1
|
Lou Z, Mu C, Corpstein CD, Li T. In vivo deposition of poorly soluble drugs. Adv Drug Deliv Rev 2024; 211:115358. [PMID: 38851590 DOI: 10.1016/j.addr.2024.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/12/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Administered drug molecules, whether dissolved or solubilized, have the potential to precipitate and accumulate as solid forms in tissues and cells within the body. This phase transition can significantly impact the pharmacokinetics of treatment. It is thus crucial to gain an understanding of how drug solubility/permeability, drug formulations and routes of administration affect in vivo behaviors of drug deposition. This review examines literature reports on the drug deposition in tissues and cells of poorly water-soluble drugs, as well as underlying physical mechanisms that lead to precipitation. Our work particularly highlights drug deposition in macrophages and the subcellular fate of precipitated drugs. We also propose a tissue permeability-based classification framework to evaluate precipitation potentials of poorly soluble drugs in major organs and tissues. The impact on pharmacokinetics is further discussed and needs to be considered in developing drug delivery systems. Finally, bioimaging techniques that are used to examine aggregated states and the intracellular trafficking of absorbed drugs are summarized.
Collapse
Affiliation(s)
- Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Chaofeng Mu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA.
| |
Collapse
|
2
|
Desai HH, T M Serajuddin A. Development of lipid-based SEDDS using digestion products of long-chain triglyceride for high drug solubility: Formulation and dispersion testing. Int J Pharm 2024; 654:123953. [PMID: 38417725 DOI: 10.1016/j.ijpharm.2024.123953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
A self-emulsifying drug delivery system (SEDDS) containing long chain lipid digestion products (LDP) and surfactants was developed to increase solubility of two model weakly basic drugs, cinnarizine and ritonavir, in the formulation. A 1:1.2 w/w mixture of glyceryl monooleate (Capmul GMO-50; Abitec) and oleic acid was used as the digestion product, and a 1:1 w/w mixture of Tween 80 and Cremophor EL was the surfactant used. The ratio between LDP and surfactant was 1:1 w/w. Since the commercially available Capmul GMO-50 is not pure monoglyceride and contained di-and-triglycerides, the digestion product used would provide 1:2 stoichiometric molar ratio of monoglyceride and fatty acid after complete digestion in gastrointestinal fluid. Both cinnarizine and ritonavir had much higher solubility in oleic acid (536 and 72 mg/g, respectively) than that in glyceryl monooleate and glyceryl trioleate. Therefore, by incorporating oleic acid in place of glyceryl trioleate in the formulation, the solubility of cinnarizine and ritonavir could be increased by 5-fold and 3.5-fold, respectively, as compared to a formulation without the fatty acid. The formulation dispersed readily in aqueous media, and adding 3 mM sodium taurocholate, which is generally present in GI fluid, remarkably improved the dispersibility of SEDDS and reduced particle size of dispersions. Thus, the use of digestion products of long-chain triglycerides as components of SEDDS can enhance the drug loading of weakly basic compounds and increase dispersibility in GI fluids.
Collapse
Affiliation(s)
- Heta H Desai
- Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA; Present Address: Pace Life Sciences, 19 Presidential Way, Woburn, MA 01801, USA
| | - Abu T M Serajuddin
- Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| |
Collapse
|
3
|
Aljabbari A, Kihara S, Rades T, Boyd BJ. The biomolecular gastrointestinal corona in oral drug delivery. J Control Release 2023; 363:536-549. [PMID: 37776905 DOI: 10.1016/j.jconrel.2023.09.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The formation of a biomolecular corona on exogenous particles in plasma is well studied and is known to dictate the biodistribution and cellular interactions of nanomedicine formulations. In contrast, while the oral route is the most favorable administration method for pharmaceuticals, little is known about the formation and composition of the corona formed by biomolecules on particles within the gastrointestinal tract. This work reviews the current literature understanding of (1) the formation of drug particles after oral administration, (2) the formation of a biomolecular corona within the gastrointestinal tract ("the gastrointestinal corona"), and (3) the possible implications of the formation of a gastrointestinal corona on the interactions of drug particles with their biological environment. In doing so, this work aims to establish the significance of the formation of a gastrointestinal corona in oral drug delivery to ultimately arrive at new avenues to control the behavior of orally administered pharmaceuticals.
Collapse
Affiliation(s)
- Anas Aljabbari
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Shinji Kihara
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Ben J Boyd
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Xia D, Hu C, Hou Y. Regorafenib loaded self-assembled lipid-based nanocarrier for colorectal cancer treatment via lymphatic absorption. Eur J Pharm Biopharm 2023; 185:165-176. [PMID: 36870399 DOI: 10.1016/j.ejpb.2023.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/11/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Oral chemotherapy can improve the life quality of patients; however, the therapeutic effects are limited by low bioavailability and rapid in vivo elimination of anticancer drugs. Here, we developed a regorafenib (REG)-loaded self-assembled lipid-based nanocarrier (SALN) to improve oral absorption and anti-colorectal cancer efficacy of REG through lymphatic absorption. SALN was prepared with lipid-based excipients to utilize lipid transport in the enterocytes and enhance lymphatic absorption of the drug in the gastrointestinal tract. The particle size of SALN was 106 ± 10 nm. SALNs were internalized by the intestinal epithelium via the clathrin-mediated endocytosis, and then transported across the epithelium via the chylomicron secretion pathway, resulting in a 3.76-fold increase in drug epithelial permeability (Papp) compared to the solid dispersion (SD). After oral administration to rats, SALNs were transported by the endoplasmic reticulum, Golgi apparatus, and secretory vesicles of enterocytes and were found in the lamina propria of intestinal villi, abdominal mesenteric lymph, and plasma. The oral bioavailability of SALN was 65.9-fold and 1.70-fold greater than that of the coarse powder suspension and SD, respectively, and was highly dependent on the lymphatic route of absorption. Notably, SALN prolonged the elimination half-life of the drug (9.34 ± 2.51 h) compared to the solid dispersion (3.51 ± 0.46 h), increased the biodistribution of REG in the tumor and gastrointestinal (GI) tract, decreased biodistribution in the liver, and showed better therapeutic efficacy than the solid dispersion in colorectal tumor-bearing mice. These results demonstrated that SALN is promising for the treatment of colorectal cancer via lymphatic transport and has potential for clinical translation.
Collapse
Affiliation(s)
- Dengning Xia
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Cunde Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Yulin Hou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
5
|
Guner G, Amjad A, Berrios M, Kannan M, Bilgili E. Nanoseeded Desupersaturation and Dissolution Tests for Elucidating Supersaturation Maintenance in Amorphous Solid Dispersions. Pharmaceutics 2023; 15:pharmaceutics15020450. [PMID: 36839772 PMCID: PMC9964794 DOI: 10.3390/pharmaceutics15020450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The impact of residual drug crystals that are formed during the production and storage of amorphous solid dispersions (ASDs) has been studied using micron-sized seed crystals in solvent-shift (desupersaturation) and dissolution tests. This study examines the impacts of the seed size loading on the solution-mediated precipitation from griseofulvin ASDs. Nanoparticle crystals (nanoseeds) were used as a more realistic surrogate for residual crystals compared with conventional micron-sized seeds. ASDs of griseofulvin with Soluplus (Sol), Kollidon VA64 (VA64), and hydroxypropyl methyl cellulose (HPMC) were prepared by spray-drying. Nanoseeds produced by wet media milling were used in the dissolution and desupersaturation experiments. DLS, SEM, XRPD, and DSC were used for characterization. The results from the solvent-shift tests suggest that the drug nanoseeds led to a faster and higher extent of desupersaturation than the as-received micron-sized crystals and that the higher seed loading facilitated desupersaturation. Sol was the only effective nucleation inhibitor; the overall precipitation inhibition capability was ranked: Sol > HPMC > VA64. In the dissolution tests, only the Sol-based ASDs generated significant supersaturation, which decreased upon an increase in the nanoseed loading. This study has demonstrated the importance of using drug nanocrystals in lieu of conventional coarse crystals in desupersaturation and dissolution tests in ASD development.
Collapse
Affiliation(s)
| | | | | | | | - Ecevit Bilgili
- Correspondence: ; Tel.: +1-973-596-2998; Fax: +1-973-596-8436
| |
Collapse
|
6
|
Kokott M, Klinken S, Breitkreutz J, Wiedey R. Downstream processing of amorphous solid dispersions into orodispersible tablets. Int J Pharm 2023; 631:122493. [PMID: 36528189 DOI: 10.1016/j.ijpharm.2022.122493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
The formulation development of amorphous solid dispersions (ASDs) towards a patient-friendly oral solid dosage form is proving to be still challenging. To increase patient's compliance orodispersible tablets (ODTs) can be seen as promising alternative. Two different ASDs were prepared via hot melt extrusion (HME), using PVPVA as polymer for ritonavir (RTV) and HPMCAS for lopinavir (LPV). The extrudates were milled, sieved, and blended with Hisorad® (HRD) or Ludiflash® (LF), two established co-processed excipients (CPE) prior to tableting. Interestingly, the selected ASD particle size was pointed out to be a key parameter for a fast disintegration and high mechanical strength. In terms of PVPVA based ASDs, larger particle sizes > 500 µm enabled a rapid disintegration even under 30 s for 50 % ASD loaded ODTs, whereas the use of smaller particles went along with significant higher disintegration times. However, the influence of the CPE was immense for PVPVA based ASDs, since it was only possible to prepare well performing ODTs, when Hisorad® was chosen. In contrast for HPMCAS based ASDs the selection of smaller particle sizes 180-500 µm was beneficial for overcoming the poor compressibility of the ASD matrix polymer. ODTs with LPV could be produced using both CPEs even with higher ASD loads up to 75 %, while still showing remarkably fast disintegration.
Collapse
Affiliation(s)
- Marcel Kokott
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr, 1, 40225 Duesseldorf, Germany
| | - Stefan Klinken
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr, 1, 40225 Duesseldorf, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr, 1, 40225 Duesseldorf, Germany.
| | - Raphael Wiedey
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr, 1, 40225 Duesseldorf, Germany
| |
Collapse
|
7
|
da Silva Santos J, da Costa Alves F, José Dos Santos Júnior E, Soares Sobrinho JL, de La Roca Soares MF. Evolution of pediatric pharmaceutical forms for treatment of Hansen's disease (leprosy). Expert Opin Ther Pat 2023; 33:1-15. [PMID: 36755421 DOI: 10.1080/13543776.2023.2178301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Leprosy is a neglected, infectious, granulomatous and chronic disease caused by the pathological agent Mycobacterium leprae. The course of the disease is more aggressive in patients under 15 years of age, but the current treatment offered worldwide consists of solid forms, by the combination of antibiotics such as rifampicin, clofazimine and dapsone. This represents results in lack of adherence in pediatric patients and drug therapy failure, although numerous formulations and technologies have already been developed. AREA COVERED This study aims to analyze the technological evolution of the pharmaceutical treatment of leprosy, aimed at children. A review of patents around the world was conducted to look for technical and clinical aspects of formulations and devices. EXPERT OPINION Innovative formulations for pediatric patients were classified according to the routes of administration as oral, inhalable, injectable and transdermal. The formulations were organized as alternatives for pediatric therapy, taking into account the physicochemical aspects of drugs and the physiological aspects of pediatric patients. Among the difficulties for the patented formulations to reach the market, of special note is the low stability of the physicochemical characteristics of the drugs. Optimization of formulations would favor the pediatric treatment of leprosy, aiming at therapeutic success.
Collapse
Affiliation(s)
- Jocimar da Silva Santos
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| | - Franciely da Costa Alves
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| | - Efraim José Dos Santos Júnior
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| | - José Lamartine Soares Sobrinho
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| | - Mônica Felts de La Roca Soares
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| |
Collapse
|
8
|
Rafaet Hossain M, Abdul Rub M, Mahbub S, Atiya A, Majibur Rahman M, Asiri AM, Anamul Hoque M, Kabir M. Impact of ceftriaxone sodium on tetradecyltrimethylammonium bromide & cetyltrimethylammonium bromide mixture: Conductivity and theoretical investigation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Tran BN, Van Pham Q, Tran BT, Thien Le G, Dao AH, Tran TH, Nguyen CN. Supercritical CO2 impregnation approach for enhancing dissolution of fenofibrate by adsorption onto high-surface area carriers. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Shah B, Dong X. Design and Evaluation of Two-Step Biorelevant Dissolution Methods for Docetaxel Oral Formulations. AAPS PharmSciTech 2022; 23:113. [PMID: 35441281 DOI: 10.1208/s12249-022-02256-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/20/2022] [Indexed: 11/30/2022] Open
Abstract
Dissolution is a pivotal tool for oral formulations. Dissolution could be used to either reduce the risk of product failure through quality control or predict and understand in vivo performance of drug formulations. The latter is always challenging because multiple factors such as selection of media, gastrointestinal components, physiological factors, consideration of fasted and fed state are involved. Previously published dissolution methods such as one-step dissolution in individual simulated gastric fluid, simulated intestinal fluid, or phosphate buffer saline did not signify the realistic gastrointestinal transit effect. Docetaxel (DTX), a poorly water-soluble drug, is commercially available only as injectable dosage forms, and thus many publications studied the development of oral DTX formulations. In our previous report, we developed oral lipid-based DTX granules that showed higher oral absorption in rats compared to DTX powder. However, one-step dissolution in simulated gastric fluid showed no difference between DTX granules and DTX powder. Therefore, the present study aimed to develop new two-step biorelevant dissolution methods for DTX oral formulations. In the study, new two-step biorelevant dissolution methods in fasted or fed states with pancreatin were developed and compared with other previously reported dissolution methods. The new two-step biorelevant dissolution methods successfully discriminated the difference of dissolution between DTX granules and DTX powder, which reflected the in vivo difference of absorption of these two formulations. Moreover, food effects were confirmed for DTX. The new dissolution methods have the potential to be used to predict and understand in vivo performance of oral solid dosage forms.
Collapse
|
11
|
Guruge AG, Warren DB, Benameur H, Ford L, Williams HD, Jannin V, Pouton CW, Chalmers DK. Computational and Experimental Models of Type III Lipid-Based Formulations of Loratadine Containing Complex Nonionic Surfactants. Mol Pharm 2021; 18:4354-4370. [PMID: 34807627 DOI: 10.1021/acs.molpharmaceut.1c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type III lipid-based formulations (LBFs) combine poorly water-soluble drugs with oils, surfactants, and cosolvents to deliver the drugs into the systemic circulation. However, the solubility of the drug can be influenced by the colloidal phases formed in the gastrointestinal tract as the formulation is dispersed and makes contact with bile and other materials present within the GI tract. Thus, an understanding of the phase behavior of LBFs in the gut is critical for designing efficient LBFs. Molecular dynamics (MD) simulation is a powerful tool for the study of colloidal systems. In this study, we modeled the internal structures of five type III LBFs of loratadine containing poly(ethylene oxide) nonionic surfactants polysorbate 80 and polyoxyl hydrogenated castor oil (Kolliphor RH40) using long-timescale MD simulations (0.4-1.7 μs). We also conducted experimental investigations (dilution of formulations with water) including commercial Claritin liquid softgel capsules. The simulations show that LBFs form continuous phase, water-swollen reverse micelles, and bicontinuous and phase-separated systems at different dilutions, which correlate with the experimental observations. This study supports the use of MD simulation as a predictive tool to determine the fate of LBFs composed of medium-chain lipids, polyethylene oxide surfactants, and polymers.
Collapse
Affiliation(s)
- Amali G Guruge
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Dallas B Warren
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | - Leigh Ford
- Lonza Pharma Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Hywel D Williams
- Lonza Pharma Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Vincent Jannin
- Lonza Pharma Sciences, 10 Rue Timken, Colmar 68027, France
| | - Colin W Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - David K Chalmers
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
12
|
Wyttenbach N, Niederquell A, Ectors P, Kuentz M. Study and Computational Modeling of Fatty Acid Effects on Drug Solubility in Lipid-Based Systems. J Pharm Sci 2021; 111:1728-1738. [PMID: 34863971 DOI: 10.1016/j.xphs.2021.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
Lipid-based systems have many advantages in formulation of poorly water-soluble drugs but issues of a limited solvent capacity are often encountered in development. One of the possible solubilization approaches of especially basic drugs could be the addition of fatty acids to oils but currently, a systematic study is lacking. Therefore, the present work investigated apparently neutral and basic drugs in medium chain triglycerides (MCT) alone and with added either caproic acid (C6), caprylic acid (C8), capric acid (C10) or oleic acid (C18:1) at different levels (5 - 20%, w/w). A miniaturized solubility assay was used together with X-ray diffraction to analyze the residual solid and finally, solubility data were modeled using the conductor-like screening model for real solvents (COSMO-RS). Some drug bases had an MCT solubility of only a few mg/ml or less but addition of fatty acids provided in some formulations exceptional drug loading of up to about 20% (w/w). The solubility changes were in general more pronounced the shorter the chain length was and the longest oleic acid even displayed a negative effect in mixtures of celecoxib and fenofibrate. The COSMO-RS prediction accuracy was highly specific for the given compounds with root mean square errors (RMSE) ranging from an excellent 0.07 to a highest value of 1.12. The latter was obtained with the strongest model base pimozide for which a new solid form was found in some samples. In conclusion, targeting specific molecular interactions with the solute combined with mechanistic modeling provides new tools to advance lipid-based drug delivery.
Collapse
Affiliation(s)
- Nicole Wyttenbach
- F. Hoffmann-La Roche Ltd., Pharmaceutical Research & Early Development, Roche Innovation Center Basel, Grenzacherstr. 124, CH- 4070 Basel, Switzerland
| | - Andreas Niederquell
- University of Applied Sciences and Arts Northwest. Switzerland, Institute of Pharma Technology Hofackerstr. 30, CH- 4132 Muttenz, Switzerland
| | - Philipp Ectors
- F. Hoffmann-La Roche Ltd., Pharma Technical Development, Grenzacherstr. 124, CH-4070 Basel, Switzerland
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwest. Switzerland, Institute of Pharma Technology Hofackerstr. 30, CH- 4132 Muttenz, Switzerland.
| |
Collapse
|
13
|
Müller M, Wiedey R, Hoheisel W, Serno P, Breitkreutz J. Impact of co-administered stabilizers on the biopharmaceutical performance of regorafenib amorphous solid dispersions. Eur J Pharm Biopharm 2021; 169:189-199. [PMID: 34756974 DOI: 10.1016/j.ejpb.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/15/2021] [Accepted: 10/24/2021] [Indexed: 10/20/2022]
Abstract
Poor solubility of drug candidates is a well-known and thoroughly studied challenge in the development of oral dosage forms. One important approach to tackle this challenge is the formulation as an amorphous solid dispersion (ASD). To reach the desired biopharmaceutical improvement a high supersaturation has to be reached quickly and then be conserved long enough for absorption to take place. In the presented study, various formulations of regorafenib have been produced and characterized in biorelevant in-vitro experiments. Povidone-based formulations, which are equivalent to the marketed product Stivarga®, showed a fast drug release but limited stability and robustness after that. In contrast, HPMCAS-based formulations exhibited excellent stability of the supersaturated solution, but unacceptably slow drug release. The attempt to combine the desired attributes of both formulations by producing a ternary ASD failed. Only co-administration of HPMCAS as an external stabilizer to the rapidly releasing Povidone-based ASDs led to the desired dissolution profile and high robustness. This optimized formulation was tested in a pharmacokinetic animal model using Wistar rats. Despite the promising in-vitro results, the new formulation did not perform better in the animal model. No differences in AUC could be detected when compared to the conventional (marketed) formulation. These data represent to first in-vivo study of the new concept of external stabilization of ASDs. Subsequent in-vitro studies revealed that temporary exposure of the ASD to gastric medium had a significant and long-lasting effect on the dissolution performance and externally administered stabilizer could not prevent this sufficiently. By applying the co-administered HPMCAS as an enteric coating onto Stivarga tablets, a new bi-functional approach was realized. This approach achieved the desired tailoring of the dissolution profile and high robustness against gastric medium as well as against seeding.
Collapse
Affiliation(s)
- Martin Müller
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Germany, Universitätsstr. 1, 40225 Düsseldorf, Germany; Invite GmbH, Formulation Technologies, Leverkusen, Germany
| | - Raphael Wiedey
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Germany, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | | - Peter Serno
- Bayer AG, Research Center Wuppertal-Elberfeld, Wuppertal, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Germany, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Thakore SD, Sirvi A, Joshi VC, Panigrahi SS, Manna A, Singh R, Sangamwar AT, Bansal AK. Biorelevant dissolution testing and physiologically based absorption modeling to predict in vivo performance of supersaturating drug delivery systems. Int J Pharm 2021; 607:120958. [PMID: 34332060 DOI: 10.1016/j.ijpharm.2021.120958] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/08/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Supersaturating drug delivery systems (SDDS) enhance the oral absorption of poorly water-soluble drugs by achieving a supersaturated state in the gastrointestinal tract. The maintenance of a supersaturated state is decided by the complex interplay among inherent properties of drug, excipients and physiological conditions of gastrointestinal tract. The biopharmaceutical advantage through SDDS can be mechanistically investigated by coupling biopredictive dissolution testing with physiologically based absorption modeling (PBAM). However, the development of biopredictive dissolution methods possess challenges due to concurrent dissolution, supersaturation, precipitation, and possible redissolution of precipitates during gastrointestinal transit of SDDS. In this comprehensive review, our effort is to critically assess the current state-of-knowledge and provide future directions for PBAM of SDDS. The review outlines various methods used to retrieve physiologically relevant values for input parameters like solubility, dissolution, precipitation, lipid-digestion and permeability of SDDS. SDDS-specific parameterization includes solubility values corresponding to apparent physical form, dissolution in physiologically relevant volumes with biorelevant media, and transfer experiments to incorporate precipitation kinetics. Interestingly, the lack of experimental permeability values and modification of absorption flux through SDDS possess the additional challenge for its PBAM. Supersaturation triggered permeability modifications are reported to fit the observed plasma concentration-time profile. Hence, the experimental insights on good fitting with modified permeability can be potential area of future research for the development of in vitro methods to reliably predict oral absorption of SDDS.
Collapse
Affiliation(s)
- Samarth D Thakore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Vikram C Joshi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Sanjali S Panigrahi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Arijita Manna
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Ridhima Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India.
| |
Collapse
|
15
|
Li M, Furey C, Skros J, Xu O, Rahman M, Azad M, Dave R, Bilgili E. Impact of Matrix Surface Area on Griseofulvin Release from Extrudates Prepared via Nanoextrusion. Pharmaceutics 2021; 13:pharmaceutics13071036. [PMID: 34371728 PMCID: PMC8308970 DOI: 10.3390/pharmaceutics13071036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
We aimed to examine the impact of milling of extrudates prepared via nanoextrusion and the resulting matrix surface area of the particles on griseofulvin (GF, a model poorly soluble drug) release during in vitro dissolution. Wet-milled GF nanosuspensions containing a polymer (Sol: Soluplus®, Kol: Kolliphor® P407, or HPC: Hydroxypropyl cellulose) and sodium dodecyl sulfate were mixed with additional polymer and dried in an extruder. The extrudates with 2% and 10% GF loading were milled–sieved into three size fractions. XRPD–SEM results show that nanoextrusion produced GF nanocomposites with Kol/HPC and an amorphous solid dispersion (ASD) with Sol. For 8.9 mg GF dose (non-supersaturating condition), the dissolution rate parameter was higher for extrudates with higher external specific surface area and those with 10% drug loading. It exhibited a monotonic increase with surface area of the ASD, whereas its increase tended to saturate above ~30 × 10−3 m2/cm3 for the nanocomposites. In general, the nanocomposites released GF faster than the ASD due to greater wettability and faster erosion imparted by Kol/HPC than by Sol. For 100 mg GF dose, the ASD outperformed the nanocomposites due to supersaturation and only 10% GF ASD with 190 × 10−3 m2/cm3 surface area achieved immediate release (80% release within 30 min). Hence, this study suggests that ASD extrudates entail fine milling yielding > ~200 × 10−3 m2/cm3 for rapid drug release, whereas only a coarse milling yielding ~30 × 10−3 m2/cm3 may enable nanocomposites to release low-dose drugs rapidly.
Collapse
Affiliation(s)
- Meng Li
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
| | - Casey Furey
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
| | - Jeffrey Skros
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
| | - Olivia Xu
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
- Department of Organismic and Evolutionary Biology, Harvard College, Cambridge, MA 02138, USA;
| | - Mahbubur Rahman
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
| | - Mohammad Azad
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Rajesh Dave
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
| | - Ecevit Bilgili
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
- Correspondence: ; Tel.: +1-973-596-2998; Fax: +1-973-596-8436
| |
Collapse
|
16
|
Pham AC, Clulow AJ, Boyd BJ. Formation of Self-Assembled Mesophases During Lipid Digestion. Front Cell Dev Biol 2021; 9:657886. [PMID: 34178984 PMCID: PMC8231029 DOI: 10.3389/fcell.2021.657886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/05/2021] [Indexed: 11/27/2022] Open
Abstract
Lipids play an important role in regulating bodily functions and providing a source of energy. Lipids enter the body primarily in the form of triglycerides in our diet. The gastrointestinal digestion of certain types of lipids has been shown to promote the self-assembly of lipid digestion products into highly ordered colloidal structures. The formation of these ordered colloidal structures, which often possess well-recognized liquid crystalline morphologies (or “mesophases”), is currently understood to impact the way nutrients are transported in the gut and absorbed. The formation of these liquid crystalline structures has also been of interest within the field of drug delivery, as it enables the encapsulation or solubilization of poorly water-soluble drugs in the aqueous environment of the gut enabling a means of absorption. This review summarizes the evidence for structure formation during the digestion of different lipid systems associated with foods, the techniques used to characterize them and provides areas of focus for advancing our understanding of this emerging field.
Collapse
Affiliation(s)
- Anna C Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| |
Collapse
|
17
|
Kamoun J, Krichen F, Koubaa I, Zouari N, Bougatef A, Abousalham A, Aloulou A. In vitro lipolysis and physicochemical characterization of unconventional star anise oil towards the development of new lipid-based drug delivery systems. Heliyon 2021; 7:e06717. [PMID: 33898835 PMCID: PMC8056425 DOI: 10.1016/j.heliyon.2021.e06717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 11/28/2022] Open
Abstract
Lipid-based drug delivery systems are widely used for enhancing the bioavailability of poorly water-soluble drugs. However, following oral intake, lipid excipients often undergo gastrointestinal lipolysis, which drastically affects drugs solubility and bioavailability. That's why developing new lipid excipients which are resistant to digestion would be of great interest. We studied here the potential role of the unconventional Chinese star anise whole seedpod oil (CSAO) as an alternative multifunctional lipid excipient. Pancreatic lipase-mediated digestion of the extracted crude oil emulsion was assessed in vitro. Pancreatic lipase, being a strict sn-1,3-regioselective lipase, showed a high (16-fold) olive oil to CSAO activity ratio, which could be attributed to fatty acids composition and triglycerides intramolecular structure. For the sake of comparison, the non-regioselective lipase Novozyme® 435 exhibited higher activity than pancreatic lipase on CSAO emulsion, perhaps due to its ability to release fatty acids from the internal sn-2 position of TAGs. Apart counteracting lipolysis, CSAO oil also showed additional biopharmaceutical benefits including moderate antioxidant and antihypertensive activities. Altogether, these findings highlight for the first time the potential use of star anise unconventional whole seedpod oil as a multifunctional lipid excipient for the development of new lipid formulations.
Collapse
Affiliation(s)
- Jannet Kamoun
- University of Sfax, National Engineering School of Sfax, Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Sfax 3038, Tunisia.,Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Fatma Krichen
- University of Sfax, National Engineering School of Sfax, Laboratory of Plant Improvement and Valorization of Agro-resources, Sfax 3038, Tunisia
| | - Imed Koubaa
- University of Sfax, Faculty of Science of Sfax, Laboratory of Organic Chemistry, Sfax 3038, Tunisia
| | - Nacim Zouari
- University of Gabes, Higher Institute of Applied Biology of Medenine, Medenine 4119, Tunisia
| | - Ali Bougatef
- University of Sfax, National Engineering School of Sfax, Laboratory of Plant Improvement and Valorization of Agro-resources, Sfax 3038, Tunisia
| | - Abdelkarim Abousalham
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Ahmed Aloulou
- University of Sfax, National Engineering School of Sfax, Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Sfax 3038, Tunisia
| |
Collapse
|
18
|
Balanuca B, Ott C, Damian CM, Iovu H, Trusca R, Stan R. Exploring the potential of inexpensive high oleic sunflower oil for new polymeric architectures. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Brindusa Balanuca
- Department of Organic Chemistry “C. Nenitescu” University Politehnica of Bucharest Bucharest Romania
- Advanced Polymer Materials Group University Politehnica of Bucharest Bucharest Romania
| | - Cristina Ott
- Department of Organic Chemistry “C. Nenitescu” University Politehnica of Bucharest Bucharest Romania
| | - Celina Maria Damian
- Advanced Polymer Materials Group University Politehnica of Bucharest Bucharest Romania
| | - Horia Iovu
- Advanced Polymer Materials Group University Politehnica of Bucharest Bucharest Romania
- Academy of Romanian Scientists Bucharest Romania
| | - Roxana Trusca
- Faculty of Engineering in Foreign Languages University Politehnica of Bucharest Bucharest Romania
| | - Raluca Stan
- Department of Organic Chemistry “C. Nenitescu” University Politehnica of Bucharest Bucharest Romania
| |
Collapse
|
19
|
Suys EJA, Brundel DHS, Chalmers DK, Pouton CW, Porter CJH. Interaction with biliary and pancreatic fluids drives supersaturation and drug absorption from lipid-based formulations of low (saquinavir) and high (fenofibrate) permeability poorly soluble drugs. J Control Release 2021; 331:45-61. [PMID: 33450318 DOI: 10.1016/j.jconrel.2021.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022]
Abstract
Drug absorption from lipid-based formulations (LBFs) in the gastrointestinal (GI) tract is the result of a series of processes, including formulation dispersion, interaction with biliary and pancreatic secretions, drug solubilisation and supersaturation, and finally intestinal permeability. Optimal formulation design is dependent on a good understanding of the limitations to, and drivers of, absorption, but for LBFs the complexity of these processes makes data interpretation complex. The current study has re-examined a previous in vitro digestion-in situ perfusion model to increase physiological relevance and has used this model to examine drug absorption from LBFs. The composition of rat bile and jejunal fluid was also characterised to identify in vivo-relevant conditions. Digestion was initiated using rat bile/pancreatic fluid and the formulation and digestive enzymes mixed immediately prior to entry into the jejunum (allowing dilution/digestion to occur at the absorptive site). These conditions were employed to study drug absorption from LBFs of high (fenofibrate, FFB) and low (saquinavir, SQV) permeability compounds. The impact of polymeric precipitation inhibitors (PPIs) was also evaluated. For FFB, supersaturation, initiated by formulation interaction with biliary/pancreatic fluids, appeared to drive absorption and the addition of the PPIs poly(glycidyl methacrylate) (PPGAE) and hydroxypropylmethyl cellulose (HPMC), reduced drug precipitation, increased FFB supersaturation and increased absorption from a Type IV LBF of FFB. For a Type IIIB LBF however, PPIs were ineffective at increasing absorption. The impact of PPIs on the absorption of a less permeable drug, SQV, was similarly evaluated and again drug absorption appeared to be related to the extent of supersaturation, although in this case PPI were unable to promote absorption. For both FFB and SQV, drug absorption patterns obtained with the in vitro digestion-in situ perfusion mode, correlated well with in vitro supersaturation data and in vivo drug exposure data from oral bioavailability studies. The data are consistent with a mode of drug absorption where rapid dilution of LBFs with biliary and pancreatic secretions at the absorptive site in the upper small intestine drives transient supersaturation, that supersaturation is a significant driver of drug absorption for both low and high permeability drugs, and that PPIs delay drug precipitation, enhance supersaturation and promote drug absorption in a drug and formulation specific manner.
Collapse
Affiliation(s)
- Estelle J A Suys
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia
| | - Daniel H S Brundel
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia
| | - David K Chalmers
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia
| | - Colin W Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia.
| |
Collapse
|
20
|
Chaves LL, Patriota Y, Soares-Sobrinho JL, Vieira ACC, Lima SAC, Reis S. Drug Delivery Systems on Leprosy Therapy: Moving Towards Eradication? Pharmaceutics 2020; 12:E1202. [PMID: 33322356 PMCID: PMC7763250 DOI: 10.3390/pharmaceutics12121202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022] Open
Abstract
Leprosy disease remains an important public health issue as it is still endemic in several countries. Mycobacterium leprae, the causative agent of leprosy, presents tropism for cells of the reticuloendothelial and peripheral nervous system. Current multidrug therapy consists of clofazimine, dapsone and rifampicin. Despite significant improvements in leprosy treatment, in most programs, successful completion of the therapy is still sub-optimal. Drug resistance has emerged in some countries. This review discusses the status of leprosy disease worldwide, providing information regarding infectious agents, clinical manifestations, diagnosis, actual treatment and future perspectives and strategies on targets for an efficient targeted delivery therapy.
Collapse
Affiliation(s)
- Luíse L. Chaves
- Laboratório Associado para a Química Verde, Rede de Química e Tecnologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.C.C.V.); (S.A.C.L.)
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Universidade Federal de Pernambuco, Recife 50740-521, Brazil; (Y.P.); (J.L.S.-S.)
| | - Yuri Patriota
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Universidade Federal de Pernambuco, Recife 50740-521, Brazil; (Y.P.); (J.L.S.-S.)
| | - José L. Soares-Sobrinho
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Universidade Federal de Pernambuco, Recife 50740-521, Brazil; (Y.P.); (J.L.S.-S.)
| | - Alexandre C. C. Vieira
- Laboratório Associado para a Química Verde, Rede de Química e Tecnologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.C.C.V.); (S.A.C.L.)
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Recife 50740-521, Brazil
| | - Sofia A. Costa Lima
- Laboratório Associado para a Química Verde, Rede de Química e Tecnologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.C.C.V.); (S.A.C.L.)
- Cooperativa de Ensino Superior Politécnico e Universitário, Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal
| | - Salette Reis
- Laboratório Associado para a Química Verde, Rede de Química e Tecnologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.C.C.V.); (S.A.C.L.)
| |
Collapse
|
21
|
Bennett-Lenane H, Koehl NJ, O'Dwyer PJ, Box KJ, O'Shea JP, Griffin BT. Applying Computational Predictions of Biorelevant Solubility Ratio Upon Self-Emulsifying Lipid-Based Formulations Dispersion to Predict Dose Number. J Pharm Sci 2020; 110:164-175. [PMID: 33144233 DOI: 10.1016/j.xphs.2020.10.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 11/26/2022]
Abstract
Computational approaches are increasingly utilised in development of bio-enabling formulations, including self-emulsifying drug delivery systems (SEDDS), facilitating early indicators of success. This study investigated if in silico predictions of drug solubility gain i.e. solubility ratios (SR), after dispersion of a SEDDS in biorelevant media could be predicted from drug properties. Apparent solubility upon dispersion of two SEDDS in FaSSIF was measured for 30 structurally diverse poorly water soluble drugs. Increased drug solubility upon SEDDS dispersion was observed in all cases, with higher SRs observed for cationic and neutral versus anionic drugs at pH 6.5. Molecular descriptors and solid-state properties were used as inputs during partial least squares (PLS) modelling resulting in predictive models for SRMC (r2 = 0.81) and SRLC (r2 = 0.77). Multiple linear regression (MLR) facilitated generation of simplified SR equations with high predictivity (SRMC r2 = 0.74; SRLC r2 = 0.69), requiring only three drug properties; partition coefficient at pH 6.5 (logD6.5), melting point (Tm) and aromatic bonds as fraction of total bonds (F-AromB). Through using the equations to inform developability classification system (DCS) classes for drugs that have already been licensed as lipid-based formulations, merits for development with SEDDS was predicted for 2/3 drugs.
Collapse
Affiliation(s)
| | - Niklas J Koehl
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Patrick J O'Dwyer
- School of Pharmacy, University College Cork, Cork, Ireland; Pion Inc. (UK) Ltd, Forest Row, East Sussex, UK
| | - Karl J Box
- Pion Inc. (UK) Ltd, Forest Row, East Sussex, UK
| | | | | |
Collapse
|
22
|
Ilie AR, Griffin BT, Vertzoni M, Kuentz M, Cuyckens F, Wuyts K, Kolakovic R, Holm R. Toward simplified oral lipid-based drug delivery using mono-/di-glycerides as single component excipients. Drug Dev Ind Pharm 2020; 46:2051-2060. [PMID: 33124918 DOI: 10.1080/03639045.2020.1843475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study aimed to systematically explore compositional effects for a series of lipid systems, on the in vitro drug solubilization and in vivo bioavailability of three poorly water-soluble drugs with different physico-chemical properties. SIGNIFICANCE While many lipid-based drug products have successfully reached the market, there is still a level of uncertainty on the design guidelines for such drug products with limited understanding on the influence of composition on in vitro and in vivo performance. METHODS AND RESULTS Lipid-based drug delivery systems were prepared using either single excipient systems based on partially digested triglycerides (i.e. mono- and/or di-glycerides) or increasingly complex systems by incorporating surfactants and/or triglycerides. These lipid systems were evaluated for both in vitro and in vivo behavior. Results indicated that simple single component long chain lipid systems are more beneficial for the absorption of the weak acid celecoxib and the weak base cinnarizine compared to equivalent single component medium chain lipid systems. Similarly, a two-component system produced by incorporating small amount of hydrophilic surfactant yields similar overall pharmacokinetic effects. The lipid drug delivery systems based on medium chain lipid excipients improved the in vivo exposure of the neutral drug JNJ-2A. The higher in vivo bioavailability of long chain lipid systems compared to medium chain lipid systems was in agreement with in vitro dilution and dispersion studies for celecoxib and cinnarizine. CONCLUSIONS The present study demonstrated the benefits of using mono-/di-glycerides as single component excipients in LBDDS to streamline formulation screening and improve oral bioavailability for the three tested poorly water-soluble drugs.
Collapse
Affiliation(s)
- Alexandra-Roxana Ilie
- Drug Product Development, Janssen Research and Development, Beerse, Belgium.,School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Filip Cuyckens
- Drug Metabolism & Pharmacokinetics, Janssen Research and Development, Beerse, Belgium
| | - Koen Wuyts
- Drug Metabolism & Pharmacokinetics, Janssen Research and Development, Beerse, Belgium
| | - Ruzica Kolakovic
- Drug Product Development, Janssen Research and Development, Beerse, Belgium
| | - René Holm
- Drug Product Development, Janssen Research and Development, Beerse, Belgium.,Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
23
|
Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Chauhan G, Shaik AA, Kulkarni NS, Gupta V. The preparation of lipid-based drug delivery system using melt extrusion. Drug Discov Today 2020; 25:S1359-6446(20)30330-5. [PMID: 32835807 DOI: 10.1016/j.drudis.2020.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/30/2020] [Accepted: 07/28/2020] [Indexed: 01/16/2023]
Abstract
Melt extrusion of lipids is versatile with high applicability in the pharmaceutical industry. The formulations prepared can be easily customized depending on the requirements, and have the potential to open a window on personalized medicine.
Collapse
Affiliation(s)
- Gautam Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Abdul A Shaik
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Current address: School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Nishant S Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
25
|
Almasri R, Joyce P, Schultz HB, Thomas N, Bremmell KE, Prestidge CA. Porous Nanostructure, Lipid Composition, and Degree of Drug Supersaturation Modulate In Vitro Fenofibrate Solubilization in Silica-Lipid Hybrids. Pharmaceutics 2020; 12:pharmaceutics12070687. [PMID: 32708197 PMCID: PMC7408050 DOI: 10.3390/pharmaceutics12070687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/08/2023] Open
Abstract
The unique nanostructured matrix obtained by silica-lipid hybrids (SLHs) is well known to improve the dissolution, absorption, and bioavailability of poorly water-soluble drugs (PWSDs). The aim of this study was to investigate the impact of: (i) drug load: 3–22.7% w/w, (ii) lipid type: medium-chain triglyceride (Captex 300) and mono and diester of caprylic acid (Capmul PG8), and (iii) silica nanostructure: spray dried fumed silica (FS) and mesoporous silica (MPS), on the in vitro dissolution, solubilization, and solid-state stability of the model drug fenofibrate (FEN). Greater FEN crystallinity was detected at higher drug loads and within the MPS formulations. Furthermore, an increased rate and extent of dissolution was achieved by FS formulations when compared to crystalline FEN (5–10-fold), a commercial product; APO-fenofibrate (2.4–4-fold) and corresponding MPS formulations (2–4-fold). Precipitation of FEN during in vitro lipolysis restricted data interpretation, however a synergistic effect between MPS and Captex 300 in enhancing FEN aqueous solubilization was attained. It was concluded that a balance between in vitro performance and drug loading is key, and the optimum drug load was determined to be between 7–16% w/w, which corresponds to (200–400% equilibrium solubility in lipid Seq). This study provides valuable insight into the impact of key characteristics of SLHs, in constructing optimized solid-state lipid-based formulations for the oral delivery of PWSDs.
Collapse
Affiliation(s)
- Ruba Almasri
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Paul Joyce
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Hayley B. Schultz
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Nicky Thomas
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Kristen E. Bremmell
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Clive A. Prestidge
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
- Correspondence: ; Tel.: +61-8830-22438
| |
Collapse
|
26
|
Schittny A, Huwyler J, Puchkov M. Mechanisms of increased bioavailability through amorphous solid dispersions: a review. Drug Deliv 2020; 27:110-127. [PMID: 31885288 PMCID: PMC6968646 DOI: 10.1080/10717544.2019.1704940] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Amorphous solid dispersions (ASDs) can increase the oral bioavailability of poorly soluble drugs. However, their use in drug development is comparably rare due to a lack of basic understanding of mechanisms governing drug liberation and absorption in vivo. Furthermore, the lack of a unified nomenclature hampers the interpretation and classification of research data. In this review, we therefore summarize and conceptualize mechanisms covering the dissolution of ASDs, formation of supersaturated ASD solutions, factors responsible for solution stabilization, drug uptake from ASD solutions, and drug distribution within these complex systems as well as effects of excipients. Furthermore, we discuss the importance of these findings on the development of ASDs. This improved overall understanding of these mechanisms will facilitate a rational ASD formulation development and will serve as a basis for further mechanistic research on drug delivery by ASDs.
Collapse
Affiliation(s)
- Andreas Schittny
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland.,Department of Biomedicine, Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| | - Maxim Puchkov
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| |
Collapse
|
27
|
Park H, Ha ES, Kim MS. Current Status of Supersaturable Self-Emulsifying Drug Delivery Systems. Pharmaceutics 2020; 12:pharmaceutics12040365. [PMID: 32316199 PMCID: PMC7238279 DOI: 10.3390/pharmaceutics12040365] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Self-emulsifying drug delivery systems (SEDDSs) are a vital strategy to enhance the bioavailability (BA) of formulations of poorly water-soluble compounds. However, these formulations have certain limitations, including in vivo drug precipitation, poor in vitro in vivo correlation due to a lack of predictive in vitro tests, issues in handling of liquid formulation, and physico-chemical instability of drug and/or vehicle components. To overcome these limitations, which restrict the potential usage of such systems, the supersaturable SEDDSs (su-SEDDSs) have gained attention based on the fact that the inclusion of precipitation inhibitors (PIs) within SEDDSs helps maintain drug supersaturation after dispersion and digestion in the gastrointestinal tract. This improves the BA of drugs and reduces the variability of exposure. In addition, the formulation of solid su-SEDDSs has helped to overcome disadvantages of liquid or capsule dosage form. This review article discusses, in detail, the current status of su-SEDDSs that overcome the limitations of conventional SEDDSs. It discusses the definition and range of su-SEDDSs, the principle mechanisms underlying precipitation inhibition and enhanced in vivo absorption, drug application cases, biorelevance in vitro digestion models, and the development of liquid su-SEDDSs to solid dosage forms. This review also describes the effects of various physiological factors and the potential interactions between PIs and lipid, lipase or lipid digested products on the in vivo performance of su-SEDDSs. In particular, several considerations relating to the properties of PIs are discussed from various perspectives.
Collapse
|
28
|
Hong L, Sesen M, Hawley A, Neild A, Spicer PT, Boyd BJ. Correction: Comparison of bulk and microfluidic methods to monitor the phase behaviour of nanoparticles during digestion of lipid-based drug formulations using in situ X-ray scattering. SOFT MATTER 2020; 16:276. [PMID: 31815991 DOI: 10.1039/c9sm90251a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Correction for 'Comparison of bulk and microfluidic methods to monitor the phase behaviour of nanoparticles during digestion of lipid-based drug formulations using in situ X-ray scattering' by Ben J. Boyd et al., Soft Matter, 2019, 15, 9565-9578.
Collapse
Affiliation(s)
- Linda Hong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia. and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Muhsincan Sesen
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3150, Australia
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Patrick T Spicer
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia. and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
29
|
Bannow J, Yorulmaz Y, Löbmann K, Müllertz A, Rades T. Improving the drug load and in vitro performance of supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS) using polymeric precipitation inhibitors. Int J Pharm 2019; 575:118960. [PMID: 31846728 DOI: 10.1016/j.ijpharm.2019.118960] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/23/2022]
Abstract
In this study, the influence of the polymeric precipitation inhibitor (PPI) PVP/VA 64 (polyvinylpyrrolidone-co-vinyl acetate) on the physical stability and in vitro performance of supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS) containing the model drug simvastatin (SIM) was investigated. A heating-cooling cycle was employed to dissolve (i) the drug in the SNEDDS preconcentrate, generating super-SNEDDS, or (ii) the drug and PPI generating PPI super-SNEDDS, both containing drug loads of 200% and 250% (with regard to the equilibrium solubility of SIM in the blank SNEDDS). PPI super-SNEDDS were prepared at PPI concentrations of 1%, 10% and 20% (w/w), respectively. The formulations were characterized using polarized light microscopy, dynamic light scattering, rheological profiling and dynamic in vitro lipolysis. The physical stability of PPI super-SNEDDS correlated with an increase in viscosity due to the additionally dissolved PVP/VA 64. PPI super-SNEDDS with drug loads of 200% and 250% containing 20% (w/w) PPI showed no drug recrystallization after more than 6 months of storage at room temperature, whereas PPI-free super-SNEDDS (250% drug load) recrystallized within two hours after equilibration to room temperature. All formulations formed nanosized droplets after emulsification in Milli-Q water. The droplet size was not affected by the PPI, but increased slightly with increasing drug load (z-average of 47.3 ± 0.4 nm for SNEDDS with 200% drug load and 55.6 ± 1.3 nm for SNEDDS with 250% drug load). PPI super-SNEDDS with a drug load of 200% containing 20% (w/w) PVP/VA 64 showed an improved performance during dynamic in vitro lipolysis, maintaining a 2.5-fold higher degree of supersaturation after 15 min of digestion compared to PPI-free super-SNEDDS of the same drug load. In conclusion, the study demonstrated the feasibility of stabilizing higher drug loads and improving the in vitro performance of super-SNEDDS by incorporating PVP/VA 64 into the preconcentrate.
Collapse
Affiliation(s)
- J Bannow
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Y Yorulmaz
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - K Löbmann
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - A Müllertz
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - T Rades
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Åbo Akademi University, Faculty of Science and Engineering, Tykistökatu 6A, FI-20521 Turku, Finland.
| |
Collapse
|
30
|
Hong L, Sesen M, Hawley A, Neild A, Spicer PT, Boyd BJ. Comparison of bulk and microfluidic methods to monitor the phase behaviour of nanoparticles during digestion of lipid-based drug formulations using in situ X-ray scattering. SOFT MATTER 2019; 15:9565-9578. [PMID: 31724682 DOI: 10.1039/c9sm01440c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The performance of orally administered lipid-based drug formulations is crucially dependent on digestion, and understanding the colloidal structures formed during digestion is necessary for rational formulation design. Previous studies using the established bulk pH-stat approach (Hong et al. 2015), coupled to synchrotron small angle X-ray scattering (SAXS), have begun to shed light on this subject. Such studies of digestion using in situ SAXS measurements are complex and have limitations regarding the resolution of intermediate structures. Using a microfluidic device, the digestion of lipid systems may be monitored with far better control over the mixing of the components and the application of enzyme, thereby elucidating a finer understanding of the structural progression of these lipid systems. This work compares a simple T-junction microcapillary device and a custom-built microfluidic chip featuring hydrodynamic flow focusing, with an equivalent experiment with the full scale pH-stat approach. Both microfluidic devices were found to be suitable for in situ SAXS measurements in tracking the kinetics with improved time and signal sensitivity compared to other microfluidic devices studying similar lipid-based systems, and producing more consistent and controllable structural transformations. Particle sizing of the nanoparticles produced in the microfluidic devices were more consistent than the pH-stat approach.
Collapse
Affiliation(s)
- Linda Hong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia.
| | | | | | | | | | | |
Collapse
|
31
|
Visetvichaporn V, Kim KH, Jung K, Cho YS, Kim DD. Formulation of self-microemulsifying drug delivery system (SMEDDS) by D-optimal mixture design to enhance the oral bioavailability of a new cathepsin K inhibitor (HL235). Int J Pharm 2019; 573:118772. [PMID: 31765770 DOI: 10.1016/j.ijpharm.2019.118772] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 12/14/2022]
Abstract
HL235 is a new cathepsin K inhibitor designed and synthesized to treat osteoporosis. Since HL235 has poor aqueous solubility, a self-microemulsifying drug delivery system (SMEDDS) was formulated to enhance its oral bioavailability. A solubility study of HL235 was performed to select a suitable oil, surfactant and cosurfactant. Pseudoternary phase diagrams were plotted to identify the microemulsion region and to determine the range of components in the isotropic mixture. D-optimal mixture design and a desirability function were introduced to optimize the SMEDDS formulation for the desired physicochemical characteristics, i.e., high drug concentration at 15 min after dilution with simulated gastric fluid (SGF) and high solubilization capacity. The optimized HL235-loaded SMEDDS formulation consisted of 5.0% Capmul MCM EP (oil), 75.0% Tween 20 (surfactant) and 20.0% Carbitol (cosurfactant). The droplet size of the microemulsion formed by the optimized formulation was 10.7 ± 1.6 nm, and the droplets were spherical in shape. Pharmacokinetic studies in rats showed that the relative oral bioavailability of the SMEDDS formulation increased up to 3.22-fold compared to its solution in DMSO:PEG400 (8:92, v/v). Thus, the formulation of SMEDDS optimized by D-optimal mixture design could be a promising approach to improve the oral bioavailability of HL235.
Collapse
Affiliation(s)
- Voradanu Visetvichaporn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung-Hee Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Kyungjin Jung
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Yun-Seok Cho
- R&D Center, Hanlim Pharm. Co., Ltd, Seoul 06634, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
32
|
Alsenz J, Kuentz M. From Quantum Chemistry to Prediction of Drug Solubility in Glycerides. Mol Pharm 2019; 16:4661-4669. [DOI: 10.1021/acs.molpharmaceut.9b00801] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jochem Alsenz
- Roche Pharmaceutical Research & Early Development, Pre-Clinical CMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstr. 124, 4070 Basel, Switzerland
| | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstr. 30, 4132 Muttenz, Switzerland
| |
Collapse
|
33
|
Pham A, Gavin PD, Libinaki R, Ramirez G, Khan JT, Boyd BJ. Differential Effects of TPM, A Phosphorylated Tocopherol Mixture, and Other Tocopherol Derivatives as Excipients for Enhancing the Solubilization of Co-Enzyme Q10 as a Lipophilic Drug During Digestion of Lipid- Based Formulations. Curr Drug Deliv 2019; 16:628-636. [PMID: 31385769 DOI: 10.2174/1567201816666190806114022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/27/2019] [Accepted: 06/23/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND The tocopherol-based excipient, TPM, when incorporated into a medium-chain triglyceride (MCT)-based lipid formulation, has been previously shown to improve the solubilization of Coenzyme Q10 (CoQ10) during in vitro digestion which is strongly correlated with enhanced exposure in vivo. METHODS The current study aimed to gain further understanding of the MCT + TPM co-formulation, by assessing the formulation performance under fasted and fed in vitro digestion conditions, with different drug and excipient loading levels. Natural and synthetic-derived TPM were equivalent, and with d-α- tocopherol polyethylene glycol 1000 succinate (TPGS) outperformed other derivatives in enhancing the solubilisation of CoQ10 during digestion. RESULT Fed conditions significantly improved the solubility of CoQ10 during in vitro digestion of the formulation in comparison with fasted conditions. The addition of TPM at 10% (w/w) of the total MCT + TPM provided optimal performance in terms of CoQ10 solubilization during digestion. CONCLUSION The results further highlights the potential of TPM as an additive in lipid formulations to improve the solubilization and oral bioavailability of poorly water-soluble compounds.
Collapse
Affiliation(s)
- Anna Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Pde, Parkville, Victoria 3052, Australia
| | - Paul D Gavin
- Phosphagenics Limited, 11 Duerdin Street, Clayton VIC 3168, Australia
| | - Roksan Libinaki
- Phosphagenics Limited, 11 Duerdin Street, Clayton VIC 3168, Australia
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Pde, Parkville, Victoria 3052, Australia
| | - Jamal T Khan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Pde, Parkville, Victoria 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Pde, Parkville, Victoria 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Pde, Parkville, Victoria 3052, Australia
| |
Collapse
|
34
|
Salim M, Fraser-Miller SJ, Sutton JJ, Be̅rziņš K, Hawley A, Clulow AJ, Beilles S, Gordon KC, Boyd BJ. Application of Low-Frequency Raman Scattering Spectroscopy to Probe in Situ Drug Solubilization in Milk during Digestion. J Phys Chem Lett 2019; 10:2258-2263. [PMID: 31013099 PMCID: PMC6503463 DOI: 10.1021/acs.jpclett.9b00654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We have recently shown that real-time monitoring of drug solubilization and changes to solid state of the drug during digestion of milk can be achieved using synchrotron small-angle X-ray scattering. A complementary laboratory-based method to explore such changes is low-frequency Raman spectroscopy, which has been increasingly used to characterize crystalline drugs and their polymorphs in powders and suspensions. This study investigates the use of this technique to monitor in situ drug solubilization in milk during the process of digestion, using a lipolysis model/flow-through configuration identical to that used previously for in situ synchrotron small-angle X-ray scattering studies. An antimalarial drug, ferroquine (SSR97193), was used as the model drug for this study. The Raman spectra were processed using multivariate analysis to extract the drug signals from the milk digestion background. The results showed disappearance of the ferroquine peaks in the low-frequency Raman region (<200 cm-1) after approximately 15-20 min of digestion when milk fat was present in the system, which indicated drug solubilization and was in good agreement with the in situ small-angle X-ray scattering measurements. This proof-of-concept study therefore suggests that low-frequency Raman spectroscopy can be used to monitor drug solubilization in a complex digesting milk medium because of the unique vibrational modes of the drug crystal lattices.
Collapse
Affiliation(s)
- Malinda Salim
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Sara J. Fraser-Miller
- Dodd-Walls
Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Joshua J. Sutton
- Dodd-Walls
Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ka̅rlis Be̅rziņš
- Dodd-Walls
Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Adrian Hawley
- SAXS/WAXS
Beamline, Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3169, Australia
| | - Andrew J. Clulow
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Stéphane Beilles
- Sanofi, 371, Rue du Pr. Blayac, 34181 Montpellier cedex04, France
| | - Keith C. Gordon
- Dodd-Walls
Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ben J. Boyd
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
- Monash
Institute of Pharmaceutical
Sciences, Monash University (Parkville Campus), 381 Royal Parade,
Parkville, VIC 3052, Australia. Tel.: +61 3 99039112. Fax: +61 3 99039583. E-mail:
| |
Collapse
|
35
|
Successful development of oral SEDDS: screening of excipients from the industrial point of view. Adv Drug Deliv Rev 2019; 142:128-140. [PMID: 30414496 DOI: 10.1016/j.addr.2018.10.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 11/20/2022]
Abstract
Oral administration is the most accepted and favored route as various side effects such as fear, pain and risk of infections can be avoided resulting in a comparatively high patient compliance. However, from the industrial point of view the development of oral delivery systems is still challenging as various drugs are poorly soluble as well as slightly permeable leading to low bioavailability. As self-emulsifying drug delivery systems are able to incorporate both hydrophobic and hydrophilic drugs, these carrier systems have received more and more attention within the last years. Based on the broad range of currently available excipients, this review provides a kind of guideline for the selection of excipients useful to improve bioavailability of the drug on the one hand. As the regulatory status of potential excipients are highly important to introduce the formulation on the market, the review is focused on the other hand on excipients listed in the IIG database of the FDA by taking their corresponding maximum concentration into account. Furthermore, the issue of oral sensation and taste masking is discussed useful for the development of intraoral SEDDS.
Collapse
|
36
|
Kuentz M. Drug supersaturation during formulation digestion, including real-time analytical approaches. Adv Drug Deliv Rev 2019; 142:50-61. [PMID: 30445096 DOI: 10.1016/j.addr.2018.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 01/23/2023]
Abstract
Self-emulsifying and other lipid-based drug delivery systems have drawn considerable interest from pharmaceutical scientists for managing oral delivery of poorly water-soluble compounds. Following administration, self-emulsifying systems exhibit complex aqueous dispersion and digestion in the gastro-intestinal tract. These processes generally result in drug supersaturation, which leads to enhanced absorption or the high drug concentrations may cause precipitation with erratic and variable oral bioavailability. This review briefly outlines drug supersaturation obtained from self-emulsifying and other lipid-based formulations; recent advancements of in vitro lipolysis testing are also discussed. Further, a main focus is mechanisms by which supersaturation is triggered from gastro-intestinal processes, as well as analytical techniques that are promising from a research and development perspective. Comparatively simple approaches are presented together with more sophisticated process analytics to enable direct examination of kinetic changes. The analytical methods together with their sensor probes are discussed in detail to clarify opportunities as well as technical limitations. Some of the more sophisticated methods, including those based on synchrotron radiation, are primarily research oriented despite interesting experimental findings from an industrial viewpoint. The availability of kinetic data further opens the door to mathematical modeling of supersaturation and precipitation versus permeation, which lays the groundwork for better in vitro to in vivo correlations as well as for physiologically-based modeling of lipid-based systems.
Collapse
|
37
|
Siqueira Jørgensen S, Rades T, Mu H, Graeser K, Müllertz A. Exploring the utility of the Chasing Principle: influence of drug-free SNEDDS composition on solubilization of carvedilol, cinnarizine and R3040 in aqueous suspension. Acta Pharm Sin B 2019; 9:194-201. [PMID: 30766791 PMCID: PMC6361727 DOI: 10.1016/j.apsb.2018.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/06/2018] [Accepted: 04/12/2018] [Indexed: 01/16/2023] Open
Abstract
This study assessed the influence of the composition of drug-free SNEDDS co-dosed with aqueous suspensions of carvedilol (CAR), cinnarizine (CIN) or R3040 on drug solubilization in a two-compartment in vitro lipolysis model. Correlation of drug logP or solubility in SNEDDS with drug solubilization during in vitro lipolysis in the presence of drug-free SNEDDS was assessed. SNEDDS with varying ratios of soybean oil:Maisine 35-1 (1:1, w/w) and Kolliphor RH40, with ethanol at 10% (w/w) were used. SNEDDS were named F65, F55 and F20 (numbers refer to the percentage of lipids) and aqueous suspensions without drug-free SNEDDS (F0) were also analyzed. While the ranking order of drug solubilization was F65=F55=F20>F0 for CAR; F65=F55>F20>F0 for CIN and F65=F55=F20>F0 for R3040 - with higher CAR solubilization than for R3040 and CIN - the ranking of S eq of CAR, CIN and R3040 in SNEDDS was F65F20 and F65>F55>F20, respectively. Therefore, the composition of SNEDDS influenced the solubilization of CIN, but not CAR and R3040. Furthermore, high S eq in SNEDDS did not reflect high drug solubilization. As CAR (logP 3.8) showed higher solubilization than CIN (logP 5.8) and R3040 (logP 10.4), a correlation between drug logP and drug solubilization was observed.
Collapse
Affiliation(s)
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kirsten Graeser
- Roche Pharma Research and Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann - La Roche, Switzerland
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
38
|
Schultz HB, Kovalainen M, Peressin KF, Thomas N, Prestidge CA. Supersaturated Silica-Lipid Hybrid Oral Drug Delivery Systems: Balancing Drug Loading and In Vivo Performance. J Pharmacol Exp Ther 2018; 370:742-750. [DOI: 10.1124/jpet.118.254466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022] Open
|
39
|
Alskär LC, Keemink J, Johannesson J, Porter CJH, Bergström CAS. Impact of Drug Physicochemical Properties on Lipolysis-Triggered Drug Supersaturation and Precipitation from Lipid-Based Formulations. Mol Pharm 2018; 15:4733-4744. [PMID: 30142268 PMCID: PMC6209313 DOI: 10.1021/acs.molpharmaceut.8b00699] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In
this study we investigated lipolysis-triggered supersaturation
and precipitation of a set of model compounds formulated in lipid-based
formulations (LBFs). The purpose was to explore the relationship between
precipitated solid form and inherent physicochemical properties of
the drug. Eight drugs were studied after formulation in three LBFs,
representing lipid-rich (extensively digestible) to surfactant-rich
(less digestible) formulations. In vitro lipolysis
of drug-loaded LBFs were conducted, and the amount of dissolved and
precipitated drug was quantified. Solid form of the precipitated drug
was characterized with polarized light microscopy (PLM) and Raman
spectroscopy. A significant solubility increase for the weak bases
in the presence of digestion products was observed, in contrast to
the neutral and acidic compounds for which the solubility decreased.
The fold-increase in solubility was linked to the degree of ionization
of the weak bases and thus their attraction to free fatty acids. A
high level of supersaturation was needed to cause precipitation. For
the weak bases, the dose number indicated that precipitation would
not occur during lipolysis; hence, these compounds were not included
in further studies. The solid state analysis proved that danazol and
griseofulvin precipitated in a crystalline form, while niclosamide
precipitated as a hydrate. Felodipine and indomethacin crystals were
visible in the PLM, whereas the Raman spectra showed presence
of amorphous drug, indicating amorphous precipitation that quickly
crystallized. The solid state analysis was combined with literature
data to allow analysis of the relationship between solid form and
the physicochemical properties of the drug. It was found that low
molecular weight and high melting temperature increases the probability
of crystalline precipitation, whereas precipitation in an amorphous
form was favored by high molecular weight, low melting temperature,
and positive charge.
Collapse
Affiliation(s)
- Linda C Alskär
- Department of Pharmacy , Uppsala University , Uppsala Biomedical Center P.O. Box 580, SE-751 23 Uppsala , Sweden
| | - Janneke Keemink
- Department of Pharmacy , Uppsala University , Uppsala Biomedical Center P.O. Box 580, SE-751 23 Uppsala , Sweden
| | - Jenny Johannesson
- Department of Pharmacy , Uppsala University , Uppsala Biomedical Center P.O. Box 580, SE-751 23 Uppsala , Sweden
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics , Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Christel A S Bergström
- Department of Pharmacy , Uppsala University , Uppsala Biomedical Center P.O. Box 580, SE-751 23 Uppsala , Sweden.,Drug Delivery, Disposition and Dynamics , Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| |
Collapse
|
40
|
Macheras P, Iliadis A, Melagraki G. A reaction limited in vivo dissolution model for the study of drug absorption: Towards a new paradigm for the biopharmaceutic classification of drugs. Eur J Pharm Sci 2018; 117:98-106. [PMID: 29425862 DOI: 10.1016/j.ejps.2018.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/19/2017] [Accepted: 02/05/2018] [Indexed: 02/02/2023]
Abstract
The aim of this work is to develop a gastrointestinal (GI) drug absorption model based on a reaction limited model of dissolution and consider its impact on the biopharmaceutic classification of drugs. Estimates for the fraction of dose absorbed as a function of dose, solubility, reaction/dissolution rate constant and the stoichiometry of drug-GI fluids reaction/dissolution were derived by numerical solution of the model equations. The undissolved drug dose and the reaction/dissolution rate constant drive the dissolution rate and determine the extent of absorption when high-constant drug permeability throughout the gastrointestinal tract is assumed. Dose is an important element of drug-GI fluids reaction/dissolution while solubility exclusively acts as an upper limit for drug concentrations in the lumen. The 3D plots of fraction of dose absorbed as a function of dose and reaction/dissolution rate constant for highly soluble and low soluble drugs for different "stoichiometries" (0.7, 1.0, 2.0) of the drug-reaction/dissolution with the GI fluids revealed that high extent of absorption was found assuming high drug- reaction/dissolution rate constant and high drug solubility. The model equations were used to simulate in vivo supersaturation and precipitation phenomena. The model developed provides the theoretical basis for the interpretation of the extent of drug's absorption on the basis of the parameters associated with the drug-GI fluids reaction/dissolution. A new paradigm emerges for the biopharmaceutic classification of drugs, namely, a model independent biopharmaceutic classification scheme of four drug categories based on either the fulfillment or not of the current dissolution criteria and the high or low % drug metabolism.
Collapse
Affiliation(s)
- Panos Macheras
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece; Pharmainformatics Unit "Athena" Research and Innovation Center, Athens, Greece.
| | | | - Georgia Melagraki
- Department of Military Sciences, Division of Physical Sciences and Applications, Hellenic Army Academy, Vari, Greece
| |
Collapse
|
41
|
Do drug release studies from SEDDS make any sense? J Control Release 2018; 271:55-59. [DOI: 10.1016/j.jconrel.2017.12.027] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 11/20/2022]
|
42
|
McEvoy CL, Trevaskis NL, Feeney OM, Edwards GA, Perlman ME, Ambler CM, Porter CJH. Correlating in Vitro Solubilization and Supersaturation Profiles with in Vivo Exposure for Lipid Based Formulations of the CETP Inhibitor CP-532,623. Mol Pharm 2017; 14:4525-4538. [PMID: 29076741 DOI: 10.1021/acs.molpharmaceut.7b00660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipid based formulations (LBFs) are a promising formulation strategy for many poorly water-soluble drugs and have been shown previously to enhance the oral exposure of CP-532,623, an oral cholesteryl ester transfer protein inhibitor. In the current study, an in vitro lipid digestion model was used to probe the relationship between drug solubilization and supersaturation on in vitro dispersion and digestion of LBF containing long chain (LC) lipids and drug absorption in vivo. After in vitro digestion of LBF based on LC lipids, the proportion of CP-532,623 maintained in the solubilized state in the aqueous phase of the digest was highest in formulations containing Kolliphor RH 40, and in most cases outperformed equivalent formulations based on MC lipids. Subsequent administration of the LC-LBFs to beagle dogs resulted in reasonable correlation between concentrations of CP-532,623 measured in the aqueous phase of the in vitro digest after 30 min digestion and in vivo exposure (AUC); however, the LC-LBFs required greater in vitro drug solubilization to elicit similar in vivo exposure when compared to previous studies with MC-LBF. Although post digestion solubilization was enhanced in LC-LBF compared to MC-LBF, equilibrium solubility studies of CP-532,623 in the aqueous phase isolated from blank lipid digestion experiments revealed that equilibrium solubility was also higher, and therefore supersaturation lower. A revised correlation based on supersaturation in the digest aqueous phase and drug absorption was therefore generated. A single, linear correlation was evident for both LC- and MC-LBF containing Kolliphor RH 40, but this did not extend to formulations based on other surfactants. The data suggest that solubilization and supersaturation are significant drivers of drug absorption in vivo, and that across formulations with similar formulation composition good correlation is evident between in vitro and in vivo measures. However, across dissimilar formulations, solubilization and supersaturation alone are not sufficient to explain drug exposure and other factors also likely play a role.
Collapse
Affiliation(s)
| | | | | | - Glenn A Edwards
- Department of Veterinary Sciences, The University of Melbourne , Werribee, Victoria 3030, Australia
| | - Michael E Perlman
- Pfizer Global Research and Development , Groton, Connecticut 06340, United States
| | - Catherine M Ambler
- Pfizer Global Research and Development , Groton, Connecticut 06340, United States
| | | |
Collapse
|
43
|
A new lipid excipient, phosphorylated tocopherol mixture, TPM enhances the solubilisation and oral bioavailability of poorly water soluble CoQ 10 in a lipid formulation. J Control Release 2017; 268:400-406. [PMID: 29097302 DOI: 10.1016/j.jconrel.2017.10.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/18/2017] [Accepted: 10/28/2017] [Indexed: 12/19/2022]
Abstract
Phosphorylated tocopherols are a new class of lipid excipients that have demonstrated potential in pharmaceutical applications. Their ability to solubilise poorly water soluble drugs indicates their potential utility in improving bioavailability of drugs where solubility limits their bioavailability. In this study a commercial mixture of phosphorylated tocopherols, TPM was combined with medium chain triglyceride (MCT) as a formulation for CoQ10, and in vitro and in vivo performance compared to the effect of addition of alternative tocopherol-based excipients. In in vitro digestion experiments, CoQ10 was poorly solubilised in the digesting MCT as anticipated. Addition of TPM facilitated the enhanced solubilisation of CoQ10 as did vitamin E TPGS (TPGS). Other tocopherol derivatives (tocopherol acetate, tocopherol) were less effective at solubilising the active during the digestion process. The trends in in vitro solubilisation were conserved in the in vivo bioavailability of CoQ10 after oral administration to rats, with TPM and TPGS formulations providing approximately double the exposure of MCT alone, while the addition of the other tocopherol derivatives reduced the overall exposure. Collectively, the results indicate potential of TPM as a new solubilising excipient for use in oral drug delivery for poorly water soluble drugs.
Collapse
|
44
|
Fabrication of nanoemulsion-filled alginate hydrogel to control the digestion behavior of hydrophobic nobiletin. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.04.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
45
|
Tran T, Siqueira SD, Amenitsch H, Müllertz A, Rades T. In vitro and in vivo performance of monoacyl phospholipid-based self-emulsifying drug delivery systems. J Control Release 2017; 255:45-53. [DOI: 10.1016/j.jconrel.2017.03.393] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/25/2017] [Accepted: 03/28/2017] [Indexed: 12/23/2022]
|
46
|
Rezhdo O, Speciner L, Carrier R. Lipid-associated oral delivery: Mechanisms and analysis of oral absorption enhancement. J Control Release 2016; 240:544-560. [PMID: 27520734 PMCID: PMC5082615 DOI: 10.1016/j.jconrel.2016.07.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/29/2023]
Abstract
The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of permeation through the intestinal mucosa, and triggering drug precipitation upon lipid emulsion depletion (e.g., by digestion). The effect of lipids on drug absorption is currently not quantitatively predictable, in part due to the multiple complex dynamic processes that can be impacted by lipids. Quantitative mechanistic analysis of the processes significant to lipid system function and overall impact on drug absorption can aid in the understanding of drug-lipid interactions in the GI tract and exploitation of such interactions to achieve optimal lipid-based drug delivery. In this review, we discuss the impact of co-delivered lipids and lipid digestion on drug dissolution, partitioning, and absorption in the context of the experimental tools and associated kinetic expressions used to study and model these processes. The potential benefit of a systems-based consideration of the concurrent multiple dynamic processes occurring upon co-dosing lipids and drugs to predict the impact of lipids on drug absorption and enable rational design of lipid-based delivery systems is presented.
Collapse
Affiliation(s)
- Oljora Rezhdo
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Lauren Speciner
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Rebecca Carrier
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States.
| |
Collapse
|
47
|
Sun Y, Østergaard J. Application of UV Imaging in Formulation Development. Pharm Res 2016; 34:929-940. [PMID: 27766463 DOI: 10.1007/s11095-016-2047-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/03/2016] [Indexed: 12/18/2022]
Abstract
Efficient drug delivery is dependent on the drug substance dissolving in the body fluids, being released from dosage forms and transported to the site of action. A fundamental understanding of the interplay between the physicochemical properties of the active compound and pharmaceutical excipients defining formulation behavior after exposure to the aqueous environments and pharmaceutical performance is critical in pharmaceutical development, manufacturing and quality control of drugs. UV imaging has been explored as a tool for qualitative and quantitative characterization of drug dissolution and release with the characteristic feature of providing real-time visualization of the solution phase drug transport in the vicinity of the formulation. Events occurring during drug dissolution and release, such as polymer swelling, drug precipitation/recrystallization, or solvent-mediated phase transitions related to the structural properties of the drug substance or formulation can be monitored. UV imaging is a non-intrusive and simple-to-operate analytical technique which holds potential for providing a mechanistic foundation for formulation development. This review aims to cover applications of UV imaging in the early and late phase pharmaceutical development with a special focus on the relation between structural properties and performance. Potential areas of future advancement and application are also discussed.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark
| | - Jesper Østergaard
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark.
| |
Collapse
|
48
|
Gautschi N, Bergström CAS, Kuentz M. Rapid determination of drug solubilization versus supersaturation in natural and digested lipids. Int J Pharm 2016; 513:164-174. [PMID: 27609663 DOI: 10.1016/j.ijpharm.2016.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/22/2016] [Accepted: 09/05/2016] [Indexed: 10/21/2022]
Abstract
Lipid-based formulations (LBFs) represent one of the successful formulation approaches that enable oral delivery of poorly water-soluble drugs. This work presents a simple equilibrium approach based on solubility in lipids and their corresponding digestion media to estimate a maximum drug supersaturation ratio (SRmax). This value of drug concentration normalized by the solubility in the aqueous digestion phase indicates the propensity for drug precipitation. A set of 16 structurally diverse drugs was first measured for their solubility in tricaprin and tricaprylin and results were compared to an empirical model based on molecular predictors. In the next step, digestion media were either prepared by in vitro lipolysis or by assembling a composition to mimic the endpoint of digestion. It was found that drug solubility in the pure lipids mainly was related to the melting point in that increased values resulted in reduced solubility. The solubility values measured in the lipolysis media correlated well with those obtained from assembled digestion media. Interestingly, the solubilization upon digestion was typically higher when using tricaprin than tricaprylin in spite of that the latter oil (as pure excipient) generally was a more potent solvent. This work suggests that a simplified digestion screen can be used to facilitate evaluation of formulations during early development. Estimation of SRmax provides an early risk assessment of drug precipitation for LBFs. The method is easily scaled down to the microtiter plate format and can be used for selecting candidate formulations that merit further evaluation in more complex and dynamic in vitro tests.
Collapse
Affiliation(s)
- Nicolas Gautschi
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharmaceutical Technology, Gründenstr. 40, CH-4132 Muttenz, Switzerland
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O. Box 580, SE-751 23 Uppsala, Sweden
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharmaceutical Technology, Gründenstr. 40, CH-4132 Muttenz, Switzerland.
| |
Collapse
|
49
|
Sassene PJ, Michaelsen MH, Mosgaard MD, Jensen MK, Van Den Broek E, Wasan KM, Mu H, Rades T, Müllertz A. In Vivo Precipitation of Poorly Soluble Drugs from Lipid-Based Drug Delivery Systems. Mol Pharm 2016; 13:3417-3426. [DOI: 10.1021/acs.molpharmaceut.6b00413] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- P. J. Sassene
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - M. H. Michaelsen
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
- Faculty
of Pharmaceutical Sciences, University of British Columbia, 2146
East Mall, Vancouver, BC V6T 1Z3, Canada
| | - M. D. Mosgaard
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - M. K. Jensen
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - E. Van Den Broek
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - K. M. Wasan
- Faculty
of Pharmaceutical Sciences, University of British Columbia, 2146
East Mall, Vancouver, BC V6T 1Z3, Canada
- College
of Pharmacy and Nutrition, University of Saskatchewan, E3122-104
Clinic Place, Saskatoon, SK S7N 2Z4, Canada
| | - H. Mu
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - T. Rades
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - A. Müllertz
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| |
Collapse
|
50
|
Tukappa A, Ultimo A, de la Torre C, Pardo T, Sancenón F, Martínez-Máñez R. Polyglutamic Acid-Gated Mesoporous Silica Nanoparticles for Enzyme-Controlled Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8507-15. [PMID: 27468799 DOI: 10.1021/acs.langmuir.6b01715] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) are highly attractive as supports in the design of controlled delivery systems that can act as containers for the encapsulation of therapeutic agents, overcoming common issues such as poor water solubility and poor stability of some drugs and also enhancing their bioavailability. In this context, we describe herein the development of polyglutamic acid (PGA)-capped MSNs that can selectively deliver rhodamine B and doxorubicin. PGA-capped MSNs remain closed in an aqueous environment, yet they are able to deliver the cargo in the presence of pronase because of the hydrolysis of the peptide bonds in PGA. The prepared solids released less than 20% of the cargo in 1 day in water, whereas they were able to reach 90% of the maximum release of the entrapped guest in ca. 5 h in the presence of pronase. Studies of the PGA-capped nanoparticles with SK-BR-3 breast cancer cells were also undertaken. Rhodamine-loaded nanoparticles were not toxic, whereas doxorubicin-loaded nanoparticles were able to efficiently kill more than 90% of the cancer cells at a concentration of 100 μg/mL.
Collapse
Affiliation(s)
- Asha Tukappa
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain
- Department of Biotechnology, Gulbarga University , Gulbarga 585106, Karnataka, India
| | - Amelia Ultimo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Cristina de la Torre
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Teresa Pardo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| |
Collapse
|