that anti-DOG1-DM4-ADC may be promising therapeutic molecules for DOG1-positive alimentary tract tumors and may be effective in inhibiting recurrence after curative resection of liver metastases of colorectal origin.
Collapse
Affiliation(s)
- Yangping Wu
- Targeted Tracer Research and Development Laboratory, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenting Li
- State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangzheng Chen
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haichuan Wang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Su
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, United States
| | - Ying Xu
- Targeted Tracer Research and Development Laboratory, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangbing Deng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghan Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mingtian Wei
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Yixin Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Weimin Li, ; Jinliang Yang,
| | - Weimin Li
- Targeted Tracer Research and Development Laboratory, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Weimin Li, ; Jinliang Yang,
| |
Collapse
|
31
|
Olatunji FP, Pun M, Herman JW, Romero O, Maniatopoulos M, Latoche JD, Parise RA, Guo J, Beumer JH, Anderson CJ, Berkman CE. Modular Smart Molecules for PSMA-Targeted Chemotherapy. Mol Cancer Ther 2022; 21:1701-1709. [PMID: 35999662 PMCID: PMC9842478 DOI: 10.1158/1535-7163.mct-22-0160] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/26/2022] [Accepted: 08/10/2022] [Indexed: 01/19/2023]
Abstract
New targeted chemotherapeutics are urgently needed to minimize off-target toxicity and reduce the high-mortality rate associated with metastatic prostate cancer. Herein, we report on the modular synthesis, pharmacokinetics, and efficacy of two small-molecule-drug conjugates (SMDC) targeted to prostate-specific membrane antigen (PSMA) incorporating either: (i) a cathepsin-B-cleavable valine-citrulline (Val-Cit), or (ii) an acid-cleavable phosphoramidate linker. Crucial components used in the design of the conjugates include: (i) CTT1298, a nanomolar affinity ligand that binds irreversibly to PSMA and has proven in past studies to rapidly internalize and shuttle payloads into PSMA-expressing prostate cancer cells, (ii) MMAE, a known potent cytotoxic payload, and (iii) an albumin-binder, proven to improve residence time of drug conjugates. At dose of 0.8 mg/kg (∼250 nmol/kg), the two SMDCs showed significant efficacy in a PSMA(+) PC3-PIP mouse model of human prostate cancer compared with controls, without inducing systemic toxicity. Though localization of the SMDCs was observed in tissues apart from the tumor, release of MMAE was observed predominantly in tumor tissue, at levels that were 2-3 orders of magnitude higher than non-target tissues. Furthermore, SMDC2, which incorporated a novel pH-responsive phosporamidate linker, demonstrated significantly improved efficacy over SMDC1 that has a Val-Cit linker, with a 100% survival over 90 days and 4 out of 8 mice showing complete tumor growth inhibition after 6 weekly doses of 0.8 mg/kg (244 nmol/kg). Our findings demonstrate the potential of irreversible PSMA inhibitors combined with pH-responsive linkers as a way to specifically deliver chemotherapeutic drugs to prostate cancer tumors with minimal toxicity.
Collapse
Affiliation(s)
| | - Michael Pun
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630,Department of Chemistry, University of Missouri, Columbia, MO 65211,Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO 65211
| | - Jacob W. Herman
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630
| | - Oscar Romero
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630
| | | | - Joseph D. Latoche
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213
| | - Robert A. Parise
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213
| | - Jianxia Guo
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213
| | - Jan H. Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213,Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, 15261.,Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Carolyn J. Anderson
- Department of Chemistry, University of Missouri, Columbia, MO 65211,Department of Radiology, University of Missouri, Columbia, MO 65211,Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO 65211
| | - Clifford E. Berkman
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630
| |
Collapse
|
32
|
Zardavas D. Clinical development of antibody-drug conjugates in triple negative breast cancer: Can we jump higher? Expert Opin Investig Drugs 2022; 31:633-644. [PMID: 35451891 DOI: 10.1080/13543784.2022.2070064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Triple negative breast cancer (TNBC) is an aggressive BC subtype, associated with higher rates of relapse in the primary disease setting and shorter overall survival upon metastatic relapse. The advent of antibody-drug conjugates (ADC), able to deliver selectively potent chemotherapeutic agents, has demonstrated promising clinical activity, with the first approval of an ADC, i.e. Sacituzumab Govitecan, in the metastatic setting. The main scope of this paper is to provide the most recent data indicating the promise of this novel class of drugs, as potential tools to improve clinical outcomes of patients diagnosed with TNBC. AREAS COVERED In this article, upon review of the main characteristics of TNBC, and those of ADCs, an overview of the data from clinical trials assessing ADCs in TNBC will be provided, including those that led to the first approval of such a drug for patients with metastatic disease; furthermore, several other ADCs targeting different proteins (over)expressed by TNBC undergo clinical development. Combinations of ADCs with other targeted agents are discussed; the most pertinent considerations for improving the chances of successful clinical development of ADCs in TNBC are provided. EXPERT OPINION ADCs are a potent class of targeted anticancer assets, with demonstrated efficacy against metastatic TNBC. Such assets could further improve clinical outcomes of patients with TNBC, and successful development depends upon: i) successful triaging of patients with the right ADC, ii) technical optimization of ADCs to maximize the efficacy, while reducing toxicity, and iii) assess rationally chosen combinations with synergistic antitumor activity and acceptable safety profile.
Collapse
|
33
|
Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the "biological missile" for targeted cancer therapy. Signal Transduct Target Ther 2022; 7:93. [PMID: 35318309 PMCID: PMC8941077 DOI: 10.1038/s41392-022-00947-7] [Citation(s) in RCA: 658] [Impact Index Per Article: 219.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
Antibody-drug conjugate (ADC) is typically composed of a monoclonal antibody (mAbs) covalently attached to a cytotoxic drug via a chemical linker. It combines both the advantages of highly specific targeting ability and highly potent killing effect to achieve accurate and efficient elimination of cancer cells, which has become one of the hotspots for the research and development of anticancer drugs. Since the first ADC, Mylotarg® (gemtuzumab ozogamicin), was approved in 2000 by the US Food and Drug Administration (FDA), there have been 14 ADCs received market approval so far worldwide. Moreover, over 100 ADC candidates have been investigated in clinical stages at present. This kind of new anti-cancer drugs, known as "biological missiles", is leading a new era of targeted cancer therapy. Herein, we conducted a review of the history and general mechanism of action of ADCs, and then briefly discussed the molecular aspects of key components of ADCs and the mechanisms by which these key factors influence the activities of ADCs. Moreover, we also reviewed the approved ADCs and other promising candidates in phase-3 clinical trials and discuss the current challenges and future perspectives for the development of next generations, which provide insights for the research and development of novel cancer therapeutics using ADCs.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, (Parkville Campus) 381 Royal Parade,, Parkville, VIC, 3052, Australia
- Faculty of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, 211198, People's Republic of China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
34
|
Yu J, Fang T, Yun C, Liu X, Cai X. Antibody-Drug Conjugates Targeting the Human Epidermal Growth Factor Receptor Family in Cancers. Front Mol Biosci 2022; 9:847835. [PMID: 35295841 PMCID: PMC8919033 DOI: 10.3389/fmolb.2022.847835] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
Members of the human epidermal growth factor receptor (HER) family, which includes HER1 (also known as EGFR), HER2, HER3 and HER4, have played a central role in regulating cell proliferation, survival, differentiation and migration. The overexpression of the HER family has been recognized as one of the most common cellular dysregulation associated with a wide variety of tumor types. Antibody-drug conjugates (ADCs) represent a new and promising class of anticancer therapeutics that combine the cancer specificity of antibodies with cytotoxicity of chemotherapeutic drugs. Two HER2-directed ADCs, trastuzumane-emtansine (T-DM1) and trastuzumab-deruxtecan (DS-8201a), have been approved for HER2-positive metastatic breast cancer by the U.S. Food and Drug Administration (FDA) in 2013 and 2019, respectively. A third HER2-directed ADC, disitamab vedotin (RC48), has been approved for locally advanced or metastatic gastric or gastroesophageal junction cancer by the NMPA (National Medical Products Administration) of China in 2021. A total of 11 ADCs that target HER family receptors (EGFR, HER2 or HER3) are currently under clinical trials. In this review article, we summarize the three approved ADCs (T-DM1, DS-8201a and RC48), together with the investigational EGFR-directed ADCs (ABT-414, MRG003 and M1231), HER2-directed ADCs (SYD985, ARX-788, A166, MRG002, ALT-P7, GQ1001 and SBT6050) and HER3-directed ADC (U3-1402). Lastly, we discuss the major challenges associated with the development of ADCs, and highlight the possible future directions to tackle these challenges.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Jin Y, Schladetsch MA, Huang X, Balunas MJ, Wiemer AJ. Stepping forward in antibody-drug conjugate development. Pharmacol Ther 2022; 229:107917. [PMID: 34171334 PMCID: PMC8702582 DOI: 10.1016/j.pharmthera.2021.107917] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023]
Abstract
Antibody-drug conjugates (ADCs) are cancer therapeutic agents comprised of an antibody, a linker and a small-molecule payload. ADCs use the specificity of the antibody to target the toxic payload to tumor cells. After intravenous administration, ADCs enter circulation, distribute to tumor tissues and bind to the tumor surface antigen. The antigen then undergoes endocytosis to internalize the ADC into tumor cells, where it is transported to lysosomes to release the payload. The released toxic payloads can induce apoptosis through DNA damage or microtubule inhibition and can kill surrounding cancer cells through the bystander effect. The first ADC drug was approved by the United States Food and Drug Administration (FDA) in 2000, but the following decade saw no new approved ADC drugs. From 2011 to 2018, four ADC drugs were approved, while in 2019 and 2020 five more ADCs entered the market. This demonstrates an increasing trend for the clinical development of ADCs. This review summarizes the recent clinical research, with a specific focus on how the in vivo processing of ADCs influences their design. We aim to provide comprehensive information about current ADCs to facilitate future development.
Collapse
Affiliation(s)
- Yiming Jin
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Megan A Schladetsch
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Xueting Huang
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Marcy J Balunas
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Andrew J Wiemer
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
36
|
Low SW, Gao Y, Wei S, Chen B, Nilius B, Liao P. Development and characterization of a monoclonal antibody blocking human TRPM4 channel. Sci Rep 2021; 11:10411. [PMID: 34002002 PMCID: PMC8129085 DOI: 10.1038/s41598-021-89935-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
TRPM4 is a calcium-activated non-selective monovalent cation channel implicated in diseases such as stroke. Lack of potent and selective inhibitors remains a major challenge for studying TRPM4. Using a polypeptide from rat TRPM4, we have generated a polyclonal antibody M4P which could alleviate reperfusion injury in a rat model of stroke. Here, we aim to develop a monoclonal antibody that could block human TRPM4 channel. Two mouse monoclonal antibodies M4M and M4M1 were developed to target an extracellular epitope of human TRPM4. Immunohistochemistry and western blot were used to characterize the binding of these antibodies to human TRPM4. Potency of inhibition was compared using electrophysiological methods. We further evaluated the therapeutic potential on a rat model of middle cerebral artery occlusion. Both M4M and M4M1 could bind to human TRPM4 channel on the surface of live cells. Prolonged incubation with TRPM4 blocking antibody internalized surface TRPM4. Comparing to M4M1, M4M is more effective in blocking human TRPM4 channel. In human brain microvascular endothelial cells, M4M successfully inhibited TRPM4 current and ameliorated hypoxia-induced cell swelling. Using wild type rats, neither antibody demonstrated therapeutic potential on stroke. Human TRPM4 channel can be blocked by a monoclonal antibody M4M targeting a key antigenic sequence. For future clinical translation, the antibody needs to be humanized and a transgenic animal carrying human TRPM4 sequence is required for in vivo characterizing its therapeutic potential.
Collapse
Affiliation(s)
- See Wee Low
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Yahui Gao
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Shunhui Wei
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Bo Chen
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Bernd Nilius
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ping Liao
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Duke-NUS Medical School, Singapore, Singapore. .,Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore.
| |
Collapse
|
37
|
Solomon VR, Alizadeh E, Bernhard W, Makhlouf A, Hartimath SV, Hill W, El-Sayed A, Barreto K, Geyer CR, Fonge H. Development and preclinical evaluation of cixutumumab drug conjugates in a model of insulin growth factor receptor I (IGF-1R) positive cancer. Sci Rep 2020; 10:18549. [PMID: 33122707 PMCID: PMC7596529 DOI: 10.1038/s41598-020-75279-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/29/2020] [Indexed: 12/25/2022] Open
Abstract
Overexpression of insulin growth factor receptor type 1 (IGF-1R) is observed in many cancers. Antibody drug conjugates (ADCs) with PEGylated maytansine (PEG6-DM1) show promise in vitro. We developed PEG6-DM1 ADCs with low and high drug to antibody ratios (DAR) using an anti-IGF-1R antibody cixutumumab (IMC-A12). Conjugates with low (cixutumumab-PEG6-DM1-Low) and high (cixutumumab-PEG6-DM1-High) DAR as 3.4 and 7.2, respectively, were generated. QC was performed by UV spectrophotometry, HPLC, bioanalyzer, and biolayer-interferometry. We compared the in vitro binding and internalization rates of the ADCs in IGF-1R-positive MCF-7/Her18 cells. We radiolabeled the ADCs with 111In and used microSPECT/CT imaging and ex vivo biodistribution to understand their in vivo behavior in MCF-7/Her18 xenograft mice. The therapeutic potential of the ADC was studied in vitro and in mouse xenograft. Internalization rates of all ADCs was high and increased over 48 h and EC50 was in the low nanomolar range. MicroSPECT/CT imaging and ex vivo biodistribution showed significantly lower tumor uptake of 111In-cixutumumab-PEG6-DM1-High compared to 111In-cixutumumab-PEG6-DM1-Low and 111In-cixutumumab. Cixutumumab-PEG6-DM1-Low significantly prolonged the survival of mice bearing MCF-7/Her18 xenograft compared with cixutumumab, cixutumumab-PEG6-DM1-High, or the PBS control group. Cixutumumab-PEG6-DM1-Low ADC was more effective. The study highlights the potential utility of cixutumumab-ADCs as theranostics against IGF-1R positive cancers.
Collapse
Affiliation(s)
- Viswas Raja Solomon
- Department of Medical Imaging, RUH Saskatoon, University of Saskatchewan, College of Medicine, 103 Hospital Dr., Saskatoon, SK, S7N 0W8, Canada
| | - Elahe Alizadeh
- Department of Medical Imaging, RUH Saskatoon, University of Saskatchewan, College of Medicine, 103 Hospital Dr., Saskatoon, SK, S7N 0W8, Canada
| | - Wendy Bernhard
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, College of Medicine, Saskatoon, SK, Canada
| | - Amal Makhlouf
- Department of Medical Imaging, RUH Saskatoon, University of Saskatchewan, College of Medicine, 103 Hospital Dr., Saskatoon, SK, S7N 0W8, Canada.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 12411, Egypt
| | - Siddesh V Hartimath
- Department of Medical Imaging, RUH Saskatoon, University of Saskatchewan, College of Medicine, 103 Hospital Dr., Saskatoon, SK, S7N 0W8, Canada
| | - Wayne Hill
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, College of Medicine, Saskatoon, SK, Canada
| | - Ayman El-Sayed
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, College of Medicine, Saskatoon, SK, Canada
| | - Kris Barreto
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, College of Medicine, Saskatoon, SK, Canada
| | - Clarence Ronald Geyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, College of Medicine, Saskatoon, SK, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, RUH Saskatoon, University of Saskatchewan, College of Medicine, 103 Hospital Dr., Saskatoon, SK, S7N 0W8, Canada. .,Department of Medical Imaging, Royal University Hospital Saskatoon, Saskatoon, SK, Canada.
| |
Collapse
|
38
|
Antibody-Drug Conjugates and Targeted Treatment Strategies for Hepatocellular Carcinoma: A Drug-Delivery Perspective. Molecules 2020; 25:molecules25122861. [PMID: 32575828 PMCID: PMC7356544 DOI: 10.3390/molecules25122861] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Increased understanding of cancer biology, pharmacology and drug delivery has provided a new framework for drug discovery and product development that relies on the unique expression of specific macromolecules (i.e., antigens) on the surface of tumour cells. This has enabled the development of anti-cancer treatments that combine the selectivity of antibodies with the efficacy of highly potent chemotherapeutic small molecules, called antibody-drug conjugates (ADCs). ADCs are composed of a cytotoxic drug covalently linked to an antibody which then selectively binds to a highly expressed antigen on a cancer cell; the conjugate is then internalized by the cell where it releases the potent cytotoxic drug and efficiently kills the tumour cell. There are, however, many challenges in the development of ADCs, mainly around optimizing the therapeutic/safety benefits. These challenges are discussed in this review; they include issues with the plasma stability and half-life of the ADC, its transport from blood into and distribution throughout the tumour compartment, cancer cell antigen expression and the ADC binding affinity to the target antigen, the cell internalization process, cleaving of the cytotoxic drug from the ADC, and the cytotoxic effect of the drug on the target cells. Finally, we present a summary of some of the experimental ADC strategies used in the treatment of hepatocellular carcinoma, from the recent literature.
Collapse
|
39
|
Gonda K, Negishi H, Takano-Kasuya M, Kitamura N, Furusawa N, Nakano Y, Hamada Y, Tokunaga M, Higuchi H, Tada H, Ishida T. Heterogeneous Drug Efficacy of an Antibody-Drug Conjugate Visualized Using Simultaneous Imaging of Its Delivery and Intracellular Damage in Living Tumor Tissues. Transl Oncol 2020; 13:100764. [PMID: 32403030 PMCID: PMC7218300 DOI: 10.1016/j.tranon.2020.100764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/16/2020] [Indexed: 11/30/2022] Open
Abstract
Anticancer drug efficacy varies because the delivery of drugs within tumors and tumor responses are heterogeneous; however, these features are often more homogenous in vitro. This difference makes it difficult to accurately determine drug efficacy. Therefore, it is important to use living tumor tissues in preclinical trials to observe the heterogeneity in drug distribution and cell characteristics in tumors. In the present study, to accurately evaluate the efficacy of an antibody-drug conjugate (ADC) containing a microtubule inhibitor, we established a cell line that expresses a fusion of end-binding protein 1 and enhanced green fluorescent protein that serves as a microtubule plus-end-tracking protein allowing the visualization of microtubule dynamics. This cell line was xenografted into mice to create a model of living tumor tissue. The tumor cells possessed a greater number of microtubules with plus-ends, a greater number of meandering microtubules, and a slower rate of microtubule polymerization than the in vitro cells. In tumor tissues treated with fluorescent dye-labeled ADCs, heterogeneity was observed in the delivery of the drug to tumor cells, and microtubule dynamics were inhibited in a concentration-dependent manner. Moreover, a difference in drug sensitivity was observed between in vitro cells and tumor cells; compared with in vitro cells, tumor cells were more sensitive to changes in the concentration of the ADC. This study is the first to simultaneously evaluate the delivery and intracellular efficacy of ADCs in living tumor tissue. Accurate evaluation of the efficacy of ADCs is important for the development of effective anticancer drugs.
Collapse
Affiliation(s)
- Kohsuke Gonda
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan.
| | - Hiroshi Negishi
- Bio Systems Development Group, Bio Advanced Technology Division, Corporate R&D Headquarters, KONICAMINOLTA. INC., Hino, Tokyo, 191-8511, Japan
| | - Mayumi Takano-Kasuya
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Narufumi Kitamura
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Naoko Furusawa
- Bio Systems Development Group, Bio Advanced Technology Division, Corporate R&D Headquarters, KONICAMINOLTA. INC., Hino, Tokyo, 191-8511, Japan
| | - Yasushi Nakano
- Bio Systems Development Group, Bio Advanced Technology Division, Corporate R&D Headquarters, KONICAMINOLTA. INC., Hino, Tokyo, 191-8511, Japan
| | - Yoh Hamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan
| | - Masayuki Tokunaga
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Hideo Higuchi
- Department of Physics, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroshi Tada
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan
| |
Collapse
|
40
|
Hayat SMG, Sahebkar A. Antibody-drug conjugates: smart weapons against cancer. Arch Med Sci 2020; 16:1257-1262. [PMID: 32864020 PMCID: PMC7444717 DOI: 10.5114/aoms.2019.83020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 01/28/2023] Open
Affiliation(s)
- Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
TRPM4-specific blocking antibody attenuates reperfusion injury in a rat model of stroke. Pflugers Arch 2019; 471:1455-1466. [PMID: 31664513 PMCID: PMC6892354 DOI: 10.1007/s00424-019-02326-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023]
Abstract
Reperfusion therapy is currently the gold standard treatment for acute ischemic stroke. However, reperfusion injuries such as oedema and haemorrhagic transformation largely limit the use of this potent treatment to a narrow time window. Recently, transient receptor potential melastatin 4 (TRPM4) channel has emerged as a potential target for vascular protection in stroke management. Non-specificity and side effects are major concerns for current TRPM4 blockers. The present study was undertaken to develop a novel TRPM4 blocker for stroke management. We report the generation of a TRPM4-specific antibody M4P which binds to a region close to the channel pore. M4P could inhibit TRPM4 current and downregulate TRPM4 surface expression, therefore prevent hypoxia-induced cell swelling. In the rat model of 3-h stroke reperfusion, application of M4P at 2 h after occlusion ameliorated reperfusion injury by improving blood–brain barrier integrity, and enhanced functional recovery. Our results demonstrate that TRPM4 blockade could attenuate reperfusion injury in stroke recanalization. When applied together with reperfusion treatments, TRPM4 blocking antibody has the potential to extend the therapeutic time window for acute ischemic stroke.
Collapse
|
42
|
Yang CY, Wang L, Sun X, Tang M, Quan HT, Zhang LS, Lou LG, Gou SH. SHR-A1403, a novel c-Met antibody-drug conjugate, exerts encouraging anti-tumor activity in c-Met-overexpressing models. Acta Pharmacol Sin 2019; 40:971-979. [PMID: 30643210 PMCID: PMC6786420 DOI: 10.1038/s41401-018-0198-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
Emerging evidence demonstrates that a c-Met antibody-drug conjugate (ADC) has superior efficacy and safety profiles compared with those of currently available small molecules or antibody inhibitors for the treatment of c-Met-overexpressing cancers. Here we described both the in vitro and in vivo efficacies of SHR-A1403, a novel c-Met ADC composed of a humanized IgG2 monoclonal antibody against c-Met conjugated to a novel cytotoxic microtubule inhibitor. SHR-A1403 showed high affinity to c-Met proteins derived from human or monkey and potent inhibitory effects in cancer cell lines with high c-Met protein expression. In mice bearing tumors derived from cancer cell lines or patient HCC tissues with confirmed c-Met overexpression, SHR-A1403 showed excellent anti-tumor efficacy. Antibody binding with c-Met contributed to SHR-A1403 endocytosis; the subsequent translocation to lysosomes and cytotoxicity of the released toxin are speculated to be predominant mechanisms underlying the anti-tumor activity of SHR-A1403. In conclusion, SHR-A1403 showed significant anti-tumor activity in cancer cell lines, xenograft mouse models and an HCC PDX model, which all have high c-Met levels. These data provide references for SHR-A1403 as a potential therapy for the treatment of cancers with c-Met overexpression.
Collapse
Affiliation(s)
- Chang-Yong Yang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
- Jiangsu Hengrui Medicine Co., Ltd, Lianyungang, 222047, China
| | - Lei Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xing Sun
- Jiangsu Hengrui Medicine Co., Ltd, Lianyungang, 222047, China
| | - Mi Tang
- Jiangsu Hengrui Medicine Co., Ltd, Lianyungang, 222047, China
| | - Hai-Tian Quan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lian-Shan Zhang
- Jiangsu Hengrui Medicine Co., Ltd, Lianyungang, 222047, China
| | - Li-Guang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shao-Hua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
43
|
Abstract
Introduction: Prodrugs have been used to improve the selectivity and efficacy of cancer therapy by targeting unique abnormal markers that are overexpressed by cancer cells and are absent in normal tissues. In this context, different strategies have been exploited and new ones are being developed each year. Areas covered: In this review, an integrated view of the potential use of prodrugs in targeted cancer therapy is provided. Passive and active strategies are discussed in light of the advantages of each one and some successful examples are provided, as well as the clinical status of several prodrugs. Among them, antibody-drug conjugates (ADCs) are the most commonly used. However, several drawbacks, including limited prodrug uptake, poor pharmacokinetics, immunogenicity problems, difficulties in selective targeting and gene expression, and optimized bystander effects limit their clinical applications. Expert opinion: Despite the efforts of different companies and research groups, several drawbacks, such as the lack of relevant in vivo models, complexity of the human metabolism, and economic limitations, have hampered the development of new prodrugs for targeted cancer therapy. As a result, we believe that the combination of prodrugs with cancer nanotechnology and other newly developed approaches, such as aptamer-conjugated nanomaterials, are efficient strategies.
Collapse
Affiliation(s)
- Carla Souza
- a Center of Nanotechnology and Tissue Engineering, Department of Chemistry , School of Philosophy, Sciences and Letters of Ribeirão Preto- USP , Ribeirão Preto , Brazil
| | - Diogo Silva Pellosi
- b Department of Chemistry, Laboratory of Hybrid Materials , Federal University of São Paulo - UNIFESP , Diadema , Brazil
| | - Antonio Claudio Tedesco
- a Center of Nanotechnology and Tissue Engineering, Department of Chemistry , School of Philosophy, Sciences and Letters of Ribeirão Preto- USP , Ribeirão Preto , Brazil
| |
Collapse
|
44
|
Lichnog C, Klabunde S, Becker E, Fuh F, Tripal P, Atreya R, Klenske E, Erickson R, Chiu H, Reed C, Chung S, Neufert C, Atreya I, McBride J, Neurath MF, Zundler S. Cellular Mechanisms of Etrolizumab Treatment in Inflammatory Bowel Disease. Front Pharmacol 2019; 10:39. [PMID: 30774593 PMCID: PMC6367223 DOI: 10.3389/fphar.2019.00039] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/14/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Anti-integrin therapy is a new frontline strategy in the treatment of inflammatory bowel diseases (IBD). The anti-β7 integrin antibody etrolizumab is currently being investigated for safety and efficacy in Crohn’s disease (CD) and ulcerative colitis (UC) in several phase III trials. Mechanistically, etrolizumab is known to block β7 integrin ligand binding and reduces intestinal trafficking of β7-expressing cells. Etrolizumab blocks β7 integrin ligand binding and reduces β7-positive lymphocyte migration and retention in the inflamed gut mucosa, but the exact mechanisms by which this inhibition occurs are not fully understood. Methods: Cellular effects of etrolizumab or etrolizumab surrogate antibody (etrolizumab-s) were investigated in cell culture models and analyzed by flow cytometry, fluorescence microscopy, ImageStream®, stimulated emission depletion (STED) microscopy and functional dynamic in vitro adhesion assays. Moreover, effects on α4β7 integrin were compared with the pharmacodynamically similar antibody vedolizumab. Results: As demonstrated by several different approaches, etrolizumab and etrolizumab-s treatment led to internalization of β7 integrin. This resulted in impaired dynamic adhesion to MAdCAM-1. Internalized β7 integrin localized in endosomes and re-expression of β7 was dependent on de novo protein synthesis. In vitro etrolizumab treatment did not lead to cellular activation or cytokine secretion and did not induce cytotoxicity. Internalization of α4β7 integrin was increased with etrolizumab compared with vedolizumab. Discussion: Our data suggest that etrolizumab does not elicit secondary effector functions on the single cell level. Integrin internalization may be an important mechanism of action of etrolizumab, which might explain some but not all immunological effects observed with etrolizumab.
Collapse
Affiliation(s)
- Charlotte Lichnog
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Sha Klabunde
- OMNI Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, CA, United States
| | - Emily Becker
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Franklin Fuh
- OMNI Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, CA, United States
| | - Philipp Tripal
- Optical Imaging Centre, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Entcho Klenske
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Rich Erickson
- BioAnalytical Sciences, Development Sciences, Genentech, Inc., South San Francisco, CA, United States
| | - Henry Chiu
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, United States
| | - Chae Reed
- BioAnalytical Sciences, Development Sciences, Genentech, Inc., South San Francisco, CA, United States
| | - Shan Chung
- BioAnalytical Sciences, Development Sciences, Genentech, Inc., South San Francisco, CA, United States
| | - Clemens Neufert
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Jacqueline McBride
- OMNI Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, CA, United States
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| |
Collapse
|
45
|
Hartimath SV, Alizadeh E, Solomon VR, Chekol R, Bernhard W, Hill W, Parada AC, Barreto K, Geyer CR, Fonge H. Preclinical Evaluation of 111In-Labeled PEGylated Maytansine Nimotuzumab Drug Conjugates in EGFR-Positive Cancer Models. J Nucl Med 2019; 60:1103-1110. [PMID: 30655327 DOI: 10.2967/jnumed.118.220095] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
Epidermal growth factor receptor I (EGFR) is overexpressed in most cancers of epithelial origin. Antibody drug conjugates (ADCs) with PEGylated-maytansine (PEG-DM1) show promise in vitro and in vivo. However, in vivo biodistribution data for ADCs with PEG-DM1 have not been reported. Development of methods to understand the real-time in vivo behavior of these ADCs is needed to move these compounds to the clinic. Methods: Here we have used noninvasive small-animal SPECT/CT imaging and ex vivo biodistribution to understand the in vivo behavior of PEG6-DM1 ADCs. We developed nimotuzumab ADCs conjugated to PEG6-DM1. We generated immunoconjugates with low (nimotuzumab-PEG6-DM1-Low) and high (nimotuzumab-PEG6-DM1-High) drug-to-antibody ratios. The drug-to-antibody of nimotuzumab-PEG6-DM1-Low and nimotuzumab-PEG6-DM1-High was 3.5 and 7.3, respectively. Quality control was performed using ultraviolet spectrophotometry, size-exclusion high-performance liquid chromatography, bioanalyzer, biolayer interferometry, and flow cytometry in EGFR-positive DLD-1 cells. These immunoconjugates were conjugated with DOTA and radiolabeled with 111In. The in vitro binding and internalization rates of 111In-nimotuzumab, 111In-nimotuzumab-PEG6-DM1-Low, and 111In-nimotuzumab-PEG6-DM1-High were characterized. Furthermore, the pharmacokinetics, biodistribution, and imaging characteristics were evaluated in normal and DLD-1 tumor-bearing mice. Results: Flow cytometry and biolayer interferometry showed a trend toward decreasing EGFR affinity with increasing number of PEG6-DM1 on the antibody. Despite the lower overall cellular binding of the PEG6-DM1 radioimmunoconjugates, internalization was higher for PEG6-DM1 ADCs than for the non-PEGylated ADC in the following order: 111In-nimotuzumab-PEG6-DM1-High > 111In-nimotuzumab-PEG6-DM1-Low > 111In-nimotuzumab. Nuclear uptake of 111In-nimotuzumab-PEG6-DM1-High was 4.4-fold higher than 111In-nimotuzumab. Pharmacokinetics and biodistribution showed that 111In-nimotuzumab-PEG6-DM1-High had the slowest blood and whole-body clearance rate. Uptake in DLD-1 tumors of 111In-nimotuzumab was similar to 111In-nimotuzumab-PEG6-DM1-Low but was significantly higher than for 111In-nimotuzumab-PEG6-DM1-High. Tumor-to-background ratios for 111In-nimotuzumab and 111In-nimotuzumab-PEG6-DM1-Low were higher than for 111In-nimotuzumab-PEG6-DM1-High. Conclusion: The results show that conjugation of multiple PEG6-DM1 reduces the affinity for EGFR in vitro. However, the reduced affinity is counteracted by the high internalization rate of constructs with PEG6-DM1 ADCs in vitro. The decreased affinity resulted in low tumor uptake of 111In-nimotuzumab-PEG6-DM1-High, with a slow overall whole-body clearance rate. These data provide insights for evaluating the pharmacokinetics and normal -tissue toxicity and in determining dosing rate of PEGylated ADCs.
Collapse
Affiliation(s)
- Siddesh V Hartimath
- Department of Medical Imaging, University of Saskatchewan, College of Medicine, Saskatoon SK, Canada
| | - Elahe Alizadeh
- Department of Medical Imaging, University of Saskatchewan, College of Medicine, Saskatoon SK, Canada
| | - Viswas Raja Solomon
- Department of Medical Imaging, University of Saskatchewan, College of Medicine, Saskatoon SK, Canada
| | - Rufael Chekol
- Department of Medical Imaging, University of Saskatchewan, College of Medicine, Saskatoon SK, Canada
| | - Wendy Bernhard
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, College of Medicine, Saskatoon SK, Canada
| | - Wayne Hill
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, College of Medicine, Saskatoon SK, Canada
| | | | - Kris Barreto
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, College of Medicine, Saskatoon SK, Canada
| | - Clarence Ronald Geyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, College of Medicine, Saskatoon SK, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, University of Saskatchewan, College of Medicine, Saskatoon SK, Canada .,Department of Medical Imaging, Royal University Hospital (RUH), Saskatoon SK, Canada
| |
Collapse
|
46
|
Yang C, Zhao X, Sun X, Li J, Wang W, Zhang L, Gou S. Preclinical pharmacokinetics of a novel anti-c-Met antibody–drug conjugate, SHR-A1403, in rodents and non-human primates. Xenobiotica 2019; 49:1097-1105. [DOI: 10.1080/00498254.2018.1534030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Changyong Yang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, China
- Jiangsu Hengrui Medicine Co., Ltd, Lianyungang, China
| | - Xiaoping Zhao
- Shanghai InnoStar Bio-tech Co., Ltd, Shanghai, China
| | - Xing Sun
- Jiangsu Hengrui Medicine Co., Ltd, Lianyungang, China
| | - Jinlong Li
- Shanghai InnoStar Bio-tech Co., Ltd, Shanghai, China
| | - Weiqiang Wang
- Shanghai InnoStar Bio-tech Co., Ltd, Shanghai, China
| | | | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, China
| |
Collapse
|
47
|
Maso K, Grigoletto A, Vicent MJ, Pasut G. Molecular platforms for targeted drug delivery. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:1-50. [DOI: 10.1016/bs.ircmb.2019.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Bioprocess development of antibody-drug conjugate production for cancer treatment. PLoS One 2018; 13:e0206246. [PMID: 30352095 PMCID: PMC6198984 DOI: 10.1371/journal.pone.0206246] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 11/19/2022] Open
Abstract
Antibody-drug conjugate (ADC) is a class of targeted cancer therapies that combine the advantages of monoclonal antibody (mAb)'s specific targeting and chemotherapy's potent cytotoxicity. The therapeutic effect of ADC is significantly affected by its bioproduction process. This study aims to develop an effective ADC production process using anti-HER2 mAb-drug as a model therapeutic. First, a high titer (>2 g/L) of mAb was produced by Chinese hamster ovary cells from fed-batch cell culture. Both live-cell confocal microscopy imaging and flow cytometry analysis demonstrated that the produced mAb and ADC had strong and specific binding to HER2+ cell line BT474. Second, various conjugation conditions of mAb and drug, including linker selection, ratio of drug and mAb, and conjugation approaches, were investigated to improve the production yield and product quality. Finally, the ADC structure and biological quality were evaluated by SDS-PAGE and anti-breast cancer toxicity study, respectively. The ADC with integral molecular structure and high cytotoxicity (IC50 of 1.95 nM) was produced using the optimized production process. The robust bioproduction process could guide the development of ADC-based biopharmaceuticals.
Collapse
|
49
|
Lau UY, Benoit LT, Stevens NS, Emmerton KK, Zaval M, Cochran JH, Senter PD. Lactone Stabilization is Not a Necessary Feature for Antibody Conjugates of Camptothecins. Mol Pharm 2018; 15:4063-4072. [DOI: 10.1021/acs.molpharmaceut.8b00477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Uland Y. Lau
- Seattle Genetics, Inc, 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Lauren T. Benoit
- Seattle Genetics, Inc, 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Nicole S. Stevens
- Seattle Genetics, Inc, 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Kim K. Emmerton
- Seattle Genetics, Inc, 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Margo Zaval
- Seattle Genetics, Inc, 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Julia H. Cochran
- Seattle Genetics, Inc, 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Peter D. Senter
- Seattle Genetics, Inc, 21823 30th Drive SE, Bothell, Washington 98021, United States
| |
Collapse
|
50
|
Figueroa I, Leipold D, Leong S, Zheng B, Triguero-Carrasco M, Fourie-O'Donohue A, Kozak KR, Xu K, Schutten M, Wang H, Polson AG, Kamath AV. Prediction of non-linear pharmacokinetics in humans of an antibody-drug conjugate (ADC) when evaluation of higher doses in animals is limited by tolerability: Case study with an anti-CD33 ADC. MAbs 2018; 10:738-750. [PMID: 29757698 PMCID: PMC6150628 DOI: 10.1080/19420862.2018.1465160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 11/01/2022] Open
Abstract
For antibody-drug conjugates (ADCs) that carry a cytotoxic drug, doses that can be administered in preclinical studies are typically limited by tolerability, leading to a narrow dose range that can be tested. For molecules with non-linear pharmacokinetics (PK), this limited dose range may be insufficient to fully characterize the PK of the ADC and limits translation to humans. Mathematical PK models are frequently used for molecule selection during preclinical drug development and for translational predictions to guide clinical study design. Here, we present a practical approach that uses limited PK and receptor occupancy (RO) data of the corresponding unconjugated antibody to predict ADC PK when conjugation does not alter the non-specific clearance or the antibody-target interaction. We used a 2-compartment model incorporating non-specific and specific (target mediated) clearances, where the latter is a function of RO, to describe the PK of anti-CD33 ADC with dose-limiting neutropenia in cynomolgus monkeys. We tested our model by comparing PK predictions based on the unconjugated antibody to observed ADC PK data that was not utilized for model development. Prospective prediction of human PK was performed by incorporating in vitro binding affinity differences between species for varying levels of CD33 target expression. Additionally, this approach was used to predict human PK of other previously tested anti-CD33 molecules with published clinical data. The findings showed that, for a cytotoxic ADC with non-linear PK and limited preclinical PK data, incorporating RO in the PK model and using data from the corresponding unconjugated antibody at higher doses allowed the identification of parameters to characterize monkey PK and enabled human PK predictions.
Collapse
Affiliation(s)
| | - Doug Leipold
- Preclinical Translational Pharmacokinetics Department
| | | | | | | | | | | | | | - Melissa Schutten
- Safety Assessment Department Genentech Inc., South San Francisco, CA, USA
| | - Hong Wang
- Safety Assessment Department Genentech Inc., South San Francisco, CA, USA
| | | | | |
Collapse
|