1
|
Stanković T, Ilić T, Divović Matović B, Petkovic M, Dobričić V, Jančić I, Bufan B, Jezdić K, Đoković J, Pantelić I, Randjelović D, Sharmin D, Cook JM, Savić MM, Savić S. Intravenous Nanoemulsions Loaded with Phospholipid Complex of a Novel Pyrazoloquinolinone Ligand for Enhanced Brain Delivery. Pharmaceutics 2025; 17:232. [PMID: 40006599 DOI: 10.3390/pharmaceutics17020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The novel pyrazoloquinolinone ligand CW-02-79 shows a unique profile of selective binding to σ2 receptors, but its poor solubility in both water and lipids makes its research and development a burdensome task. We aimed to develop a phospholipid-complex-based nanoemulsion formulation containing CW-02-79 suitable for intravenous administration in preclinical research. Methods: The decorated and undecorated nanoemulsions were formulated and subjected to detailed physiochemical characterization. The delivery and exposure to CW-02-79 from selected nanoemulsions were examined in the in vitro blood-brain barrier model based on human-induced pluripotent stem-cell-derived microvascular endothelial cells, astrocytes, and pericytes, and in vivo neuropharmacokinetic study in rats, respectively. Results: The developed biocompatible nanoemulsions loaded with a CW-02-79-phospholipid complex at a mass ratio of 1:10 exhibited a small droplet size and narrow size distribution, with satisfactory physicochemical stability during steam sterilization and short-term storage at 25 °C. The analysis of protein binding interactions revealed that the PEGylated nanoemulsions had fewer observable interactions compared to the undecorated nanoemulsions, especially when 0.2% DSPE-PEG2000 and 0.1% DSPE-PEG2000-mannose were combined. An in vitro BBB study demonstrated that a substantial part of CW-02-79 present in the applied nanoemulsion is able to permeate the barrier. The quantification of CW-02-79 in plasma/brain homogenate and calculated pharmacokinetic parameters confirmed good systemic and brain availability after intravenous administration. There were subtle differences in the pharmacokinetic parameters in favor of a dual surface-functionalized nanoemulson containing the glucose transporter-1-targeting ligand (mannose). Conclusions: The developed and characterized nanoemulsions enable substantial brain exposure to CW-02-79 as a prerequisite for a pharmacologically and clinically relevant selective modulation of σ2 receptors.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11211 Belgrade, Serbia
| | - Tanja Ilić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11211 Belgrade, Serbia
| | - Branka Divović Matović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, 11211 Belgrade, Serbia
| | - Milos Petkovic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, 11211 Belgrade, Serbia
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, 11211 Belgrade, Serbia
| | - Ivan Jančić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11211 Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11211 Belgrade, Serbia
| | - Kristina Jezdić
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, 11211 Belgrade, Serbia
| | - Jelena Đoković
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11211 Belgrade, Serbia
| | - Ivana Pantelić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11211 Belgrade, Serbia
| | - Danijela Randjelović
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Miroslav M Savić
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, 11211 Belgrade, Serbia
| | - Snežana Savić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11211 Belgrade, Serbia
| |
Collapse
|
2
|
Rahman M, Ou Q, Pui D. Electrospray-Scanning Mobility Particle Sizer (ES-SMPS) Technique: Superior Sizing and Multimodal Characterization of Colloidal Nanoparticles Compared to NTA and DLS. Anal Chem 2024. [PMID: 39568381 DOI: 10.1021/acs.analchem.4c02891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
This study primarily employed three techniques─electrospray-scanning mobility particle sizer (ES-SMPS), nanoparticle tracking analysis (NTA), and dynamic light scattering (DLS)─to assess multimodal samples. For monodisperse particles, both ES-SMPS (all sizes) and NTA (for particles larger than 40 nm) accurately determined the mean size, while DLS overestimated it. The ES-SMPS technique demonstrated precision in particle counting for multimodal samples, with a standard deviation of around 2.5-4%. Conversely, NTA's ability to count particles potentially leads to misinterpretation. The ES-SMPS approach could identify particle peaks in multimodal (bimodal, trimodal, and tetramodal) samples and show the relatively accurate position of the mode diameter. In contrast to ES-SMPS, DLS and NTA have weaknesses in characterizing multimodal samples. While NTA's performance depends on the optical properties of particles and cannot measure silica particles smaller than 30-40 nm, ES-SMPS is independent of light scattering and can handle particles as small as ∼13 nm. The ES-SMPS also excelled in separating particle peaks of the bimodal sample with a size interval gap of 10 nm, whereas NTA needs at least 20-50 nm depending on the particle type. To sum up, the ES-SMPS method performs better and provides more accurate measurements for characterizing multimodal samples compared to NTA and DLS.
Collapse
Affiliation(s)
- Ma Rahman
- Particle Technology Laboratory, Department of Mechanical Engineering, University of Minnesota Twin Cities, 111 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Qisheng Ou
- Particle Technology Laboratory, Department of Mechanical Engineering, University of Minnesota Twin Cities, 111 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - David Pui
- Particle Technology Laboratory, Department of Mechanical Engineering, University of Minnesota Twin Cities, 111 Church Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Arif A, Hussain S, Rajput SN, Malik HN, Naqvi F, Jabeen A, Khan I, ur-Rehman M. Nanoscale lipid-methylprednisolone conjugates: Effective anti-inflammatory, antioxidant, and analgesic agents. J Drug Deliv Sci Technol 2024; 101:106251. [DOI: 10.1016/j.jddst.2024.106251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
4
|
Liau B, Zhang L, Ang MJY, Ng JY, C V SB, Schneider S, Gudihal R, Bae KH, Yang YY. Quantitative analysis of mRNA-lipid nanoparticle stability in human plasma and serum by size-exclusion chromatography coupled with dual-angle light scattering. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 58:102745. [PMID: 38499167 DOI: 10.1016/j.nano.2024.102745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
Understanding the stability of mRNA loaded lipid nanoparticles (mRNA-LNPs) is imperative for their clinical development. Herein, we propose the use of size-exclusion chromatography coupled with dual-angle light scattering (SEC-MALS) as a new approach to assessing mRNA-LNP stability in pure human serum and plasma. By applying a dual-column configuration to attenuate interference from plasma components, SEC-MALS was able to elucidate the degradation kinetics and physical property changes of mRNA-LNPs, which have not been observed accurately by conventional dynamic light scattering techniques. Interestingly, both serum and plasma had significantly different impacts on the molecular weight and radius of gyration of mRNA-LNPs, suggesting the involvement of clotting factors in desorption of lipids from mRNA-LNPs. We also discovered that a trace impurity (~1 %) in ALC-0315, identified as its O-tert-butyloxycarbonyl-protected form, greatly diminished mRNA-LNP stability in serum. These results demonstrated the potential utility of SEC-MALS for optimization and quality control of LNP formulations.
Collapse
Affiliation(s)
- Brian Liau
- Agilent Technologies, 1 Yishun Avenue 7, Singapore 768923, Republic of Singapore.
| | - Li Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore 138668, Republic of Singapore
| | - Melgious Jin Yan Ang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore 138668, Republic of Singapore
| | - Jian Yao Ng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore 138668, Republic of Singapore
| | - Suresh Babu C V
- Agilent Technologies, 1 Yishun Avenue 7, Singapore 768923, Republic of Singapore
| | - Sonja Schneider
- Agilent Technologies Deutschland GmbH, Hewlett-Packard Strasse 8, 76337 Waldbronn, Germany
| | - Ravindra Gudihal
- Agilent Technologies, 1 Yishun Avenue 7, Singapore 768923, Republic of Singapore
| | - Ki Hyun Bae
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore 138668, Republic of Singapore
| | - Yi Yan Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore 138668, Republic of Singapore.
| |
Collapse
|
5
|
Nogueira SS, Samaridou E, Simon J, Frank S, Beck-Broichsitter M, Mehta A. Analytical techniques for the characterization of nanoparticles for mRNA delivery. Eur J Pharm Biopharm 2024; 198:114235. [PMID: 38401742 DOI: 10.1016/j.ejpb.2024.114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Nanotechnology-assisted RNA delivery has gotten a tremendous boost over the last decade and made a significant impact in the development of life-changing vaccines and therapeutics. With increasing numbers of emerging lipid- and polymer-based RNA nanoparticles progressing towards the clinic, it has become apparent that the safety and efficacy of these medications depend on the comprehensive understanding of their critical quality attributes (CQAs). However, despite the rapid advancements in the field, the identification and reliable quantification of CQAs remain a significant challenge. To support these efforts, this review aims to summarize the present knowledge on CQAs based on the regulatory guidelines and to provide insights into the available analytical characterization techniques for RNA-loaded nanoparticles. In this context, routine and emerging analytical techniques are categorized and discussed, focusing on the operation principle, strengths, and potential limitations. Furthermore, the importance of complementary and orthogonal techniques for the measurement of CQAs is discussed in order to ensure the quality and consistency of analytical methods used, and address potential technique-based differences.
Collapse
|
6
|
Lestari SR, Gofur A, Hartatiek D, Annisa Y, Ramadhani DN, Rahma AN, Aisyah DN, Mufidah IN, Rifqi ND. Characterization and In-vitro Study of Micro-encapsulation Chitosan Alginate of Single-bulb Garlic Extract. Pharm Nanotechnol 2024; 12:155-164. [PMID: 37287295 DOI: 10.2174/2211738511666230607121118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Single-bulb garlic extract (SBGE) contains more active compounds than regular garlic, but it is unstable and easily degraded in the digestive tract. SBGE is expected to be protected by microencapsulation chitosan-alginate (MCA). OBJECTIVE The present study aimed to characterize and assess the antioxidant activity, hemocompatibility, and toxicity of MCA-SBGE in 3T3-L1 cells. METHODS The research procedures consist of extraction of single bulb garlic, preparation of MCASBGE, Particle Size Analyzer (PSA), FTIR analysis, DPPH assay, hemocompatibility test, and MTT assay. RESULTS The average size of MCA-SGBE was 423.7 ± 2.8 nm, the polydispersity index (PdI) was 0.446 ± 0.022, and the zeta potential was -24.5 ± 0.4 mV. MCA-SGBE was spherical with a diameter range of 0.65-0.9 μm. A shift in absorption and addition of functional groups was found in SBGE after encapsulation. MCA-SBGE, at a concentration of 24 x 103 ppm, has higher antioxidants than SBGE. The hemocompatibility test shows the hemolysis of MCA-SBGE lower than SBGE. MCA-SBGE was not toxic to 3T3-L1 cells with cell viability percentage above 100% at all concentrations. CONCLUSION MCA-SBGE characterization has microparticle criteria with homogeneous PdI values, low particle stability, and spherical morphology. The results showed that SBGE and MCA-SBGE are nonhemolytic, compatible with red blood cells, and non-toxic to 3T3-L1 cells.
Collapse
Affiliation(s)
- Sri Rahayu Lestari
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, 65145, Malang, East Java, Indonesia
| | - Abdul Gofur
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, 65145, Malang, East Java, Indonesia
| | - Dra Hartatiek
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, 65145, Malang, East Java, Indonesia
| | - Yuslinda Annisa
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Brawijaya, 65145, Malang, East Java, Indonesia
| | - Dimas Nur Ramadhani
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, 65145, Malang, East Java, Indonesia
| | - Amalia Nur Rahma
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, 65145, Malang, East Java, Indonesia
| | - Dahniar Nur Aisyah
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, 65145, Malang, East Java, Indonesia
| | - Ikfi Nihayatul Mufidah
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, 65145, Malang, East Java, Indonesia
| | - Nadiya Dini Rifqi
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, 65145, Malang, East Java, Indonesia
| |
Collapse
|
7
|
Giordani S, Marassi V, Zattoni A, Roda B, Reschiglian P. Liposomes characterization for market approval as pharmaceutical products: Analytical methods, guidelines and standardized protocols. J Pharm Biomed Anal 2023; 236:115751. [PMID: 37778202 DOI: 10.1016/j.jpba.2023.115751] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Liposomes are nano-sized lipid-based vesicles widely studied for their drug delivery capabilities. Compared to standard carries they exhibit better properties such as improved site-targeting and drug release, protection of drugs from degradation and clearance, and lower toxic side effects. At present, scientific literature is rich of studies regarding liposomes-based systems, while 14 types of liposomal products have been authorized to the market by EMA and FDA and many others have been approved by national agencies. Although the interest in nanodevices and nanomedicine has steadily increased in the last two decades the development of documentation regulating and standardizing all the phases of their development and quality control still suffers from major inadequacy due to the intrinsic complexity of nano-systems characterization. Many generic documents (Type 1) discussing guidelines for the study of nano-systems (lipidic and not) have been proposed while there is a lack of robust and standardized methods (Type 2 documents). As a result, a widespread of different techniques, approaches and methodologies are being used, generating results of variable quality and hard to compare with each other. Additionally, such documents are often subject to updates and rewriting further complicating the topic. Within this context the aim of this work is focused on bridging the gap in liposome characterization: the most recent standardized methodologies suitable for liposomes characterization are here reported (with the corresponding Type 2 documents) and revised in a short and pragmatical way focused on providing the reader with a practical background of the state of the art. In particular, this paper will put the accent on the methodologies developed to evaluate the main critical quality attributes (CQAs) necessary for liposomes market approval.
Collapse
Affiliation(s)
- Stefano Giordani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Valentina Marassi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy.
| | - Andrea Zattoni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy.
| | - Pierluigi Reschiglian
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy
| |
Collapse
|
8
|
Krupnik L, Joshi P, Kappler A, Flühmann B, Alston AB, Digigow R, Wick P, Neels A. Critical nanomaterial attributes of iron-carbohydrate nanoparticles: Leveraging orthogonal methods to resolve the 3-dimensional structure. Eur J Pharm Sci 2023; 188:106521. [PMID: 37423578 DOI: 10.1016/j.ejps.2023.106521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Intravenous iron-carbohydrate nanomedicines are widely used to treat iron deficiency and iron deficiency anemia across a wide breadth of patient populations. These colloidal solutions of nanoparticles are complex drugs which inherently makes physicochemical characterization more challenging than small molecule drugs. There have been advancements in physicochemical characterization techniques such as dynamic light scattering and zeta potential measurement, that have provided a better understanding of the physical structure of these drug products in vitro. However, establishment and validation of complementary and orthogonal approaches are necessary to better understand the 3-dimensional physical structure of the iron-carbohydrate complexes, particularly with regard to their physical state in the context of the nanoparticle interaction with biological components such as whole blood (i.e. the nano-bio interface).
Collapse
Affiliation(s)
- Leonard Krupnik
- Laboratory for Particles-Biology Interactions, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland; Center for X-ray Analytics, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland; Department of Chemistry, University of Fribourg, Fribourg 1700, Switzerland
| | - Prachi Joshi
- Geomicrobiology, Department of Geosciences, University of Tuebingen, Tuebingen 72076, Germany
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tuebingen, Tuebingen 72076, Germany; Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tuebingen 72076, Germany
| | - Beat Flühmann
- CSL Vifor, Flughofstrasse 61, Glattbrug 8152, Switzerland
| | | | | | - Peter Wick
- Laboratory for Particles-Biology Interactions, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Antonia Neels
- Center for X-ray Analytics, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland; Department of Chemistry, University of Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
9
|
Huber MJ, Ivleva NP, Booth AM, Beer I, Bianchi I, Drexel R, Geiss O, Mehn D, Meier F, Molska A, Parot J, Sørensen L, Vella G, Prina-Mello A, Vogel R, Caputo F. Physicochemical characterization and quantification of nanoplastics: applicability, limitations and complementarity of batch and fractionation methods. Anal Bioanal Chem 2023:10.1007/s00216-023-04689-5. [PMID: 37106123 DOI: 10.1007/s00216-023-04689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
A comprehensive physicochemical characterization of heterogeneous nanoplastic (NPL) samples remains an analytical challenge requiring a combination of orthogonal measurement techniques to improve the accuracy and robustness of the results. Here, batch methods, including dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM), as well as separation/fractionation methods such as centrifugal liquid sedimentation (CLS) and field-flow fractionation (FFF)-multi-angle light scattering (MALS) combined with pyrolysis gas chromatography mass spectrometry (pyGC-MS) or Raman microspectroscopy (RM) were evaluated for NPL size, shape, and chemical composition measurements and for quantification. A set of representative/test particles of different chemical natures, including (i) polydisperse polyethylene (PE), (ii) (doped) polystyrene (PS) NPLs, (iii) titanium dioxide, and (iv) iron oxide nanoparticles (spherical and elongated), was used to assess the applicability and limitations of the selected methodologies. Particle sizes and number-based concentrations obtained by orthogonal batch methods (DLS, NTA, TRPS) were comparable for monodisperse spherical samples, while higher deviations were observed for polydisperse, agglomerated samples and for non-spherical particles, especially for light scattering methods. CLS and TRPS offer further insight with increased size resolution, while detailed morphological information can be derived by electron microscopy (EM)-based approaches. Combined techniques such as FFF coupled to MALS and RM can provide complementary information on physical and chemical properties by online measurements, while pyGC-MS analysis of FFF fractions can be used for the identification of polymer particles (vs. inorganic particles) and for their offline (semi)quantification. However, NPL analysis in complex samples will continue to present a serious challenge for the evaluated techniques without significant improvements in sample preparation.
Collapse
Affiliation(s)
- Maximilian J Huber
- Institute of Water Chemistry (IWC), Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences (NAT, Dep. Chemistry), Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching, Germany
| | - Natalia P Ivleva
- Institute of Water Chemistry (IWC), Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences (NAT, Dep. Chemistry), Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching, Germany.
| | - Andy M Booth
- Department of Climate and Environment, SINTEF Ocean AS, Trondheim, Norway.
| | - Irina Beer
- Institute of Water Chemistry (IWC), Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences (NAT, Dep. Chemistry), Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching, Germany
| | - Ivana Bianchi
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | | | - Otmar Geiss
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | - Dora Mehn
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | | | - Alicja Molska
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Jeremie Parot
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Lisbet Sørensen
- Department of Climate and Environment, SINTEF Ocean AS, Trondheim, Norway
| | - Gabriele Vella
- Laboratory of Biological Characterization for Advanced Materials (LBCAM), Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Adriele Prina-Mello
- Laboratory of Biological Characterization for Advanced Materials (LBCAM), Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Robert Vogel
- School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Fanny Caputo
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway.
- Laboratoire National de Métrologie et d'Essais, Paris, France.
| |
Collapse
|
10
|
Parenteral Lipid-Based Nanoparticles for CNS Disorders: Integrating Various Facets of Preclinical Evaluation towards More Effective Clinical Translation. Pharmaceutics 2023; 15:pharmaceutics15020443. [PMID: 36839768 PMCID: PMC9966342 DOI: 10.3390/pharmaceutics15020443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Contemporary trends in combinatorial chemistry and the design of pharmaceuticals targeting brain disorders have favored the development of drug candidates with increased lipophilicity and poorer water solubility, with the expected improvement in delivery across the blood-brain barrier (BBB). The growing availability of innovative excipients/ligands allowing improved brain targeting and controlled drug release makes the lipid nanocarriers a reasonable choice to overcome the factors impeding drug delivery through the BBB. However, a wide variety of methods, study designs and experimental conditions utilized in the literature hinder their systematic comparison, and thus slows the advances in brain-targeting by lipid-based nanoparticles. This review provides an overview of the methods most commonly utilized during the preclinical testing of liposomes, nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers intended for the treatment of various CNS disorders via the parenteral route. In order to fully elucidate the structure, stability, safety profiles, biodistribution, metabolism, pharmacokinetics and immunological effects of such lipid-based nanoparticles, a transdisciplinary approach to preclinical characterization is mandatory, covering a comprehensive set of physical, chemical, in vitro and in vivo biological testing.
Collapse
|
11
|
Fu J, Wang Y, Li H, Lu L, Han M, Guo Y, Wang X. A simple but efficient tumor-targeted nanoparticle delivery system constructed by oleic acid. Drug Deliv 2022; 29:2539-2548. [PMID: 35912843 PMCID: PMC9344963 DOI: 10.1080/10717544.2022.2105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Oleic acid (OA) is a kind of monounsaturated omega-3 fatty acid that abounds in plants and animals which can induce apoptosis and has broad-spectrum inhibitory activity against a variety of tumor cell lines. However, OA is quite insoluble and thus inconvenient to be efficiently delivered in vivo. In this work, OA was fabricated into nanoparticles to generate OA elastic nanoparticles (OA-ENPs) with a particle size of 185.6 nm and good stability in various physiological media. OA-ENPs alone achieved a high tumor inhibition rate of 60.3% without significant side effect. More surprisingly, the resultant OA-ENPs displayed dose-dependent tumor targetability. Low dose of OA-ENPs (10 mg/kg) mainly distributed in the liver after intravenous injection, while high dose of OA-ENPs mainly distributed in tumor. At the high dose of 90 mg/kg, OA-ENPs accumulation in tumor reached nearly twice as that in the liver. Here we provide a simple but effective way to achieve excellent tumor targetability without the need of any surface modification of nanoparticles.
Collapse
Affiliation(s)
- Jingxin Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yian Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haowen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Likang Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Mendes BB, Conniot J, Avital A, Yao D, Jiang X, Zhou X, Sharf-Pauker N, Xiao Y, Adir O, Liang H, Shi J, Schroeder A, Conde J. Nanodelivery of nucleic acids. NATURE REVIEWS. METHODS PRIMERS 2022; 2:24. [PMID: 35480987 PMCID: PMC9038125 DOI: 10.1038/s43586-022-00104-y] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
There is growing need for a safe, efficient, specific and non-pathogenic means for delivery of gene therapy materials. Nanomaterials for nucleic acid delivery offer an unprecedented opportunity to overcome these drawbacks; owing to their tunability with diverse physico-chemical properties, they can readily be functionalized with any type of biomolecules/moieties for selective targeting. Nucleic acid therapeutics such as antisense DNA, mRNA, small interfering RNA (siRNA) or microRNA (miRNA) have been widely explored to modulate DNA or RNA expression Strikingly, gene therapies combined with nanoscale delivery systems have broadened the therapeutic and biomedical applications of these molecules, such as bioanalysis, gene silencing, protein replacement and vaccines. Here, we overview how to design smart nucleic acid delivery methods, which provide functionality and efficacy in the layout of molecular diagnostics and therapeutic systems. It is crucial to outline some of the general design considerations of nucleic acid delivery nanoparticles, their extraordinary properties and the structure-function relationships of these nanomaterials with biological systems and diseased cells and tissues.
Collapse
Affiliation(s)
- Bárbara B Mendes
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - João Conniot
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Aviram Avital
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion - Israel Institute of Technology, Haifa, Israel
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Dongbao Yao
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Xingya Jiang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Xiang Zhou
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Noga Sharf-Pauker
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion - Israel Institute of Technology, Haifa, Israel
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Yuling Xiao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Omer Adir
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion - Israel Institute of Technology, Haifa, Israel
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Haojun Liang
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Avi Schroeder
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
13
|
Ramos TI, Villacis-Aguirre CA, López-Aguilar KV, Santiago Padilla L, Altamirano C, Toledo JR, Santiago Vispo N. The Hitchhiker's Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics 2022; 14:247. [PMID: 35213980 PMCID: PMC8879439 DOI: 10.3390/pharmaceutics14020247] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Nanomedicine plays an essential role in developing new therapies through novel drug delivery systems, diagnostic and imaging systems, vaccine development, antibacterial tools, and high-throughput screening. One of the most promising drug delivery systems are nanoparticles, which can be designed with various compositions, sizes, shapes, and surface modifications. These nanosystems have improved therapeutic profiles, increased bioavailability, and reduced the toxicity of the product they carry. However, the clinical translation of nanomedicines requires a thorough understanding of their properties to avoid problems with the most questioned aspect of nanosystems: safety. The particular physicochemical properties of nano-drugs lead to the need for additional safety, quality, and efficacy testing. Consequently, challenges arise during the physicochemical characterization, the production process, in vitro characterization, in vivo characterization, and the clinical stages of development of these biopharmaceuticals. The lack of a specific regulatory framework for nanoformulations has caused significant gaps in the requirements needed to be successful during their approval, especially with tests that demonstrate their safety and efficacy. Researchers face many difficulties in establishing evidence to extrapolate results from one level of development to another, for example, from an in vitro demonstration phase to an in vivo demonstration phase. Additional guidance is required to cover the particularities of this type of product, as some challenges in the regulatory framework do not allow for an accurate assessment of NPs with sufficient evidence of clinical success. This work aims to identify current regulatory issues during the implementation of nanoparticle assays and describe the major challenges that researchers have faced when exposing a new formulation. We further reflect on the current regulatory standards required for the approval of these biopharmaceuticals and the requirements demanded by the regulatory agencies. Our work will provide helpful information to improve the success of nanomedicines by compiling the challenges described in the literature that support the development of this novel encapsulation system. We propose a step-by-step approach through the different stages of the development of nanoformulations, from their design to the clinical stage, exemplifying the different challenges and the measures taken by the regulatory agencies to respond to these challenges.
Collapse
Affiliation(s)
- Thelvia I. Ramos
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador
| | - Carlos A. Villacis-Aguirre
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Katherine V. López-Aguilar
- Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador;
| | | | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile;
- Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Placilla, Sector Curauma, Valparaíso 2340000, Chile
| | - Jorge R. Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador
| |
Collapse
|
14
|
Sakuragi M. Evaluation of the supramolecular structure of drug delivery carriers using synchrotron X-ray scattering. Polym J 2021. [DOI: 10.1038/s41428-021-00533-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Batool F, Iqbal MS, Khan SUD, Khan J, Ahmed B, Qadir MI. Biologically synthesized iron nanoparticles (FeNPs) from Phoenix dactylifera have anti-bacterial activities. Sci Rep 2021; 11:22132. [PMID: 34764312 PMCID: PMC8586337 DOI: 10.1038/s41598-021-01374-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Nanotechnology is a vast field of science with the most vibrant and conspicuous applications. The green synthesis approach is cost-effective, eco-friendly, and produces the most stable metal-based nanoparticles without the use of toxic chemicals. This study presents the green synthesis of iron nanoparticles (FeNPs). For biosynthesis of FeNPs, Phoenix dactylifera extract was used as a reducing agent and iron sulfate heptahydrate (FeSO4·7H2O) was used as a substrate. FeNPs were characterized by different techniques including UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), and nano zeta-sizer analysis. The antimicrobial activity of FeNPs synthesized by using an aqueous extract of Phoenix dactylifera was evaluated against Escherichia coli, Bacillus subtilis, Micrococcus leutus, and Klebsiella pneumoniae. A notable color change from yellow to black confirmed the synthesis of FeNPs. The sharp peak at 450 nm UV-Visible spectroscopy confirmed the synthesis of FeNPs. FTIR showed the presence of O-H and C=C stretching due to the presence of phenol and alkene functional groups. The average size of FeNPs was 6092 d.nm. The results of antimicrobial activity showed that FeNPs exhibit different potential against different bacterial strains with a maximum 25 ± 0.360 zone of inhibition against Escherichia coli. Thus, green synthesized FeNPs could be used as potential antimicrobial agents.
Collapse
Affiliation(s)
- Faryal Batool
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11432, Saudi Arabia
| | - Javed Khan
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, 11673, Saudi Arabia
| | - Bilal Ahmed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Jiangsu Province, Nanjing, People's Republic of China
| | - Muhammad Imran Qadir
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan.
| |
Collapse
|
16
|
Bourguignon T, Torrano AA, Houel-Renault L, Machelart A, Brodin P, Gref R. An original methodology to study polymeric nanoparticle-macrophage interactions: Nanoparticle tracking analysis in cell culture media and quantification of the internalized objects. Int J Pharm 2021; 610:121202. [PMID: 34666144 DOI: 10.1016/j.ijpharm.2021.121202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
Poly(lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) are among the most employed (co)polymers for the preparation of drug nanocarriers for the treatment of cancer and infectious diseases. Before considering any clinical use, it is necessary to understand the interactions between polymeric nanoparticles (NPs) and their physiological environment, especially immune cells. Here, we propose a simple, yet precise method to assess NPs internalization kinetics in macrophages, based on the direct analysis of the cell culture media after different incubation times. The proof of concept is given here by using fluorescent PLGA NPs. Nanoparticle tracking analysis (NTA) was a method of choice, enabling detecting each individual NP and analyzing its trajectory while in Brownian motion. As compared to dynamic light scattering (DLS), NTA enabled a more precise determination of NP size distribution. The uptake process was rapid: in one hour, around a third of the NPs were internalized. In addition, the internalized NPs were visualized by confocal microscopy. The fluorescent cellular stacks were analyzed using a freely available macro for ImageJ software, Particle_In_Cell-3D. The internalized objects were localized and counted. This methodology could serve for further studies while analyzing the effects of NPs size, shape and surface properties on their interaction with various cell lines.
Collapse
Affiliation(s)
- Tom Bourguignon
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Adriano A Torrano
- University of Munich (LMU), Department of Chemistry and Center for NanoScience (CeNS), 81377 Munich, Germany
| | - Ludivine Houel-Renault
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Arnaud Machelart
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Priscille Brodin
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Ruxandra Gref
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France.
| |
Collapse
|
17
|
Franconi F, Lemaire L, Gimel JC, Bonnet S, Saulnier P. NMR diffusometry: A new perspective for nanomedicine exploration. J Control Release 2021; 337:155-167. [PMID: 34280413 DOI: 10.1016/j.jconrel.2021.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/09/2022]
Abstract
Nuclear Magnetic Resonance (NMR) based diffusion methods open new perspectives for nanomedicine characterization and their bioenvironment interaction understanding. This review summarizes the theoretical background of diffusion phenomena. Self-diffusion and mutual diffusion coefficient notions are featured. Principles, advantages, drawbacks, and key challenges of NMR diffusometry spectroscopic and imaging methods are presented. This review article also gives an overview of representative applicative works to the nanomedicine field that can contribute to elucidate important issues. Examples of in vitro characterizations such as identification of formulated species, process monitoring, drug release follow-up, nanomedicine interactions with biological barriers are presented as well as possible transpositions for studying in vivo nanomedicine fate.
Collapse
Affiliation(s)
- Florence Franconi
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, PRISM, SFR ICAT, F-49000 Angers, France.
| | - Laurent Lemaire
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, PRISM, SFR ICAT, F-49000 Angers, France.
| | | | - Samuel Bonnet
- Univ Angers, PRISM, SFR ICAT, F-49000 Angers, France.
| | - Patrick Saulnier
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
18
|
Ramirez LMF, Rihouey C, Chaubet F, Le Cerf D, Picton L. Characterization of dextran particle size: How frit-inlet asymmetrical flow field-flow fractionation (FI-AF4) coupled online with dynamic light scattering (DLS) leads to enhanced size distribution. J Chromatogr A 2021; 1653:462404. [PMID: 34348206 DOI: 10.1016/j.chroma.2021.462404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/18/2023]
Abstract
Accurate determinations of particle size and particle size distribution (PSD) are essential to achieve the clinical translation of medical nanoparticles (NPs). Herein, dextran-based NPs produced via a water-in-oil emulsification/crosslinking process and developed as nanomedicines were studied. NPs were first characterized using traditional batch-mode techniques as dynamic light scattering (DLS) and laser diffraction. In a second step, their analysis by frit-inlet asymmetrical flow field-flow fractionation (FI-AF4) was explored. The major parameters of the AF4 procedure, namely, crossflow, detector flow, crossflow decay programming and relaxation time were set up. The sizes of the particle fractions eluted under optimized conditions were measured using DLS as an online detector. We demonstrate that FI-AF4 is a powerful method to characterize dextran-NPs in the 200 nm -1 µm range. It provided a more realistic and comprehensive picture of PSD, revealing its heterogenous character and clearly showing the ratio of different populations in the sample, while batch-mode light scattering techniques only detected the biggest particle sizes.
Collapse
Affiliation(s)
- Laura Marcela Forero Ramirez
- Laboratory for Vascular Translational Science, UMRS1148, INSERM, Université de Paris, Paris F-75018, France; Université Sorbonne Paris Nord, Villetaneuse F-93430, France; Normandie University, UNIROUEN, National Institute of Applied Sciences of Rouen, CNRS, PBS, UMR6270, Rouen 76000, France
| | - Christophe Rihouey
- Normandie University, UNIROUEN, National Institute of Applied Sciences of Rouen, CNRS, PBS, UMR6270, Rouen 76000, France
| | - Frédéric Chaubet
- Laboratory for Vascular Translational Science, UMRS1148, INSERM, Université de Paris, Paris F-75018, France; Université Sorbonne Paris Nord, Villetaneuse F-93430, France
| | - Didier Le Cerf
- Normandie University, UNIROUEN, National Institute of Applied Sciences of Rouen, CNRS, PBS, UMR6270, Rouen 76000, France
| | - Luc Picton
- Normandie University, UNIROUEN, National Institute of Applied Sciences of Rouen, CNRS, PBS, UMR6270, Rouen 76000, France.
| |
Collapse
|
19
|
Cauzzo J, Jayakumar N, Ahluwalia BS, Ahmad A, Škalko-Basnet N. Characterization of Liposomes Using Quantitative Phase Microscopy (QPM). Pharmaceutics 2021; 13:pharmaceutics13050590. [PMID: 33919040 PMCID: PMC8142990 DOI: 10.3390/pharmaceutics13050590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
The rapid development of nanomedicine and drug delivery systems calls for new and effective characterization techniques that can accurately characterize both the properties and the behavior of nanosystems. Standard methods such as dynamic light scattering (DLS) and fluorescent-based assays present challenges in terms of system's instability, machine sensitivity, and loss of tracking ability, among others. In this study, we explore some of the downsides of batch-mode analyses and fluorescent labeling, while introducing quantitative phase microscopy (QPM) as a label-free complimentary characterization technique. Liposomes were used as a model nanocarrier for their therapeutic relevance and structural versatility. A successful immobilization of liposomes in a non-dried setup allowed for static imaging conditions in an off-axis phase microscope. Image reconstruction was then performed with a phase-shifting algorithm providing high spatial resolution. Our results show the potential of QPM to localize subdiffraction-limited liposomes, estimate their size, and track their integrity over time. Moreover, QPM full-field-of-view images enable the estimation of a single-particle-based size distribution, providing an alternative to the batch mode approach. QPM thus overcomes some of the drawbacks of the conventional methods, serving as a relevant complimentary technique in the characterization of nanosystems.
Collapse
Affiliation(s)
- Jennifer Cauzzo
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Nikhil Jayakumar
- Optical Nanoscopy Research Group, Department of Physics and Technology, Faculty of Science and Technology, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (N.J.); (B.S.A.); (A.A.)
| | - Balpreet Singh Ahluwalia
- Optical Nanoscopy Research Group, Department of Physics and Technology, Faculty of Science and Technology, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (N.J.); (B.S.A.); (A.A.)
| | - Azeem Ahmad
- Optical Nanoscopy Research Group, Department of Physics and Technology, Faculty of Science and Technology, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (N.J.); (B.S.A.); (A.A.)
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway;
- Correspondence: ; Tel.: +47-776-46-640
| |
Collapse
|
20
|
Quattrini F, Berrecoso G, Crecente-Campo J, Alonso MJ. Asymmetric flow field-flow fractionation as a multifunctional technique for the characterization of polymeric nanocarriers. Drug Deliv Transl Res 2021; 11:373-395. [PMID: 33521866 PMCID: PMC7987708 DOI: 10.1007/s13346-021-00918-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 12/28/2022]
Abstract
The importance of polymeric nanocarriers in the field of drug delivery is ever-increasing, and the accurate characterization of their properties is paramount to understand and predict their behavior. Asymmetric flow field-flow fractionation (AF4) is a fractionation technique that has gained considerable attention for its gentle separation conditions, broad working range, and versatility. AF4 can be hyphenated to a plurality of concentration and size detectors, thus permitting the analysis of the multifunctionality of nanomaterials. Despite this potential, the practical information that can be retrieved by AF4 and its possible applications are still rather unfamiliar to the pharmaceutical scientist. This review was conceived as a primer that clearly states the "do's and don'ts" about AF4 applied to the characterization of polymeric nanocarriers. Aside from size characterization, AF4 can be beneficial during formulation optimization, for drug loading and drug release determination and for the study of interactions among biomaterials. It will focus mainly on the advances made in the last 5 years, as well as indicating the problematics on the consensus, which have not been reached yet. Methodological recommendations for several case studies will be also included.
Collapse
Affiliation(s)
- Federico Quattrini
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain
| | - Germán Berrecoso
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706, Santiago de Compostela, Spain
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706, Santiago de Compostela, Spain.
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706, Santiago de Compostela, Spain.
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
21
|
Rodríguez-Félix F, López-Cota AG, Moreno-Vásquez MJ, Graciano-Verdugo AZ, Quintero-Reyes IE, Del-Toro-Sánchez CL, Tapia-Hernández JA. Sustainable-green synthesis of silver nanoparticles using safflower ( Carthamus tinctorius L.) waste extract and its antibacterial activity. Heliyon 2021; 7:e06923. [PMID: 34007921 PMCID: PMC8111583 DOI: 10.1016/j.heliyon.2021.e06923] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 11/23/2022] Open
Abstract
Silver nanoparticles have high potential for application in food industry, as they have the ability to inhibit a wide range of bacteria of pathogenic and spoilage origin. They can be obtained from different methods classified in physical and chemical and which are aggressive with the environment since they produce toxic waste. Nowadays, environmentally friendly methods such as green synthesis can be used, through the use of agri-food waste. The use of these wastes is a more sustainable method, because it reduces the environmental pollution, at the same time that silver nanoparticles are obtained. The aim of the present study is the green synthesis of silver nanoparticles using safflower (Carthamus tinctorius L.) aqueous extract from waste and its antibacterial activity on Staphylococcus aureus (Gram positive) and Pseudomonas fluorescens (Gram negative). The analyses by TEM showed that the as-synthesized silver nanoparticles were uniform and spherical particles with an average diameter of 8.67 ± 4.7 nm and confirmed by SEM. The electron diffraction and TEM analyses showed the characteristic crystallinity of silver nanoparticles. FTIR spectroscopy confirmed that various functional groups were responsible for reducing and stabilizing during the biosynthesis process. Nanoparticles inhibited the growth of both types of bacteria from the lowest concentration evaluated (0.9 μg/mL). We conclude that silver nanoparticles synthesized in the present study have potential application as antibacterial agents in food and medicine industry.
Collapse
Affiliation(s)
- Francisco Rodríguez-Félix
- Departamento de Investigación y Posgrado en Alimentos (DIPA), Universidad de Sonora, Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| | - Astrid Guadalupe López-Cota
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| | - María Jesús Moreno-Vásquez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| | - Abril Zoraida Graciano-Verdugo
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| | - Idania Emedith Quintero-Reyes
- Departamento de Ciencias de la Salud, Universidad de Sonora, Campus Cajeme, Blvd. Bordo Nuevo Antiguo Ejido Providencia, Cd. Obregón, Sonora, Mexico
| | - Carmen Lizette Del-Toro-Sánchez
- Departamento de Investigación y Posgrado en Alimentos (DIPA), Universidad de Sonora, Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| | - José Agustín Tapia-Hernández
- Departamento de Investigación y Posgrado en Alimentos (DIPA), Universidad de Sonora, Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| |
Collapse
|
22
|
Design and manufacturing of monodisperse and malleable phytantriol-based cubosomes for drug delivery applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Vogel R, Savage J, Muzard J, Camera GD, Vella G, Law A, Marchioni M, Mehn D, Geiss O, Peacock B, Aubert D, Calzolai L, Caputo F, Prina‐Mello A. Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: Who is up to the challenge? J Extracell Vesicles 2021; 10:e12052. [PMID: 33473263 PMCID: PMC7804049 DOI: 10.1002/jev2.12052] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/06/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine multiple orthogonal techniques to perform a robust characterization of complex biological samples. Three pillars of critical quality attribute characterization of EVs are sizing, concentration measurement and phenotyping. The repeatable measurement of vesicle concentration is one of the key-challenges that requires further efforts, in order to obtain comparable results by using different techniques and assure reproducibility. In this study, the performance of measuring the concentration of particles in the size range of 50-300 nm with complementary techniques is thoroughly investigated in a step-by step approach of incremental complexity. The six applied techniques include multi-angle dynamic light scattering (MADLS), asymmetric flow field flow fractionation coupled with multi-angle light scattering (AF4-MALS), centrifugal liquid sedimentation (CLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), and high-sensitivity nano flow cytometry (nFCM). To achieve comparability, monomodal samples and complex polystyrene mixtures were used as particles of metrological interest, in order to check the suitability of each technique in the size and concentration range of interest, and to develop reliable post-processing data protocols for the analysis. Subsequent complexity was introduced by testing liposomes as validation of the developed approaches with a known sample of physicochemical properties closer to EVs. Finally, the vesicles in EV containing plasma samples were analysed with all the tested techniques. The results presented here aim to shed some light into the requirements for the complex characterization of biological samples, as this is a critical need for quality assurance by the EV and regulatory community. Such efforts go with the view to contribute to both, set-up reproducible and reliable characterization protocols, and comply with the Minimal Information for Studies of Extracellular Vesicles (MISEV) requirements.
Collapse
Affiliation(s)
- Robert Vogel
- School of Mathematics and PhysicsThe University of QueenslandSt LuciaQueenslandAustralia
| | - John Savage
- LBCAMDepartment of Clinical MedicineTrinity Translational Medicine InstituteTrinity College DublinDublinIreland
| | | | | | - Gabriele Vella
- LBCAMDepartment of Clinical MedicineTrinity Translational Medicine InstituteTrinity College DublinDublinIreland
| | - Alice Law
- NanoFCM Co., Ltd, MedicityNottinghamUK
| | | | - Dora Mehn
- European CommissionJoint Research Centre (JRC)IspraItaly
| | - Otmar Geiss
- European CommissionJoint Research Centre (JRC)IspraItaly
| | | | | | - Luigi Calzolai
- European CommissionJoint Research Centre (JRC)IspraItaly
| | - Fanny Caputo
- Department of Biotechnology and NanomedicineSINTEF IndustryTrondheimNorway
| | - Adriele Prina‐Mello
- LBCAMDepartment of Clinical MedicineTrinity Translational Medicine InstituteTrinity College DublinDublinIreland
- AMBER CentreCRANN Institute, Trinity College DublinDublinIreland
| |
Collapse
|
24
|
Varenne F, Devoille L, Makky A, Feltin N, Violleau F, Barratt G, Vauthier C. Evaluation of the size distribution of a multimodal dispersion of polymer nanoparticles by microscopy after different methods of deposition. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Guyon L, Groo AC, Malzert-Fréon A. Relevant Physicochemical Methods to Functionalize, Purify, and Characterize Surface-Decorated Lipid-Based Nanocarriers. Mol Pharm 2020; 18:44-64. [PMID: 33244972 DOI: 10.1021/acs.molpharmaceut.0c00857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Surface functionalization of lipid-based nanocarriers (LBNCs) with targeting ligands has attracted huge interest in the field of nanomedicines for their ability to overcome some physiological barriers and their potential to deliver an active molecule to a specific target without causing damage to healthy tissues. The principal objective of this review is to summarize the present knowledge on LBNC decoration used for biomedical applications, with an emphasis on the ligands used, the functionalization approaches, and the purification methods after ligand corona formation. The most potent experimental techniques for the LBNC surface characterization are described. The potential of promising methods such as nuclear magnetic resonance spectroscopy and isothermal titration calorimetry to characterize ligand surface corona is also outlined.
Collapse
Affiliation(s)
- Léna Guyon
- CERMN, UNICAEN Université de Caen Normandie, F-14000 Caen, France
| | - Anne-Claire Groo
- CERMN, UNICAEN Université de Caen Normandie, F-14000 Caen, France
| | | |
Collapse
|
26
|
Particle Detection and Characterization for Biopharmaceutical Applications: Current Principles of Established and Alternative Techniques. Pharmaceutics 2020; 12:pharmaceutics12111112. [PMID: 33228023 PMCID: PMC7699340 DOI: 10.3390/pharmaceutics12111112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
Detection and characterization of particles in the visible and subvisible size range is critical in many fields of industrial research. Commercial particle analysis systems have proliferated over the last decade. Despite that growth, most systems continue to be based on well-established principles, and only a handful of new approaches have emerged. Identifying the right particle-analysis approach remains a challenge in research and development. The choice depends on each individual application, the sample, and the information the operator needs to obtain. In biopharmaceutical applications, particle analysis decisions must take product safety, product quality, and regulatory requirements into account. Biopharmaceutical process samples and formulations are dynamic, polydisperse, and very susceptible to chemical and physical degradation: improperly handled product can degrade, becoming inactive or in specific cases immunogenic. This article reviews current methods for detecting, analyzing, and characterizing particles in the biopharmaceutical context. The first part of our article represents an overview about current particle detection and characterization principles, which are in part the base of the emerging techniques. It is very important to understand the measuring principle, in order to be adequately able to judge the outcome of the used assay. Typical principles used in all application fields, including particle–light interactions, the Coulter principle, suspended microchannel resonators, sedimentation processes, and further separation principles, are summarized to illustrate their potentials and limitations considering the investigated samples. In the second part, we describe potential technical approaches for biopharmaceutical particle analysis as some promising techniques, such as nanoparticle tracking analysis (NTA), micro flow imaging (MFI), tunable resistive pulse sensing (TRPS), flow cytometry, and the space- and time-resolved extinction profile (STEP®) technology.
Collapse
|
27
|
Shevliakova HV, Morozovska AN, Morozosky NV, Svechnikov GS, Shvartsman VV. The Influence of the Distribution Function of Ferroelectric Nanoparticles Sizes on Their Electrocaloric and Pyroelectric Properties. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2445-2453. [PMID: 32746189 DOI: 10.1109/tuffc.2020.3004740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We consider a model of a nanocomposite based on noninteracting spherical single-domain ferroelectric nanoparticles (NPs) of various sizes embedded in a dielectric matrix. The size distribution function of these NPs is selected as a part of the truncated Gaussian distribution from minimum to maximum radius. For such nanocomposites, we calculate the dependences of the reversible part of the electric polarization, the electrocaloric (EC) temperature change, and the dielectric permittivity on the external electric field, which have the characteristic form of hysteresis loops. We then analyze the change in the shape of the hysteresis loops relative to the particle size distribution parameters. We demonstrate that the remanent polarization, coercive field, dielectric permittivity maximums, and maximums and minimums of the EC temperature change depend most strongly on the most probable radius, moderately on the dispersion, and have the weakest dependence on the maximum radius of the NP. We calculate and analyze the dependences of pyroelectric figures of merit on the average radius of the NPs in the composite. The dependences confirm the presence of a phase transition induced by the size of the NPs, which is characterized by the presence of a maxima near the critical average radius of the particles, the value of which increases with an increasing dispersion of the distribution function.
Collapse
|
28
|
Fan Y, Marioli M, Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J Pharm Biomed Anal 2020; 192:113642. [PMID: 33011580 DOI: 10.1016/j.jpba.2020.113642] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022]
Abstract
Lipid nanoparticles, especially liposomes and lipid/nucleic acid complexed nanoparticles have shown great success in the pharmaceutical industry. Their success is attributed to stable drug loading, extended pharmacokinetics, reduced off-target side effects, and enhanced delivery efficiency to disease targets with formidable blood-brain or plasma membrane barriers. Therefore, they offer promising formulation options for drugs limited by low therapeutic indexes in traditional dosage forms and current "undruggable" targets. Recent development of siRNA, antisense oligonucleotide, or the CRISPR complex-loaded lipid nanoparticles and liposomal vaccines also shed light on their potential in enabling versatile formulation platforms for new pharmaceutical modalities. Analytical characterization of these nanoparticles is critical to drug design, formulation development, understanding in vivo performance, as well as quality control. The multi-lipid excipients, unique core-bilayer structure, and nanoscale size all underscore their complicated critical quality attributes, including lipid species, drug encapsulation efficiency, nanoparticle characteristics, product stability, and drug release. To address these challenges and facilitate future applications of lipid nanoparticles in drug development, we summarize available analytical approaches for physicochemical characterizations of lipid nanoparticle-based pharmaceutical modalities. Furthermore, we compare advantages and challenges of different techniques, and highlight the promise of new strategies for automated high-throughput screening and future development.
Collapse
Affiliation(s)
- Yuchen Fan
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Maria Marioli
- Pharma Technical Development Europe Analytics, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Kelly Zhang
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
29
|
Eleamen Oliveira E, Barendji M, Vauthier C. Understanding Nanomedicine Size and Biological Response Dependency: What Is the Relevance of Previous Relationships Established on Only Batch-Mode DLS-Measured Sizes? Pharm Res 2020; 37:161. [DOI: 10.1007/s11095-020-02869-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
|
30
|
Al-Khafaji MA, Gaál A, Wacha A, Bóta A, Varga Z. Particle Size Distribution of Bimodal Silica Nanoparticles: A Comparison of Different Measurement Techniques. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3101. [PMID: 32664525 PMCID: PMC7412153 DOI: 10.3390/ma13143101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/27/2022]
Abstract
Silica nanoparticles (SNPs) belong to the most widely produced nanomaterials nowadays. Particle size distribution (PSD) is a key property of SNPs that needs to be accurately determined for a successful application. Many single particle and ensemble characterization methods are available for the determination of the PSD of SNPs, each having different advantages and limitations. Since most preparation protocols for SNPs can yield bimodal or heterogeneous PSDs, the capability of a given method to resolve bimodal PSD is of great importance. In this work, four different methods, namely transmission electron microscopy (TEM), dynamic light scattering (DLS), microfluidic resistive pulse sensing (MRPS) and small-angle X-ray scattering (SAXS) were used to characterize three different, inherently bimodal SNP samples. We found that DLS is unsuitable to resolve bimodal PSDs, while MRPS has proven to be an accurate single-particle size and concentration characterization method, although it is limited to sizes above 50 nm. SAXS was found to be the only method which provided statistically significant description of the bimodal PSDs. However, the analysis of SAXS curves becomes an ill-posed inverse mathematical problem for broad size distributions, therefore the use of orthogonal techniques is required for the reliable description of the PSD of SNPs.
Collapse
Affiliation(s)
| | | | | | | | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (M.A.A.-K.); (A.G.); (A.W.); (A.B.)
| |
Collapse
|
31
|
Zmerli I, Michel JP, Makky A. Bioinspired polydopamine nanoparticles: synthesis, nanomechanical properties, and efficient PEGylation strategy. J Mater Chem B 2020; 8:4489-4504. [PMID: 32365146 DOI: 10.1039/c9tb02769f] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polydopamine (PDA) is a bioinspired fascinating polymer which is considered nowadays as a material of choice for designing drug delivery nanosystems. Indeed, PDA exhibits multiple interesting features including simple preparation protocols, biocompatibility, simple functionalization procedures, free radicals scavenging and photothermal/photoacoustic properties. However, because of its heterogeneous structure, clear procedures about PDA nanoparticles synthesis and PEGylation with well-defined and reproducible physicochemical properties such as size, shape and nanomechanics are still needed. In this work, we established tightly controlled experimental conditions to synthesize PDA nanoparticles with well-defined size and yield. This allowed us to identify the factors that affect the most these two parameters and to construct surface response plots with accurate predictive values of size and yield. The nanomechanical properties of PDA NPs exhibiting different sizes have been studied with AFM nanoindentation experiments. Our results demonstrated for the first time that the elasticity of PDA NPs was decreasing with their size. This could be explained by the higher geometric packing order of the stacked oligomeric fractions inside the core of the biggest PDA NPs. Next, in order to determine the best PEGylation experimental conditions of PDA NPs using thiol-terminated PEG that allow grafting the highest polymer density with proteins repelling properties, we have first optimized the PEGylation strategy on PDA films. By using a combination of QCM-D and AFM experiments, we could demonstrate that efficient PEGylation of PDA films could be done even at low PEG concentration but in the presence of NaCl which exerts a salting out effect on PEG chains improving thus the grafting density. Finally, we transposed these experimental conditions to PDA NPs and we could synthesize PEGylated PDA NPs exhibiting high stability in physiological conditions as revealed by FTIR and DLS experiments respectively.
Collapse
Affiliation(s)
- Islam Zmerli
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 92296, Châtenay-Malabry, France.
| | - Jean-Philippe Michel
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 92296, Châtenay-Malabry, France.
| | - Ali Makky
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 92296, Châtenay-Malabry, France.
| |
Collapse
|
32
|
Advanced nanomedicine characterization by DLS and AF4-UV-MALS: Application to a HIV nanovaccine. J Pharm Biomed Anal 2019; 179:113017. [PMID: 31816470 DOI: 10.1016/j.jpba.2019.113017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022]
Abstract
Nanoformulations are complex systems where physicochemical properties determine their therapeutic efficacy and safety. In the case of nanovaccines, particle size and shape play a crucial role on the immune response generated. Furthermore, the antigen's integrity is also a key aspect to control when producing a nanovaccine. The determination of all those physicochemical properties is still an analytical challenge and the lack of well-established methods hinders the access of new therapeutics to the market. In this work, robust methods for the characterization of a novel HIV nanoparticle-based vaccine produced in good manufacturing practice (GMPs)-like environment were developed. With slightly polydisperse particles (< 0.2) close to 180 nm of size, batch-mode Dynamic Light Scattering (DLS) was validated to be used as a quality control technique in the pilot production plant. In addition, a high size resolution method using Asymmetrical Flow Field Flow Fractionation (AF4) demonstrated its ability to determine not only size and size distribution but also shape modification across the size and accurate quantification of the free active ingredient. Results showed a monomodal distribution of particles from 60 to 700 nm, most of them (> 90%) with size lower than 250 nm, consistent with more traditional techniques, and revealed a slight change in the structure of the particles induced by the presence of the antigen. Finally, a batch to batch variability lower than 20% was obtained by both DLS and AF4 methods indicating that preparation method was highly reproducible.
Collapse
|
33
|
Hu Y, Crist RM, Clogston JD. The utility of asymmetric flow field-flow fractionation for preclinical characterization of nanomedicines. Anal Bioanal Chem 2019; 412:425-438. [DOI: 10.1007/s00216-019-02252-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 12/29/2022]
|
34
|
Guyon L, Lepeltier E, Gimel JC, Calvignac B, Franconi F, Lautram N, Dupont A, Bourgaux C, Pigeon P, Saulnier P, Jaouen G, Passirani C. Importance of Combining Advanced Particle Size Analysis Techniques To Characterize Cell-Penetrating Peptide-Ferrocifen Self-Assemblies. J Phys Chem Lett 2019; 10:6613-6620. [PMID: 31609118 DOI: 10.1021/acs.jpclett.9b01493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The design of a simple platform to target the delivery of notably hydrophobic drugs into cancer cells is an ultimate goal. Here, three strategies were combined in the same nanovector, in limiting the use of excipients: cell-penetrating peptides, an amphiphilic prodrug, and self-assembly. Light scattering and cryogenic transmission electron microscopy revealed one size population of objects around 100 nm with a narrow size distribution. However, in-depth analysis of the suspension by nanoparticle tracking analysis, small-angle X-ray scattering, and nuclear magnetic resonance (NMR) diffusometry demonstrated the presence of another population of small objects (<2 nm). It has been shown that these small self-assemblies represented >99% of the matter! This presence was clearly and unambiguously demonstrated by NMR diffusometry experiments. The study highlights the importance and the complementary contribution of each characterization method to reflect the reality of the studied nanoassembly.
Collapse
Affiliation(s)
- Léna Guyon
- Micro et Nanomédecines Translationnelles, MINT , UNIV Angers , UMR INSERM 1066, UMR CNRS 6021, 49000 Angers , France
| | - Elise Lepeltier
- Micro et Nanomédecines Translationnelles, MINT , UNIV Angers , UMR INSERM 1066, UMR CNRS 6021, 49000 Angers , France
| | - Jean-Christophe Gimel
- Micro et Nanomédecines Translationnelles, MINT , UNIV Angers , UMR INSERM 1066, UMR CNRS 6021, 49000 Angers , France
| | - Brice Calvignac
- Micro et Nanomédecines Translationnelles, MINT , UNIV Angers , UMR INSERM 1066, UMR CNRS 6021, 49000 Angers , France
| | - Florence Franconi
- Micro et Nanomédecines Translationnelles, MINT , UNIV Angers , UMR INSERM 1066, UMR CNRS 6021, 49000 Angers , France
- PRISM Plate-forme de recherche en imagerie et spectroscopie multi-modales, PRISM-Icat , Angers et PRISM-Biosit CNRS UMS 3480, INSERM UMS 018, Rennes, UBL Universite Bretagne , 35000 Rennes , France
| | - Nolwenn Lautram
- Micro et Nanomédecines Translationnelles, MINT , UNIV Angers , UMR INSERM 1066, UMR CNRS 6021, 49000 Angers , France
| | - Aurélien Dupont
- Univ Rennes , CNRS , Inserm, BIOSIT-UMS 3480, US_S 018, F-35000 Rennes , France
| | - Claudie Bourgaux
- Institut Galien Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie , Université Paris-Sud XI , 92290 Châtenay-Malabry , France
| | - Pascal Pigeon
- Sorbonne Université , UPMC Université Paris 06, UMR 8232, IPCM and PSL Chimie Paris Tech , 75005 Paris , France
| | - Patrick Saulnier
- Micro et Nanomédecines Translationnelles, MINT , UNIV Angers , UMR INSERM 1066, UMR CNRS 6021, 49000 Angers , France
| | - Gérard Jaouen
- Sorbonne Université , UPMC Université Paris 06, UMR 8232, IPCM and PSL Chimie Paris Tech , 75005 Paris , France
| | - Catherine Passirani
- Micro et Nanomédecines Translationnelles, MINT , UNIV Angers , UMR INSERM 1066, UMR CNRS 6021, 49000 Angers , France
| |
Collapse
|
35
|
Soler Besumbes E, Fornaguera C, Monge M, García-Celma MJ, Carrión J, Solans C, Dols-Perez A. PLGA cationic nanoparticles, obtained from nano-emulsion templating, as potential DNA vaccines. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Quality control of gold nanoparticles as pharmaceutical ingredients. Int J Pharm 2019; 569:118583. [DOI: 10.1016/j.ijpharm.2019.118583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 11/19/2022]
|
37
|
Viscosity of Plasma as a Key Factor in Assessment of Extracellular Vesicles by Light Scattering. Cells 2019; 8:cells8091046. [PMID: 31500151 PMCID: PMC6769602 DOI: 10.3390/cells8091046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/19/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EVs) isolated from biological samples are a promising material for use in medicine and technology. However, the assessment methods that would yield repeatable concentrations, sizes and compositions of the harvested material are missing. A plausible model for the description of EV isolates has not been developed. Furthermore, the identity and genesis of EVs are still obscure and the relevant parameters have not yet been identified. The purpose of this work is to better understand the mechanisms taking place during harvesting of EVs, in particular the role of viscosity of EV suspension. The EVs were harvested from blood plasma by repeated centrifugation and washing of samples. Their size and shape were assessed by using a combination of static and dynamic light scattering. The average shape parameter of the assessed particles was found to be ρ ~ 1 (0.94–1.1 in exosome standards and 0.7–1.2 in blood plasma and EV isolates), pertaining to spherical shells (spherical vesicles). This study has estimated the value of the viscosity coefficient of the medium in blood plasma to be 1.2 mPa/s. It can be concluded that light scattering could be a plausible method for the assessment of EVs upon considering that EVs are a dynamic material with a transient identity.
Collapse
|
38
|
Haryadi BM, Hafner D, Amin I, Schubel R, Jordan R, Winter G, Engert J. Nonspherical Nanoparticle Shape Stability Is Affected by Complex Manufacturing Aspects: Its Implications for Drug Delivery and Targeting. Adv Healthc Mater 2019; 8:e1900352. [PMID: 31410996 DOI: 10.1002/adhm.201900352] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Indexed: 02/04/2023]
Abstract
The shape of nanoparticles is known recently as an important design parameter influencing considerably the fate of nanoparticles with and in biological systems. Several manufacturing techniques to generate nonspherical nanoparticles as well as studies on in vitro and in vivo effects thereof have been described. However, nonspherical nanoparticle shape stability in physiological-related conditions and the impact of formulation parameters on nonspherical nanoparticle resistance still need to be investigated. To address these issues, different nanoparticle fabrication methods using biodegradable polymers are explored to produce nonspherical nanoparticles via the prevailing film-stretching method. In addition, systematic comparisons to other nanoparticle systems prepared by different manufacturing techniques and less biodegradable materials (but still commonly utilized for drug delivery and targeting) are conducted. The study evinces that the strong interplay from multiple nanoparticle properties (i.e., internal structure, Young's modulus, surface roughness, liquefaction temperature [glass transition (Tg ) or melting (Tm )], porosity, and surface hydrophobicity) is present. It is not possible to predict the nonsphericity longevity by merely one or two factor(s). The most influential features in preserving the nonsphericity of nanoparticles are existence of internal structure and low surface hydrophobicity (i.e., surface-free energy (SFE) > ≈55 mN m-1 , material-water interfacial tension <6 mN m-1 ), especially if the nanoparticles are soft (<1 GPa), rough (Rrms > 10 nm), porous (>1 m2 g-1 ), and in possession of low bulk liquefaction temperature (<100 °C). Interestingly, low surface hydrophobicity of nanoparticles can be obtained indirectly by the significant presence of residual stabilizers. Therefore, it is strongly suggested that nonsphericity of particle systems is highly dependent on surface chemistry but cannot be appraised separately from other factors. These results and reviews allot valuable guidelines for the design and manufacturing of nonspherical nanoparticles having adequate shape stability, thereby appropriate with their usage purposes. Furthermore, they can assist in understanding and explaining the possible mechanisms of nonspherical nanoparticles effectivity loss and distinctive material behavior at the nanoscale.
Collapse
Affiliation(s)
- Bernard Manuel Haryadi
- Pharmaceutical Technology and BiopharmaceuticsDepartment of PharmacyLudwig‐Maximilians‐Universität München Butenandtstraße 5 81377 Munich Germany
| | - Daniel Hafner
- Department of ChemistryDresden University of Technology Mommsenstraße 4 01069 Dresden Germany
| | - Ihsan Amin
- Department of ChemistryDresden University of Technology Mommsenstraße 4 01069 Dresden Germany
| | - Rene Schubel
- Department of ChemistryDresden University of Technology Mommsenstraße 4 01069 Dresden Germany
| | - Rainer Jordan
- Department of ChemistryDresden University of Technology Mommsenstraße 4 01069 Dresden Germany
| | - Gerhard Winter
- Pharmaceutical Technology and BiopharmaceuticsDepartment of PharmacyLudwig‐Maximilians‐Universität München Butenandtstraße 5 81377 Munich Germany
| | - Julia Engert
- Pharmaceutical Technology and BiopharmaceuticsDepartment of PharmacyLudwig‐Maximilians‐Universität München Butenandtstraße 5 81377 Munich Germany
| |
Collapse
|
39
|
Modena MM, Rühle B, Burg TP, Wuttke S. Nanoparticle Characterization: What to Measure? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901556. [PMID: 31148285 DOI: 10.1002/adma.201901556] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/19/2019] [Indexed: 05/20/2023]
Abstract
What to measure? is a key question in nanoscience, and it is not straightforward to address as different physicochemical properties define a nanoparticle sample. Most prominent among these properties are size, shape, surface charge, and porosity. Today researchers have an unprecedented variety of measurement techniques at their disposal to assign precise numerical values to those parameters. However, methods based on different physical principles probe different aspects, not only of the particles themselves, but also of their preparation history and their environment at the time of measurement. Understanding these connections can be of great value for interpreting characterization results and ultimately controlling the nanoparticle structure-function relationship. Here, the current techniques that enable the precise measurement of these fundamental nanoparticle properties are presented and their practical advantages and disadvantages are discussed. Some recommendations of how the physicochemical parameters of nanoparticles should be investigated and how to fully characterize these properties in different environments according to the intended nanoparticle use are proposed. The intention is to improve comparability of nanoparticle properties and performance to ensure the successful transfer of scientific knowledge to industrial real-world applications.
Collapse
Affiliation(s)
- Mario M Modena
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, BS, Switzerland
| | - Bastian Rühle
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter - Str 11, 12489, Berlin, Germany
| | - Thomas P Burg
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Merckstrasse 25, 64283, Darmstadt, Germany
| | - Stefan Wuttke
- Department of Chemistry, Center for NanoScience (CeNS), University of Munich (LMU), 81377, Munich, Germany
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park, 48940, Leioa, Spain
| |
Collapse
|
40
|
De Marchi L, Pretti C, Chiellini F, Morelli A, Neto V, Soares AMVM, Figueira E, Freitas R. The influence of simulated global ocean acidification on the toxic effects of carbon nanoparticles on polychaetes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:1178-1187. [PMID: 30970483 DOI: 10.1016/j.scitotenv.2019.02.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Ocean acidification events are recognized as important drivers of change in biological systems. Particularly, the impacts of acidification are more severe in estuarine systems than in surface ocean due to their shallowness, low buffering capacity, low salinity and high organic matter from land drainage. Moreover, because they are transitional areas, estuaries can be seriously impacted by a vast number of anthropogenic activities and in the last decades, carbon nanomaterials (CNMs) are considered as emerging contaminants in these ecosystems. Considering all these evidences, chronic experiment was carried out, trying to understand the possible alteration on the chemical behaviour of two different CNMs (functionalized and pristine) in predicted climate change scenarios and consequently, how these alterations could modify the sensitivity of one the most common marine and estuarine organisms (the polychaeta Hediste diversicolor) assessing a set of biomarkers related to polychaetes oxidative status as well as the metabolic performance and neurotoxicity. Our results demonstrated that all enzymes worked together to counteract seawater acidification and CNMs, however oxidative stress in the exposed polychaetes to both CNMs, especially under ocean acidification conditions, was enhanced. In fact, although the antioxidant enzymes tried to cope as compensatory response of cellular defense systems against oxidative stress, the synergistic interactive effects of pH and functionalized CNMs indicated that acidified pH significantly increased the oxidative damage (in terms of lipid peroxidation) in the cotaminated organisms. Different responses were observed in organisms submitted to pristine CNMs under pH control, where the lipid peroxidation did not increase along with the increasing exposure concentrations. The present results further demonstrated neurotoxicity caused by both CNMs, especially noticeable at acidified conditions. The mechanism of enhanced toxicity could be attributed to slighter aggregation and more suspended NMs in acidified seawater (as demonstrated by the DLS analysis). Therefore, ocean acidification may cause a higher risk of CNMs to marine ecosystems.
Collapse
Affiliation(s)
- Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro 3810-193, Aveiro, Portugal; Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa 56122, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - Victor Neto
- Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro 3810-193, Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro 3810-193, Aveiro, Portugal.
| |
Collapse
|
41
|
De Marchi L, Neto V, Pretti C, Chiellini F, Morelli A, Soares AMVM, Figueira E, Freitas R. The influence of Climate Change on the fate and behavior of different carbon nanotubes materials and implication to estuarine invertebrates. Comp Biochem Physiol C Toxicol Pharmacol 2019; 219:103-115. [PMID: 30797982 DOI: 10.1016/j.cbpc.2019.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 11/29/2022]
Abstract
The widespread use of Carbon nanotubes (CNTs) has been increasing exponentially, leading to a significant potential release into the environment. Nevertheless, the toxic effects of CNTs in natural aquatic systems are related to their ability to interact with abiotic compounds. Considering that salinity variations are one of the main challenges in the environment and thus may influence the behavior and toxicity of CNTs, a laboratory experiment was performed exposing the tube-building polychaete Diopatra neapolitana (Delle Chiaje 1841) for 28 days to pristine multi-walled carbon nanotube (MWCNTs) and carboxylated MWCNTs, maintained at control salinity 28 and low salinity 21. An innovative approach based on thermogravimetric analysis (TGA) was adopted for the first time to assess the presence of MWCNTs aggregates in the organisms. Both CNTs generated toxic impacts in terms of regenerative capacity, energy reserves and metabolic capacity as well as oxidative and neuro status, however greater toxic impacts were observed in polychaetes exposed to carboxylated MWCNTs. Moreover, both CNTs maintained under control salinity (28) generated higher toxic impacts in the polychaetes compared to individuals maintained under low salinity (21), indicating that exposed polychaetes tend to be more sensitive to the alteration induced by salinity variations on the chemical behavior of both MWCNTs in comparison to salt stress.
Collapse
Affiliation(s)
- Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Victor Neto
- Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa 56122, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - Amadeu M V M Soares
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
42
|
Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. J Control Release 2019; 299:31-43. [PMID: 30797868 DOI: 10.1016/j.jconrel.2019.02.030] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022]
Abstract
The particle size distribution (PSD) and the stability of nanoparticles enabled medicinal products (NEP) in complex biological environments are key attributes to assess their quality, safety and efficacy. Despite its low resolution, dynamic light scattering (DLS) is the most common sizing technique since the onset of NEP in pharmaceutical technologies. Considering the limitations of the existing sizing measurements and the challenges posed by complex NEPs both scientists and regulators encourage the combination of multiple orthogonal high-resolution approaches to shed light in the NEP sizing space (e.g. dynamic light scattering, electron microscopy, field flow fractionation coupled to online sizing detectors, centrifugal techniques, particle tracking analysis and tunable resistive pulse sensing). The pharmaceutical and biotechnology developers are now challenged to find their own pragmatic characterisation approaches, which should be fit for purpose and minimize costs at the same time, in a complicated landscape where only a few standards exist. In order to support the community, the European Nanomedicine Characterisation Laboratory (EUNCL) and the US National Cancer Institute Nanotechnology Characterization Laboratory (NCI-NCL) have jointly developed multiple standard operating procedures (SOPs) for NEP assessment, including the measurements of particle size distribution, and are offering wide access to their 'state of the art' characterisation platforms, in addition to making SOPs publicly available. This joint perspective article would like to present the NCI-NCL and EUNCL multi-step approach of incremental complexity to measure particle size distribution and size stability of NEPs, consisting of a quick preliminary step to assess sample integrity and stability by low resolution techniques (pre-screening), followed by the combination of complementary high resolution sizing measurements performed both in simple buffers and in complex biological media. Test cases are presented to demonstrate: i) the need for employing at least one high-resolution sizing technique, ii) the importance of selecting the correct sizing techniques for the purpose, and iii) the robustness of utilizing orthogonal sizing techniques to study the physical properties of complex NEP samples.
Collapse
|
43
|
Caputo F, Arnould A, Bacia M, Ling WL, Rustique E, Texier I, Mello AP, Couffin AC. Measuring Particle Size Distribution by Asymmetric Flow Field Flow Fractionation: A Powerful Method for the Preclinical Characterization of Lipid-Based Nanoparticles. Mol Pharm 2019; 16:756-767. [PMID: 30604620 PMCID: PMC6377179 DOI: 10.1021/acs.molpharmaceut.8b01033] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Particle size distribution and stability are key attributes for the evaluation of the safety and efficacy profile of medical nanoparticles (Med-NPs). Measuring particle average size and particle size distribution is a challenging task which requires the combination of orthogonal high-resolution sizing techniques, especially in complex biological media. Unfortunately, despite its limitations, due to its accessibility, low cost, and easy handling, batch mode dynamic light scattering (DLS) is still very often used as the only approach to measure particle size distribution in the nanomedicine field. In this work the use of asymmetric flow field flow fractionation coupled to multiangle light scattering and dynamic light scattering detectors (AF4-MALS-DLS) was evaluated as an alternative to batch mode DLS to measure the physical properties of lipid-based nanoparticles. A robust standard operating procedure (SOPs) developed by the Nanomedicine Characterization Laboratory (EUNCL) was presented and tested to assess size stability, batch to batch consistency, and the behavior of the lipid-based nanoparticles in plasma. Orthogonal sizing techniques, such as transmission electron microscopy (TEM) and particle tracking analysis (PTA) measurements, were performed to support the results. While batch mode DLS could be applied as a fast and simple method to provide a preliminary insight into the integrity and polydispersity of samples, it was unsuitable to resolve small modifications of the particle size distribution. The introduction of nanoparticle sorting by field-flow fractionation coupled to online DLS and MALS allowed assessment of batch to batch variability and changes in the size of the lipid nanoparticles induced by the interaction with serum proteins, which are critical for quality control and regulatory aspects. In conclusion, if a robust SOP is followed, AF4-MALS-DLS is a powerful method for the preclinical characterization of lipid-based nanoparticles.
Collapse
Affiliation(s)
- Fanny Caputo
- Univ. Grenoble Alpes, CEA , LETI , F-38000 Grenoble , France
| | | | - Maria Bacia
- Univ. Grenoble Alpes, CEA , CNRS, IBS , F-38000 Grenoble , France
| | - Wai Li Ling
- Univ. Grenoble Alpes, CEA , CNRS, IBS , F-38000 Grenoble , France
| | - Emilie Rustique
- Univ. Grenoble Alpes, CEA , LETI , F-38000 Grenoble , France
| | - Isabelle Texier
- Univ. Grenoble Alpes, CEA , LETI , F-38000 Grenoble , France
| | - Adriele Prina Mello
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Department of Clinical Medicine , Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College Dublin , Dublin 8 , Ireland.,AMBER Centre and CRANN Institute, Trinity College Dublin , Dublin 2 , Ireland
| | | |
Collapse
|
44
|
De Marchi L, Oliva M, Freitas R, Neto V, Figueira E, Chiellini F, Morelli A, Soares AMVM, Pretti C. Toxicity evaluation of carboxylated carbon nanotubes to the reef-forming tubeworm Ficopomatus enigmaticus (Fauvel, 1923). MARINE ENVIRONMENTAL RESEARCH 2019; 143:1-9. [PMID: 30420134 DOI: 10.1016/j.marenvres.2018.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
In recent years, oxidative stress has been recognized as one of the most common effects of nanoparticles in different organisms. Ficopomatus enigmaticus (Fauvel, 1923), a member of a large family of serpulidae polychates, is an important encrusting organism in a diverse set of marine habitats, from harbours to coral reefs. This species has been previously studied for ecotoxicological purposes, despite the lack of reported studies on this species biochemical response after exposure to different pollutants. For these reasons, and for the first time, a set of biomarkers related to oxidative status were assessed in polychaetes after 28 days of exposure. Furthermore, polychaetes metabolic performance and potential neurotoxicity were investigated. Results clearly demonstrated induced toxicity in the filter-feeder polychaetes after exposure to nanoparticles. Indeed, CNTs altered the biochemical and physiological status of F. enigmaticus, both in terms of energy reserves (reduction of protein and glycogen contents), oxidative status (expressed as damage in cell function such as protein carbonyl content and lipid peroxidation) and activation of antioxidant enzymes defences (Glutathione reductase, Catalase, Glutathione peroxidase and Glutathione S-transferases activities). The present study showed for the first time that this species can be used as a model organism for nanoparticle toxicology.
Collapse
Affiliation(s)
- Lucia De Marchi
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal; Department of Mechanical Engineering & Centre for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Matteo Oliva
- Interuniversitary Consortium of Marine Biology of Leghorn "G. Bacci", 57128, Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa, 56122, Italy
| | - Rosa Freitas
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Victor Neto
- Department of Mechanical Engineering & Centre for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa, 56126, Italy
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa, 56126, Italy
| | - Amadeu M V M Soares
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Interuniversitary Consortium of Marine Biology of Leghorn "G. Bacci", 57128, Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa, 56122, Italy.
| |
Collapse
|
45
|
Teulon JM, Godon C, Chantalat L, Moriscot C, Cambedouzou J, Odorico M, Ravaux J, Podor R, Gerdil A, Habert A, Herlin-Boime N, Chen SWW, Pellequer JL. On the Operational Aspects of Measuring Nanoparticle Sizes. NANOMATERIALS 2018; 9:nano9010018. [PMID: 30583592 PMCID: PMC6359205 DOI: 10.3390/nano9010018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Nanoparticles are defined as elementary particles with a size between 1 and 100 nm for at least 50% (in number). They can be made from natural materials, or manufactured. Due to their small sizes, novel toxicological issues are raised and thus determining the accurate size of these nanoparticles is a major challenge. In this study, we performed an intercomparison experiment with the goal to measure sizes of several nanoparticles, in a first step, calibrated beads and monodispersed SiO₂ Ludox®, and, in a second step, nanoparticles (NPs) of toxicological interest, such as Silver NM-300 K and PVP-coated Ag NPs, Titanium dioxide A12, P25(Degussa), and E171(A), using commonly available laboratory techniques such as transmission electron microscopy, scanning electron microscopy, small-angle X-ray scattering, dynamic light scattering, wet scanning transmission electron microscopy (and its dry state, STEM) and atomic force microscopy. With monomodal distributed NPs (polystyrene beads and SiO₂ Ludox®), all tested techniques provide a global size value amplitude within 25% from each other, whereas on multimodal distributed NPs (Ag and TiO₂) the inter-technique variation in size values reaches 300%. Our results highlight several pitfalls of NP size measurements such as operational aspects, which are unexpected consequences in the choice of experimental protocols. It reinforces the idea that averaging the NP size from different biophysical techniques (and experimental protocols) is more robust than focusing on repetitions of a single technique. Besides, when characterizing a heterogeneous NP in size, a size distribution is more informative than a simple average value. This work emphasizes the need for nanotoxicologists (and regulatory agencies) to test a large panel of different techniques before making a choice for the most appropriate technique(s)/protocol(s) to characterize a peculiar NP.
Collapse
Affiliation(s)
- Jean-Marie Teulon
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France.
- CEA, iBEB, LIRM, F-30207 Bagnols sur Cèze, France.
| | - Christian Godon
- CEA, iBEB, LIRM, F-30207 Bagnols sur Cèze, France.
- CEA, BIAM, LBDP, F-13108 Saint Paul lez Durance, France.
| | | | | | - Julien Cambedouzou
- Institut de Chimie Séparative de Marcoule (ICSM), CEA, CNRS, ENSCM, Univ. Montpellier, F-30207 Marcoule, France.
| | - Michael Odorico
- CEA, iBEB, LIRM, F-30207 Bagnols sur Cèze, France.
- Institut de Chimie Séparative de Marcoule (ICSM), CEA, CNRS, ENSCM, Univ. Montpellier, F-30207 Marcoule, France.
| | - Johann Ravaux
- Institut de Chimie Séparative de Marcoule (ICSM), CEA, CNRS, ENSCM, Univ. Montpellier, F-30207 Marcoule, France.
| | - Renaud Podor
- Institut de Chimie Séparative de Marcoule (ICSM), CEA, CNRS, ENSCM, Univ. Montpellier, F-30207 Marcoule, France.
| | - Adèle Gerdil
- UMR3685 CEA-CNRS, NIMBE, LEDNA, CEA Saclay, F-91191 Gif sur Yvette, France.
| | - Aurélie Habert
- UMR3685 CEA-CNRS, NIMBE, LEDNA, CEA Saclay, F-91191 Gif sur Yvette, France.
| | | | | | - Jean-Luc Pellequer
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France.
- CEA, iBEB, LIRM, F-30207 Bagnols sur Cèze, France.
| |
Collapse
|
46
|
Vázquez Juiz ML, Soto Gómez D, Pérez Rodríguez P, Paradelo M, López Periago JE. Humic acids modify the pulse size distributions in the characterization of plastic microparticles by Tunable Resistive Pulse Sensing. JOURNAL OF CONTAMINANT HYDROLOGY 2018; 218:59-69. [PMID: 30361114 DOI: 10.1016/j.jconhyd.2018.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Tunable Resistive Pulse Sensing, TRPS, is an emerging technique used in quantification and measuring the size (particle-by-particle) of viruses, exosomes and engineered colloidal spheres in biological fluids. We study the features of TRPS to enhance size characterization and quantification of submicron-sized microplastics, also called plastic microparticles, MP, in freshwater environments. We report alterations on the detection of the resistive pulses in the TRPS caused by humic acids, HA, during the size measurement of polystyrene microspheres used as MP surrogate. We discuss the alteration of the electric field in the measuring channel of the TRPS apparatus induced by the passage of HA. TRPS is a fast and precise technique for counting and size determination of MP but needs the evaluation of the influence of the organic matter on the current blockades. We show that statistical clustering models of the magnitude distribution of the resistive pulses can help to detect and quantify changes in the pulse size distributions induced by flocculation of humic acids. Conclusions of this study indicate that TRPS can be a valuable tool to improve the knowledge of the MP fate in surface waters, in the vadose zone and groundwater.
Collapse
Affiliation(s)
- María Laura Vázquez Juiz
- Dept. Bioloxía Vexetal e Ciencias do Solo, Facultade de Ciencias, Campus da Auga, University of Vigo, Edificio politécnico s/n As Lagoas, 32004 Ourense, Spain; Hydraulics Laboratory, Campus da Auga, University of Vigo, Spain.
| | - Diego Soto Gómez
- Dept. Bioloxía Vexetal e Ciencias do Solo, Facultade de Ciencias, Campus da Auga, University of Vigo, Edificio politécnico s/n As Lagoas, 32004 Ourense, Spain; Hydraulics Laboratory, Campus da Auga, University of Vigo, Spain.
| | - Paula Pérez Rodríguez
- Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS) University of Strasbourg/EOST, UMR7517-CNRS, France; Hydraulics Laboratory, Campus da Auga, University of Vigo, Spain; Dept. Bioloxía Vexetal e Ciencias do Solo, Facultade de Ciencias, Campus da Auga, University of Vigo, Edificio politécnico s/n As Lagoas, 32004 Ourense, Spain
| | - Marcos Paradelo
- Department of Sustainable Agricultural Sciences, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - José Eugenio López Periago
- Dept. Bioloxía Vexetal e Ciencias do Solo, Facultade de Ciencias, Campus da Auga, University of Vigo, Edificio politécnico s/n As Lagoas, 32004 Ourense, Spain; Hydraulics Laboratory, Campus da Auga, University of Vigo, Spain
| |
Collapse
|
47
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
48
|
Ito K, Ogawa Y, Yokota K, Matsumura S, Minamisawa T, Suga K, Shiba K, Kimura Y, Hirano-Iwata A, Takamura Y, Ogino T. Host Cell Prediction of Exosomes Using Morphological Features on Solid Surfaces Analyzed by Machine Learning. J Phys Chem B 2018; 122:6224-6235. [PMID: 29771528 DOI: 10.1021/acs.jpcb.8b01646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Exosomes are extracellular nanovesicles released from any cells and found in any body fluid. Because exosomes exhibit information of their host cells (secreting cells), their analysis is expected to be a powerful tool for early diagnosis of cancers. To predict the host cells, we extracted multidimensional feature data about size, shape, and deformation of exosomes immobilized on solid surfaces by atomic force microscopy (AFM). The key idea is combination of support vector machine (SVM) learning for individual exosome particles and their interpretation by principal component analysis (PCA). We observed exosomes derived from three different cancer cells on SiO2/Si, 3-aminopropyltriethoxysilane-modified-SiO2/Si, and TiO2 substrates by AFM. Then, 14-dimensional feature vectors were extracted from AFM particle data, and classifiers were trained in 14-dimensional space. The prediction accuracy for host cells of test AFM particles was examined by the cross-validation test. As a result, we obtained prediction of exosome host cells with the best accuracy of 85.2% for two-class SVM learning and 82.6% for three-class one. By PCA of the particle classifiers, we concluded that the main factors for prediction accuracy and its strong dependence on substrates are incremental decrease in the PCA-defined aspect ratio of the particles with their volume.
Collapse
Affiliation(s)
- Kazuki Ito
- Yokohama National University , 79-5, Tokiwadai , Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Yuta Ogawa
- Yokohama National University , 79-5, Tokiwadai , Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Keiji Yokota
- Yokohama National University , 79-5, Tokiwadai , Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Sachiko Matsumura
- Japanese Foundation for Cancer Research , 3-8-31 Ariake , Koto-ku, Tokyo 135-8550 , Japan
| | - Tamiko Minamisawa
- Japanese Foundation for Cancer Research , 3-8-31 Ariake , Koto-ku, Tokyo 135-8550 , Japan
| | - Kanako Suga
- Japanese Foundation for Cancer Research , 3-8-31 Ariake , Koto-ku, Tokyo 135-8550 , Japan
| | - Kiyotaka Shiba
- Japanese Foundation for Cancer Research , 3-8-31 Ariake , Koto-ku, Tokyo 135-8550 , Japan
| | - Yasuo Kimura
- Tokyo University of Technology , 1404-1, Katakura-Cho , Hachioji 192-0914 , Japan
| | - Ayumi Hirano-Iwata
- Tohoku University , 2-1-1, Katahira , Aoba-ku, Sendai , Miyagi 980-8577 , Japan
| | - Yuzuru Takamura
- Japan Advanced Institute of Science and Technology , 1-1, Asahi-Dai , Nomi , Ishikawa 923-1292 , Japan
| | - Toshio Ogino
- Yokohama National University , 79-5, Tokiwadai , Hodogaya-ku, Yokohama 240-8501 , Japan.,Japan Advanced Institute of Science and Technology , 1-1, Asahi-Dai , Nomi , Ishikawa 923-1292 , Japan
| |
Collapse
|
49
|
Rogers KR, Navratilova J, Stefaniak A, Bowers L, Knepp AK, Al-Abed SR, Potter P, Gitipour A, Radwan I, Nelson C, Bradham KD. Characterization of engineered nanoparticles in commercially available spray disinfectant products advertised to contain colloidal silver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1375-1384. [PMID: 29723948 PMCID: PMC5939576 DOI: 10.1016/j.scitotenv.2017.11.195] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 05/25/2023]
Abstract
Given the potential for human exposure to silver nanoparticles from spray disinfectants and dietary supplements, we characterized the silver-containing nanoparticles in 22 commercial products that advertised the use of silver or colloidal silver as the active ingredient. Characterization parameters included: total silver, fractionated silver (particulate and dissolved), primary particle size distribution, hydrodynamic diameter, particle number, and plasmon resonance absorbance. A high degree of variability between claimed and measured values for total silver was observed. Only 7 of the products showed total silver concentrations within 20% of their nominally reported values. In addition, significant variations in the relative percentages of particulate vs. soluble silver were also measured in many of these products reporting to be colloidal. Primary silver particle size distributions by transmission electron microscopy (TEM) showed two populations of particles - smaller particles (<5nm) and larger particles between 20 and 40nm. Hydrodynamic diameter measurements using nanoparticle tracking analysis (NTA) correlated well with TEM analysis for the larger particles. Z-average (Z-Avg) values measured using dynamic light scattering (DLS); however, were typically larger than both NTA or TEM particle diameters. Plasmon resonance absorbance signatures (peak absorbance at around 400nm indicative of metallic silver nanoparticles) were only noted in 4 of the 9 yellow-brown colored suspensions. Although the total silver concentrations were variable among products, ranging from 0.54mg/L to 960mg/L, silver containing nanoparticles were identified in all of the product suspensions by TEM.
Collapse
Affiliation(s)
- Kim R Rogers
- U.S. Environmental Protection Agency, RTP, NC, United States.
| | | | - Aleksandr Stefaniak
- National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Lauren Bowers
- National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Alycia K Knepp
- National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | | | - Phillip Potter
- U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Alireza Gitipour
- U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Islam Radwan
- U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Clay Nelson
- U.S. Environmental Protection Agency, RTP, NC, United States
| | - Karen D Bradham
- U.S. Environmental Protection Agency, RTP, NC, United States
| |
Collapse
|
50
|
Coty JB, Vauthier C. Characterization of nanomedicines: A reflection on a field under construction needed for clinical translation success. J Control Release 2018; 275:254-268. [DOI: 10.1016/j.jconrel.2018.02.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/12/2022]
|