1
|
Sun H, Cao Y, Zhai B, Zhao X, Zhang X, Su J. Multifunctional Bi 2S 3-Au nanoclusters for fluorescence/infrared thermal imaging guided photothermal therapy. Int J Pharm X 2024; 8:100286. [PMID: 39345871 PMCID: PMC11437820 DOI: 10.1016/j.ijpx.2024.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Nanotechnology has attracted extensive attention in the diagnosis and treatment of cancer. Therefore, the research aimed at developing new nanomaterials and exploring their applications in biomedicine has attracted more attention. In this study, Bi2S3-Au nanoclusters (Bi2S3-AuNCs) as fluorescence/infrared thermal imaging-guided photothermal therapy (PTT) was prepared for the first time. It was achieved in a facile and mild way by optimizing the amount of Bi3+ and Au3+ using bovine serum albumin (BSA) as reducer and stabilizer. The as-prepared Bi2S3-AuNCs with special morphology showed high stability, excellent biocompatibility and good photostability. Apart from these, it also can accumulate at tumor sites and exhibit considerable fluorescence/infrared thermal imaging-guided PTT. Bi2S3-AuNCs nanoparticles integrate imaging and therapeutic functions into an advanced application platform, which provides the possibility to build a novel nano-cancer diagnosis and treatment platform.
Collapse
Affiliation(s)
- Hongmei Sun
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life Science and Health, Hubei University of Technology, Wuhan 430068, China
| | - Yuyu Cao
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life Science and Health, Hubei University of Technology, Wuhan 430068, China
| | - Beibei Zhai
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life Science and Health, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoshuang Zhao
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life Science and Health, Hubei University of Technology, Wuhan 430068, China
| | - Xuejun Zhang
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life Science and Health, Hubei University of Technology, Wuhan 430068, China
- Hubei Bio-Pharmaceutical Industrial-Technological Institute Inc., Wuhan, Hubei 430075, China
- Humanwell Healthcare (Group) Co., Ltd., Wuhan, Hubei 430075, China
| | - Jiangtao Su
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life Science and Health, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
2
|
Liu L, Yang M, Chen Z. Surface functionalized nanomaterial systems for targeted therapy of endocrine related tumors: a review of recent advancements. Drug Deliv 2024; 31:2390022. [PMID: 39138394 PMCID: PMC11328606 DOI: 10.1080/10717544.2024.2390022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
The application of multidisciplinary techniques in the management of endocrine-related cancers is crucial for harnessing the advantages of multiple disciplines and their coordinated efforts in eliminating tumors. Due to the malignant characteristics of cancer cells, they possess the capacity to develop resistance to traditional treatments such as chemotherapy and radiotherapy. Nevertheless, despite diligent endeavors to enhance the prediction of outcomes, the overall survival rate for individuals afflicted with endocrine-related malignancy remains quite miserable. Hence, it is imperative to investigate innovative therapy strategies. The latest advancements in therapeutic tactics have offered novel approaches for the therapy of various endocrine tumors. This paper examines the advancements in nano-drug delivery techniques and the utilization of nanomaterials for precise cancer cures through targeted therapy. This review provides a thorough analysis of the potential of combined drug delivery strategies in the treatment of thyroid cancer, adrenal gland tumors, and pancreatic cancer. The objective of this study is to gain a deeper understanding of current therapeutic approaches, stimulate the development of new drug DDS, and improve the effectiveness of treatment for patients with these diseases. The intracellular uptake of pharmaceuticals into cancer cells can be significantly improved through the implantation of synthetic or natural substances into nanoparticles, resulting in a substantial reduction in the development of endocrine malignancies.
Collapse
Affiliation(s)
- Limei Liu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Miao Yang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziyang Chen
- Department of Gastroenterology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Wang H, Zhang J, Bai H, Wang C, Li Z, Wang Z, Liu Q, Wang Z, Wang X, Zhu X, Liu J, Wang J, Zhao X, Ren L, Liu H. 3D printed cell-free bilayer porous scaffold based on alginate with biomimetic microenvironment for osteochondral defect repair. BIOMATERIALS ADVANCES 2024; 167:214092. [PMID: 39489002 DOI: 10.1016/j.bioadv.2024.214092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Despite significant progress in repairing osteochondral injuries using 3D printing technology, most cartilage layer scaffolds are made of degradable materials, making it difficult to simultaneously provide extracellular matrix functionality while replicating the mechanical properties of natural cartilage layers. Additionally, their degradation rate is challenging to align with cartilage regeneration. Furthermore, double-layer scaffolds commonly used for repairing osteochondral often exhibit inadequate bonding between the cartilage layer scaffolds and bone layer scaffolds. To solve these problems, we presented a bilayer scaffold composed of a 3D printed non-degradable thermoplastic polyurethane (TPU) scaffold filled with hydrogel (Gel) made of gelatin and sodium alginate as the cartilage layer (noted as TPU/Gel), meanwhile, a 3D printed polylactic acid (PLA) scaffold containing 10 % hydroxyapatite (HA) as the bone layer (noted as PLA/HA). At the junction of the bone layer and cartilage layer, TPU tightly bonded with the bone layer scaffold under high temperatures. The hydrogel filling within the TPU layer of cartilage served not only to lubricate the joint surface but also aided in creating a 3D microenvironment. The non-degradable nature of TPU allowed the cartilage layer scaffold to seamlessly integrate with the surrounding regenerated cartilage, achieving permanent replacement and providing shock absorption and weight-bearing effects. This effectively addressed the mechanical challenges associated with cartilage regeneration and resolved the inconsistency between cartilage regeneration and material degradation rates.
Collapse
Affiliation(s)
- Hui Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jiaxin Zhang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Haotian Bai
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chenyu Wang
- Department of Plastic & Reconstruct Surgery, First Hospital of Jilin University, Changchun 130061, China
| | - Zuhao Li
- Department of Orthopaedics, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Zhonghan Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qingping Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Zhenguo Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Xianggang Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xiujie Zhu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jiaqi Liu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jincheng Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xin Zhao
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - He Liu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
4
|
Reczyńska-Kolman K, Ochońska D, Brzychczy-Włoch M, Pamuła E. Stearic acid-based nanoparticles loaded with antibacterial peptides - Bacitracin and LL-37: Selection of manufacturing parameters, cytocompatibility, and antibacterial efficacy. Int J Pharm 2024; 667:124876. [PMID: 39477135 DOI: 10.1016/j.ijpharm.2024.124876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Solid lipid nanoparticles are currently one of the most widely investigated types of drug delivery carriers. Considering the fact that their clinical translation boosted after the approval of two COVID-19 mRNA vaccines, it is crucial to fully explain how the processing parameters affect the properties of the obtained nanoparticles and the drug loading efficiency. This study aimed to evaluate the influence of different manufacturing parameters on the properties of stearic acid-based nanoparticles fabricated using the emulsification/solvent diffusion method. It was found that the type of organic solvent used has a major effect on the morphology of the nanoparticles, with chloroform being suitable for the production of spherical nanoparticles. The size and polydispersity of the nanoparticles were affected by the concentration of surfactant in the external aqueous phase, the concentration of stearic acid in the organic phase, and the homogenization amplitude. The optimized nanoparticles were successfully loaded with an antibacterial peptide - LL-37. The presence of LL-37 did not significantly influence nanoparticle morphology or cytocompatibility. The obtained nanoparticles showed antibacterial activity against the reference strain of Streptococcus pyogenes (ATCC 12384). The developed solid lipid nanoparticles are promising drug carries that can be further optimized for the treatment of infected wounds or bacterial infections in the respiratory system.
Collapse
Affiliation(s)
- Katarzyna Reczyńska-Kolman
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland.
| | - Dorota Ochońska
- Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Kraków, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Kraków, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland
| |
Collapse
|
5
|
Cuadrado CF, Lagos KJ, Stringasci MD, Bagnato VS, Romero MP. Clinical and pre-clinical advances in the PDT/PTT strategy for diagnosis and treatment of Cancer. Photodiagnosis Photodyn Ther 2024:104387. [PMID: 39490802 DOI: 10.1016/j.pdpdt.2024.104387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) have demonstrated great potential to diagnose and combat localized cancers. As a matter of fact, these techniques are less invasive and have fewer side effects than traditional cancer treatments like surgery, chemotherapy or radiotherapy. This review summarizes the clinical progress in the theranostics (diagnosis and treatment) of various types of regional cancers using these two light stimuli techniques, PDT and PTT. Therefore, clinical advances in cancer diagnosis based on PDT are detailed, including fluorescence-guided PDT for intraoperative cancer detection, optical coherence tomography (OCT)-guided PDT for early cancer detection, and imaging by magnetic resonance imaging (MRI) or computed tomography (CT) assisted through PDT/PTT. Moreover, clinical studies of breast, prostate, skin, gynecologic, head, neck and other varieties of cancer have been addressed to compare the main conditions of these treatments. This work also discussed the principal advantages and drawbacks of PDT and PTT in tumor targeting and cancer therapy. Finally, the usage of nanoparticles as photosensitizers (PSs) and photothermal agents (PAs) have been analyzed. In this manner, the authors have compiled relevant updated studies so that researchers interested in these areas can access it speedily.
Collapse
Affiliation(s)
| | - Karina J Lagos
- New Materials Laboratory, Department of Materials, National Polytechnic School, Quito, Ecuador
| | | | | | - María Paulina Romero
- New Materials Laboratory, Department of Materials, National Polytechnic School, Quito, Ecuador.
| |
Collapse
|
6
|
Rivero-Buceta E, Bernal-Gómez A, Vidaurre-Agut C, Lopez Moncholi E, María Benlloch J, Moreno Manzano V, David Vera Donoso C, Botella P. Prostate cancer chemotherapy by intratumoral administration of Docetaxel-Mesoporous silica nanomedicines. Int J Pharm 2024; 664:124623. [PMID: 39191333 DOI: 10.1016/j.ijpharm.2024.124623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Docetaxel (DTX) is a recommended treatment in patients with metastasic prostate cancer (PCa), despite its therapeutic efficacy is limited by strong systemic toxicity. However, in localized PCa, intratumoral (IT) administration of DTX could be an alternative to consider that may help to overcome the disadvantages of conventional intravenous (IV) therapy. In this context, we here present the first in vivo preclinical study of PCa therapy with nanomedicines of mesoporous silica nanoparticles (MSN) and DTX by IT injection over a xenograft mouse model bearing human prostate adenocarcinoma tumors. The efficacy and tolerability, the biodistribution and the histopathology after therapy have been investigated for the DTX nanomedicine and the free drug, and compared with the IV administration of DTX. The obtained results demonstrate that IT injection of DTX and DTX nanomedicines allows precise and selective therapy of non-metastatic PCa and minimize systemic diffusion of the drug, showing superior activity than IV route. This allows reducing the therapeutic dose by one order and widens substantially the therapeutic window for this drug. Furthermore, the use of DTX nanomedicines as IT injection promotes strong antitumor efficacy and drug accumulation at the tumor site, improving the results obtained with the free drug by the same route.
Collapse
Affiliation(s)
- Eva Rivero-Buceta
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 València, Spain
| | - Adrián Bernal-Gómez
- Escuela de Doctorado, Universidad Católica de Valencia, Plaza de San Agustín 3, 46001 Valencia, Spain; Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - Carla Vidaurre-Agut
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 València, Spain
| | - Eric Lopez Moncholi
- Centro Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, Valencia 46012, Spain
| | - Jose María Benlloch
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC-Universitat Politècnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | | | - César David Vera Donoso
- Escuela de Doctorado, Universidad Católica de Valencia, Plaza de San Agustín 3, 46001 Valencia, Spain; Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - Pablo Botella
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 València, Spain.
| |
Collapse
|
7
|
Wu M, Zhao Y, Zhang C, Pu K. Advancing Proteolysis Targeting Chimera (PROTAC) Nanotechnology in Protein Homeostasis Reprograming for Disease Treatment. ACS NANO 2024; 18:28502-28530. [PMID: 39377250 DOI: 10.1021/acsnano.4c09800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a transformative class of therapeutic agents that leverage the intrinsic protein degradation machinery to modulate the hemostasis of key disease-associated proteins selectively. Although several PROTACs have been approved for clinical application, suboptimal therapeutic efficacy and potential adverse side effects remain challenging. Benefiting from the enhanced targeted delivery, reduced systemic toxicity, and improved bioavailability, nanomedicines can be tailored with precision to integrate with PROTACs which hold significant potential to facilitate PROTAC nanomedicines (nano-PROTACs) for clinical translation with enhanced efficacy and reduced side effects. In this review, we provide an overview of the recent progress in the convergence of nanotechnology with PROTAC design, leveraging the inherent properties of nanomaterials, such as lipids, polymers, inorganic nanoparticles, nanohydrogels, proteins, and nucleic acids, for precise PROTAC delivery. Additionally, we discuss the various categories of PROTAC targets and provide insights into their clinical translational potential, alongside the challenges that need to be addressed.
Collapse
Affiliation(s)
- Mengyao Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yilan Zhao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| |
Collapse
|
8
|
Maryam S, Krukiewicz K. Sweeten the pill: Multi-faceted polysaccharide-based carriers for colorectal cancer treatment. Int J Biol Macromol 2024; 282:136696. [PMID: 39437958 DOI: 10.1016/j.ijbiomac.2024.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Colorectal cancer (CRC) ranks as the second deadliest cancer globally and the third most common malignant tumor. While surgery remains the primary treatment for CRC, alternative therapies such as chemotherapy, molecular targeted therapy, and immunotherapy are also commonly used. The significant side effects and toxicity of conventional drugs drive the search for novel targeted therapies, including the design of advanced drug delivery systems. Polysaccharide-based biopolymers, with their low toxicity, non-immunogenic behavior, synergistic interactions with other biopolymers, and tissue and cell compatibility, emerge as excellent drug carriers for this application. This review aims to provide an in-depth overview of recent advancements in developing polysaccharide-based biopolymeric carriers for anticancer compounds in the treatment of CRC. We highlight the multifunctional nature of polysaccharides, showcasing their potential as standalone drug carriers or as integral components of intelligent robotic devices for biomedical therapeutic applications. In addition to exploring the opportunities for using carbohydrate polymers in CRC treatment, we address the challenges and failures that may limit their applicability in biomedical research, as well as summarize the recent preclinical and clinical trials, resulting in several commercialization attempts. This comprehensive overview critically summarizes the potential of polysaccharide-based biomaterials in CRC treatment.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
9
|
Cong X, Zhang Z, Li H, Yang YG, Zhang Y, Sun T. Nanocarriers for targeted drug delivery in the vascular system: focus on endothelium. J Nanobiotechnology 2024; 22:620. [PMID: 39396002 PMCID: PMC11470712 DOI: 10.1186/s12951-024-02892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024] Open
Abstract
Endothelial cells (ECs) are pivotal in maintaining vascular health, regulating hemodynamics, and modulating inflammatory responses. Nanocarriers hold transformative potential for precise drug delivery within the vascular system, particularly targeting ECs for therapeutic purposes. However, the complex interactions between vascular ECs and nanocarriers present significant challenges for the development and clinical translation of nanotherapeutics. This review assesses recent advancements and key strategies in employing nanocarriers for drug delivery to vascular ECs. It suggested that through precise physicochemical design and surface modifications, nanocarriers can enhance targeting specificity and improve drug internalization efficiency in ECs. Additionally, we elaborated on the applications of nanocarriers specifically designed for targeting ECs in the treatment of cardiovascular diseases, cancer metastasis, and inflammatory disorders. Despite these advancements, safety concerns, the complexity of in vivo processes, and the challenge of achieving subcellular drug delivery remain significant obstacles to the effective targeting of ECs with nanocarriers. A comprehensive understanding of endothelial cell biology and its interaction with nanocarriers is crucial for realizing the full potential of targeted drug delivery systems.
Collapse
Affiliation(s)
- Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - Zebin Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - He Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China.
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, Jilin, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China.
| |
Collapse
|
10
|
Öztürk K, Kaplan M, Çalış S. Effects of nanoparticle size, shape, and zeta potential on drug delivery. Int J Pharm 2024; 666:124799. [PMID: 39369767 DOI: 10.1016/j.ijpharm.2024.124799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Nanotechnology has brought about a significant revolution in drug delivery, and research in this domain is increasingly focusing on understanding the role of nanoparticle (NP) characteristics in drug delivery efficiency. First and foremost, we center our attention on the size of nanoparticles. Studies have indicated that NP size significantly influences factors such as circulation time, targeting capabilities, and cellular uptake. Secondly, we examine the significance of nanoparticle shape. Various studies suggest that NPs of different shapes affect cellular uptake mechanisms and offer potential advantages in directing drug delivery. For instance, cylindrical or needle-like NPs may facilitate better cellular uptake compared to spherical NPs. Lastly, we address the importance of nanoparticle charge. Zeta potential can impact the targeting and cellular uptake of NPs. Positively charged NPs may be better absorbed by negatively charged cells, whereas negatively charged NPs might perform more effectively in positively charged cells. This review provides essential insights into understanding the role of nanoparticles in drug delivery. The properties of nanoparticles, including size, shape, and charge, should be taken into consideration in the rational design of drug delivery systems, as optimizing these characteristics can contribute to more efficient targeting of drugs to the desired tissues. Thus, research into nanoparticle properties will continue to play a crucial role in the future of drug delivery.
Collapse
Affiliation(s)
- Kıvılcım Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye
| | - Meryem Kaplan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye; Department of Pharmaceutical Technology, Faculty of Pharmacy, Süleyman Demirel University, 32260 Isparta, Türkiye
| | - Sema Çalış
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye.
| |
Collapse
|
11
|
Havelikar U, Ghorpade KB, Kumar A, Patel A, Singh M, Banjare N, Gupta PN. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. DISCOVER NANO 2024; 19:165. [PMID: 39365367 PMCID: PMC11452581 DOI: 10.1186/s11671-024-04118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Nanomedicine has the potential to transform healthcare by offering targeted therapies, precise diagnostics, and enhanced drug delivery systems. The National Institutes of Health has coined the term "nanomedicine" to describe the use of nanotechnology in biological system monitoring, control, diagnosis, and treatment. Nanomedicine continues to receive increasing interest for the rationalized delivery of therapeutics and pharmaceutical agents to achieve the required response while reducing its side effects. However, as nanotechnology continues to advance, concerns about its potential toxicological effects have also grown. This review explores the current state of nanomedicine, focusing on the types of nanoparticles used and their associated properties that contribute to nanotoxicity. It examines the mechanisms through which nanoparticles exert toxicity, encompassing various cellular and molecular interactions. Furthermore, it discusses the assessment methods employed to evaluate nanotoxicity, encompassing in-vitro and in-vivo models, as well as emerging techniques. The review also addresses the regulatory issues surrounding nanotoxicology, highlighting the challenges in developing standardized guidelines and ensuring the secure translation of nanomedicine into clinical settings. It also explores into the challenges and ethical issues associated with nanotoxicology, as understanding the safety profile of nanoparticles is essential for their effective translation into therapeutic applications.
Collapse
Affiliation(s)
- Ujwal Havelikar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Kabirdas B Ghorpade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Amit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Akhilesh Patel
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Manisha Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Nagma Banjare
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
12
|
Bernal-Martínez AM, Bedrina B, Angulo-Pachón CA, Galindo F, Miravet JF, Castelletto V, Hamley IW. pH-Induced conversion of bolaamphiphilic vesicles to reduction-responsive nanogels for enhanced Nile Red and Rose Bengal delivery. Colloids Surf B Biointerfaces 2024; 242:114072. [PMID: 39024718 DOI: 10.1016/j.colsurfb.2024.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
This study details the preparation and investigation of molecular nanogels formed by the self-assembly of bolaamphiphilic dipeptide derivatives containing a reduction-sensitive disulfide unit. The described bolaamphiphiles, featuring amino acid terminal groups, generate cationic vesicles at pH 4, which evolve into gel-like nanoparticles at pH 7. The critical aggregation concentration has been determined, and the nanogels' size and morphology have been characterized through Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). Circular Dichroism (CD) spectroscopy reveals substantial molecular reconfigurations accompanying the pH shift. These nanogels enhance the in vitro cellular uptake of the lipophilic dye Nile Red and the ionic photosensitizer Rose Bengal into Human colon adenocarcinoma (HT-29) cells, eliminating the need for organic co-solvents in the former case. Fluorescence measurements with Nile Red as a probe indicate the reduction-sensitive disassembly of the nanogels. In photodynamic therapy (PDT) applications, Rose Bengal-loaded nanogels demonstrate notable improvements, with flow cytometry analysis evidencing increased apoptotic activity in the study with HT-29 cells.
Collapse
Affiliation(s)
- Ana M Bernal-Martínez
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain
| | - Begoña Bedrina
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain
| | - César A Angulo-Pachón
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain; Departamento de Química Orgánica y Bio-orgánica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Las Rozas, Madrid 28232, Spain
| | - Francisco Galindo
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain
| | - Juan F Miravet
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain.
| | - Valeria Castelletto
- School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Reading RG6 6AD, UK
| | - Ian W Hamley
- School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Reading RG6 6AD, UK
| |
Collapse
|
13
|
Gao Z, Lin J, Su WC, Zhang K, Gruenhagen J, Zhong W, Fan Y, Bian J. Development of an advanced separation and characterization platform for mRNA and lipid nanoparticles using multi-detector asymmetrical flow field-flow fractionation. Anal Bioanal Chem 2024; 416:5281-5293. [PMID: 39102094 DOI: 10.1007/s00216-024-05455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
In recent years, the use of lipid nanoparticles (LNPs) for delivery of messenger RNA (mRNA)-based therapies has gained substantial attention in the field of drug development. In such an application, multiple LNP attributes have to be carefully characterized to ensure product safety and quality, whereas accurate and efficient characterization of these complex mRNA-LNP formulations remains a challenging endeavor. Here, we present the development and application of an online separation and characterization platform designed for the isolation and in-depth analysis of mRNAs and mRNA-loaded LNPs. Our asymmetrical flow field-flow fractionation with a multi-detector (MD-AF4) method has demonstrated exceptional resolution between mRNA-LNPs and mRNAs, delivering excellent recoveries (over 70%) for both analytes and exceptional repeatability. Notably, this platform allows for comprehensive and multi-attribute LNP characterization, including online particle sizing, morphology characterization, and determination of encapsulation efficiency, all within a single injection. Furthermore, real-time online sizing by synchronizing multi-angle light scattering (MALS) and dynamic light scattering (DLS) presented higher resolution over traditional batch-mode DLS, particularly in differentiating heterogeneous samples with a low abundance of large-sized particles. Additionally, our method proves to be a valuable tool for monitoring LNP stability under varying stress conditions. Our work introduces a robust and versatile analytical platform using MD-AF4 that not only efficiently provides multi-attribute characterizations of mRNA-LNPs but also holds promise in advancing studies related to formulation screening, quality control, and stability assessment in the evolving field of nanoparticle delivery systems for mRNAs.
Collapse
Affiliation(s)
- Ziting Gao
- Department of Chemistry, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Jessica Lin
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Wan-Chih Su
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kelly Zhang
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jason Gruenhagen
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Yuchen Fan
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Juan Bian
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
14
|
Jin Y, Liu H, Chu L, Yang J, Li X, Zhou H, Jiang H, Shi L, Weeks J, Rainbolt J, Yang C, Xue T, Pan H, Deng Z, Xie C, Cui X, Ren Y. Initial therapeutic evidence of a borosilicate bioactive glass (BSG) and Fe 3O 4 magnetic nanoparticle scaffold on implant-associated Staphylococcal aureus bone infection. Bioact Mater 2024; 40:148-167. [PMID: 38962659 PMCID: PMC11220464 DOI: 10.1016/j.bioactmat.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Implant-associated Staphylococcus aureus (S. aureus) osteomyelitis is a severe challenge in orthopedics. While antibiotic-loaded bone cement is a standardized therapeutic approach for S. aureus osteomyelitis, it falls short in eradicating Staphylococcus abscess communities (SACs) and bacteria within osteocyte-lacuna canalicular network (OLCN) and repairing bone defects. To address limitations, we developed a borosilicate bioactive glass (BSG) combined with ferroferric oxide (Fe3O4) magnetic scaffold to enhance antibacterial efficacy and bone repair capabilities. We conducted comprehensive assessments of the osteoinductive, immunomodulatory, antibacterial properties, and thermal response of this scaffold, with or without an alternating magnetic field (AMF). Utilizing a well-established implant-related S. aureus tibial infection rabbit model, we evaluated its antibacterial performance in vivo. RNA transcriptome sequencing demonstrated that BSG + 5%Fe3O4 enhanced the immune response to bacteria and promoted osteogenic differentiation and mineralization of MSCs. Notably, BSG + 5%Fe3O4 upregulated gene expression of NOD-like receptor and TNF pathway in MSCs, alongside increased the expression of osteogenic factors (RUNX2, ALP and OCN) in vitro. Flow cytometry on macrophage exhibited a polarization effect towards M2, accompanied by upregulation of anti-inflammatory genes (TGF-β1 and IL-1Ra) and downregulation of pro-inflammatory genes (IL-6 and IL-1β) among macrophages. In vivo CT imaging revealed the absence of osteolysis and periosteal response in rabbits treated with BSG + 5%Fe3O4 + AMF at 42 days. Histological analysis indicated complete controls of SACs and bacteria within OLCN by day 42, along with new bone formation, signifying effective control of S. aureus osteomyelitis. Further investigations will focus on the in vivo biosafety and biological mechanism of this scaffold within infectious microenvironment.
Collapse
Affiliation(s)
- Ying Jin
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Hang Liu
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Lei Chu
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Jin Yang
- Department of Orthopaedics, Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Xiuyang Li
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
- Department of Orthopedics, The Seventh People's Hospital of Chongqing, The Central Hospital Affiliated to Chongqing University of Technology, Chongqing, 400054, PR China
| | - Hang Zhou
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Haitao Jiang
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Lei Shi
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Jason Weeks
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical Performance Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joshua Rainbolt
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical Performance Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Changjiang Yang
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Thomas Xue
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical Performance Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Haobo Pan
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Zhongliang Deng
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Chao Xie
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical Performance Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Xu Cui
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Youliang Ren
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| |
Collapse
|
15
|
Mamnoon B, Moses AS, Sundaram S, Raitmayr CJ, Morgan T, Baldwin MK, Myatt L, Taratula O, Taratula OR. Glutathione-Responsive Methotrexate Polymersomes for Potential Management of Ectopic Pregnancy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302969. [PMID: 37452511 PMCID: PMC10787806 DOI: 10.1002/smll.202302969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/22/2023] [Indexed: 07/18/2023]
Abstract
The first-line treatment for ectopic pregnancy (EP), the chemotherapeutic methotrexate (MTX), has a failure rate of more than 10%, which can lead to severe complications or death. Inadequate accumulation of administered MTX at the ectopic implantation site significantly contributes to therapeutic failure. This study reports the first glutathione-responsive polymersomes for efficient delivery of MTX to the implantation site and its triggered release in placental cells. Fluorescence and photoacoustic imaging have confirmed that the developed polymersomes preferentially accumulate after systemic administration in the implantation site of pregnant mice at early gestational stages. The high concentrations of intracellular glutathione (GSH) reduce an incorporated disulfide bond within polymersomes upon internalization into placental cells, resulting in their disintegration and efficient drug release. Consequently, MTX delivered by polymersomes induces pregnancy demise in mice, as opposed to free MTX at the same dose regimen. To achieve the same therapeutic efficacy with free MTX, a sixfold increase in dosage is required. In addition, mice successfully conceive and birth healthy pups following a prior complete pregnancy demise induced by methotrexate polymersomes. Therefore, the developed MTX nanomedicine can potentially improve EP management and reduce associated mortality rates and related cost.
Collapse
Affiliation(s)
- Babak Mamnoon
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Subisha Sundaram
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Constanze J Raitmayr
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Terry Morgan
- Department of Pathology and Laboratory Medicine, and the Center for Developmental Health, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Maureen K Baldwin
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| |
Collapse
|
16
|
Wang F, Huang Y, Li J, Zhou W, Wang W. Targeted gene delivery systems for T-cell engineering. Cell Oncol (Dordr) 2024; 47:1537-1560. [PMID: 38753155 DOI: 10.1007/s13402-024-00954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/27/2024] Open
Abstract
T lymphocytes are indispensable for the host systems of defense against pathogens, tumors, and environmental threats. The therapeutic potential of harnessing the cytotoxic properties of T lymphocytes for antigen-specific cell elimination is both evident and efficacious. Genetically engineered T-cells, such as those employed in CAR-T and TCR-T cell therapies, have demonstrated significant clinical benefits in treating cancer and autoimmune disorders. However, the current landscape of T-cell genetic engineering is dominated by strategies that necessitate in vitro T-cell isolation and modification, which introduce complexity and prolong the development timeline of T-cell based immunotherapies. This review explores the complexities of gene delivery systems designed for T cells, covering both viral and nonviral vectors. Viral vectors are known for their high transduction efficiency, yet they face significant limitations, such as potential immunogenicity and the complexities involved in large-scale production. Nonviral vectors, conversely, offer a safer profile and the potential for scalable manufacturing, yet they often struggle with lower transduction efficiency. The pursuit of gene delivery systems that can achieve targeted gene transfer to T cell without the need for isolation represents a significant advancement in the field. This review assesses the design principles and current research progress of such systems, highlighting the potential for in vivo gene modification therapies that could revolutionize T-cell based treatments. By providing a comprehensive analysis of these systems, we aim to contribute valuable insights into the future development of T-cell immunotherapy.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - JiaQian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
17
|
du Preez HN, Lin J, Maguire GEM, Aldous C, Kruger HG. COVID-19 vaccine adverse events: Evaluating the pathophysiology with an emphasis on sulfur metabolism and endotheliopathy. Eur J Clin Invest 2024; 54:e14296. [PMID: 39118373 DOI: 10.1111/eci.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
In this narrative review, we assess the pathophysiology of severe adverse events that presented after vaccination with DNA and mRNA vaccines against COVID-19. The focus is on the perspective of an undersulfated and degraded glycocalyx, considering its impact on immunomodulation, inflammatory responses, coagulation and oxidative stress. The paper explores various factors that lead to glutathione and inorganic sulfate depletion and their subsequent effect on glycocalyx sulfation and other metabolites, including hormones. Components of COVID-19 vaccines, such as DNA and mRNA material, spike protein antigen and lipid nanoparticles, are involved in possible cytotoxic effects. The common thread connecting these adverse events is endotheliopathy or glycocalyx degradation, caused by depleted glutathione and inorganic sulfate levels, shear stress from circulating nanoparticles, aggregation and formation of protein coronas; leading to imbalanced immune responses and chronic release of pro-inflammatory cytokines, ultimately resulting in oxidative stress and systemic inflammatory response syndrome. By understanding the underlying pathophysiology of severe adverse events, better treatment options can be explored.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
18
|
Nguyen MD, Deng L, Lee JM, Resendez KM, Fuller M, Hoijang S, Robles-Hernandez F, Chu CW, Litvinov D, Hadjiev VG, Xu S, Phan MH, Lee TR. Magnetic Tunability via Control of Crystallinity and Size in Polycrystalline Iron Oxide Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402940. [PMID: 39004867 DOI: 10.1002/smll.202402940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/04/2024] [Indexed: 07/16/2024]
Abstract
Iron oxide nanoparticles (IONPs) are widely used for biomedical applications due to their unique magnetic properties and biocompatibility. However, the controlled synthesis of IONPs with tunable particle sizes and crystallite/grain sizes to achieve desired magnetic functionalities across single-domain and multi-domain size ranges remains an important challenge. Here, a facile synthetic method is used to produce iron oxide nanospheres (IONSs) with controllable size and crystallinity for magnetic tunability. First, highly crystalline Fe3O4 IONSs (crystallite sizes above 24 nm) having an average diameter of 50 to 400 nm are synthesized with enhanced ferrimagnetic properties. The magnetic properties of these highly crystalline IONSs are comparable to those of their nanocube counterparts, which typically possess superior magnetic properties. Second, the crystallite size can be widely tuned from 37 to 10 nm while maintaining the overall particle diameter, thereby allowing precise manipulation from the ferrimagnetic to the superparamagnetic state. In addition, demonstrations of reaction scale-up and the proposed growth mechanism of the IONSs are presented. This study highlights the pivotal role of crystal size in controlling the magnetic properties of IONSs and offers a viable means to produce IONSs with magnetic properties desirable for wider applications in sensors, electronics, energy, environmental remediation, and biomedicine.
Collapse
Affiliation(s)
- Minh Dang Nguyen
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003, USA
| | - Liangzi Deng
- Department of Physics and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003, USA
| | - Jong Moon Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003, USA
| | - Karla M Resendez
- Department of Biomedical Engineering and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003, USA
| | - Maggie Fuller
- Department of Physics and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003, USA
| | - Supawitch Hoijang
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003, USA
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | - Ching-Wu Chu
- Department of Physics and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003, USA
| | - Dmitri Litvinov
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204-5003, USA
| | - Viktor G Hadjiev
- Department of Mechanical Engineering and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003, USA
| | - Shoujun Xu
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003, USA
| | - Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, FL, 33620, USA
| | - T Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003, USA
| |
Collapse
|
19
|
Wu X, Wang F, Yang X, Gong Y, Niu T, Chu B, Qu Y, Qian Z. Advances in Drug Delivery Systems for the Treatment of Acute Myeloid Leukemia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403409. [PMID: 38934349 DOI: 10.1002/smll.202403409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Acute myeloid leukemia (AML) is a common and catastrophic hematological neoplasm with high mortality rates. Conventional therapies, including chemotherapy, hematopoietic stem cell transplantation (HSCT), immune therapy, and targeted agents, have unsatisfactory outcomes for AML patients due to drug toxicity, off-target effects, drug resistance, drug side effects, and AML relapse and refractoriness. These intrinsic limitations of current treatments have promoted the development and application of nanomedicine for more effective and safer leukemia therapy. In this review, the classification of nanoparticles applied in AML therapy, including liposomes, polymersomes, micelles, dendrimers, and inorganic nanoparticles, is reviewed. In addition, various strategies for enhancing therapeutic targetability in nanomedicine, including the use of conjugating ligands, biomimetic-nanotechnology, and bone marrow targeting, which indicates the potential to reverse drug resistance, are discussed. The application of nanomedicine for assisting immunotherapy is also involved. Finally, the advantages and possible challenges of nanomedicine for the transition from the preclinical phase to the clinical phase are discussed.
Collapse
Affiliation(s)
- Xia Wu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Fangfang Wang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xijing Yang
- The Experimental Animal Center of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yuping Gong
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ting Niu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Bingyang Chu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ying Qu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhiyong Qian
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
20
|
Khabbazian S, Mirhadi E, Gheybi F, Askarizadeh A, Jaafari MR, Alavizadeh SH. Liposomal delivery of organoselenium-cisplatin complex as a novel therapeutic approach for colon cancer therapy. Colloids Surf B Biointerfaces 2024; 242:114085. [PMID: 39018910 DOI: 10.1016/j.colsurfb.2024.114085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Cisplatin is a widely-used chemotherapeutic agent for the treatment of various solid neoplasms including colon cancer. Cisplatin-induced DNA damage is restricted due to dose-related adverse reactions as well as primary resistance mechanisms. Therefore, it is imperative to utilize novel therapeutic approaches to circumvent cisplatin limitations and attenuate its normal tissues toxicity. In this study, we exploited a novel PEGylated liposomes with greater efficiency to treat colon cancer. For this, an organoselenium compound (diselanediylbis decanoic acid (DDA)) was synthesized, and liposomes composed of Egg PC or HSPC, as well as DOPE, mPEG2000-DSPE, cholesterol and DDA at varying molar ratios were prepared by using thin-film method. Cisplatin loading was performed through incubation with liposomes. Characterization of nanoliposomes indicated a favarable size range of 91-122 nm and negative zeta potential of -9 to -22 mv. The organoselenium compound significantly improved cisplatin loading efficiency within the liposomes (83.4 %). Results also revealed an efficient bioactivity of cisplatin liposome on C26 cells compared to the normal cells. Further, DDA bearing liposomes significantly improved drug residence time in circulation, reduced toxicity associated with the normal tissues, and enhanced drug accumulation within the oxidative tumor microenvironment. Collectively, results indicated that cisplatin encasement within liposomes by using this method could significantly improve the therapeutic efficacy in vivo, and merits further investigations.
Collapse
Affiliation(s)
- Samin Khabbazian
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anis Askarizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Ren L, Zhang D, Pang L, Liu S. Extracellular vesicles for cancer therapy: potential, progress, and clinical challenges. Front Bioeng Biotechnol 2024; 12:1476737. [PMID: 39398642 PMCID: PMC11466826 DOI: 10.3389/fbioe.2024.1476737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Extracellular vesicles (EVs) play an important role in normal life activities and disease treatment. In recent years, there have been abundant relevant studies focusing on EVs for cancer therapy and showing good performance on tumor inhibition. To enhance the effectiveness of EVs, EV analogs have been developed. This review summarizes the classification, origin, production, purification, modification, drug loading and cancer treatment applications of EVs and their analogs. Also, the characteristics of technologies involved are analyzed, which provides the basis for the development and application of biogenic vesicle-based drug delivery platform for cancer therapy. Meanwhile, challenges in translating these vesicles into clinic, such as limited sources, lack of production standards, and insufficient targeting and effectiveness are discussed. With ongoing exploration and clinical studies, EV-based drugs will make great contributions to cancer therapy.
Collapse
Affiliation(s)
- Lili Ren
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology and Clinic of Oral Rare Diseases and Genetic Disease, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Dingmei Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology and Clinic of Oral Rare Diseases and Genetic Disease, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Long Pang
- College of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
| | - Shiyu Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology and Clinic of Oral Rare Diseases and Genetic Disease, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
22
|
Rajtar N, Łazarski G, Foryś A, Otulakowski Ł, Trzebicka B, Jamróz D, Kepczynski M. Ultrasound-Assisted Preparation of Hyaluronic Acid-Based Nanocapsules with an Oil Core. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4524. [PMID: 39336264 PMCID: PMC11433493 DOI: 10.3390/ma17184524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Liquid-core nanocapsules (NCs) coated with amphiphilic hyaluronic acid (AmHA) have been proposed for the preparation of drug and food formulations. Herein, we focused on the use of ultrasound techniques to (i) optimize the polysaccharide chain length with respect to the properties of NCs stabilized with AmHAs and (ii) form oil-core nanocapsules with a coating composed of AmHAs. The results indicate that sonication is a convenient and effective method that allows for a controlled reduction in HA molecular weight. The initial (H-HA) and degraded (L-HA) polysaccharides were then reacted with dodecylamine to obtain hydrophobic HA derivatives (HA-C12s). Then, NCs were prepared based on HA-C12s using ultrasound-assisted emulsification of glyceryl triacetate oil. The nanocapsules coated with L-HA-C12 showed greater stability compared to the longer-chain polysaccharide. Molecular dynamics (MD) simulations revealed that HA-C12 readily adsorbs at the water-oil interphase, adopting a more compact conformation compared to that in the aqueous phase. The dodecyl groups are immersed in the oil droplet, while the main polysaccharide chain remaining in the aqueous phase forms hydrogen bonds or water bridges with the polar part of the triglycerides, thus increasing the stability of the NC. Our research underscores the usefulness of ultrasound technology in preparing suitable formulations of bioactive substances.
Collapse
Affiliation(s)
- Natan Rajtar
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-386 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, 30-348 Krakow, Poland
| | - Grzegorz Łazarski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-386 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, 30-348 Krakow, Poland
| | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Łukasz Otulakowski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Dorota Jamróz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-386 Kraków, Poland
| | - Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-386 Kraków, Poland
| |
Collapse
|
23
|
Yang Z, Xu C, Lee JX, Lum GZ. Magnetic Miniature Soft Robot with Reprogrammable Drug-Dispensing Functionalities: Toward Advanced Targeted Combination Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408750. [PMID: 39246210 DOI: 10.1002/adma.202408750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Miniature robots are untethered actuators, which have great prospects to transform targeted drug delivery because they can potentially deliver high concentrations of medicine to the disease site(s) with minimal complications. However, existing miniature robots cannot perform advanced targeted combination therapy; majority of them can at most transport one type of drug, while those that can carry multiple drugs are unable to change their drug-dispensing sequence and dosage. Furthermore, the latter robots cannot transport more than three types of drugs, selectively dispense their drugs, maintain their mobility, or release their drugs at multiple sites. Here, a millimeter-scale soft robot is proposed, which can be actuated by alternating magnetic fields to dispense four types of drugs with reprogrammable drug-dispensing sequence and dosage (dispensing rates: 0.0992-0.231 µL h-1). This robot has six degrees-of-freedom motions, and it can deliver its drugs to multiple desired sites by rolling and two-anchor crawling across unstructured environments with negligible drug leakage. Such dexterity is highly desirable and unprecedented for miniature robots with drug-dispensing capabilities. The soft robot therefore has great potential to enable advanced targeted combination therapy, where four types of drugs must be delivered to various disease sites, each with a specific sequence and dosage of drugs.
Collapse
Affiliation(s)
- Zilin Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changyu Xu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jia Xin Lee
- Rehabilitation Research Institute of Singapore, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Guo Zhan Lum
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Rehabilitation Research Institute of Singapore, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| |
Collapse
|
24
|
Wang X, Yang X, Liu Z, Shen Z, Li M, Cheng R, Zhao L, Xi Y, Wang J, Sang S. 3D bioprinting of an in vitro hepatoma microenvironment model: Establishment, evaluation, and anticancer drug testing. Acta Biomater 2024; 185:173-189. [PMID: 39025391 DOI: 10.1016/j.actbio.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Tumor behavior, including its response to treatments, is influenced by interactions between mesenchymal and malignant cells, as well as their spatial arrangement. To study tumor biology and evaluate anticancer drugs, accurate 3D tumor models are essential. Here, we developed an in vitro biomimetic hepatoma microenvironment model by combining an extracellular matrix (3DM-7721). Initially, the internal grid structure, composed of 10/6 % GelMA/gelatin loaded with SMMC-7721 cells, was printed using 3D bioprinting. The external component consisted of fibroblasts and human umbilical vein endothelial cells loaded with 10/3 % GelMA/gelatin. A control model (3DP-7721) lacked external cell loading. GelMA/gelatin hydrogels provided robust structural support and biocompatibility. The SMMC-7721 cells in the 3DM-7721 model exhibit superior tumor-associated gene expression and proliferation characteristics when compared to the 3DP-7721 model. Furthermore, the 3DM-7721 type exhibited increased resistance to anticancer agents. SMMC-7721 cells in the 3DM-7721 model exhibit significant tumorigenicity in nude mice. The 3DM-7721 model group showed pathological characteristics of malignant tumors, with a high degree of deterioration, and a significant positive correlation between malignant tumor-related gene pathways. This high-fidelity 3DM-7721 tumor microenvironment model is invaluable for studying tumor progression, devising effective treatment strategies, and discovering drugs. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaoning Yang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Rong Cheng
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Liting Zhao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yanfeng Xi
- Department of Pathology, Cancer Hospital of Chinese Academy of Medical Sciences Shanxi Hospital, Taiyuan 030024, China
| | | | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China.
| |
Collapse
|
25
|
Kolawole OM, Khutoryanskiy VV. Potential bladder cancer therapeutic delivery systems: a recent update. Expert Opin Drug Deliv 2024; 21:1311-1329. [PMID: 39178039 DOI: 10.1080/17425247.2024.2396958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 08/25/2024]
Abstract
INTRODUCTION Bladder Cancer is one of the most expensive cancers to treat due to its high cost of therapy as well as the surveillance expenses incurred to prevent disease recurrence and progression. Thus, there is a strong need to develop safe, efficacious drug formulations with controlled drug release profiles and tumor-targeting potential, for improved therapeutic outcomes of bladder cancer patients. AREAS COVERED This review aims to provide an overview of drug formulations that have been studied for potential bladder cancer treatment in the last decade; highlight recent trends in bladder cancer treatment; mention ongoing clinical trials on bladder cancer chemotherapy; detail recently FDA-approved drug products for bladder cancer treatment and identify constraints that have prevented the translation of promising drug formulations from the research laboratory to the clinics. EXPERT OPINION This work revealed that surface functionalization of particulate drug delivery systems and incorporating the nanoparticles into in situ gelling systems could facilitate controlled drug release for extended periods, and improve the prognosis of bladder cancer treatment. Future research directions could incorporate multiple drugs into the drug delivery systems to treat advanced stages of the disease. In addition, smart nanomaterials, including photothermal therapies, could be exploited to improve the therapeutic outcomes of bladder cancer patients.
Collapse
|
26
|
Satarzadeh N, Shakibaie M, Forootanfar H, Amirheidari B. Purification, Characterization, and Assessment of Anticancer Activity of Iron Oxide Nanoparticles Biosynthesized by Novel Thermophilic Bacillus tequilensis ASFS1. J Basic Microbiol 2024; 64:e2400153. [PMID: 38922993 DOI: 10.1002/jobm.202400153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024]
Abstract
Magnetic nanoparticles (MNPs), particularly iron oxide nanoparticles (IONPs), are a fascinating group of nanoparticles that have been considerably investigated for biomedical applications because of their superparamagnetic properties, biodegradable nature, and biocompatibility. A novel Gram-positive moderately thermophilic bacterial strain, namely Bacillus tequilensis ASFS.1, was isolated and identified. This strain is capable of producing superparamagnetic Fe3O4 nanoparticles and exhibiting magnetotaxis behavior. This strain swimming behavior was investigated under static and dynamic environments, where it behaved very much similar to the magnetotaxis in magnetotactic bacteria. This study is the first report of a bacterium from the Bacillaceae family that has the potential to intracellular biosynthesis of IONPs. MNPs were separated by a magnetic and reproducible method which was designed for the first time for this study. In addition, UV-visible spectrophotometer, Fourier-transform infrared spectroscopy, vibrating sample magnetometer, field emission scanning electron microscopy (FESEM), X-ray diffraction, and thermal gravimetric analysis were utilized to characterize the bio-fabricated magnetite nanoparticles. Analysis of the particle size distribution pattern of the biogenic MNPs by FESEM imaging revealed the size range of 10-100 nm with the size range of 10-40 nm MNPs being the most frequent particles. VSM analysis demonstrated that biogenic MNPs displayed superparamagnetic properties with a high saturation magnetization value of 184 emu/g. After 24 h treatment of 3T3, U87, A549, MCF-7, and HT-29 cell lines with the biogenic MNPs, IC50 values were measured to be 339, 641, 582, 149, and 184 μg mL-1, respectively. This study presents the novel strain ASFS.1 capable of magnetotaxis by the aid of its magnetite nanoparticles and paving information on isolation, characterization, and in vitro cytotoxicity of its MNPs. The MNPs showed promising potential for biomedical applications, obviously subject to additional studies.
Collapse
Affiliation(s)
- Naghmeh Satarzadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Shakibaie
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
27
|
Shi W, Yuan S, Cheng G, Zhang H, Liu KJ, Ji X, Du L, Qi Z. Blood brain barrier-targeted lipid nanoparticles improved the neuroprotection of Ferrostatin-1 against cerebral ischemic damage in an experimental stroke model. Exp Neurol 2024; 379:114849. [PMID: 38857748 DOI: 10.1016/j.expneurol.2024.114849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
Cerebral ischemic stroke is a serious disease with high mortality and disability rates. However, few neuroprotective drugs have been used for ischemic stroke in the clinic. Two main reasons may be responsible for this failure: difficulty in penetrating the blood-brain barrier (BBB) and easily inactivated in the blood circulation. Ferroptosis, a lipid oxidation-related cell death, plays significant roles in cerebral ischemia-reperfusion injury. We utilized RVG29, a peptide derived from Rabies virus glycoprotein, to obtain BBB-targeted lipid nanoparticles (T-LNPs) in order to investigate whether T-LNPs improved the neuroprotective effects of Ferrostatin-1 (Fer1, an inhibitor of ferroptosis) against cerebral ischemic damage. T-LNPs significantly increased BBB penetration following oxygen/glucose deprivation exposure in an in vitro BBB model and enhanced the fluorescence distribution in brain tissues at 6 h post-administration in a cerebral ischemic murine model. Moreover, T-LNPs encapsulated Fer1 (T-LNPs-Fer1) significantly enhanced the inhibitory effects of Fer1 on ferroptosis by maintaining the homeostasis of NADPH oxidase 4 (NOX4) and glutathione peroxidase 4 (GPX4) signals in neuronal cells after cerebral ischemia. T-LNPs-Fer1 significantly suppressed oxidative stress [heme oxygenase-1 expression and malondialdehyde (the product of lipid ROS reaction)] in neurons and alleviated ischemia-induced neuronal cell death, compared to Fer1 alone without encapsulation. Furthermore, T-LNPs-Fer1 significantly reduced cerebral infarction and improved behavior functions compared to Fer1-treated cerebral ischemic mice after 45-min ischemia/24-h reperfusion. These findings showed that the T-LNPs helped Fer1 penetrate the BBB and improved the neuroprotection of Fer1 against cerebral ischemic damage in experimental stroke, providing a feasible translational strategy for the development of clinical drugs for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Wenjuan Shi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Shuhua Yuan
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Guohua Cheng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huiling Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Jian Liu
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhifeng Qi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
| |
Collapse
|
28
|
Al-Thani AN, Jan AG, Abbas M, Geetha M, Sadasivuni KK. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci 2024; 352:122899. [PMID: 38992574 DOI: 10.1016/j.lfs.2024.122899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
This comprehensive review provides an in-depth analysis of how nanotechnology has revolutionized cancer theragnostic, which combines diagnostic and therapeutic methods to customize cancer treatment. The study examines the unique attributes, uses, and difficulties linked to different types of nanoparticles, including gold, iron oxide, silica, Quantum dots, Carbon nanotubes, and liposomes, in the context of cancer treatment. In addition, the paper examines the progression of nanotheranostics, emphasizing its uses in precise medication administration, photothermal therapy, and sophisticated diagnostic methods such as MRI, CT, and fluorescence imaging. Moreover, the article highlights the capacity of nanoparticles to improve the effectiveness of drugs, reduce the overall toxicity in the body, and open up new possibilities for treating cancer by releasing drugs in a controlled manner and targeting specific areas. Furthermore, it tackles concerns regarding the compatibility of nanoparticles and their potential harmful effects, emphasizing the significance of continuous study to improve nanotherapeutic methods for use in medical treatments. The review finishes by outlining potential future applications of nanotechnology in predictive oncology and customized medicine.
Collapse
Affiliation(s)
- Alshayma N Al-Thani
- College of Arts and Sciences, Department of Biological and Environmental Science, Qatar
| | - Asma Ghafoor Jan
- College of Arts and Sciences, Department of Biological and Environmental Science, Qatar
| | - Mohamed Abbas
- Centre for Advanced Materials, Qatar University, Qatar.
| | - Mithra Geetha
- Centre for Advanced Materials, Qatar University, Qatar
| | - Kishor Kumar Sadasivuni
- Centre for Advanced Materials, Qatar University, Qatar; Centre for Advanced Materials, Qatar University, Qatar Department of Mechanical and Industrial Engineering, Qatar
| |
Collapse
|
29
|
Satarzadeh N, Amirheidari B, Shakibaie M, Forootanfar H. Medium optimization to improve growth and iron uptake by Bacillus tequilensis ASFS1 using fractional factorial designs. Sci Rep 2024; 14:20141. [PMID: 39209944 PMCID: PMC11362450 DOI: 10.1038/s41598-024-70896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Many notable applications have been described for magnetic nanoparticles in delivery of diverse drugs and bioactive compounds into cells, magnetofection for the treatment of cancer, photodynamic therapy, photothermal therapy, and magnetic particle imaging (MPI). In response to the growing demand for magnetic nanoparticles for drug delivery or biomedical imaging applications, more effective and eco-friendly methodologies are required for large-scale biosynthesis of this nanoparticles. The major challenge in the large-scale biomedical application of magnetic nanoparticles lies in its low efficiency and optimization of nanoparticle production can address this issue. In the current study, a prediction model is suggested by the fractional factorial designs. The present study aims to optimize culture media components for improved growth and iron uptake of this strain. The result of optimization for iron uptake by the strain ASFS1 is to increase the production of magnetic nanoparticles by this strain for biomedical applications in the future. In the present study, design of experiment method was used to probe the effects of some key medium components (yeast extract, tryptone, FeSO4, Na2-EDTA, and FeCl3) on Fe content in biomass and dried biomass of strain ASFS1. A 25-1 fractional factorial design showed that Na2-EDTA, FeCl3, yeast extract-tryptone interaction, and FeSO4-Na2-EDTA interaction were the most parameters on Fe content in biomass within the experimented levels (p < 0.05), while yeast extract, FeCl3, and yeast extract-tryptone interaction were the most significant factors within the experimented levels (p < 0.05) to effect on dried biomass of strain ASFS1. The optimum culture media components for the magnetic nanoparticles production by strain ASFS1 was reported to be 7.95 g L-1 of yeast extract, 5 g L-1 of tryptone, 75 μg mL-1 of FeSO4, 192.3 μg mL-1 of Na2-EDTA and 150 μg mL-1 of FeCl3 which was theoretically able to produce Fe content in biomass (158 μg mL-1) and dried biomass (2.59 mg mL-1) based on the obtained for medium optimization. Using these culture media components an experimental maximum Fe content in biomass (139 ± 13 μg mL-1) and dried biomass (2.2 ± 0.2 mg mL-1) was obtained, confirming the efficiency of the used method.
Collapse
Affiliation(s)
- Naghmeh Satarzadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mojtaba Shakibaie
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
30
|
Henderson E, Wilson K, Huynh G, Plebanski M, Corrie S. Bionano Interactions of Organosilica Nanoparticles with Myeloid Derived Immune Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43329-43340. [PMID: 39109853 DOI: 10.1021/acsami.4c08415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Investigating the interactions between nanomaterials and the cells they are likely to encounter in vivo is a critical aspect of designing nanomedicines for imaging and therapeutic applications. Immune cells such as dendritic cells, macrophages, and myeloid derived suppressor cells have a frontline role in the identification and removal of foreign materials from the body, with interactions shown to be heavily dependent on variables such as nanoparticle size, charge, and surface chemistry. Interactions such as cellular association or uptake of nanoparticles can lead to diminished functionality or rapid clearance from the body, making it critical to consider these interactions when designing and synthesizing nanomaterials for biomedical applications ranging from drug delivery to imaging and biosensing. We investigated the interactions between PEGylated organosilica nanoparticles and naturally endocytic immune cells grown from stem cells in murine bone marrow. Specifically, we varied the particle size from 60 nm up to 1000 nm and investigated the effects of size on immune cell association, activation, and maturation with these critical gatekeeper cells. These results will help inform future design parameters for in vitro and in vivo biomedical applications utilizing organosilica nanoparticles.
Collapse
Affiliation(s)
- Edward Henderson
- Department of Chemical and Biological Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Kirsty Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Gabriel Huynh
- Department of Chemical and Biological Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| |
Collapse
|
31
|
Qi Y, Liu X, Chen Y, Wu Y, Sun Y, Liu X, Bao Q, Zhang J, Yuan G, Wang T, Sun X, Liu S, Gao H. Enhanced Intrusion of Exogenous Airborne Fine Particles toward Eyes in Humans and Animals: Where Damaged Blood-Ocular Barrier Plays a Crucial Role. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13636-13647. [PMID: 38961559 PMCID: PMC11308520 DOI: 10.1021/acs.est.4c01791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Emerging data suggest a close correlation between ambient fine particle (AFP) exposure and eye disorders and pinpoint potential threats of AFPs to eye health in humans. However, the possible passage (including direct intrusion) and the interactions of AFPs with the eye microenvironment in addition to morphological and physiological injuries remain elusive. To this end, the likely transport of AFPs into the eyes via blood-ocular barrier (BOB) in humans and animals was investigated herein. Exogenous particles were recognized inside human eyes with detailed structural and chemical fingerprints. Importantly, comparable AFPs were found in sera with constant structural and chemical fingerprints, hinting at the translocation pathway from blood circulation into the eye. Furthermore, we found that the particle concentrations in human eyes from patients with diabetic retinopathy were much higher than those from patients with no fundus pathological changes (i.e., myopia), indicating that the damaged BOB increased the possibility of particle entrance. Our diseased animal model further corroborated these findings. Collectively, our results offer a new piece of evidence on the intrusion of exogenous particles into human eyes and provide an explanation for AFP-induced eye disorders, with substantially increased risk in susceptible individuals with BOB injuries.
Collapse
Affiliation(s)
- Yu Qi
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxue Liu
- State
Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory
of Ophthalmology, Eye Institute of Shandong
First Medical University, Eye Hospital of Shandong First Medical University, Qingdao 266000, China
- School
of Ophthalmology, Shandong First Medical
University & Shandong Academy of Medical Science, Jinan 250000, China
- Science
and Technology Innovation Center, Shandong
First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Yucai Chen
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Sun
- State
Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory
of Ophthalmology, Eye Institute of Shandong
First Medical University, Eye Hospital of Shandong First Medical University, Qingdao 266000, China
| | - Xiaoyu Liu
- State
Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory
of Ophthalmology, Eye Institute of Shandong
First Medical University, Eye Hospital of Shandong First Medical University, Qingdao 266000, China
| | - Qingdong Bao
- State
Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory
of Ophthalmology, Eye Institute of Shandong
First Medical University, Eye Hospital of Shandong First Medical University, Qingdao 266000, China
| | - Jingjing Zhang
- State
Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory
of Ophthalmology, Eye Institute of Shandong
First Medical University, Eye Hospital of Shandong First Medical University, Qingdao 266000, China
| | - Gongqiang Yuan
- State
Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory
of Ophthalmology, Eye Institute of Shandong
First Medical University, Eye Hospital of Shandong First Medical University, Qingdao 266000, China
| | - Ting Wang
- State
Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory
of Ophthalmology, Eye Institute of Shandong
First Medical University, Eye Hospital of Shandong First Medical University, Qingdao 266000, China
| | - Xiaolei Sun
- State
Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory
of Ophthalmology, Eye Institute of Shandong
First Medical University, Eye Hospital of Shandong First Medical University, Qingdao 266000, China
| | - Sijin Liu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
- Science
and Technology Innovation Center, Shandong
First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Hua Gao
- State
Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory
of Ophthalmology, Eye Institute of Shandong
First Medical University, Eye Hospital of Shandong First Medical University, Qingdao 266000, China
- School
of Ophthalmology, Shandong First Medical
University & Shandong Academy of Medical Science, Jinan 250000, China
- Science
and Technology Innovation Center, Shandong
First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| |
Collapse
|
32
|
Sui C, Wu H, Li X, Wang Y, Wei J, Yu J, Wu X. Cancer immunotherapy and its facilitation by nanomedicine. Biomark Res 2024; 12:77. [PMID: 39097732 PMCID: PMC11297660 DOI: 10.1186/s40364-024-00625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Cancer immunotherapy has sparked a wave of cancer research, driven by recent successful proof-of-concept clinical trials. However, barriers are emerging during its rapid development, including broad adverse effects, a lack of reliable biomarkers, tumor relapses, and drug resistance. Integration of nanomedicine may ameliorate current cancer immunotherapy. Ultra-large surface-to-volume ratio, extremely small size, and easy modification surface of nanoparticles enable them to selectively detect cells and kill cancer cells in vivo. Exciting synergistic applications of the two approaches have emerged in treating various cancers at the intersection of cancer immunotherapy and cancer nanomedicine, indicating the potential that the combination of these two therapeutic modalities can lead to new paradigms in the treatment of cancer. This review discusses the status of current immunotherapy and explores the possible opportunities that the nanomedicine platform can make cancer immunotherapy more powerful and precise by synergizing the two approaches.
Collapse
Affiliation(s)
- Chao Sui
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 East Duarte, Los Angeles, CA, 91010, USA
| | - Heqing Wu
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xinxin Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an Shaanxi, 710072, China
| | - Yuhang Wang
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jiaqi Wei
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 East Duarte, Los Angeles, CA, 91010, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
| | - Xiaojin Wu
- The First Affiliated Hospital of Soochow University, Suzhou, China.
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
33
|
Bravo M, Fortuni B, Mulvaney P, Hofkens J, Uji-I H, Rocha S, Hutchison JA. Nanoparticle-mediated thermal Cancer therapies: Strategies to improve clinical translatability. J Control Release 2024; 372:751-777. [PMID: 38909701 DOI: 10.1016/j.jconrel.2024.06.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Despite significant advances, cancer remains a leading global cause of death. Current therapies often fail due to incomplete tumor removal and nonspecific targeting, spurring interest in alternative treatments. Hyperthermia, which uses elevated temperatures to kill cancer cells or boost their sensitivity to radio/chemotherapy, has emerged as a promising alternative. Recent advancements employ nanoparticles (NPs) as heat mediators for selective cancer cell destruction, minimizing damage to healthy tissues. This approach, known as NP hyperthermia, falls into two categories: photothermal therapies (PTT) and magnetothermal therapies (MTT). PTT utilizes NPs that convert light to heat, while MTT uses magnetic NPs activated by alternating magnetic fields (AMF), both achieving localized tumor damage. These methods offer advantages like precise targeting, minimal invasiveness, and reduced systemic toxicity. However, the efficacy of NP hyperthermia depends on many factors, in particular, the NP properties, the tumor microenvironment (TME), and TME-NP interactions. Optimizing this treatment requires accurate heat monitoring strategies, such as nanothermometry and biologically relevant screening models that can better mimic the physiological features of the tumor in the human body. This review explores the state-of-the-art in NP-mediated cancer hyperthermia, discussing available nanomaterials, their strengths and weaknesses, characterization methods, and future directions. Our particular focus lies in preclinical NP screening techniques, providing an updated perspective on their efficacy and relevance in the journey towards clinical trials.
Collapse
Affiliation(s)
- M Bravo
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia; Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - B Fortuni
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - P Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - J Hofkens
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Max Planck Institute for Polymer Research, Mainz D-55128, Germany
| | - H Uji-I
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita ward, Sapporo 001-0020, Hokkaido, Japan
| | - S Rocha
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | - J A Hutchison
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
34
|
Kattimani V, Bhukya NKN, Panga GSK, Chakrabarty A, Lingamaneni P. Nano-Drug Carriers for Targeted Therapeutic Approaches in Oral Cancer: A Systematic Review. J Maxillofac Oral Surg 2024; 23:763-771. [PMID: 39118900 PMCID: PMC11303611 DOI: 10.1007/s12663-024-02251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Nanotechnology has shown potential in treating different types of cancers. In particular, nano-drug delivery systems (DDSs) offer a promising strategy for treating oral cancer. By customizing therapy and improving drug delivery, these systems can improve outcomes for patients. Hence, a review was conducted to assess the current evidence and explore the use of DDSs for treating oral cancer. Aim To comprehensively explore the nano-drug carriers and target delivery for oral cancer therapy and to discuss the benefits, challenges, and potential to guide future research and clinical practice. Methodology A systematic search of articles archived in PubMed, Scopus, and Cochrane using keywords such as Nano, drug carrier, target drug delivery, and oral cancer was performed to fulfill the objectives from inception till February 2, 2024. Articles providing insights into nano-drug carriers in oral cancer were included. Results The results revealed a total of 156 articles. After duplicate removal, 136 articles were screened for title and abstract as per the inclusion and exclusion criteria. A total of 113 articles were excluded with reasons. Out of the remaining 23 articles, only 11 were included for qualitative data synthesis. Conclusion The literature revealed scarcity of oral cancer-related work using DDSs. Qualitative synthesis of data revealed that nano-drug carriers demonstrated a promising avenue for targeted therapeutic approaches in oral cancer, despite the challenges and their potential benefits. Continued research and development in this field are crucial to overcoming these challenges and fully realizing the potential of nano-drug carriers in revolutionizing oral cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s12663-024-02251-z.
Collapse
Affiliation(s)
- Vivekanand Kattimani
- SIBAR Institute of Dental Sciences, Takkellapadu, Guntur, Andhra Pradesh 522509 India
| | - Nom Kumar Naik Bhukya
- Department of Anatomy, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | | | | | | |
Collapse
|
35
|
Zhao Y, Ni Q, Zhang W, Yu S. Progress in reeducating tumor-associated macrophages in tumor microenvironment. Discov Oncol 2024; 15:312. [PMID: 39060648 PMCID: PMC11282027 DOI: 10.1007/s12672-024-01186-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Malignant tumor, one of the most threatening diseases to human health, has been comprehensively treated with surgery, radiotherapy, chemotherapy and targeted therapy, but the prognosis has not always been ideal. In the past decade, immunotherapy has shown increased efficacy in tumor treatment; however, for immunotherapy to achieve its fullest potential, obstacles are to be conquered, among which tumor microenvironment (TME) has been widely investigated. In remodeling the tumor immune microenvironment to inhibit tumor progression, macrophages, as the most abundant innate immune population, play an irreplaceable role in the immune response. Therefore, how to remodel TME and alter the recruitment and polarization status of tumor-associated macrophages (TAM) has been of wide interest. In this context, nanoparticles, photodynamic therapy and other therapeutic approaches capable of affecting macrophage polarization have emerged. In this paper, we categorize and organize the existing means and methods for reprogramming TAM to provide ideas for clinical application of novel tumor-related therapies.
Collapse
Affiliation(s)
- Yiming Zhao
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, No.139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, China
| | - Qianyang Ni
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, No.139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, China
| | - Weijian Zhang
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, No.139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, China
| | - Suyang Yu
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, No.139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, China.
| |
Collapse
|
36
|
Jiang X, Luo T, Yang K, Lee MJ, Liu J, Tillman L, Zhen W, Weichselbaum RR, Lin W. STING activation disrupts tumor vasculature to overcome the EPR limitation and increase drug deposition. SCIENCE ADVANCES 2024; 10:eado0082. [PMID: 39018400 PMCID: PMC466951 DOI: 10.1126/sciadv.ado0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
The low success rate of cancer nanomedicines has raised debate on the role of the enhanced permeability and retention (EPR) effect on tumor deposition of nanotherapeutics. Here, we report a bifunctional nanoscale coordination polymer (NCP), oxaliplatin (OX)/2',3'-cyclic guanosine monophosphate-adenosine monophosphate (GA), to overcome the EPR limitation through stimulator of interferon genes (STING) activation and enhance chemotherapeutic and STING agonist delivery for tumor eradication. OX/GA encapsulates GA and OX in the NCP to protect GA from enzymatic degradation and improve GA and OX pharmacokinetics. STING activation by OX/GA disrupts tumor vasculatures and increases intratumoral deposition of OX by 4.9-fold over monotherapy OX-NCP. OX/GA demonstrates exceptional antitumor effects with >95% tumor growth inhibition and high cure rates in subcutaneous, orthotopic, spontaneous, and metastatic tumor models. OX/GA induces immunogenic cell death of tumor cells and STING activation of innate immune cells to enhance antigen presentation. NCPs provide an excellent nanoplatform to overcome the EPR limitation for effective cancer therapy.
Collapse
Affiliation(s)
- Xiaomin Jiang
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave., Chicago, IL 60637, USA
| | - Taokun Luo
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave., Chicago, IL 60637, USA
| | - Morten J. Lee
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
| | - Jing Liu
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave., Chicago, IL 60637, USA
| | - Langston Tillman
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
| | - Wenyao Zhen
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave., Chicago, IL 60637, USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave., Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave., Chicago, IL 60637, USA
| |
Collapse
|
37
|
Cheng Z, Fobian SF, Gurrieri E, Amin M, D'Agostino VG, Falahati M, Zalba S, Debets R, Garrido MJ, Saeed M, Seynhaeve ALB, Balcioglu HE, Ten Hagen TLM. Lipid-based nanosystems: the next generation of cancer immune therapy. J Hematol Oncol 2024; 17:53. [PMID: 39030582 PMCID: PMC11265205 DOI: 10.1186/s13045-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Immunotherapy has become an important part of the oncotherapy arsenal. Its applicability in various cancer types is impressive, as well as its use of endogenous mechanisms to achieve desired ends. However, off-target or on-target-off-tumor toxicity, limited activity, lack of control in combination treatments and, especially for solid tumors, low local accumulation, have collectively limited clinical use thereof. These limitations are partially alleviated by delivery systems. Lipid-based nanoparticles (NPs) have emerged as revolutionary carriers due to favorable physicochemical characteristics, with specific applications and strengths particularly useful in immunotherapeutic agent delivery. The aim of this review is to highlight the challenges faced by immunotherapy and how lipid-based NPs have been, and may be further utilized to address such challenges. We discuss recent fundamental and clinical applications of NPs in a range of areas and provide a detailed discussion of the main obstacles in immune checkpoint inhibition therapies, adoptive cellular therapies, and cytokine therapies. We highlight how lipid-based nanosystems could address these through either delivery, direct modulation of the immune system, or targeting of the immunosuppressive tumor microenvironment. We explore advanced and emerging liposomal and lipid nanoparticle (LNP) systems for nucleic acid delivery, intrinsic and extrinsic stimulus-responsive formulations, and biomimetic lipid-based nanosystems in immunotherapy. Finally, we discuss the key challenges relating to the clinical use of lipid-based NP immunotherapies, suggesting future research directions for the near term to realize the potential of these innovative lipid-based nanosystems, as they become the crucial steppingstone towards the necessary enhancement of the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ziyun Cheng
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Seth-Frerich Fobian
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elena Gurrieri
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mohamadreza Amin
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sara Zalba
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - María J Garrido
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Mesha Saeed
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ann L B Seynhaeve
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hayri E Balcioglu
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
38
|
Zhang D, Zhai B, Sun J, Cheng J, Zhang X, Guo D. Advances on Delivery System of Active Ingredients of Dried Toad Skin and Toad Venom. Int J Nanomedicine 2024; 19:7273-7305. [PMID: 39050871 PMCID: PMC11268768 DOI: 10.2147/ijn.s469742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
Dried toad skin (TS) and toad venom (TV) are the dried skin of the Bufo bufo gargarizans Cantor and the Bufo melanostictus Schneider, which remove the internal organs and the white secretions of the skin and retroauricular glands. Since 2005, cinobufacini preparations have been approved by the State Food and Drug Administration for use as adjuvant therapies in the treatment of various advanced cancers. Meanwhile, bufalenolides has been identified as the main component of TS/TV, exhibiting antitumor activity, inducing apoptosis of cancer cells and inhibiting cancer cell proliferation or metastasis through a variety of signaling pathways. However, clinical agents frequently face limitations such as inherent toxicity at high concentrations and insufficient tumor targeting. Additionally, the development and utilization of these active ingredients are hindered by poor water solubility, low bioavailability, and rapid clearance from the bloodstream. To address these challenges, the design of a targeted drug delivery system (TDDS) aims to enhance drug bioavailability, improve targeting within the body, increase drug efficacy, and reduce adverse reactions. This article reviews the TDDS for TS/TV, and their active components, including passive, active, and stimuli-responsive TDDS, to provide a reference for advancing their clinical development and use.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bingtao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jiangxue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiaofei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dongyan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
39
|
Suh M, Park JY, Ko GB, Kim JY, Hwang DW, Rees L, Conway GE, Doak SH, Kang H, Lee N, Hyeon T, Lee YS, Lee DS. Optimization of micelle-encapsulated extremely small sized iron oxide nanoparticles as a T1 contrast imaging agent: biodistribution and safety profile. J Nanobiotechnology 2024; 22:419. [PMID: 39014410 PMCID: PMC11253436 DOI: 10.1186/s12951-024-02699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Iron oxide nanoparticles (IONPs) have been cleared by the Food and Drug Administration (FDA) for various clinical applications, such as tumor-targeted imaging, hyperthermia therapy, drug delivery, and live-cell tracking. However, the application of IONPs as T1 contrast agents has been restricted due to their high r2 values and r2/r1 ratios, which limit their effectiveness in T1 contrast enhancement. Notably, IONPs with diameters smaller than 5 nm, referred to as extremely small-sized IONPs (ESIONs), have demonstrated potential in overcoming these limitations. To advance the clinical application of ESIONs as T1 contrast agents, we have refined a scale-up process for micelle encapsulation aimed at improving the hydrophilization of ESIONs, and have carried out comprehensive in vivo biodistribution and preclinical toxicity assessments. RESULTS The optimization of the scale-up micelle-encapsulation process, specifically employing Tween60 at a concentration of 10% v/v, resulted in ESIONs that were uniformly hydrophilized, with an average size of 9.35 nm and a high purification yield. Stability tests showed that these ESIONs maintained consistent size over extended storage periods and dispersed effectively in blood and serum-mimicking environments. Relaxivity measurements indicated an r1 value of 3.43 mM- 1s- 1 and a favorable r2/r1 ratio of 5.36, suggesting their potential as T1 contrast agents. Biodistribution studies revealed that the ESIONs had extended circulation times in the bloodstream and were primarily cleared via the hepatobiliary route, with negligible renal excretion. We monitored blood clearance and organ distribution using positron emission tomography and magnetic resonance imaging (MRI). Additionally, MRI signal variations in a dose-dependent manner highlighted different behaviors at varying ESIONs concentrations, implying that optimal dosages might be specific to the intended imaging application. Preclinical safety evaluations indicated that ESIONs were tolerable in rats at doses up to 25 mg/kg. CONCLUSIONS This study effectively optimized a scale-up process for the micelle encapsulation of ESIONs, leading to the production of hydrophilic ESIONs at gram-scale levels. These optimized ESIONs showcased properties conducive to T1 contrast imaging, such as elevated r1 relaxivity and a reduced r2/r1 ratio. Biodistribution study underscored their prolonged bloodstream presence and efficient clearance through the liver and bile, without significant renal involvement. The preclinical toxicity tests affirmed the safety of the ESIONs, supporting their potential use as T1 contrast agent with versatile clinical application.
Collapse
Affiliation(s)
- Minseok Suh
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Ji Yong Park
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea
- Medical Research Center, College of Medicine, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Guen Bae Ko
- Medical Research Center, College of Medicine, Seoul National University, Seoul, Korea
- Brightonix Imaging Inc, Seoul, Korea
| | - Ji Yoon Kim
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Korea
- The Interdisciplinary Program of Cancer Biology, Seoul National University, Seoul, Korea
| | - Do Won Hwang
- Research and Development Center, THERABEST Co., Ltd., Seoul, South Korea
| | - Louis Rees
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK
| | - Gillian E Conway
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK
| | - Hyelim Kang
- School of Advanced Materials Engineering, Kookmin University, Seoul, Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul, Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Korea.
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Dong Soo Lee
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Korea.
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.
- Medical Research Center, College of Medicine, Seoul National University, Seoul, Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.
| |
Collapse
|
40
|
Kirti A, Simnani FZ, Jena S, Lenka SS, Kalalpitiya C, Naser SS, Singh D, Choudhury A, Sahu RN, Yadav A, Sinha A, Nandi A, Panda PK, Kaushik NK, Suar M, Verma SK. Nanoparticle-mediated metronomic chemotherapy in cancer: A paradigm of precision and persistence. Cancer Lett 2024; 594:216990. [PMID: 38801886 DOI: 10.1016/j.canlet.2024.216990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Current methods of cancer therapy have demonstrated enormous potential in tumor inhibition. However, a high dosage regimen of chemotherapy results in various complications which affect the normal body cells. Tumor cells also develop resistance against the prescribed drugs in the whole treatment regimen increasing the risk of cancer relapse. Metronomic chemotherapy is a modern treatment method that involves administering drugs at low doses continuously, allowing the drug sufficient time to take its effect. This method ensures that the toxicity of the drugs is to a minimum in comparison to conventional chemotherapy. Nanoparticles have shown efficacy in delivering drugs to the tumor cells in various cancer therapies. Combining nanoparticles with metronomic chemotherapy can yield better treatment results. This combination stimulates the immune system, improving cancer cells recognition by immune cells. Evidence from clinical and pre-clinical trials supports the use of metronomic delivery for drug-loaded nanoparticles. This review focuses on the functionalization of nanoparticles for improved drug delivery and inhibition of tumor growth. It emphasizes the mechanisms of metronomic chemotherapy and its conjunction with nanotechnology. Additionally, it explores tumor progression and the current methods of chemotherapy. The challenges associated with nano-based metronomic chemotherapy are outlined, paving the way for prospects in this dynamic field.
Collapse
Affiliation(s)
- Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | | | - Snehasmita Jena
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Sudakshya S Lenka
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | | | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Rudra Narayan Sahu
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Anu Yadav
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India; Instituto de Investigaciones en Materiales, UNAM, 04510, CDMX, Mexico
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| |
Collapse
|
41
|
Nankivell V, Vidanapathirana AK, Hoogendoorn A, Tan JTM, Verjans J, Psaltis PJ, Hutchinson MR, Gibson BC, Lu Y, Goldys E, Zheng G, Bursill CA. Targeting macrophages with multifunctional nanoparticles to detect and prevent atherosclerotic cardiovascular disease. Cardiovasc Res 2024; 120:819-838. [PMID: 38696700 PMCID: PMC11218693 DOI: 10.1093/cvr/cvae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/29/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Despite the emergence of novel diagnostic, pharmacological, interventional, and prevention strategies, atherosclerotic cardiovascular disease remains a significant cause of morbidity and mortality. Nanoparticle (NP)-based platforms encompass diverse imaging, delivery, and pharmacological properties that provide novel opportunities for refining diagnostic and therapeutic interventions for atherosclerosis at the cellular and molecular levels. Macrophages play a critical role in atherosclerosis and therefore represent an important disease-related diagnostic and therapeutic target, especially given their inherent ability for passive and active NP uptake. In this review, we discuss an array of inorganic, carbon-based, and lipid-based NPs that provide magnetic, radiographic, and fluorescent imaging capabilities for a range of highly promising research and clinical applications in atherosclerosis. We discuss the design of NPs that target a range of macrophage-related functions such as lipoprotein oxidation, cholesterol efflux, vascular inflammation, and defective efferocytosis. We also provide examples of NP systems that were developed for other pathologies such as cancer and highlight their potential for repurposing in cardiovascular disease. Finally, we discuss the current state of play and the future of theranostic NPs. Whilst this is not without its challenges, the array of multifunctional capabilities that are possible in NP design ensures they will be part of the next frontier of exciting new therapies that simultaneously improve the accuracy of plaque diagnosis and more effectively reduce atherosclerosis with limited side effects.
Collapse
Affiliation(s)
- Victoria Nankivell
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Achini K Vidanapathirana
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Ayla Hoogendoorn
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
| | - Joanne T M Tan
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Johan Verjans
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Peter J Psaltis
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Mark R Hutchinson
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Brant C Gibson
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Yiqing Lu
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - Ewa Goldys
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Graduate School of Biomedical Engineering, University of New South Wales, High Street, NSW, 2052, Australia
| | - Gang Zheng
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, M5G 1L7, Canada
| | - Christina A Bursill
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| |
Collapse
|
42
|
Guo S, Cui H, Agarwal T, Zhang LG. Nanomaterials in 4D Printing: Expanding the Frontiers of Advanced Manufacturing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307750. [PMID: 38431939 DOI: 10.1002/smll.202307750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/15/2024] [Indexed: 03/05/2024]
Abstract
As an innovative technology, four-dimentional (4D) printing is built upon the principles of three-dimentional (3D) printing with an additional dimension: time. While traditional 3D printing creates static objects, 4D printing generates "responsive 3D printed structures", enabling them to transform or self-assemble in response to external stimuli. Due to the dynamic nature, 4D printing has demonstrated tremendous potential in a range of industries, encompassing aerospace, healthcare, and intelligent devices. Nanotechnology has gained considerable attention owing to the exceptional properties and functions of nanomaterials. Incorporating nanomaterials into an intelligent matrix enhances the physiochemical properties of 4D printed constructs, introducing novel functions. This review provides a comprehensive overview of current applications of nanomaterials in 4D printing, exploring their synergistic potential to create dynamic and responsive structures. Nanomaterials play diverse roles as rheology modifiers, mechanical enhancers, function introducers, and more. The overarching goal of this review is to inspire researchers to delve into the vast potential of nanomaterial-enabled 4D printing, propelling advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Shengbo Guo
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Tarun Agarwal
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Electrical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
43
|
Alcantara KP, Malabanan JWT, Vajragupta O, Rojsitthisak P, Rojsitthisak P. A promising strategy of surface-modified nanoparticles targeting CXCR4 for precision cancer therapy. J Drug Target 2024; 32:587-605. [PMID: 38634290 DOI: 10.1080/1061186x.2024.2345235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Nanoparticle (NP) functionalization with specific ligands enhances targeted cancer therapy and imaging by promoting receptor recognition and improving cellular uptake. This review focuses on recent research exploring the interaction between cancer cell-expressed chemokine receptor 4 (CXCR4) and ligand-conjugated NPs, utilising small molecules, peptides, and antibodies. Active NP targeting has shown improved tumour targeting and reduced toxicity, enabling precision therapy and diagnosis. However, challenges persist in the clinical translation of targeted NPs due to issues with biological response, tumour accumulation, and maintaining NP quality at an industrial scale. Biological and intratumoral barriers further hinder efficient NP accumulation in tumours, hampering translatability. To address these challenges, the academic community is refocusing efforts on understanding NP biological fate and establishing robust preclinical models. Future studies should investigate NP-body interactions, develop computational models, and identify optimal preclinical models. Establishing central NP research databases and fostering collaboration across disciplines is crucial to expediting clinical translation. Overcoming these hurdles will unlock the transformative potential of CXCR4-ligand-NP conjugates in revolutionising cancer treatment.
Collapse
Affiliation(s)
- Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - John Wilfred T Malabanan
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
44
|
Navalón-López M, Castells-Colldeforns P, Pujals S, Fornaguera C, Borrós S. PExM: polyplex expansion microscopy for cell trafficking studies. NANOSCALE 2024; 16:11969-11976. [PMID: 38874918 DOI: 10.1039/d4nr00917g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Nanomedicine is a field at the intersection of nanotechnology and medicine, promising due to its potential to revolutionize healthcare. Despite its long trajectory, there is still a long road ahead for its full development, and smart design of nanomedicines is still a challenge. Among other problems, this is due to the scarcity of tools available for the precise visualization and comprehension of nano-bio interactions, impeding progress towards the clinical phase. One of the developed tools that stands out to be a strong nanoscopy technique for studying nano-delivery systems within cellular environments is expansion microscopy (ExM). This technique was used for tissue and cell expansion and most recently for lipid molecule expansion inside cells. Herein, we present for the first time polyplex expansion microscopy (PExM); a comprehensive examination of ExM as an already developed technique, but adapted for expanding polymer based nanocarriers, in particular polyplexes within cells, allowing the analysis of their trafficking. With our method set up, PExM will be extensively used for the study of polyplex nanoparticle cell trafficking, becoming a high-resolution technique which can also be applied to primary amine containing polymeric nanoparticles without requiring expensive super-resolution microscopes.
Collapse
Affiliation(s)
- María Navalón-López
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017, Barcelona, Spain.
| | - Pau Castells-Colldeforns
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017, Barcelona, Spain.
| | - Silvia Pujals
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Carrer Jordi Girona 18-24, 08034, Barcelona, Spain.
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017, Barcelona, Spain.
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017, Barcelona, Spain.
| |
Collapse
|
45
|
Dechbumroong P, Hu R, Keaswejjareansuk W, Namdee K, Liang XJ. Recent advanced lipid-based nanomedicines for overcoming cancer resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:24. [PMID: 39050885 PMCID: PMC11267154 DOI: 10.20517/cdr.2024.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
The increasing prevalence of cancer drug resistance not only critically limits the efficiency of traditional therapies but also causes relapses or recurrences of cancer. Consequently, there remains an urgent need to address the intricate landscape of drug resistance beyond traditional cancer therapies. Recently, nanotechnology has played an important role in the field of various drug delivery systems for the treatment of cancer, especially therapy-resistant cancer. Among advanced nanomedicine technologies, lipid-based nanomaterials have emerged as effective drug carriers for cancer treatment, significantly improving therapeutic effects. Due to their biocompatibility, simplicity of preparation, and potential for functionalization, lipid-based nanomaterials are considered powerful competitors for resistant cancer. In this review, an overview of lipid-based nanomaterials for addressing cancer resistance is discussed. We summarize the recent progress in overcoming drug resistance in cancer by these lipid-based nanomaterials, and highlight their potential in future applications to reverse cancer resistance.
Collapse
Affiliation(s)
- Piroonrat Dechbumroong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
- Authors contributed equally
| | - Runjing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Authors contributed equally
| | - Wisawat Keaswejjareansuk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
De Giorgi A, Bellussi FM, Parlani S, Lucisano A, Silvestri E, Aryal S, Park S, Key J, Fasano M. Diffusion of curcumin in PLGA-based carriers for drug delivery: a molecular dynamics study. J Mol Model 2024; 30:219. [PMID: 38896158 PMCID: PMC11186890 DOI: 10.1007/s00894-024-06023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
CONTEXT The rapid growth and diversification of drug delivery systems have been significantly supported by advancements in micro- and nano-technologies, alongside the adoption of biodegradable polymeric materials like poly(lactic-co-glycolic acid) (PLGA) as microcarriers. These developments aim to reduce toxicity and enhance target specificity in drug delivery. The use of in silico methods, particularly molecular dynamics (MD) simulations, has emerged as a pivotal tool for predicting the dynamics of species within these systems. This approach aids in investigating drug delivery mechanisms, thereby reducing the costs associated with design and prototyping. In this study, we focus on elucidating the diffusion mechanisms in curcumin-loaded PLGA particles, which are critical for optimizing drug release and efficacy in therapeutic applications. METHODS We utilized MD to explore the diffusion behavior of curcumin in PLGA drug delivery systems. The simulations, executed with GROMACS, modeled curcumin molecules in a representative volume element of PLGA chains and water, referencing molecular structures from the Protein Data Bank and employing the CHARMM force field. We generated PLGA chains of varying lengths using the Polymer Modeler tool and arranged them in a bulk-like environment with Packmol. The simulation protocol included steps for energy minimization, T and p equilibration, and calculation of the isotropic diffusion coefficient from the mean square displacement. The Taguchi method was applied to assess the effects of hydration level, PLGA chain length, and density on diffusion. RESULTS Our results provide insight into the influence of PLGA chain length, hydration level, and polymer density on the diffusion coefficient of curcumin, offering a mechanistic understanding for the design of efficient drug delivery systems. The sensitivity analysis obtained through the Taguchi method identified hydration level and PLGA density as the most significant input parameters affecting curcumin diffusion, while the effect of PLGA chain length was negligible within the simulated range. We provided a regression equation capable to accurately fit MD results. The regression equation suggests that increases in hydration level and PLGA density result in a decrease in the diffusion coefficient.
Collapse
Affiliation(s)
- Alessandro De Giorgi
- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | | | - Stefano Parlani
- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Andrea Lucisano
- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Emanuele Silvestri
- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Susmita Aryal
- Department of Biomedical Engineering, Yonsei University, Wonju, 26493, Gangwon State, Republic of Korea
| | - Sanghyo Park
- Department of Biomedical Engineering, Yonsei University, Wonju, 26493, Gangwon State, Republic of Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, Wonju, 26493, Gangwon State, Republic of Korea.
| | - Matteo Fasano
- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| |
Collapse
|
47
|
Estévez M, Cicuéndez M, Colilla M, Vallet-Regí M, González B, Izquierdo-Barba I. Magnetic colloidal nanoformulations to remotely trigger mechanotransduction for osteogenic differentiation. J Colloid Interface Sci 2024; 664:454-468. [PMID: 38484514 DOI: 10.1016/j.jcis.2024.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Nowadays, diseases associated with an ageing population, such as osteoporosis, require the development of new biomedical approaches to bone regeneration. In this regard, mechanotransduction has emerged as a discipline within the field of bone tissue engineering. Herein, we have tested the efficacy of superparamagnetic iron oxide nanoparticles (SPIONs), obtained by the thermal decomposition method, with an average size of 13 nm, when exposed to the application of an external magnetic field for mechanotransduction in human bone marrow-derived mesenchymal stem cells (hBM-MSCs). The SPIONs were functionalized with an Arg-Gly-Asp (RGD) peptide as ligand to target integrin receptors on cell membrane and used in colloidal state. Then, a comprehensive and comparative bioanalytical characterization of non-targeted versus targeted SPIONs was performed in terms of biocompatibility, cell uptake pathways and mechanotransduction effect, demonstrating the osteogenic differentiation of hBM-MSCs. A key conclusion derived from this research is that when the magnetic stimulus is applied in the first 30 min of the in vitro assay, i.e., when the nanoparticles come into contact with the cell membrane surface to initiate endocytic pathways, a successful mechanotransduction effect is observed. Thus, under the application of a magnetic field, there was a significant increase in runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP) gene expression as well as ALP activity, when cells were exposed to RGD-functionalized SPIONs, demonstrating osteogenic differentiation. These findings open new expectations for the use of remotely activated mechanotransduction using targeted magnetic colloidal nanoformulations for osteogenic differentiation by drug-free cell therapy using minimally invasive techniques in cases of bone loss.
Collapse
Affiliation(s)
- Manuel Estévez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Mónica Cicuéndez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Montserrat Colilla
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
48
|
Pang Y, Li Y, Chen K, Wu M, Zhang J, Sun Y, Xu Y, Wang X, Wang Q, Ning X, Kong D. Porous Microneedles Through Direct Ink Drawing with Nanocomposite Inks for Transdermal Collection of Interstitial Fluid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305838. [PMID: 38258379 DOI: 10.1002/smll.202305838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/19/2023] [Indexed: 01/24/2024]
Abstract
Interstitial fluid (ISF) is an attractive alternative to regular blood sampling for health checks and disease diagnosis. Porous microneedles (MNs) are well suited for collecting ISF in a minimally invasive manner. However, traditional methods of molding MNs from microfabricated templates involve prohibitive fabrication costs and fixed designs. To overcome these limitations, this study presents a facile and economical additive manufacturing approach to create porous MNs. Compared to traditional layerwise build sequences, direct ink drawing with nanocomposite inks can define sharp MNs with tailored shapes and achieve vastly improved fabrication efficiency. The key to this fabrication strategy is the yield-stress fluid ink that is easily formulated by dispersing silica nanoparticles into the cellulose acetate polymer solution. As-printed MNs are solidified into interconnected porous microstructure inside a coagulation bath of deionized water. The resulting MNs exhibit high mechanical strength and high porosity. This approach also allows porous MNs to be easily integrated on various substrates. In particular, MNs on filter paper substrates are highly flexible to rapidly collect ISF on non-flat skin sites. The extracted ISF is used for quantitative analysis of biomarkers, including glucose, = calcium ions, and calcium ions. Overall, the developments allow facile fabrication of porous MNs for transdermal diagnosis and therapy.
Collapse
Affiliation(s)
- Yushuang Pang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yanyan Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Kerong Chen
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| | - Ming Wu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiaxue Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yuping Sun
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yurui Xu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| | - Xiaoliang Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qian Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Xinghai Ning
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
49
|
Roghani AK, Garcia RI, Roghani A, Reddy A, Khemka S, Reddy RP, Pattoor V, Jacob M, Reddy PH, Sehar U. Treating Alzheimer's disease using nanoparticle-mediated drug delivery strategies/systems. Ageing Res Rev 2024; 97:102291. [PMID: 38614367 DOI: 10.1016/j.arr.2024.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
The administration of promising medications for the treatment of neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) is significantly hampered by the blood-brain barrier (BBB). Nanotechnology has recently come to light as a viable strategy for overcoming this obstacle and improving drug delivery to the brain. With a focus on current developments and prospects, this review article examines the use of nanoparticles to overcome the BBB constraints to improve drug therapy for AD The potential for several nanoparticle-based approaches, such as those utilizing lipid-based, polymeric, and inorganic nanoparticles, to enhance drug transport across the BBB are highlighted. To shed insight on their involvement in aiding effective drug transport to the brain, methods of nanoparticle-mediated drug delivery, such as surface modifications, functionalization, and particular targeting ligands, are also investigated. The article also discusses the most recent findings on innovative medication formulations encapsulated within nanoparticles and the therapeutic effects they have shown in both preclinical and clinical testing. This sector has difficulties and restrictions, such as the need for increased safety, scalability, and translation to clinical applications. However, the major emphasis of this review aims to provide insight and contribute to the knowledge of how nanotechnology can potentially revolutionize the worldwide treatment of NDDs, particularly AD, to enhance clinical outcomes.
Collapse
Affiliation(s)
- Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Frenship High School, Lubbock, TX 79382, USA.
| | - Ricardo Isaiah Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ali Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Aananya Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ruhananhad P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; University of South Florida, Tampa, FL 33620, USA.
| | - Michael Jacob
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Services, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
50
|
Mendes BB, Zhang Z, Conniot J, Sousa DP, Ravasco JMJM, Onweller LA, Lorenc A, Rodrigues T, Reker D, Conde J. A large-scale machine learning analysis of inorganic nanoparticles in preclinical cancer research. NATURE NANOTECHNOLOGY 2024; 19:867-878. [PMID: 38750164 DOI: 10.1038/s41565-024-01673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 04/10/2024] [Indexed: 06/21/2024]
Abstract
Owing to their distinct physical and chemical properties, inorganic nanoparticles (NPs) have shown promising results in preclinical cancer therapy, but designing and engineering them for effective therapeutic purposes remains a challenge. Although a comprehensive database of inorganic NP research is not currently available, it is crucial for developing effective cancer therapies. In this context, machine learning (ML) has emerged as a transformative tool, but its adaptation to nanomedicine is hindered by inexistent or small datasets. Here we assembled a large database of inorganic NPs, comprising experimental datasets from 745 preclinical studies in cancer nanomedicine. Using descriptive statistics and explainable ML models we mined this database to gain knowledge of inorganic NP design patterns and inform future NP research for cancer treatment. Our analyses suggest that NP shape and therapy type are prominent features in determining in vivo efficacy, measured as a percentage of tumour reduction. Moreover, our database provides a large-scale open-access resource for discriminative ML that the broader nanotechnology community can utilize. Our work blueprints data mining for translational cancer research and offers evidence for standardizing NP reporting to accelerate and de-risk inorganic NP-based drug delivery, which may help to improve patient outcomes in clinical settings.
Collapse
Affiliation(s)
- Bárbara B Mendes
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Zilu Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - João Conniot
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Diana P Sousa
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João M J M Ravasco
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Lauren A Onweller
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Andżelika Lorenc
- Instituto de Investigação do Medicamento (iMed), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Biopharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Tiago Rodrigues
- Instituto de Investigação do Medicamento (iMed), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.
| | - Daniel Reker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, Lisbon, Portugal.
| |
Collapse
|