1
|
Viravathana P, Tepp WH, Bradshaw M, Przedpelski A, Barbieri JT, Pellett S. Potency Evaluations of Recombinant Botulinum Neurotoxin A1 Mutants Designed to Reduce Toxicity. Int J Mol Sci 2024; 25:8955. [PMID: 39201641 PMCID: PMC11355004 DOI: 10.3390/ijms25168955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Recombinant mutant holotoxin BoNTs (rBoNTs) are being evaluated as possible vaccines against botulism. Previously, several rBoNTs containing 2-3 amino acid mutations in the light chain (LC) showed significant decreases in toxicity (2.5-million-fold-12.5-million-fold) versus wild-type BoNT/A1, leading to their current exclusion from the Federal Select Agent list. In this study, we added four additional mutations in the receptor-binding domain, translocation domain, and enzymatic cleft to further decrease toxicity, creating 7M rBoNT/A1. Due to poor expression in E. coli, 7M rBoNT/A1 was produced in an endogenous C. botulinum expression system. This protein had higher residual toxicity (LD50: 280 ng/mouse) than previously reported for the catalytically inactive rBoNT/A1 containing only three of the mutations (>10 µg/mouse). To investigate this discrepancy, several additional rBoNT/A1 constructs containing individual sets of amino acid substitutions from 7M rBoNT/A1 and related mutations were also endogenously produced. Similarly to endogenously produced 7M rBoNT/A1, all of the endogenously produced mutants had ~100-1000-fold greater toxicity than what was reported for their original heterologous host counterparts. A combination of mutations in multiple functional domains resulted in a greater but not multiplicative reduction in toxicity. This report demonstrates the impact of production systems on residual toxicity of genetically inactivated rBoNTs.
Collapse
Affiliation(s)
- Polrit Viravathana
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amanda Przedpelski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Joseph T. Barbieri
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Ambrin G, Kang YJ, Van Do K, Lee C, Singh BR, Cho H. Botulinum Neurotoxin Induces Neurotoxic Microglia Mediated by Exogenous Inflammatory Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305326. [PMID: 38342616 PMCID: PMC11022717 DOI: 10.1002/advs.202305326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/22/2024] [Indexed: 02/13/2024]
Abstract
Botulinum neurotoxin serotype A (BoNT/A) is widely used in therapeutics and cosmetics. The effects of multi-dosed BoNT/A treatment are well documented on the peripheral nervous system (PNS), but much less is known on the central nervous system (CNS). Here, the mechanism of multi-dosed BoNT/A leading to CNS neurodegeneration is explored by using the 3D human neuron-glia model. BoNT/A treatment reduces acetylcholine, triggers astrocytic transforming growth factor beta, and upregulates C1q, C3, and C5 expression, inducing microglial proinflammation. The disintegration of the neuronal microtubules is escorted by microglial nitric oxide, interleukin 1β, tumor necrosis factor α, and interleukin 8. The microglial proinflammation eventually causes synaptic impairment, phosphorylated tau (pTau) aggregation, and the loss of the BoNT/A-treated neurons. Taking a more holistic approach, the model will allow to assess therapeutics for the CNS neurodegeneration under the prolonged use of BoNT/A.
Collapse
Affiliation(s)
- Ghuncha Ambrin
- School of MedicineUniversity of CaliforniaSan DiegoCA92093USA
- Department of Mechanical Engineering and Engineering SciencesUniversity of North CarolinaCharlotteNC28223USA
| | - You Jung Kang
- Institute Quantum BiophysicsSungkyunkwan University, 2066 Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
- Department of BiophysicsSungkyunkwan University, 2066 Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
| | - Khanh Van Do
- Institute Quantum BiophysicsSungkyunkwan University, 2066 Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University, 2066 Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
| | - Charles Lee
- Department of Mechanical Engineering and Engineering SciencesUniversity of North CarolinaCharlotteNC28223USA
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced SciencesDartmouthMA02747USA
| | - Hansang Cho
- Institute Quantum BiophysicsSungkyunkwan University, 2066 Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
- Department of BiophysicsSungkyunkwan University, 2066 Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University, 2066 Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
| |
Collapse
|
3
|
Ibrahim H, Retailleau K, Hornby F, Maignel J, Beard M, Daly DM. A Novel Catalytically Inactive Construct of Botulinum Neurotoxin A (BoNT/A) Directly Inhibits Visceral Sensory Signalling. Toxins (Basel) 2024; 16:30. [PMID: 38251246 PMCID: PMC10820156 DOI: 10.3390/toxins16010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Botulinum neurotoxin A (BoNT/A) is a potent neurotoxin that silences cholinergic neurotransmission through the cleavage of the synaptic protein SNAP-25. Previous studies have shown that, in addition to its paralytic effects, BoNT/A can inhibit sensory nerve activity. The aim of this study was to identify how BoNT/A inhibits afferent signalling from the bladder. To investigate the role of SNAP-25 cleavage in the previously reported BoNT/A-dependent inhibition of sensory signalling, we developed a recombinant form of BoNT/A with an inactive light chain, rBoNT/A (0), unable to paralyse muscle. We also developed recombinant light chain (LC)-domain-only proteins to better understand the entry mechanisms, as the heavy chain (HC) of the protein is responsible for the internalisation of the light chain. We found that, despite a lack of catalytic activity, rBoNT/A (0) potently inhibited the afferent responses to bladder distension to a greater degree than catalytically active rBoNT/A. This was also clear from the testing of the LC-only proteins, as the inactive rLC/A (0) protein inhibited afferent responses significantly more than the active rLC/A protein. Immunohistochemistry for cleaved SNAP-25 was negative, and purinergic and nitrergic antagonists partially and totally reversed the sensory inhibition, respectively. These data suggest that the BoNT/A inhibition of sensory nerve activity in this assay is not due to the classical well-characterised 'double-receptor' mechanism of BoNT/A, is independent of SNAP25 cleavage and involves nitrergic and purinergic signalling mechanisms.
Collapse
Affiliation(s)
- Hodan Ibrahim
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston Campus, Preston PR1 2HE, UK
- Ipsen, Abingdon OX14 4RY, UK; (F.H.); (M.B.)
| | | | | | | | | | - Donna Marie Daly
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston Campus, Preston PR1 2HE, UK
| |
Collapse
|
4
|
Li BL, Wang JR, Liu XY, Lu JS, Wang R, Du P, Yu S, Pang XB, Yu YZ, Yang ZX. Tetanus toxin and botulinum neurotoxin-derived fusion molecules are effective bivalent vaccines. Appl Microbiol Biotechnol 2023; 107:7197-7211. [PMID: 37741939 DOI: 10.1007/s00253-023-12796-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Tetanus toxin (TeNT) and botulinum neurotoxins (BoNTs) are neuroprotein toxins, with the latter being the most toxic known protein. They are structurally similar and contain three functional domains: an N-terminal catalytic domain (light chain), an internal heavy-chain translocation domain (HN domain), and a C-terminal heavy chain receptor binding domain (Hc domain or RBD). In this study, fusion functional domain molecules consisting of the TeNT RBD (THc) and the BoNT/A RBD (AHc) (i.e., THc-Linker-AHc and AHc-Linker-THc) were designed, prepared, and identified. The interaction of each Hc domain and the ganglioside receptor (GT1b) or the receptor synaptic vesicle glycoprotein 2 (SV2) was explored in vitro. Their immune response characteristics and protective efficacy were investigated in animal models. The recombinant THc-linker-AHc and AHc-linker-THc proteins with the binding activity had the correct size and structure, thus representing novel subunit vaccines. THc-linker-AHc and AHc-linker-THc induced high levels of specific neutralizing antibodies, and showed strong immune protective efficacy against both toxins. The high antibody titers against the two novel fusion domain molecules and against individual THc and AHc suggested that the THc and AHc domains, as antigens in the fusion functional domain molecules, do not interact with each other and retain their full key epitopes responsible for inducing neutralizing antibodies. Thus, the recombinant THc-linker-AHc and AHc-linker-THc molecules are strong and effective bivalent biotoxin vaccines, protecting against two biotoxins simultaneously. Our experimental design will be valuable to develop recombinant double-RBD fusion molecules as potent bivalent subunit vaccines against bio-toxins. KEY POINTS: • Double-RBD fusion molecules from two toxins had the correct structure and activity. • THc-linker-AHc and AHc-linker-THc efficiently protected against both biotoxins. • Such bivalent biotoxin vaccines based on the RBD are a valuable experimental design.
Collapse
Affiliation(s)
- Bo-Lin Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
| | - Jing-Rong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
| | - Xu-Yang Liu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
- Pharmaceutical College, Henan University, Kaifeng, 475001, China
| | - Jian-Sheng Lu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
| | - Rong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
| | - Peng Du
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
| | - Shuo Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
| | - Xiao-Bin Pang
- Pharmaceutical College, Henan University, Kaifeng, 475001, China.
| | - Yun-Zhou Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China.
| | - Zhi-Xin Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China.
| |
Collapse
|
5
|
Gupta S, Pellett S. Recent Developments in Vaccine Design: From Live Vaccines to Recombinant Toxin Vaccines. Toxins (Basel) 2023; 15:563. [PMID: 37755989 PMCID: PMC10536331 DOI: 10.3390/toxins15090563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Vaccines are one of the most effective strategies to prevent pathogen-induced illness in humans. The earliest vaccines were based on live inoculations with low doses of live or related pathogens, which carried a relatively high risk of developing the disease they were meant to prevent. The introduction of attenuated and killed pathogens as vaccines dramatically reduced these risks; however, attenuated live vaccines still carry a risk of reversion to a pathogenic strain capable of causing disease. This risk is completely eliminated with recombinant protein or subunit vaccines, which are atoxic and non-infectious. However, these vaccines require adjuvants and often significant optimization to induce robust T-cell responses and long-lasting immune memory. Some pathogens produce protein toxins that cause or contribute to disease. To protect against the effects of such toxins, chemically inactivated toxoid vaccines have been found to be effective. Toxoid vaccines are successfully used today at a global scale to protect against tetanus and diphtheria. Recent developments for toxoid vaccines are investigating the possibilities of utilizing recombinant protein toxins mutated to eliminate biologic activity instead of chemically inactivated toxins. Finally, one of the most contemporary approaches toward vaccine design utilizes messenger RNA (mRNA) as a vaccine candidate. This approach was used globally to protect against coronavirus disease during the COVID-19 pandemic that began in 2019, due to its advantages of quick production and scale-up, and effectiveness in eliciting a neutralizing antibody response. Nonetheless, mRNA vaccines require specialized storage and transport conditions, posing challenges for low- and middle-income countries. Among multiple available technologies for vaccine design and formulation, which technology is most appropriate? This review focuses on the considerable developments that have been made in utilizing diverse vaccine technologies with a focus on vaccines targeting bacterial toxins. We describe how advancements in vaccine technology, combined with a deeper understanding of pathogen-host interactions, offer exciting and promising avenues for the development of new and improved vaccines.
Collapse
Affiliation(s)
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA;
| |
Collapse
|
6
|
Ambrin G, Cai S, Singh BR. Critical analysis in the advancement of cell-based assays for botulinum neurotoxin. Crit Rev Microbiol 2023; 49:1-17. [PMID: 35212259 DOI: 10.1080/1040841x.2022.2035315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The study on botulinum neurotoxins (BoNTs) has rapidly evolved for their structure and functions as opposed to them being poisons or cures. Since their discoveries, the scientific community has come a long way in understanding BoNTs' structure and biological activity. Given its current application as a tool for understanding neurocellular activity and as a drug against over 800 neurological disorders, relevant and sensitive assays have become critical for biochemical, physiological, and pharmacological studies. The natural entry of the toxin being ingestion, it has also become important to examine its mechanism while crossing the epithelial cell barrier. Several techniques and methodologies have been developed, for its entry, pharmacokinetics, and biological activity for identification, and drug efficacy both in vivo and in vitro conditions. However, each of them presents its own challenges. The cell-based assay is a platform that exceeds the sensitivity of mouse bioassay while encompassing all the steps of intoxication including cell binding, transcytosis, endocytosis, translocation and proteolytic activity. In this article we review in detail both the neuronal and nonneuronal based cellular interaction of BoNT involving its transportation, and interaction with the targeted cells, and intracellular activities.
Collapse
Affiliation(s)
- Ghuncha Ambrin
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts, Dartmouth, MA, USA.,Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA, USA
| | - Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA, USA
| | - Bal Ram Singh
- Institute of Advanced Sciences, Botulinum Research Center, Dartmouth, MA, USA
| |
Collapse
|
7
|
Intratracheal inoculation of AHc vaccine induces protection against aerosolized botulinum neurotoxin A challenge in mice. NPJ Vaccines 2021; 6:87. [PMID: 34158496 PMCID: PMC8219734 DOI: 10.1038/s41541-021-00349-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 06/02/2021] [Indexed: 12/29/2022] Open
Abstract
Botulinum neurotoxin (BoNT), produced by Clostridium botulinum, is generally known to be the most poisonous of all biological toxins. In this study, we evaluate the protection conferred by intratracheal (i.t.) inoculation immunization with recombinant Hc subunit (AHc) vaccines against aerosolized BoNT/A intoxication. Three AHc vaccine formulations, i.e., conventional liquid, dry powder produced by spray freeze drying, and AHc dry powder reconstituted in water are prepared, and mice are immunized via i.t. inoculation or subcutaneous (s.c.) injection. Compared with s.c.-AHc-immunized mice, i.t.-AHc-immunized mice exhibit a slightly stronger protection against a challenge with 30,000× LD50 aerosolized BoNT/A. Of note, only i.t.-AHc induces a significantly higher level of toxin-neutralizing mucosal secretory IgA (SIgA) production in the bronchoalveolar lavage of mice. In conclusion, our study demonstrates that the immune protection conferred by the three formulations of AHc is comparable, while i.t. immunization of AHc is superior to s.c. immunization against aerosolized BoNT/A intoxication.
Collapse
|
8
|
Immunological characterisation and immunoprotective efficacy of functional domain antigens of botulinum neurotoxin serotype A. Vaccine 2020; 38:2978-2983. [PMID: 32113807 DOI: 10.1016/j.vaccine.2020.02.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/11/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Abstract
Botulinum neurotoxins (BoNTs) are highly toxic proteins that mediate their effects by binding to neuronal receptors and block the neutralizing ability of therapeutic antibodies. Vaccination is currently the most effective strategy to prevent botulism. In this study, a series of recombinant functional domain antigens of BoNT/A were prepared and identified, and their immunoprotective efficacies were explored and compared. Our results showed that all antigens produced strong humoral immune responses, although their protective effects against the toxin were different. Only the Hc and HN-L antigens produced strong protective effects and afforded complete immunoprotection. In addition, the combined vaccine groups showed that there was no synergistic effect on immune responses after antigen combination, suggesting that the integrity of the toxin antigen or domain is crucial to the immune effects. Studies of the dose-dependent immunoprotective effects further confirmed that the Hc domain antigen afforded more effective protective potency than the HN-L antigen, equivalent to the immune effect of the full-length toxin (Hc + HN-L combination group). Overall, our results demonstrated that the Hc domain elicited a strong protective immune response and also provided basic data and theoretical support for the development of Hc-based BoNT/A subunit vaccine. Therefore, the receptor binding domain Hc is implicated as a promising target antigen of the BoNT/A recombinant subunit vaccine as an alternative to the toxoid vaccine.
Collapse
|
9
|
Steward L, Brin MF, Brideau-Andersen A. Novel Native and Engineered Botulinum Neurotoxins. Handb Exp Pharmacol 2020; 263:63-89. [PMID: 32274579 DOI: 10.1007/164_2020_351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Botulinum neurotoxins (BoNTs), produced by Clostridia and other bacteria, are the most potent toxins known. Their cleavage of the soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) proteins in neurons prevents the release of neurotransmitters, thus resulting in the muscle paralysis that is characteristic of botulism. This mechanism of action has been exploited for a variety of therapeutic and cosmetic applications of BoNTs. This chapter provides an overview of the native BoNTs, including the classical serotypes and their clinical use, mosaic BoNTs, and novel BoNTs that have been recently identified in clostridial and non-clostridial strains. In addition, the modular structure of native BoNTs, which are composed of a light chain and a heavy chain, is amenable to a multitude of novel fusions and mutations using molecular biology techniques. These novel recombinant BoNTs have been used or are being developed to further characterize the biology of toxins, to assist in vaccine production, to serve as delivery vehicles to neurons, and to be utilized as novel therapeutics for both neuronal and non-neuronal cells.
Collapse
Affiliation(s)
| | - Mitchell F Brin
- Allergan plc, Irvine, CA, USA.,University of California, Irvine, CA, USA
| | | |
Collapse
|
10
|
Natural Compounds and Their Analogues as Potent Antidotes against the Most Poisonous Bacterial Toxin. Appl Environ Microbiol 2018; 84:AEM.01280-18. [PMID: 30389764 DOI: 10.1128/aem.01280-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/28/2018] [Indexed: 01/30/2023] Open
Abstract
Botulinum neurotoxins (BoNTs), the most poisonous proteins known to humankind, are a family of seven (serotype A to G) immunologically distinct proteins synthesized primarily by different strains of the anaerobic bacterium Clostridium botulinum Being the causative agents of botulism, the toxins block neurotransmitter release by specifically cleaving one of the three soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins, thereby inducing flaccid paralysis. The development of countermeasures and therapeutics against BoNTs is a high-priority research area for public health because of their extreme toxicity and potential for use as biowarfare agents. Extensive research has focused on designing antagonists that block the catalytic activity of BoNTs. In this study, we screened 300 small natural compounds and their analogues extracted from Indian plants for their activity against BoNT serotype A (BoNT/A) as well as its light chain (LCA) using biochemical and cellular assays. One natural compound, a nitrophenyl psoralen (NPP), was identified to be a specific inhibitor of LCA with an in vitro 50% inhibitory concentration (IC50) value of 4.74 ± 0.03 µM. NPP was able to rescue endogenous synaptosome-associated protein 25 (SNAP-25) from cleavage by BoNT/A in human neuroblastoma cells with an IC50 of 12.2 ± 1.7 µM, as well as to prolong the time to the blocking of neutrally elicited twitch tensions in isolated mouse phrenic nerve-hemidiaphragm preparations.IMPORTANCE The long-lasting endopeptidase activity of BoNT is a critical biological activity inside the nerve cell, as it prompts proteolysis of the SNARE proteins, involved in the exocytosis of the neurotransmitter acetylcholine. Thus, the BoNT endopeptidase activity is an appropriate clinical target for designing new small-molecule antidotes against BoNT with the potential to reverse the paralysis syndrome of botulism. In principle, small-molecule inhibitors (SMIs) can gain entry into BoNT-intoxicated cells if they have a suitable octanol-water partition coefficient (log P) value and other favorable characteristics (P. Leeson, Nature 481:455-456, 2012, https://doi.org/10.1038/481455a). Several efforts have been made in the past to develop SMIs, but inhibitors effective under in vitro conditions have not in general been effective in vivo or in cellular models (L. M. Eubanks, M. S. Hixon, W. Jin, S. Hong, et al., Proc Natl Acad Sci U S A 104:2602-2607, 2007, https://doi.org/10.1073/pnas.0611213104). The difference between the in vitro and cellular efficacy presumably results from difficulties experienced by the compounds in crossing the cell membrane, in conjunction with poor bioavailability and high cytotoxicity. The screened nitrophenyl psoralen (NPP) effectively antagonized BoNT/A in both in vitro and ex vivo assays. Importantly, NPP inhibited the BoNT/A light chain but not other general zinc endopeptidases, such as thermolysin, suggesting high selectivity for its target. Small-molecule (nonpeptidic) inhibitors have better oral bioavailability, better stability, and better tissue and cell permeation than antitoxins or peptide inhibitors.
Collapse
|
11
|
Ghosal KJ, Patel K, Singh BR, Hale ML. Role of critical elements in botulinum neurotoxin complex in toxin routing across intestinal and bronchial barriers. PLoS One 2018; 13:e0199524. [PMID: 29975725 PMCID: PMC6033393 DOI: 10.1371/journal.pone.0199524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/08/2018] [Indexed: 11/18/2022] Open
Abstract
The highly potent botulinum neurotoxin serotype A (BoNT/A) inhibits neurotransmitter release at neuromuscular junctions resulting in flaccid muscle paralysis, respiratory arrest and death. In order to reach their neuronal cell targets, BoNT/A must cross epithelial cell barriers lining the intestines and airways. The toxin is produced as a large protein complex comprised of the neurotoxin and non-toxic neurotoxin-associated proteins (NAPs). Although NAPs are known to protect the toxin from harsh environments, their role in the movement of BoNT/A across epithelial barriers has not been fully characterized. In the current study, movement of the toxin across epithelial cells was examined macroscopically using a sensitive near infrared fluorescence transcytosis assay and microscopically using fluorescently labeled toxin and confocal microscopy. The studies show that the BoNT/A complex internalizes more rapidly than the pure toxin. The studies also show that one NAP protein, hemaglutinin 33 (Hn33), enhanced both the binding and movement of a deactivated recombinant botulinum neurotoxin A (DrBoNT) across epithelial cell monolayers and that the toxin associates with Hn33 on the cell surface. Collectively, the data demonstrate that, in addition to their protective role, NAPs and Hn33 play an important role in BoNT/A intoxication.
Collapse
Affiliation(s)
- Koyel J. Ghosal
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, United States of America
| | - Kruti Patel
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, United States of America
| | - Bal Ram Singh
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, United States of America
| | - Martha L. Hale
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| |
Collapse
|
12
|
Webb RP. Engineering of Botulinum Neurotoxins for Biomedical Applications. Toxins (Basel) 2018; 10:toxins10060231. [PMID: 29882791 PMCID: PMC6024800 DOI: 10.3390/toxins10060231] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/15/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) have been used as therapeutic agents in the clinical treatment of a wide array of neuromuscular and autonomic neuronal transmission disorders. These toxins contain three functional domains that mediate highly specific neuronal cell binding, internalization and cytosolic delivery of proteolytic enzymes that cleave proteins integral to the exocytosis of neurotransmitters. The exceptional cellular specificity, potency and persistence within the neuron that make BoNTs such effective toxins, also make them attractive models for derivatives that have modified properties that could potentially expand their therapeutic repertoire. Advances in molecular biology techniques and rapid DNA synthesis have allowed a wide variety of novel BoNTs with alternative functions to be assessed as potential new classes of therapeutic drugs. This review examines how the BoNTs have been engineered in an effort to produce new classes of therapeutic molecules to address a wide array of disorders.
Collapse
Affiliation(s)
- Robert P Webb
- The Division of Molecular and Translational Sciences, United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD 21702, USA.
| |
Collapse
|
13
|
Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Baradaran B, Guardia MDL, Hejazi M, Sohrabi H, Mokhtarzadeh A, Maleki A. Recent progress in optical and electrochemical biosensors for sensing of Clostridium botulinum neurotoxin. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Przedpelski A, Tepp WH, Zuverink M, Johnson EA, Pellet S, Barbieri JT. Enhancing toxin-based vaccines against botulism. Vaccine 2018; 36:827-832. [PMID: 29307477 DOI: 10.1016/j.vaccine.2017.12.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/25/2023]
Abstract
Botulinum neurotoxins (BoNT) are the most toxic proteins for humans. BoNTs are single chain proteins with an N-terminal light chain (LC) and a C-terminal heavy chain (HC). HC comprises a translocation domain (HCN) and a receptor binding domain (HCC). Currently, there are no approved vaccines against botulism. This study tests a recombinant, full-length BoNT/A1 versus LCHCN/A1 and HCC/A1 as vaccine candidates against botulism. Recombinant, full-length BoNT/A1 was detoxified by engineering 3-amino acid mutations (E224A/R363A/Y366F) (M-BoNT/A1) into the LC to eliminate catalytic activity, which reduced toxicity in a mouse model of botulism by >106-fold relative to native BoNT/A1. As a second step to improve vaccine safety, an additional mutation (W1266A) was engineered in the ganglioside binding pocket, resulting in reduced receptor binding, to produce M-BoNT/A1W. M-BoNT/A1W vaccination protected against challenge by 106 LD50 Units of native BoNT/A1, while M-BoNT/A1 or M-BoNT/A1W vaccination equally protected against challenge by native BoNT/A2, a BoNT subtype. Mice vaccinated with M-BoNT/A1W surviving BoNT challenge had dominant antibody responses to the LCHCN domain, but varied antibody responses to HCC. Sera from mice vaccinated with M-BoNT/A1W also neutralized BoNT/A1 action on cultured neuronal cells. The cell- and mouse-based assays measured different BoNT-neutralizing antibodies, where M-BoNT/A1W elicited a strong neutralizing response in both assays. Overall, M-BoNT/A1W, with defects in multiple toxin functions, elicits a potent immune response to BoNT/A challenge as a vaccine strategy against botulism and other toxin-mediated diseases.
Collapse
Affiliation(s)
- Amanda Przedpelski
- Medical College of Wisconsin, 8701 W Watertown Plank Rd., Microbiology and Immunology, Milwaukee, WI 53226, United States
| | - William H Tepp
- University of Wisconsin-Madison, 6303 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706, United States
| | - Madison Zuverink
- Medical College of Wisconsin, 8701 W Watertown Plank Rd., Microbiology and Immunology, Milwaukee, WI 53226, United States
| | - Eric A Johnson
- University of Wisconsin-Madison, 6303 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706, United States
| | - Sabine Pellet
- University of Wisconsin-Madison, 6303 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706, United States
| | - Joseph T Barbieri
- Medical College of Wisconsin, 8701 W Watertown Plank Rd., Microbiology and Immunology, Milwaukee, WI 53226, United States.
| |
Collapse
|
15
|
Webb RP, Smith TJ, Smith LA, Wright PM, Guernieri RL, Brown JL, Skerry JC. Recombinant Botulinum Neurotoxin Hc Subunit (BoNT Hc) and Catalytically Inactive Clostridium botulinum Holoproteins (ciBoNT HPs) as Vaccine Candidates for the Prevention of Botulism. Toxins (Basel) 2017; 9:toxins9090269. [PMID: 28869522 PMCID: PMC5618202 DOI: 10.3390/toxins9090269] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
There are few available medical countermeasures against botulism and the discontinuation of the pentavalent botulinum toxoid vaccine by the Centers for Disease Control and Prevention in 2011 has resulted in the need for a safe and effective prophylactic alternative. Advances in genetic engineering have resulted in subsequent vaccine efforts being primarily focused on the production of highly purified recombinant protein antigens representing one or more domains of the botulinum neurotoxin. Recombinant subunit vaccines based on the carboxy one-third of the toxin (Hc) developed in our lab against serotypes A-F have been shown to be safe and effective. However, in response to the identification of an ever increasing number of BoNT subtypes with significant amino acid heterogeneity, we have developed catalytically inactive BoNT holoproteins (ciBoNT HPs) in an attempt to elicit greater protective immunity to address these toxin variants. Here we report the production of ciBoNT/B1 HP, ciBoNT/C1 HP, ciBoNT/E1 HP and ciBoNT/F1 HP and compare the immunological and protective abilities of ciBoNT HPs and BoNT/A Hc, BoNT/B Hc, BoNT/C Hc, BoNT/E Hc and BoNT/F Hc vaccines when challenged with homologous and heterologous toxins. Our results suggest the ciBoNT HP vaccines exhibit superior potency after single vaccinations but multiple vaccinations with BoNT/Hc antigens resulted in increased survival rates at the toxin challenge levels used.
Collapse
Affiliation(s)
- Robert P Webb
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Theresa J Smith
- Ke'aki Technologies LLC, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Leonard A Smith
- Office of the Chief Scientist, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Patrick M Wright
- Clinical Research Management, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21707, USA.
| | - Rebecca L Guernieri
- Ke'aki Technologies LLC, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Jennifer L Brown
- Ke'aki Technologies LLC, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Janet C Skerry
- Ke'aki Technologies LLC, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
16
|
Vaccines against Botulism. Toxins (Basel) 2017; 9:toxins9090268. [PMID: 28869493 PMCID: PMC5618201 DOI: 10.3390/toxins9090268] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/16/2022] Open
Abstract
Botulinum neurotoxins (BoNT) cause the flaccid paralysis of botulism by inhibiting the release of acetylcholine from motor neurons. There are seven serotypes of BoNT (A-G), with limited therapies, and no FDA approved vaccine for botulism. An investigational formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was used to vaccinate people who are at high risk of contracting botulism. However, this formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was losing potency and was discontinued. This article reviews the different vaccines being developed to replace the discontinued toxoid vaccine. These vaccines include DNA-based, viral vector-based, and recombinant protein-based vaccines. DNA-based vaccines include plasmids or viral vectors containing the gene encoding one of the BoNT heavy chain receptor binding domains (HC). Viral vectors reviewed are adenovirus, influenza virus, rabies virus, Semliki Forest virus, and Venezuelan Equine Encephalitis virus. Among the potential recombinant protein vaccines reviewed are HC, light chain-heavy chain translocation domain, and chemically or genetically inactivated holotoxin.
Collapse
|
17
|
A Novel Surface Plasmon Resonance Biosensor for the Rapid Detection of Botulinum Neurotoxins. BIOSENSORS-BASEL 2017; 7:bios7030032. [PMID: 28783115 PMCID: PMC5618038 DOI: 10.3390/bios7030032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Abstract
Botulinum neurotoxins (BoNTs) are Category A agents on the NIAID (National Institute of Allergy and Infectious Diseases) priority pathogen list owing to their extreme toxicity and the relative ease of production. These deadly toxins, in minute quantities (estimated human i.v. lethal dose LD50 of 1-2 ng/kg body weight), cause fatal flaccid paralysis by blocking neurotransmitter release. The current gold standard detection method, the mouse-bioassay, often takes days to confirm botulism. Furthermore, there are no effective antidotes known to reverse the symptoms of botulism, and as a result, patients with severe botulism often require meticulous care during the prolonged paralytic illness. To combat potential bio-terrorism incidents of botulinum neurotoxins, their rapid detection is paramount. Surface plasmon resonance (SPR) is a very sensitive technique to examine bio-molecular interactions. The label-free, real-time analysis, with high sensitivity and low sample consumption makes this technology particularly suitable for detection of the toxin. In this study, we demonstrated the feasibility in an assay with a newly designed SPR instrument for the rapid detection of botulinum neurotoxins. The LOD (limit of detection) of the Newton Photonics (NP) SPR based assay is 6.76 pg/mL for Botulinum Neurotoxin type A Light Chain (BoNT/A LC). We established that the detection sensitivity of the system is comparable to the traditional mouse LD50 bioassay in BoNT/A using this SPR technology.
Collapse
|