1
|
El-Saleh F, Hübscher H, Trofimov S, Muehlenfeld C. Impact of functional-related characteristics (FRCs) of crospovidone on tablet disintegration performance. Pharm Dev Technol 2025:1-13. [PMID: 40515646 DOI: 10.1080/10837450.2025.2518568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 05/08/2025] [Accepted: 06/08/2025] [Indexed: 06/16/2025]
Abstract
Crospovidone, a widely used superdisintegrant, exists in two pharmacopeial grades - Type A (coarser particle size) and type B (finer particle size). The differences in particle size among different crospovidone grades lead to variations in functional related characteristics (FRCs), such as hydration capacity and powder flowability. The present study investigates the relative impact of crospovidone FRCs on tablet disintegration time. Multiple lots of different crospovidone grades were evaluated for their particle size distribution, hydration capacity and powder flowability. Subsequently, tablets were prepared from the different lots of crospovidone and evaluated for their disintegration time. Correlation analyses were performed to evaluate the independent effects of FRCs on disintegration time. While initial correlations showed strong interdependence among particle size, hydration capacity, and powder flowability, the decoupling of particle size as the most impacting factor revealed that hydration capacity and powder flowability had no or only limited impact on the tablet disintegration time.
Collapse
|
2
|
Mazdi NTA, Mior Mat Zin NA, Khairul Hisham MA, Mohd Rus S, Haris MS, Chatterjee B. Optimizing paracetamol-ascorbic acid effervescent tablet characteristics: a quality by design approach . Drug Dev Ind Pharm 2025; 51:647-658. [PMID: 40253623 DOI: 10.1080/03639045.2025.2495131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 04/04/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
OBJECTIVE This study aims to optimize paracetamol-ascorbic acid (PCM-AA) effervescent tablet characteristics through a Quality-by-Design (QbD) approach, investigating the effects of binder concentration, granulation time, and effervescent agents' ratio on hardness, disintegration, and dissolution of the tablets. METHODS The QbD approach was implemented by identifying the quality target product profile, critical quality attributes (CQAs), critical material attributes (CMAs), and critical process parameters for formulating PCM-AA effervescent tablets. An Ishikawa diagram identified risk factors for CQAs. A risk estimation matrix evaluated the levels of associated risks. A central composite design-based response surface methodology with 20 experimental runs, including six center points, identified key factors (binder concentration, granulation time, and effervescent agents' ratio) influencing tablet characteristics (hardness, disintegration, dissolution). The optimum formulation, determined by numerical analysis, was characterized for weight uniformity, tablet thickness and diameter, friability, and PCM and AA assay. RESULTS Optimized PCM (500 mg)-AA(200 mg) effervescent tablets with 2.9% PVP concentration, 15 min granulation time, and 1:1.5 (w/w) sodium bicarbonate-citric acid ratio achieved acceptable characteristics (hardness: 45 N ± 20 N, disintegration: <5 min, and both PCM and AA dissolution: <10 min). Model validation showed no significant difference (p > 0.05), indicating consistent results. CONCLUSION The study successfully optimized the hardness, disintegration, and dissolution rate of PCM-AA effervescent tablets via the QbD approach. Granulation time affects hardness and PCM dissolution, binder concentration influences disintegration time, and the effervescent agents' ratio impacts both disintegration time and AA dissolution. This research enhances the understanding of pharmaceutical formulation processes, risk management, and optimization in effervescent tablet development.
Collapse
Affiliation(s)
- Nur Tasnim Adlina Mazdi
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Nur Aisyah Mior Mat Zin
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Muhammad Aiman Khairul Hisham
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Shaiqah Mohd Rus
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, Malaysia
| | - Muhammad Salahuddin Haris
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- De partment of Pharmacy, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | | |
Collapse
|
3
|
Leung CK, Kottlan A, Heimsten R, Lewander Xu M, Zeitler JA. Impact of pharmaceutical tablet properties on optical porosimetry performance. Int J Pharm 2025; 676:125567. [PMID: 40246035 DOI: 10.1016/j.ijpharm.2025.125567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
The porosity of a pharmaceutical tablet influences liquid transport, disintegration and dissolution, rendering its monitoring and control crucial for quality by design. Optical porosimetry, a non-destructive process analytical technology (PAT), combines gas in scattering media absorption spectroscopy (GASMAS), photon time-of-flight spectroscopy (PToFS), tablet thickness measurement and tablet solid refractive index. This article presents a short tutorial on optical porosimetry theory and a performance study of optical porosimetry on pharmaceutical tablets via design of experiments. The investigated tablets share the same formulation, solid refractive index and diameter but differ in porosity (∼0.05 and 0.25) and thickness (1, 3 and 5mm). Critical user-controllable factors impacting the measurement accuracy and precision of the investigated tablets were identified. These are the manufactured tablet thickness, porosity, the user-estimated solid refractive index, and the number of optical porosimetry measurements in decreasing order of significance. A comparison between tablet porosity measured by optical porosimetry and by nominal measurements revealed that optical porosimetry tends to overestimate the porosity of the investigated tablets, particularly at low porosities, and has greater variability. While optical porosimetry poses advantages as a non-destructive and rapid PAT for real-time release testing, users need to be aware of the appropriate range of tablet thickness, porosity and the solid refractive index estimate.
Collapse
Affiliation(s)
- Chi Ki Leung
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, United Kingdom
| | - Andreas Kottlan
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria
| | | | | | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, United Kingdom.
| |
Collapse
|
4
|
Tran AT, Klinken-Uth S. Influences of variations of the amount of compressed material on compressibility, tabletability and compactability. J Pharm Sci 2025; 114:103831. [PMID: 40354898 DOI: 10.1016/j.xphs.2025.103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 05/09/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Compression analysis is essential for the investigation of materials and processes in the manufacturing of pharmaceutical tablets. In the past, the influence of various process parameters on compression analysis has been investigated. The strength of these influences can significantly depend on the properties of the compressed material. One example is the effect of tablet compression speed on tabletability. The impact of tablet geometry has also been studied. However, what is still missing in the literature is the investigation of the influence of the quantity of the compressed material. This publication provides a starting point for understanding the effect of material quantity in compression analysis. In addition to the material quantity, two different tablet diameters were also investigated. The study demonstrates that the extent to which material quantity has an influence on compression analysis highly depends on the material properties. It clearly shows that the tabletability and even the compactability of materials can vary significantly depending on the amount of material compressed.
Collapse
Affiliation(s)
- Anh Tuan Tran
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Science, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stefan Klinken-Uth
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Science, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
5
|
Lee J, Goodwin DJ, Dhenge RM, Nassar J, Zeitler JA. Terahertz-based analysis of immediate-release tablet hydration and disintegration: Effects of croscarmellose sodium and magnesium stearate. Int J Pharm 2025; 675:125478. [PMID: 40127746 DOI: 10.1016/j.ijpharm.2025.125478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025]
Abstract
This study investigated the influence of croscarmellose sodium (CCS) and magnesium stearate (MgSt) on tablet hardness, hydration time, and disintegration time to understand their roles and interactions at different stages of the disintegration process using terahertz pulsed imaging technique. Six powder blends were formulated by combining three CCS concentrations (3%, 4%, and 5%w/w) and two MgSt concentrations (0.5% and 1%w/w) and were direct-compressed. A high-power terahertz time-domain spectrometer with an open-immersion cell was used to track the advancing liquid front in the tablet matrix during disintegration. The obtained liquid transport profiles were analysed alongside tensile strength and disintegration time to explore how CCS and MgSt affect the tablet matrix. The results highlighted (1) the critical role of the liquid penetration process in understanding the disintegration mechanisms, and (2) the contradictory effects of CCS and MgSt, as both excipients exhibited factors that accelerated and retarded disintegration at different stages. These findings lay the groundwork for optimising immediate-release tablet formulations and developing predictive disintegration models.
Collapse
Affiliation(s)
- Jongmin Lee
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | | | | | - Joelle Nassar
- GSK Ware Research and Development, Park Road, Ware SG12 0DP, UK
| | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| |
Collapse
|
6
|
Putra ON, Musfiroh I, Paramitasari D, Pudjianto K, Ikram EHK, Chaidir C, Muchtaridi M. Sago-Starch-Derived Sodium Starch Glycolate: An Effective Superdisintegrant to Enhance Formulation Performance. Polymers (Basel) 2025; 17:1208. [PMID: 40362992 PMCID: PMC12073232 DOI: 10.3390/polym17091208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
This study focused on optimizing sago-starch-derived sodium starch glycolate (SSG) as a superdisintegrant using a Response Surface Methodology (RSM). The aim was to enhance the formulation performance by achieving an optimal degree of substitution (DS) in the synthesis of SSG from sago starch and evaluating its performance in mefenamic acid tablet formulation. The SSG was synthesized using an organic solvent slurry method, which involves crosslinking starch with sodium trimetaphosphate (STMP) and substituting it with sodium monochloroacetate (SMCA). The reaction conditions, including the temperature, SMCA ratio, and reaction time, were optimized using the RSM. The optimal conditions were identified as a temperature range of 45-55 °C, an SMCA ratio of 0.75-1.5, and a reaction time of 120-240 min. The maximum predicted DS value was 0.24, with a validated DS value of 0.246 ± 0.021. The SSG-containing mefenamic acid formulation met USP standards and showed a superior disintegration time compared to the existing SSG. The optimized SSG derived from sago starch can be effectively used as a superdisintegrant in pharmaceutical formulations, offering a sustainable and economically viable alternative source of SSG. This contributes to the development of more effective drug delivery systems and promotes sustainable agriculture in Indonesia.
Collapse
Affiliation(s)
- Okta Nama Putra
- Doctoral Program of Pharmacy, Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (O.N.P.); (I.M.)
- Research Center for Agroindustry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Tangerang 15314, Indonesia; (D.P.); (K.P.)
| | - Ida Musfiroh
- Doctoral Program of Pharmacy, Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (O.N.P.); (I.M.)
| | - Derina Paramitasari
- Research Center for Agroindustry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Tangerang 15314, Indonesia; (D.P.); (K.P.)
| | - Karjawan Pudjianto
- Research Center for Agroindustry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Tangerang 15314, Indonesia; (D.P.); (K.P.)
| | - Emmy Hainida Khairul Ikram
- Centre for Dietetics Studies, and Integrated Nutrition Science and Therapy Research Group (INSPIRE), Faculty of Health Sciences, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia;
| | - Chaidir Chaidir
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency, Tangerang 15314, Indonesia;
| | - Muchtaridi Muchtaridi
- Doctoral Program of Pharmacy, Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (O.N.P.); (I.M.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jl. Soekarno KM-21, Jatinangor 45363, Indonesia
| |
Collapse
|
7
|
V A S, Nayak UY, Sathyanarayana MB, Chaudhari BB, Bhat K. Formulation Strategy of BCS-II Drugs by Coupling Mechanistic In-Vitro and Nonclinical In-Vivo Data with PBPK: Fundamentals of Absorption-Dissolution to Parameterization of Modelling and Simulation. AAPS PharmSciTech 2025; 26:106. [PMID: 40244539 DOI: 10.1208/s12249-025-03093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
BCS class II candidates pose challenges in drug development due to their low solubility and permeability. Researchers have explored various techniques; co-amorphous and solid dispersion are major approaches to enhance in-vitro drug solubility and dissolution. However, in-vivo oral bioavailability remains challenging. Physiologically based pharmacokinetic (PBPK) modeling with a detailed understanding of drug absorption, distribution, metabolism, and excretion (ADME) using a mechanistic approach is emerging. This review summarizes the fundamentals of the PBPK, dissolution-absorption models, parameterization of oral absorption for BCS class II drugs, and provides information about newly emerging artificial intelligence/machine learning (AI/ML) linked PBPK approaches with their advantages, disadvantages, challenges and areas of further exploration. Additionally, the fully integrated workflow for formulation design for investigational new drugs (INDs) and virtual bioequivalence for generic molecules falling under BCS-II are discussed.
Collapse
Affiliation(s)
- Shriya V A
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Muddukrishna Badamane Sathyanarayana
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Bhim Bahadur Chaudhari
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Krishnamurthy Bhat
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
8
|
Romański M, Staniszewska M, Myslitska D, Paszkowska J, Banach G, Polak S, Garbacz G, Danielak D. Gastric stress events impact the bioavailability of a poorly soluble weak base dabigatran from pellet-filled capsules: An outcome from pharmacokinetic simulations based on biorelevant dissolution testing, machine learning, and a novel timewise first-order dissolution model. Int J Pharm 2025; 674:125464. [PMID: 40086652 DOI: 10.1016/j.ijpharm.2025.125464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Current physiologically-based biopharmaceutics modeling (PBBM) neglects the effect of gastrointestinal stress events on the disintegration and dissolution of oral solid dosage forms. Biorelevant dissolution testing can simulate the behavior of drug products under physiological agitation but a workload limits variability examination. In this study, we overcame these deficiencies by inputting dissolution profiles generated by machine-learning (ML) into PBBM-based simulations. Our specific aim was to examine how the varied timing of intragastric stress and housekeeping wave (GET) and fasted stomach pH affect dabigatran exposure from the Pradaxa capsule. Twenty experimental dissolution profiles of dabigatran etexilate from the flow-through apparatus PhysioCell and 1,036 ML-derived profiles representing various gastric motility patterns were a basis for single-dose simulations. A novel timewise dissolution model, which estimates the first-order rate constants at consecutive two-point time intervals, provided an excellent fit to the highly irregular and variable dissolution curves (coefficient of determination ≥ 0.9835, median 0.9992). The time between the onset of dissolution (Tlag), either intragastric stress-related or spontaneous, and the housekeeping wave (GET) systematically impacted the bioavailability of dabigatran. Regardless of gastric emptying rate constant and pH, the dabigatran bioavailability was an increasing sigmoid function of the GET - Tlag difference, with the midpoint around 7 min and plateau of 7-8% after 20 min. The plasma concentrations and bioavailability of dabigatran simulated under varied gastric motility well matched clinical data reported for healthy subjects. We expect that the proposed approach will improve the prediction of the in vivo variability of oral formulations.
Collapse
Affiliation(s)
- Michał Romański
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka St. 60-806 Poznań, Poland.
| | | | | | | | | | - Sebastian Polak
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, 9 Medyczna St. 30-688 Cracow, Poland
| | | | | |
Collapse
|
9
|
Wang J, Liu S, Lin M, Chen P, Yi H, Lv Z, Liu Y. Fabricating Oral Disintegrating Tablets Without Disintegrant Using Powder-Based 3D Printing. Pharmaceutics 2025; 17:435. [PMID: 40284430 PMCID: PMC12030749 DOI: 10.3390/pharmaceutics17040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Powder-based 3D printing, an advanced additive manufacturing technique, can produce oral disintegrating tablets (ODTs) without disintegrants, creating larger-pored tablets via layer-by-layer powder stacking for better water absorption than traditional tablets. Methods: This study focused on using powder-based 3D printing to fabricate clozapine-based ODTs. Through central composite design (CCD), the formulation of ODTs was optimized for rapid disintegration. Analytical techniques such as X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Differential Scanning Calorimetry (DSC) were employed to investigate the compatibility between clozapine and excipients. Results: The optimized 3D-printed ODTs exhibited a remarkably short disintegration time of (9.9 ± 0.7) s compared to (40) s for compressed tablets. The contact angle of the 3D-printed ODTs was measured as 60.48 ± 0.36°, indicating favorable wettability for disintegration. Scanning Electron Microscopy (SEM) analysis revealed a porous structure in 3D-printed tablets, with a porosity of 48.97% (over two times higher than that of compressed tablets as determined by mercury injection meter). Conclusions: Collectively, this finding demonstrates the feasibility of fabricating highly hydrophilic and non-distensible ODTs without disintegrants using powder-based 3D printing.
Collapse
Affiliation(s)
- Jiu Wang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.W.); (M.L.); (H.Y.)
- Guangdong High Education Institutes Engineering Research Center of Modified-Released Pharmaceutical Products, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shunfang Liu
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.W.); (M.L.); (H.Y.)
- Guangdong High Education Institutes Engineering Research Center of Modified-Released Pharmaceutical Products, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Minmei Lin
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.W.); (M.L.); (H.Y.)
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Jieyang People’s Hospital, Jieyang 522000, China
| | - Peihong Chen
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.W.); (M.L.); (H.Y.)
- Guangdong High Education Institutes Engineering Research Center of Modified-Released Pharmaceutical Products, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huagui Yi
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.W.); (M.L.); (H.Y.)
- Guangdong High Education Institutes Engineering Research Center of Modified-Released Pharmaceutical Products, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhufen Lv
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.W.); (M.L.); (H.Y.)
- Guangdong High Education Institutes Engineering Research Center of Modified-Released Pharmaceutical Products, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuanfen Liu
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.W.); (M.L.); (H.Y.)
- Department of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, China
| |
Collapse
|
10
|
Titova SA, Kruglova MP, Stupin VA, Manturova NE, Achar RR, Deshpande G, Parfenov VA, Silina EV. Excipients for Cerium Dioxide Nanoparticle Stabilization in the Perspective of Biomedical Applications. Molecules 2025; 30:1210. [PMID: 40141988 PMCID: PMC11944302 DOI: 10.3390/molecules30061210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Rare earth metal nanoparticles, some of which are already widely used in medicine, are of growing interest in the modern scientific community. One of the promising rare earth metals for biomedical applications is cerium, specifically its oxide form, which is characterized by a higher level of stability and safety. According to a number of studies, cerium dioxide has a wide range of biological effects (regenerative, antimicrobial, antioxidant, antitumor), which justifies the interest of its potential application in medicine. However, these effects and their intensity vary significantly across a number of studies. Since cerium dioxide was used in these studies, it can be assumed that not only is the chemical formula important, but also the physicochemical parameters of the nanoparticles obtained, and consequently the methods of their synthesis and modification with the use of excipients. In this review, we considered the possibilities of using a number of excipients (polyacrylate, polyvinylpyrrolidone, dextran, hyaluronic acid, chitosan, polycarboxylic acids, lecithin, phosphatidylcholine) in the context of preserving the biological effects of cerium dioxide and its physicochemical properties, as well as the degree of study of these combinations from the point of view of the prospect of creating drugs based on it for biomedical applications.
Collapse
Affiliation(s)
- Svetlana A. Titova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| | - Maria P. Kruglova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| | - Victor A. Stupin
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; (V.A.S.); (N.E.M.)
| | - Natalia E. Manturova
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; (V.A.S.); (N.E.M.)
| | - Raghu Ram Achar
- JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Gouri Deshpande
- Regional Institute of Education (RIE NCERT), Mysuru 570006, Karnataka, India;
| | - Vladimir A. Parfenov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| | - Ekaterina V. Silina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| |
Collapse
|
11
|
Martínez E, Gamboa J, Finkielstein CV, Cañas AI, Osorio MA, Vélez Y, Llinas N, Castro CI. Oral dosage forms for drug delivery to the colon: an existing gap between research and commercial applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:24. [PMID: 40042550 PMCID: PMC11882727 DOI: 10.1007/s10856-025-06868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
Oral drug administration is the preferred route for pharmaceuticals, accounting for ~90% of the global pharmaceutical market due to its convenience and cost-effectiveness. This study provides a comprehensive scientific and technological analysis of the latest advances in oral dosage forms for colon-targeted drug delivery. Utilizing scientific and patent databases, along with a bibliometric analysis and bibliographical review, we compared the oral dosage forms (technology) with the specific application of the technology (colon delivery) using four search equations. Our findings reveal a gap in the publications and inventions associated with oral dosage forms for colon release compared to oral dosage forms for general applications. While tablets and capsules were found the most used dosage forms, other platforms such as nanoparticles, microparticles, and emulsions have been also explored. Enteric coatings are the most frequently applied excipient to prevent the early drug release in the stomach with pH-triggered systems being the predominant release mechanism. In summary, this review provides a comprehensive analysis of the last advancements and high-impact resources in the development of oral dosage forms for colon-targeted drug delivery, providing insights into the technological maturity of these approaches.
Collapse
Affiliation(s)
- Estefanía Martínez
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Jennifer Gamboa
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Blacksburg, VA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Ana Isabel Cañas
- Micología médica y experimental, Corporación para Investigaciones Biológicas, Medellín, Colombia
| | - Marlon Andrés Osorio
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
- Grupo de Investigación Biología de Sistemas, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Yesid Vélez
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Néstor Llinas
- Departamento de Oncología Clínica, Clínica Vida, Fundación Colombiana de Cancerología, Medellín, Colombia
| | - Cristina Isabel Castro
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia.
| |
Collapse
|
12
|
Fouad SA, Abdelaziz N, Teaima MH, El-Nabarawi M, Taha AA, Abdelmonem R, El-Refai K. Engineering orally disintegrating tablets for buccal delivery of cilostazol with enhanced dissolution and bioavailability: a novel dual porogenic approach, in vitro characterization, and in vivo evaluation in rats. Pharm Dev Technol 2025; 30:280-294. [PMID: 40007241 DOI: 10.1080/10837450.2025.2472887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 02/27/2025]
Abstract
Cilostazol (CTZ), is a BCS class II drug with limited bioavailability. In the current study, orally disintegrating tablets (ODTs) for buccal delivery of CTZ were prepared by two methods; lyophilization (Lyo-ODTs) and direct compression (DC-ODTs). All CTZ-ODTs were evaluated for in vitro disintegration time (DT) and wetting time (WT) tests, in vitro dissolution. Scanning electron microscopic (SEM) analysis was performed for the selected Lyo-ODT-7 and DC-ODT-2. Lyo-ODT-7 composed of aerosil® 200 and PEG 4000 acquired the shortest DT (13.00 ± 0.14) and WT (33.00 ± 0.26) among the prepared ODTs. It also showed a 2.3 fold significantly enhanced dissolution profile at an early time point (5 min) that was maintained till 1 h, in simulated saliva fluid (pH ∼ 6.8), compared to Pletaal® IR tablets (p < 0.0001). SEM analysis revealed the remarkable porosity of Lyo-ODT-7, confirming its successfully enhanced disintegration and dissolution. Lyo-ODT-7 showed significantly enhanced pharmacokinetic parameters with a 3.5 and 3.6 fold increase in Cmax (p = 0.0493) and AUC0-24 (p = 0.0470), respectively compared to Pletaal® IR tablets. The relative bioavailability of CTZ after buccal administration of Lyo-ODT-7 to rats was 364.45%, compared to the market oral IR tablets; Pletaal®. The enhanced bioavailability imposes the successful oromucosal absorption of CTZ via buccal delivery of Lyo-ODT-7. Our study demonstrated that Lyo-ODT-7 could represent a favorable buccal dosage form for patients with intermittent claudication, suffering from dysphagia. It can also be used in cases of acute cerebral or myocardial infarction due to its significantly enhanced rate and extent of absorption. It is considered a promising approach for buccal delivery of BCS class II active pharmaceutical ingredients (APIs) suffering from solubility problems and hepatic first pass effect.
Collapse
Affiliation(s)
- Shahinaze A Fouad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Nada Abdelaziz
- National Cancer Institute - Breast Cancer Hospital, Cairo, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amal Anwar Taha
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Khaled El-Refai
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| |
Collapse
|
13
|
Tanyeri A, Akbulut R, Nevai EH, Yürekli Y. Correlation of 3T Diffusion-weighted MRI and 18F-FDG-PET/CT in Liver Metastases: SUV Versus ADC. Mol Imaging Radionucl Ther 2025; 34:48-54. [PMID: 39918041 PMCID: PMC11827527 DOI: 10.4274/mirt.galenos.2024.37431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/13/2024] [Indexed: 02/16/2025] Open
Abstract
Objectives Positron emission tomography/computed tomography (PET/CT) and magnetic resonance imaging (MRI) are widely used in the diagnosis and follow-up of liver metastases. Both modalities provide anatomical and functional information and have advantages and disadvantages. The objective of this study was to investigate the correlation between apparent diffusion coefficient (ADC) and standardized uptake value (SUV) values in metastatic liver lesions. Methods Abdominal magnetic resonance (MR) scans performed between April 2021 and 2024 using the 3T MR scanner were retrospectively evaluated. Thirty-three patients with liver metastases, less than one month between magnetic resonance imaging (MRI) and PET/CT, no treatment during this period, and lesions larger than 1 cm were included in the study. In each MRI scan, an index lesion was selected for ADC measurement. The radiologist and nuclear medicine specialist measured the same index lesion without the patient being informed of the results. Results The mean age of the 33 patients was 59±12 years, with 17 (51%) men and 16 (49%) women. The mean size of the index lesions was 27±9 mm. In MRI, mean ADCmin: (0.54±0.2) ×10-3mm2/s; ADCmean: (1.02±0.2) ×10-3mm2/s; ADCmax: (1.48±0.44) ×10-3mm2/s; and region of interest area was calculated as 6±4.6 cm2. In PET/CT, mean SUVmean: 5.8±3.3; SUVpeak: 6.8±4.3; SUVmax: 10.7±5.6; and metabolic tumor volume: 12.1 (7.4-20.7) cm3. No statistically significant correlation was found between ADC and SUV values. Conclusion There was no correlation between ADC and SUV values in liver metastases. Prospective studies with a large patient group are needed.
Collapse
Affiliation(s)
- Ahmet Tanyeri
- Aydın Adnan Menderes University, Faculty of Medicine, Department of Radiology, Aydın, Türkiye
| | - Rıdvan Akbulut
- Aydın Adnan Menderes University, Faculty of Medicine, Department of Radiology, Aydın, Türkiye
| | - Emir Hüseyin Nevai
- Aydın Adnan Menderes University, Faculty of Medicine, Department of Radiology, Aydın, Türkiye
| | - Yakup Yürekli
- Aydın Adnan Menderes University Faculty of Medicine, Department of Nuclear Medicine, Aydın, Türkiye
| |
Collapse
|
14
|
Yavari A, Sadjady SK, Moniri E, Nokhodchi A, Haghighat Talab F. Investigating the Influence of Crospovidone's Manufacturer Variability on Dissolution Profiles of Hydrochlorothiazide Tablets. AAPS PharmSciTech 2025; 26:52. [PMID: 39904967 DOI: 10.1208/s12249-025-03039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
This study examines the influence of crospovidone (CP) manufacturer variability on the dissolution profiles of hydrochlorothiazide (HCTZ) tablets. Four CP batches from different manufacturers were characterized using pharmacopeial and physicochemical tests, including infrared absorption, loss on drying, and scanning electron microscopy (SEM). Significant differences were observed in the particle size distribution, wetting time, and water absorption capacities of the CP batches. Tablets were formulated using both direct compression and wet granulation methods. For the latter, the superdisintegrant was either added to the binder solution or incorporated intra- or extra-granularly. Disintegration and dissolution tests revealed that both CP concentration and the method of incorporation significantly affected tablet performance. Poly Kovidone and Max-Povidon exhibited superior performance at lower concentrations, while differences between brands became less pronounced at higher concentrations. The extra-granular method notably enhanced drug release profiles. Statistical analyses, including f2 similarity factors and MANOVA with Principal Component Analysis (PCA), highlighted significant differences in dissolution behavior among the formulations. These findings emphasize the importance of controlling excipient variability to ensure consistent product performance. The study concludes that a 2% CP concentration is optimal for mitigating source variability and that the extra-granular addition of CP in wet granulation is recommended for enhancing its functional properties.
Collapse
Affiliation(s)
- Arash Yavari
- Pharmaceutical Engineering Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Seyed Kazem Sadjady
- School of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Elham Moniri
- Faculty of Basic Sciences, Department of Chemistry, Islamic Azad University, Varamin-Pishva Branch, Tehran, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| | - Fatemeh Haghighat Talab
- School of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Matsunami K, Ryckaert A, Vanhoorne V, Kumar A. Mathematical models of dissolution testing: Challenges and opportunities toward real-time release testing. Int J Pharm 2025; 669:125002. [PMID: 39622305 DOI: 10.1016/j.ijpharm.2024.125002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Real-time release testing (RTRt) of tablet dissolution can significantly improve manufacturing efficiency along with the adoption of continuous manufacturing in the pharmaceutical industry. To assure product quality without destructive testing, models for RTRt should be sufficiently reliable and robust. Whereas mechanistic models have merits of broader applicability and interpretability, data-driven models have been common approaches due to computational speed. This paper discusses challenges and opportunities in the application of mechanistic models for dissolution testing to enable RTRt of solid dosage. After a comprehensive literature review on mechanistic dissolution models and RTRt, the potential benefits and challenges of mechanistic models are presented. Compared to data-driven models, mechanistic models require less experimental data that can reduce time and cost for RTRt development. However, to enable the implementation of mechanistic models in RTRt, computational time should be short either by using a simple mechanistic model or by applying surrogate models.
Collapse
Affiliation(s)
- Kensaku Matsunami
- Pharmaceutical Engineering Research Group (PharmaEng), Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Oost-Vlaanderen, Belgium.
| | - Alexander Ryckaert
- Pharmaceutical Engineering Research Group (PharmaEng), Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Oost-Vlaanderen, Belgium
| | - Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Oost-Vlaanderen, Belgium
| | - Ashish Kumar
- Pharmaceutical Engineering Research Group (PharmaEng), Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Oost-Vlaanderen, Belgium
| |
Collapse
|
16
|
Rebollo R, Niu Z, Blaabjerg L, La Zara D, Juel T, Pedersen HD, Andersson V, Benova M, Krogh C, Pons R, Holm TP, Wahlund PO, Fan L, Wang Z, Kennedy A, Kuhre RE, Christophersen P, Bardonnet PL, Sassene PJ. Salcaprozate-based ionic liquids for GLP-1 gastric delivery: A mechanistic understanding of in vivo performance. J Control Release 2025; 377:267-276. [PMID: 39566853 DOI: 10.1016/j.jconrel.2024.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/29/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Oral delivery of peptides requires formulations with high concentrations of permeation enhancer (PE) to promote absorption, and often necessitates fasting time between dosing and food ingestion. Improved formulations promoting a more rapid absorption would increase convenience of use but requires a faster onset of action. We have developed a salcaprozate-based ionic liquid (IL) formulation, namely choline salcaprozate (CHONAC), for oral delivery of a glucagon-like peptide-1 (GLP-1) analogue via gastric absorption. In vitro studies confirmed the higher amount of PE accommodated in the same volume of dosage form as well as faster release of the active pharmaceutical ingredient (API) and PE compared to the tablet reference. Storage stability of the CHONAC formulation was demonstrated for up to 3 weeks at 4 °C. The peptide absorption efficacy of the IL formulation was first evaluated in vivo in rats and anesthetized dogs, showing a faster absorption compared to the reference formulations. In awake dogs, while the CHONAC formulation still enabled earlier API absorption, its overall exposure was inferior to the tablet reference. This was attributed mostly to the gastric physiology, causing formulation dilution in the presence of additional fluid as well as fast transit of liquids into the duodenum, where peptides liable to proteolytic degradation such as the one used in this study showed a negligible absorption, potentially also due to a lower permeation-enhancing capability of CHONAC in the duodenal region. Exploring these issues, an in vivo study in anesthetized dogs involving repeated dosing of a liquid salcaprozate-based formulation in the stomach revealed the potential to sustain peptide absorption throughout the dosing period with a constant absorption rate. In conclusion, combining the advantages of high PE amounts and fast onset of action provided by the IL formulation, and ensuring a prolonged interaction of peptide and PE at a relevant concentration with the stomach epithelium, are necessary to enhance oral peptide bioavailability via gastric delivery.
Collapse
Affiliation(s)
- René Rebollo
- Novo Nordisk A/S, Global Research Technologies, 2760 Måløv, Denmark.
| | - Zhigao Niu
- Novo Nordisk A/S, Global Research Technologies, 2760 Måløv, Denmark
| | - Lasse Blaabjerg
- Novo Nordisk A/S, Global Research Technologies, 2760 Måløv, Denmark
| | - Damiano La Zara
- Novo Nordisk A/S, Global Research Technologies, 2760 Måløv, Denmark
| | - Trine Juel
- Novo Nordisk A/S, Global Research Technologies, 2760 Måløv, Denmark
| | | | | | - Michaela Benova
- Novo Nordisk A/S, Global Research Technologies, 2760 Måløv, Denmark
| | - Camilla Krogh
- Novo Nordisk A/S, Global Research Technologies, 2760 Måløv, Denmark
| | - Raphaël Pons
- Novo Nordisk A/S, Global Research Technologies, 2760 Måløv, Denmark
| | | | - Per-Olof Wahlund
- Novo Nordisk A/S, Global Research Technologies, 2760 Måløv, Denmark
| | - Li Fan
- Novo Nordisk Research Centre China, Global Drug Discovery, Beijing, China
| | - Zhuoran Wang
- Novo Nordisk Research Centre China, Global Drug Discovery, Beijing, China
| | - Adam Kennedy
- Novo Nordisk Research Centre China, Global Drug Discovery, Beijing, China
| | | | | | | | | |
Collapse
|
17
|
Agrahari V, Peet MM, Chandra N, Ramalingam P, Gupta PK, Jonnalagadda S, Singh ON, McCormick TJ, Doncel GF, Clark MR. Formulation development of dual-compartment topical inserts combining tenofovir alafenamide and elvitegravir for flexible on-demand HIV prevention. J Control Release 2025; 377:842-854. [PMID: 39592025 DOI: 10.1016/j.jconrel.2024.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Pre-exposure prophylaxis (PrEP) has emerged as a prominent approach for the prevention of HIV infections. While the latest advances have resulted in effective oral and injectable product options, there are still gaps in on-demand, event-driven, topical products for HIV prevention that are safe and effective. Here we describe the formulation development of a dual-compartment topical insert containing tenofovir alafenamide fumarate (TAF) and elvitegravir (EVG) that may be administered when needed, vaginally or rectally, pre- or post-coitus, for flexible HIV prophylaxis. Specifically, we describe the lab-scale formulation development, preclinical mucosal safety and pharmacokinetics (PK) testing in rabbits, long-term stability, and scale-up clinical manufacturing of the lead TAF/EVG (20 mg/16 mg) inserts, which are currently in clinical stages of development. As designed, the inserts are small, discreet and portable, offering a number of promising attributes, such as simple and robust direct-compression manufacturing, fast initial disintegration/dissolution, and suitable mechanical strengths showing low hardness (<8 kg), friability (<1 %), and moisture content (<1 %). The inserts initiated disintegration quickly (∼ ≤ 15 min) providing full in vitro release (>90 %) of TAF and EVG within 60 min of dissolution. The lead insert was selected from formulation prototypes that met the evaluation criteria for manufacturability and characterization, along with a dose-ranging PK study in non-human primates. Successful technology transfer for clinical development of the lead TAF/EVG (20 mg/16 mg) insert was confirmed under current Good Manufacturing Practices (cGMP) conditions. Based on the 12 months (lab-scale) and 24 months (clinical batch) stability data, the TAF/EVG inserts are projected to have a long shelf life of over 2 years, if stored at or below 30 °C/65 % RH. Overall, these newly designed topical inserts have formulation properties that enable stable storage and fast release of the antiretroviral payload from a small, portable and discreet dosage form. They are safe and effective when applied vaginally or rectally, before or after coitus, providing the basis for a new method of flexible on-demand HIV prevention for cisgender and transgender women and men. The TAF/EVG inserts are currently the most clinically advanced on-demand topical product, as attested by their completed and ongoing clinical trials.
Collapse
Affiliation(s)
- Vivek Agrahari
- CONRAD, Eastern Virginia Medical School, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - M Melissa Peet
- CONRAD, Eastern Virginia Medical School, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Neelima Chandra
- CONRAD, Eastern Virginia Medical School, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Prakash Ramalingam
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, St. Joseph's University, Philadelphia, PA 19143, USA
| | - Pardeep K Gupta
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, St. Joseph's University, Philadelphia, PA 19143, USA
| | - Sriramakamal Jonnalagadda
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, St. Joseph's University, Philadelphia, PA 19143, USA
| | - Onkar N Singh
- CONRAD, Eastern Virginia Medical School, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Timothy J McCormick
- CONRAD, Eastern Virginia Medical School, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Gustavo F Doncel
- CONRAD, Eastern Virginia Medical School, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA.
| | - Meredith R Clark
- CONRAD, Eastern Virginia Medical School, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| |
Collapse
|
18
|
Fülöpová N, Brückner K, Muselík J, Pavloková S, Franc A. Development and evaluation of innovative enteric-coated capsules for colon-specific delivery of hydrophilic biomaterials. Int J Pharm 2025; 668:124991. [PMID: 39580105 DOI: 10.1016/j.ijpharm.2024.124991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/24/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
OBJECTIVE This research aims to design and evaluate an enteric-coated hard capsule dosage form for targeted delivery of biological materials, such as FMT (fecal microbiota transplant) or live microbes, to the distal parts of the GIT. The capsules are designed to be internally protected against destruction by hydrophilic filling during passage through the digestive tract. METHODS Hard gelatin capsules and DRcapsTMcapsules based on HPMC and gellan were used to encapsulate a hydrophilic body temperature-liquefying gelatin hydrogel with caffeine or insoluble iron oxide mixture. Different combinations of polymers were tested for the internal (ethylcellulose, Eudragit® E, and polyvinyl acetate) and external (Eudragit® S, Acryl-EZE®, and cellacefate) coating. The external protects against the acidic gastric environment, while the internal protects against the liquid hydrophilic filling during passage. Coated capsules were evaluated using standard disintegration and modified dissolution methods for delayed-release dosage forms. RESULTS Combining suitable internal (ethylcellulose 1.0 %) and external (Eudragit® S 20.0 %) coating of DRcapsTM capsules with the wiping and immersion method achieved colonic release times. While most coated capsules met the pharmaceutical requirements for delayed release, one combination stood out. Colonic times were indicated by the dissolution of soluble caffeine (during 120-720 min) measured by the dissolution method, and capsule rupture was indicated by the release of insoluble iron oxide (after 480 min) measured by the disintegration method. This promising result demonstrates the composition's suitability and potential to protect the content until it's released, inspiring hope for the future of colon-targeted delivery systems and its potential for the pharmaceutical and biomedical fields. CONCLUSION Innovative and easy capsule coatings offer significant potential for targeted drugs, especially FMT water suspension, to the GIT, preferably the colon. The administration method is robust and not considerably affected by the quantity of internal or external coatings. It can be performed in regular laboratories without specialized individual and personalized treatment equipment, making it a practical and feasible method for drug delivery.
Collapse
Affiliation(s)
- Nicole Fülöpová
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno 612 00, Czech Republic
| | - Kateřina Brückner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno 612 00, Czech Republic
| | - Jan Muselík
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno 612 00, Czech Republic
| | - Sylvie Pavloková
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno 612 00, Czech Republic.
| | - Aleš Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno 612 00, Czech Republic
| |
Collapse
|
19
|
Ram Munnangi S, Narala N, Lakkala P, Kumar Vemula S, Narala S, Johnson L, Karry K, Repka M. Optimization of a Twin screw melt granulation process for fixed dose combination immediate release Tablets: Differential amorphization of one drug and crystalline continuance in the other. Int J Pharm 2024; 665:124717. [PMID: 39284422 DOI: 10.1016/j.ijpharm.2024.124717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
Interest in Twin Screw Melt Granulation (TSMG) processes is rapidly increasing, along with the search for suitable excipients. This study aims to optimize the TSMG process for immediate-release tablets containing two different drugs. The hypothesis is that one poorly water-soluble drug requires amorphous conversion for improved dissolution, while the other water-soluble drug, with a higher melting point (Tm), remains more stable in its crystalline form. Ibuprofen (IBU) and Acetaminophen (APAP) were chosen as the model drug combination to test this hypothesis. Various diluents, binders, and disintegrating agents were assessed for their impact on processability, crystallinity, disintegration, and dissolution during development. The temperatures used during processing were below the Tm of all components, except for IBU. Melted IBU acted as a granulating aid in addition to the binders in the formulation, facilitating granule formation. Physicochemical analyses by Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD) confirmed the complete conversion of IBU into an amorphous state and the preserved crystalline nature of APAP. Saturation solubility studies showed an improvement in IBU's solubility by ∼ 32-fold in 0.1 N HCl. Poor tablet disintegration performance led to the addition of disintegrating agents, where osmotic agents (sorbitol and NaCl) were found to significantly enhance disintegration compared to super disintegrants. The optimized formulation showed an enhanced IBU release (∼20 %) compared to the physical mixture (∼12.5) in 0.1 N HCl dissolution studies.
Collapse
Affiliation(s)
- Siva Ram Munnangi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677; Pii Centre for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677
| | - Preethi Lakkala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677; Pii Centre for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA
| | | | - Krizia Karry
- BASF Corporation, Pharma Solutions, Tarrytown, NY 10591
| | - Michael Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677; Pii Centre for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
20
|
Suksaeree J, Wunnakup T, Chankana N, Charoenchai L, Monton C. Formulation Development of Directly Compressible Tablets Incorporating Trisamo Extract With Synergistic Antioxidant Activity. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:8920060. [PMID: 39421547 PMCID: PMC11483649 DOI: 10.1155/2024/8920060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024]
Abstract
This work investigates the synergistic antioxidant activity of the compositions of Trisamo (TSM) herbal formula containing the dried fruits of Terminalia chebula, Terminalia arjuna, and Terminalia bellirica. An augmented simplex lattice design was utilized to investigate the synergistic antioxidant activity, finding an equal mass ratio among the three herbal drugs to exhibit optimal synergistic antioxidant activity, with a combination index of less than 0.8. The optimal TSM extract was used to prepare directly compressible tablets employing a Box-Behnken design response surface methodology, optimizing compressional force (500, 1000, and 1500 psi), sodium starch glycolate (0%, 2%, and 4%), and magnesium stearate (0.5%, 1.0%, and 1.5%). Optimal parameters were a compressional force of 1000 psi, 2% sodium starch glycolate, and 0.5% magnesium stearate. The TSM extract tablet had a weight of 600.06 mg, a diameter of 12.78 mm, a thickness of 4.12 mm, a hardness of 6.85 kP, a friability of 0.30%, and a disintegration time of 1.81 min. Computer model predictions were verified with a low percentage error (≤ 10.00%). After 6 h, phenolic compounds were dissolved to an extent of approximately 40%-80%, including gallic acid (57.11%), corilagin (38.64%), chebulagic acid (58.49%), and chebulinic acid (81.44%). Stability data revealed that the phenolic compounds were retained for 3 months compared to the initial time point, with gallic acid at 81.43% and 100.27%, corilagin at 94.81% and 87.85%, chebulagic acid at 92.22% and 69.83%, and chebulinic acid at 107.00% and 85.54% at 30°C/75% RH and 45°C/75% RH, respectively. The summation of these four compounds did not change significantly when stored under either set of conditions. In summary, mixture design and response surface design were successfully utilized in the optimization of TSM extract tablets with synergistic antioxidant activity.
Collapse
Affiliation(s)
- Jirapornchai Suksaeree
- Department of Pharmaceutical Chemistry, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Thaniya Wunnakup
- Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Natawat Chankana
- Sun Herb Thai Chinese Manufacturing, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Laksana Charoenchai
- Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Chaowalit Monton
- Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| |
Collapse
|
21
|
Moreira FD, Reis CEG, Gallassi AD, Moreira DC, Welker AF. Suppression of the postprandial hyperglycemia in patients with type 2 diabetes by a raw medicinal herb powder is weakened when consumed in ordinary hard gelatin capsules: A randomized crossover clinical trial. PLoS One 2024; 19:e0311501. [PMID: 39383145 PMCID: PMC11463819 DOI: 10.1371/journal.pone.0311501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/16/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION Contradictory claims about the efficacy of several medicinal plants to promote glycemic control in patients with type 2 diabetes mellitus (T2DM) have been explained by divergences in the administration form and by extrapolation of data obtained from healthy individuals. It is not known whether the antidiabetic effects of traditional herbal medicines are influenced by gelatin capsules. This randomized crossover trial aimed to evaluate the acute effect of a single dose of raw cinnamon consumed orally either dissolved in water as a beverage or as ordinary hard gelatin capsules on postprandial hyperglycemia (>140 mg/dL; >7.8 mmol/L) in T2DM patients elicited by a nutritionally-balanced meal providing 50 g of complex carbohydrates. METHODS Fasting T2DM patients (n = 19) randomly ingested a standardized meal in five experimental sessions, one alone (Control) and the other after prior intake of 3 or 6 g of crude cinnamon in the form of hard gelatin capsules or powder dissolved in water. Blood glucose was measured at fasting and at 0.25, 0.5, 0.75, 1, 1.5 and 2 hours postprandially. After each breakfast, its palatability scores for visual appeal, smell and pleasantness of taste were assessed, as well as the taste intensity sweetness, saltiness, bitterness, sourness and creaminess. RESULTS The intake of raw cinnamon dissolved in water, independently of the dose, decreased the meal-induced large glucose spike (peak-rise of +87 mg/dL and Δ1-hour glycemia of +79 mg/dL) and the hyperglycemic blood glucose peak. When cinnamon was taken as capsules, these anti-hyperglycemic effects were lost or significantly diminished. Raw cinnamon intake did not change time-to-peak or the 2-h post-meal glycaemia, but flattened the glycemic curve (lower iAUC) without changing the shape that is typical of T2DM patients. CONCLUSIONS This cinnamon's antihyperglycemic action confirms its acarbose-like property to inhibit the activities of the carbohydrate-digesting enzymes α-amylases/α-glucosidases, which is in accordance with its exceptionally high content of raw insoluble fiber. The efficacy of using raw cinnamon as a diabetes treatment strategy seems to require its intake at a specific time before/concomitantly the main hyperglycemic daily meals. Trial registration: Registro Brasileiro de Ensaios Clínicos (ReBEC), number RBR-98tx28b.
Collapse
Affiliation(s)
- Fernanda Duarte Moreira
- Ministério da Saúde, Brasília, Brazil
- Secretaria de Estado de Saúde do Distrito Federal, Brasília, Brazil
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| | | | - Andrea Donatti Gallassi
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| | | | - Alexis Fonseca Welker
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
22
|
Wang R, Pi Z, Zhu X, Wang X, Zhang H, Ji F, Tang H. Nicorandil-based hydrogel promotes bone defect reconstruction by targeting Hmox1. Colloids Surf B Biointerfaces 2024; 245:114299. [PMID: 39378704 DOI: 10.1016/j.colsurfb.2024.114299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND The local use of drugs to promote bone healing is still difficult to apply clinically. We aimed to construct a nicorandil-based hydrogel to promote local bone healing by promoting angiogenesis and inhibiting osteoclastogenesis. RESULTS In this study, we constructed a nicorandil-based hydrogel and used it to intervene in bone repair during bone defect reconstruction. The results showed that the nicorandil-based hydrogel significantly inhibited osteoclast differentiation and promoted angiogenesis in vitro. Furthermore, bone formation was significantly promoted by the use of a nicorandil-based hydrogel. Mechanistically, Hmox1 was directly targeted by nicorandil, and overexpression of Hmox1 was found to promote bone defect reconstruction. CONCLUSION Our study provides a fresh perspective and a potential therapeutic approach for the use of local nicorandil-based hydrogels to improve bone defect reconstruction.
Collapse
Affiliation(s)
- Renkai Wang
- Department of Orthopaedics, Changhai Hospital, Naval Military Medical University, Shanghai, China; Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Hospital of Orthopaedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Zhilong Pi
- Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Hospital of Orthopaedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Xiang Zhu
- Department of Orthopaedics, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Xinzhe Wang
- Department of Orthopaedics, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Hao Zhang
- Department of Orthopaedics, Changhai Hospital, Naval Military Medical University, Shanghai, China.
| | - Fang Ji
- Department of Orthopedics, The Ninth People's Hospital, Shanghai Jiaotong University, No.639 Manufacturing Bureau Road, Huangpu District, Shanghai, China.
| | - Hao Tang
- Department of Orthopaedics, Changhai Hospital, Naval Military Medical University, Shanghai, China.
| |
Collapse
|
23
|
Falcioni S, Roht YL, Drazer G, Ippolito I. Swelling Kinetics of Hydrogel Beads in Aqueous Glycerin Solutions. J Phys Chem B 2024; 128:9598-9603. [PMID: 39303081 DOI: 10.1021/acs.jpcb.4c04248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
This study examines the swelling kinetics of polyacrylamide hydrogel beads in aqueous glycerin solutions of different concentrations. The total absorbed mass of the hydrogel beads remains nearly constant, independent of glycerin concentration, but the swelling process is markedly slower with increasing glycerin concentration in the aqueous solutions. Absorption capacity curves exhibit universal kinetics when time is rescaled using a characteristic time proportional to the viscosity of the solutions. Additionally, a novel visualization technique is employed to observe the core-shell structure of the hydrogel beads at early times in the swelling process. The evolution of the core-shell structure indicates a constant front velocity, which also reveals universal behavior with the same nondimensional time, suggesting a viscous dominated transport of the solution penetrating the beads.
Collapse
Affiliation(s)
- Sebastian Falcioni
- Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Medios Porosos, Paseo Colón 850, 1063 Buenos Aires, Argentina
| | - Yanina Lucrecia Roht
- Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Medios Porosos, Paseo Colón 850, 1063 Buenos Aires, Argentina
| | - Germán Drazer
- Mechanical and Aerospace Engineering Department, Rutgers, The State University of New Jersey, 08854, Piscataway, New Jersey, United States
| | - Irene Ippolito
- Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Medios Porosos, Paseo Colón 850, 1063 Buenos Aires, Argentina
| |
Collapse
|
24
|
Chaksmithanont P, Bangsitthideth K, Arunprasert K, Patrojanasophon P, Pornpitchanarong C. Statistical-Based Optimization of Modified Mangifera indica Fruit Starch as Substituent for Pharmaceutical Tableting Excipient. Polymers (Basel) 2024; 16:2653. [PMID: 39339116 PMCID: PMC11435786 DOI: 10.3390/polym16182653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to optimize modified starch from Mangifera indica (mango) fruit using acid hydrolysis and pre-gelatinization via computer-assisted techniques as a substituent for pharmaceutical tableting excipients. The hydrolysis and microwave-assisted pre-gelatinization time and temperature were optimized using a three-level factorial design. The modified starches were characterized for flowability, compressibility, and swelling properties. It was found that all parameters fit a quadratic model, which can be used to predict the properties of the modified starch. The optimized hydrolysis reaction was 3.8 h at 56.4 °C, while the pre-gelatinization reaction was 3 min at 150 °C. Structural changes were found, ascertaining that starch modification was successful. The optimized hydrolyzed starch showed superior properties in relative to unmodified M. indica fruit starch and comparable characteristics to conventional excipients. The optimized pre-gelatinized starch presented an excellent enhancement in the flow and compression properties, with %swelling greatly augmented 3.95-fold and 1.24-fold compared to unmodified starch and SSG, respectively. Additionally, the pre-gelatinized starch presented comparable binding effect, while the hydrolyzed powder had reduced binding capacity due to shorter chains. The findings revealed that the use of software-assisted design of experiment facilitated a data-driven approach to optimize the modifications. The optimized modified mango starch demonstrated potential as a multifunctional excipient, capable of functioning as binder, disintegrant, and diluent.
Collapse
Affiliation(s)
- Prin Chaksmithanont
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Ketsana Bangsitthideth
- Health Intervention and Technology Assessment Program (HITAP), Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Kwanputtha Arunprasert
- Health Intervention and Technology Assessment Program (HITAP), Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Prasopchai Patrojanasophon
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
25
|
Hadinugroho W, Tjahjono Y, Foe K, Esar SY, Caroline C, Jessica MA, Wijaya H. Characterization of 2-((4-(chloromethyl)benzoyl)oxy)benzoate acid for analgesic tablet dosage form formulation. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100200. [PMID: 39314230 PMCID: PMC11417518 DOI: 10.1016/j.crphar.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 08/01/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
The 2-((4-(chloromethyl)benzoyl)oxy)benzoic acid (4CH2Cl) is a potential analgesic compound derived from salicylic acid and 4-chloromethyl benzoyl chloride. Characterization required 4CH2Cl for the formulation of tablet dosage forms. This study aims investigate the effect of SSG, PVP-K30, and the combination of SSG*PVP K-30 on the formulation of 4CH2Cl tablets. Additionally, this study aimed to obtain the optimum 4CH2Cl tablet composition. The experiment followed the two-factor simplex lattice design and direct compression method. The analgesic activity of 4CH2Cl in the optimal tablet was investigated using the hot-plate methods. The ANOVA of linear models is acceptable and the polynomial coefficients of quadratic models are similar to those of linear models. The coefficient of the linear model shows that SSG and PVP K-30 increase the Carr index (16.26; 20.61), Hausner ratio (1.19; 1.29), hardness (4.19; 9.39), friability (0.48; 0.67), disintegration time (0.34; 7.50), and drug release (85.29; 97.69). The coefficient of the quadratic model shows that SSG*PVP K-30 increased the Carr index (1.90), Hausner ratio (0.04), hardness (1.88), friability (0.06), and drug release (4.56), and decreased disintegration time (-0.30). SSG and PVP K-30 increased Carr index, Hausner ratio, hardness, friability, disintegration time, and drug release. The combination of SSG*PVP K-30 has the same effect, except that the disintegration time decreased. The optimum tablet formula is 4CH2Cl (300 mg), Ne (75 mg), SSG (33.60 mg), PVP K-30 (22.40 mg), MCC (40 mg), and SDL (up to 800 mg). 4CH2Cl tablets can be a candidate and choice for new analgesic drugs in the future.
Collapse
Affiliation(s)
- Wuryanto Hadinugroho
- Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Surabaya, 60112, Indonesia
| | - Yudy Tjahjono
- Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Surabaya, 60112, Indonesia
| | - Kuncoro Foe
- Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Surabaya, 60112, Indonesia
| | - Senny Yesery Esar
- Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Surabaya, 60112, Indonesia
| | - Caroline Caroline
- Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Surabaya, 60112, Indonesia
| | | | - Hendy Wijaya
- Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Surabaya, 60112, Indonesia
| |
Collapse
|
26
|
Wolfgang M, Baniček T, Paudel A, Gruber-Woelfler H, Spoerk M, Kushwah V, Khinast JG. In-situ monitoring of in vitro drug release processes in tablets using optical coherence tomography. J Pharm Biomed Anal 2024; 247:116258. [PMID: 38830272 DOI: 10.1016/j.jpba.2024.116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Film-coated modified-release tablets are an important dosage form amenable to targeted, controlled, or delayed drug release in the specific region of the gastrointestinal (GI) tract. Depending on the film composition and interaction with the GI fluid, such coated products can modulate the local bioavailability, systemic absorption, protection as an enteric barrier, etc. Although the interaction of a dosage form with the surrounding dissolution medium is vital for the resulting release behavior, the underlying physicochemical phenomena at the film and core levels occurring during the drug release process have not yet been well described. In this work, we attempted to tackle this limitation by introducing a novel in vitro test based on optical coherence tomography (OCT) that allows an in-situ investigation of the sub-surface processes occurring during the drug release. Using a commercially available tablet based on osmotic-controlled release oral delivery systems (OROS), we demonstrated the performance of the presented prototype in terms of monitoring the membrane thickness and thickness variability, the surface roughness, the core swelling behavior, and the porosity of the core matrix throughout the in vitro drug release process from OROS. The superior spatial (micron scale) and temporal (less than 10 ms between the subsequent tomograms) resolution achieved in the proposed setup provides an improved understanding of the dynamics inside the microstructure at any given time during the dissolution procedure with the previously unattainable resolution, offering new opportunities for the design and testing of patient-centric dosage forms.
Collapse
Affiliation(s)
- Matthias Wolfgang
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria
| | - Tihana Baniček
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, Graz 8010, Austria
| | - Heidrun Gruber-Woelfler
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, Graz 8010, Austria
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, Graz 8010, Austria
| | - Varun Kushwah
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria.
| | - Johannes G Khinast
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, Graz 8010, Austria
| |
Collapse
|
27
|
de Freitas TR, Rodrigues RB, Marques LS, Dantas RV, Torres-Lozano KG, França TS, Lima LCO, Santos FW, Nicoleti ET, Chaves TF, Streit DP. Biodegradable capsules as a sustainable and accessible container for vitrification of gonadal tissue using the zebrafish animal model. Cryobiology 2024; 116:104944. [PMID: 39033953 DOI: 10.1016/j.cryobiol.2024.104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Cryopreservation of fish gonadal tissue is an important technique for preserving genetic variability. However, this technique involves the use of cryotubes, plastic containers with low degradability that are expensive and difficult to obtain in certain parts of the world. Therefore, this study aimed to evaluate the efficiency of gelatin and hypromellose hard capsules as a sustainable and accessible alternative container to the cryotube for vitrification of zebrafish (Danio rerio) gonadal tissue. The gonadal tissues (testicular or ovarian) were vitrified in cryotubes, hard-gelatin, and hard-hypromellose capsules. Gelatin capsules exhibited comparable efficacy to cryotubes in preserving spermatogonia viability (33.03 ± 10.03 % and 37.96 ± 8.35 %, respectively), whereas hypromellose capsules showed decreased viability (18.38 ± 2.09 %). Immature oocyte viability remained unaffected by the capsule materials, with no difference compared to cryotubes at all oocyte stages (Primary Growth: p < 0.0001; Cortical Alveolar: p < 0.0001; Vitellogenic: p < 0.0001). Mitochondrial activity and lipid peroxidation demonstrated no difference among cryotubes and capsules for both gonadal tissues. However, antioxidant activity was notably higher in gelatin capsules (Testes: 147.2 ± 32.32 μg; Ovary: 87.98 ± 10.91 μg) than in cryotubes (Testes: 81.04 ± 26.05 μg; Ovary: 54.35 ± 11.23 μg) and hypromellose capsules (Testes: 62.36 ± 17.10 μg; Ovary: 63.96 ± 7.51 μg), likely due to the inherent antioxidant properties of gelatin. The results obtained in this study demonstrate that the cryotube can be replaced by gelatin capsules for vitrification of both gonadal tissues of zebrafish, being a sustainable and accessible alternative as it is a low-cost and environmentally friendly container.
Collapse
Affiliation(s)
- Thaiza Rodrigues de Freitas
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Rômulo Batista Rodrigues
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Animal Science and Biological Sciences, Federal University of Santa Maria, Palmeira das Missões, RS, Brazil.
| | - Lis Santos Marques
- Veterinary Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Renata Villar Dantas
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | - Thales Souza França
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | - Francielli Weber Santos
- Reproduction Biotechnology Laboratory (Biotech), Federal University of Pampa, Uruguaiana, RS, Brazil.
| | - Eduardo Thomé Nicoleti
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Tales Fabris Chaves
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Danilo Pedro Streit
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Veterinary Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
28
|
Pepin X, Arora S, Borges L, Cano-Vega M, Carducci T, Chatterjee P, Chen G, Cristofoletti R, Dallmann A, Delvadia P, Dressman J, Fotaki N, Gray E, Heimbach T, Holte Ø, Kijima S, Kotzagiorgis E, Lennernäs H, Lindahl A, Loebenberg R, Mackie C, Malamatari M, McAllister M, Mitra A, Moody R, Mudie D, Musuamba Tshinanu F, Polli JE, Rege B, Ren X, Rullo G, Scherholz M, Song I, Stillhart C, Suarez-Sharp S, Tannergren C, Tsakalozou E, Veerasingham S, Wagner C, Seo P. Parameterization of Physiologically Based Biopharmaceutics Models: Workshop Summary Report. Mol Pharm 2024; 21:3697-3731. [PMID: 38946085 PMCID: PMC11304397 DOI: 10.1021/acs.molpharmaceut.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
This Article shares the proceedings from the August 29th, 2023 (day 1) workshop "Physiologically Based Biopharmaceutics Modeling (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives". The focus of the day was on model parametrization; regulatory authorities from Canada, the USA, Sweden, Belgium, and Norway presented their views on PBBM case studies submitted by industry members of the IQ consortium. The presentations shared key questions raised by regulators during the mock exercise, regarding the PBBM input parameters and their justification. These presentations also shed light on the regulatory assessment processes, content, and format requirements for future PBBM regulatory submissions. In addition, the day 1 breakout presentations and discussions gave the opportunity to share best practices around key questions faced by scientists when parametrizing PBBMs. Key questions included measurement and integration of drug substance solubility for crystalline vs amorphous drugs; impact of excipients on apparent drug solubility/supersaturation; modeling of acid-base reactions at the surface of the dissolving drug; choice of dissolution methods according to the formulation and drug properties with a view to predict the in vivo performance; mechanistic modeling of in vitro product dissolution data to predict in vivo dissolution for various patient populations/species; best practices for characterization of drug precipitation from simple or complex formulations and integration of the data in PBBM; incorporation of drug permeability into PBBM for various routes of uptake and prediction of permeability along the GI tract.
Collapse
Affiliation(s)
- Xavier Pepin
- Regulatory
Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, California 93534-7059, United States
| | - Sumit Arora
- Janssen
Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Luiza Borges
- ANVISA, SIA Trecho 5́, Guara, Brasília, Federal District 71205-050, Brazil
| | - Mario Cano-Vega
- Drug
Product Technologies, Amgen Inc., Thousand Oaks, California 91320-1799, United
States
| | - Tessa Carducci
- Analytical
Commercialization Technology, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Parnali Chatterjee
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Grace Chen
- Takeda
Development Center Americas Inc., 300 Shire Way, Lexington, Massachusetts 02421, United States
| | - Rodrigo Cristofoletti
- College
of Pharmacy, University of Florida, 6550 Sanger Rd., Orlando, Florida 32827, United States
| | - André Dallmann
- Bayer
HealthCare SAS, 59000 Lille, France, on behalf of Bayer
AG, Pharmacometrics/Modeling and Simulation, Systems Pharmacology
& Medicine, PBPK, Leverkusen, Germany
| | - Poonam Delvadia
- Office
of Translational Science, Office of Clinical Pharmacology (OCP), Center
for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United States
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main 60596, Germany
| | - Nikoletta Fotaki
- University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Elizabeth Gray
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Tycho Heimbach
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Øyvind Holte
- Norwegian Medical Products Agency, Oslo 0213, Norway
| | - Shinichi Kijima
- Office
of New Drug V, Pharmaceuticals and Medical
Devices Agency (PMDA), Tokyo 100-0013, Japan
| | - Evangelos Kotzagiorgis
- European Medicines Agency (EMA), Domenico Scarlattilaan 6, Amsterdam 1083 HS, The Netherlands
| | - Hans Lennernäs
- Translational
Drug Discovery and Development, Department of Pharmaceutical Bioscience, Uppsala University, Uppsala 751 05, Sweden
| | | | - Raimar Loebenberg
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmontonton T6G 2E1, Canada
| | - Claire Mackie
- Janssen
Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Maria Malamatari
- Medicines & Healthcare Products Regulatory Agency, 10 S Colonnade, London SW1W 9SZ, United Kingdom
| | - Mark McAllister
- Global
Biopharmaceutics, Drug Product Design, Pfizer, Sandwich CT13 9NJ, United Kingdom
| | - Amitava Mitra
- Clinical
Pharmacology, Kura Oncology Inc., Boston, Massachusetts 02210, United States
| | - Rebecca Moody
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Deanna Mudie
- Global
Research and Development, Small Molecules, Lonza, 63045 NE Corporate
Pl., Bend, Oregon 97701, United States
| | - Flora Musuamba Tshinanu
- Belgian Federal Agency for Medicines and Health Products, Galileelaan 5/03, Brussel 1210, Belgium
| | - James E. Polli
- School
of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Bhagwant Rege
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Xiaojun Ren
- PK
Sciences/Translational Medicine, BioMedical Research, Novartis, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Gregory Rullo
- Regulatory
CMC, AstraZeneca, 1 Medimmune Way, Gaithersburg, Maryland 20878, United States
| | - Megerle Scherholz
- Pharmaceutical
Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Ivy Song
- Takeda
Development Center Americas Inc., 300 Shire Way, Lexington, Massachusetts 02421, United States
| | - Cordula Stillhart
- Pharmaceutical
R&D, F. Hoffmann-La Roche Ltd., Basel 4070, Switzerland
| | - Sandra Suarez-Sharp
- Regulatory
Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, California 93534-7059, United States
| | - Christer Tannergren
- Biopharmaceutics
Science, New Modalities & Parenteral Product Development, Pharmaceutical
Technology & Development, Operations, AstraZeneca, Gothenburg 431 50, Sweden
| | - Eleftheria Tsakalozou
- Division
of Quantitative Methods and Modeling, Office of Research and Standards,
Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20903-1058, United
States
| | - Shereeni Veerasingham
- Pharmaceutical
Drugs Directorate (PDD), Health Canada, 1600 Scott St., Ottawa K1A 0K9, Canada
| | - Christian Wagner
- Global
Drug Product Development, Global CMC Development, the Healthcare Business of Merck KGaA, Darmstadt D-64293, Germany
| | - Paul Seo
- Office
of Translational Science, Office of Clinical Pharmacology (OCP), Center
for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United States
| |
Collapse
|
29
|
Seo S, Kim GY, Kim MH, Lee KW, Kim MJ, Chaudhary M, Bikram K, Kim T, Choi S, Yang H, Park JW, Kim DD, Kim KT. Nanocrystal Formulation to Enhance Oral Absorption of Silybin: Preparation, In Vitro Evaluations, and Pharmacokinetic Evaluations in Rats and Healthy Human Subjects. Pharmaceutics 2024; 16:1033. [PMID: 39204378 PMCID: PMC11359960 DOI: 10.3390/pharmaceutics16081033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Despite the various therapeutic benefits and high tolerance of orally administered silybin, poor water-solubility can be the main restrictive physicochemical feature, which results in low oral bioavailability in the absorption. A milk thistle nanocrystal formulation (HM40) was prepared using a modified wet-milling method. Comprehensive characterization was performed to determine the physical morphology, crystallinity, and physicochemical properties. The long-term stability was evaluated over 24 months. In vitro silybin release was assessed at pH 1.2 for 2 h, followed by pH 6.8 for 4 h. Finally, in vivo pharmacokinetic studies were conducted in rats and healthy human volunteers. HM40 exhibited a nanocrystal structure maintaining crystallinity and enhanced the solubility and dissolution of silybin compared to that of the raw material. The stability over 24 months revealed consistent surface morphology, particle size, silybin content, and solubility. In vitro release profiles indicated a significant increase in the silybin release from HM40. In vivo pharmacokinetic studies demonstrated that HM40 showed 2.61- and 1.51-fold higher oral bioavailability in rats and humans, respectively, than that of the reference capsule. HM40 formulation presents a stable and promising approach for the oral delivery of poorly water-soluble silybin, with the potential for use in pharmaceutical formulations containing milk thistle.
Collapse
Affiliation(s)
- SeungRee Seo
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea
| | - Gwan-Young Kim
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea
| | - Min-Hwan Kim
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea
| | | | - Min-Jae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Mansingh Chaudhary
- Department of Biomedicine, Health & Life Convergence Sciences (BK21 Four) and Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Khadka Bikram
- Department of Biomedicine, Health & Life Convergence Sciences (BK21 Four) and Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Taeheon Kim
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea
| | - Seungmok Choi
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea
| | - Heejin Yang
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea
| | - Joo Won Park
- Bio-Synectics, Inc., Seoul 08826, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences (BK21 Four) and Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| |
Collapse
|
30
|
Lee J, Goodwin DJ, Dhenge RM, Nassar J, Zeitler JA. Calorimetric investigation on heat release during the disintegration process of pharmaceutical tablets. Int J Pharm 2024; 660:124315. [PMID: 38852747 DOI: 10.1016/j.ijpharm.2024.124315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
The compendial USP〈701〉 disintegration test method offers a crucial pass/fail assessment for immediate release tablet disintegration. However, its single end-point approach provides limited insight into underlying mechanisms. This study introduces a novel calorimetric approach, aimed at providing comprehensive process profiles beyond binary outcomes. We developed a novel disintegration reaction calorimeter to monitor the heat release throughout the disintegration process and successfully obtained enthalpy change profiles of placebo tablets with various porosities. The formulation comprised microcrystalline cellulose (MCC), anhydrous lactose, croscarmellose sodium (CCS), and magnesium stearate (MgSt). An abrupt temperature rise was observed after introducing the disintegration medium to tablets, and the relationship between the heat rise time and the tablet's porosity was investigated. The calorimeter's sensitivity was sufficient to discern distinct heat changes among individual tablets, and the analysis revealed a direct correlation between the two. Higher porosity corresponded to shorter heat rise time, indicating faster disintegration rates. Additionally, the analysis identified a concurrent endothermic process alongside the anticipated exothermic phenomenon, potentially associated with the dissolution of anhydrous lactose. Since lactose is the only soluble excipient within the blend composition, the endothermic process can be attributed to the absorption of heat as lactose molecules dissolve in water. The findings from this study underscore the potential of utilising calorimetric methods to quantify the wettability of complex compounds and, ultimately, optimise tablet formulations.
Collapse
Affiliation(s)
- Jongmin Lee
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | | | | | - Joelle Nassar
- GSK Ware Research and Development, Park Road, Ware SG12 0DP, UK
| | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| |
Collapse
|
31
|
Salish K, Thool P, Qin Y, Yawman PD, Zhang S, Mao C. A two-phase flow model simulating water penetration into pharmaceutical tablets. Int J Pharm 2024; 660:124383. [PMID: 38925240 DOI: 10.1016/j.ijpharm.2024.124383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
The purpose of the study is introduce a two-phase flow model to simulate water penetration into pharmaceutical tablets. This model was built by integrating Darcy's law with the continuity principle, on the premise that water penetration was driven by capillary actions. Notably, this model concerned both the ingress of water (wetting phase) and simultaneous displacement of air (non-wetting phase). Due to the interference of the two fluids, the relative permeability and capillary pressure vary during water penetration. Evolution of these parameters was incorporated in the model. Calibration of the model by water penetration experiments of the microcrystalline cellulose (MCC) tablet yielded an average pore radius of 42 nm. This derived result was corroborated by FIB-SEM analysis revealing the presence of extensive microporosity within MCC particles with an average radius of ∼30 nm. Further validation was achieved through close resemblance between the simulated and experimental water penetration profiles of MCC tablets possessing different porosities. Overall, this study underscored the advantage of the two-phase flow model over single-phase flow models, by capturing the dependence of permeability and capillary pressure on water saturation. Therefore it holds promise for an enhanced description of water penetration into tablets.
Collapse
Affiliation(s)
- Karthik Salish
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, United States
| | - Prajwal Thool
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, United States
| | - Yuri Qin
- DigiM Solution LLC., 500 West Cummings Park, Suite 3650, Woburn, MA 01801, United States
| | - Phillip D Yawman
- DigiM Solution LLC., 500 West Cummings Park, Suite 3650, Woburn, MA 01801, United States
| | - Shawn Zhang
- DigiM Solution LLC., 500 West Cummings Park, Suite 3650, Woburn, MA 01801, United States
| | - Chen Mao
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, United States.
| |
Collapse
|
32
|
Perera V, Abelian G, Luettgen J, Aronson R, Li D, Wang Z, Zhang L, Lubin S, Merali S, Murthy B. Safety, tolerability, pharmacokinetics and pharmacodynamics of milvexian with aspirin and/or clopidogrel in healthy participants. Sci Rep 2024; 14:16591. [PMID: 39025971 PMCID: PMC11258331 DOI: 10.1038/s41598-024-67182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Milvexian, an oral activated Factor XI (FXIa) inhibitor, is in clinical studies where it may be combined with antiplatelet agents, including aspirin and/or clopidogrel, to prevent thromboembolic diseases. This phase I trial assessed safety, pharmacokinetics, and pharmacodynamics of milvexian coadministration with aspirin and/or clopidogrel in healthy participants through 3 drug-drug interaction studies using a 3-period, 3-treatment, crossover design. A total of 113 participants were randomized to receive milvexian (200 mg; twice daily for 5 days) or matched placebo coadministered with once-daily aspirin (325 mg for 5 days) and/or clopidogrel (Day 1: 300 mg; Days 2-5: 75 mg). Milvexian was safe and well tolerated, with and without aspirin and/or clopidogrel. Eight mild bleeding adverse events (AEs) were reported in 5 of 113 participants across various treatment arms. Peak and total exposures of milvexian were similar with or without clopidogrel and/or aspirin. Exposure-dependent prolongation of activated partial thromboplastin time and reduction of FXI clotting activity by milvexian were similar with coadministration of aspirin and/or clopidogrel. Milvexian, with or without coadministration of aspirin and/or clopidogrel, did not affect bleeding time or platelet aggregation. Administration of milvexian alone or with aspirin and/or clopidogrel was safe and well tolerated without increased incidence of AEs, including bleeding. Pharmacokinetic and pharmacodynamic effects of milvexian, including bleeding time, were similar with or without aspirin and/or clopidogrel.ClinicalTrials.gov Identifier: NCT03698513.
Collapse
Affiliation(s)
| | | | | | | | - Danshi Li
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | - Liping Zhang
- Janssen Research & Development, LLC, Titusville, NJ, USA
| | | | | | | |
Collapse
|
33
|
Janakiraman AK, Yap J, Sundarapandian R, Liew KB, Subramaniyan V, Kayarohanam S. Fabrication and characterization of cocoa butter-based caffeine fast-melting tablets. Ther Deliv 2024; 15:495-505. [PMID: 38888592 PMCID: PMC11412137 DOI: 10.1080/20415990.2024.2354115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/03/2024] [Indexed: 06/20/2024] Open
Abstract
Aim: The objective of this study was to develop and characterize the physical properties of fast-melting tablets (FMTs) using cocoa butter as the base and caffeine as the model drug.Method: The simple refrigerator freezing method was employed to prepare caffeine-loaded, FMTs from cocoa butter bases.Results: The F3 chosen formulation achieved a disintegration time of 1.20 min ± 0.035, which falls within the specified limit set by the European Pharmacopoeia. The cumulative drug release data of F3, was 88.52 and 94.08% within 60 and 75 min, respectively (NLT 85% as per US FDA requirement). All the other physical test standards for FMTs met the pharmacopeial specifications.Conclusion: Based on the findings, the simple refrigerator freezing method could be used to formulate FMTs.
Collapse
Affiliation(s)
- Ashok Kumar Janakiraman
- Department Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Joanne Yap
- Department Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Ramkanth Sundarapandian
- Department of Pharmaceutics, Karpagam College of Pharmacy, Coimbatore641032, Tamil Nadu, India
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, 63000 Cyberjaya, Selangor, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500Selangor , Malaysia
| | - Saminathan Kayarohanam
- Faculty of Bioeconomics, Food & Health Sciences, University of Geomatika, Kuala Lumpur54200, Malaysia
| |
Collapse
|
34
|
Dolma L, Damodaran A, Panonnummal R, Nair SC. Exosomes isolated from citrus lemon: a promising candidate for the treatment of Alzheimer's disease. Ther Deliv 2024; 15:507-519. [PMID: 38888652 PMCID: PMC11412142 DOI: 10.1080/20415990.2024.2354119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/03/2024] [Indexed: 06/20/2024] Open
Abstract
Aim: To investigate the efficacy of exosome-like nanovesicles from citrus lemon (EXO-CLs) in combating oxidative stress associated with Alzheimer's disease.Materials & methods: EXO-CLs were isolated through differential ultracentrifugation, characterized for particle size and evaluated for antioxidant activity.Results: EXO-CLs exhibited a mean size of 93.77 ± 12.31 nm, demonstrated permeability across the blood-brain barrier (BBB) and displayed antioxidant activity comparable to ascorbic acid. Additionally, they were found to be non-toxic, with over 80% cell viability observed in SH-SY5Y cells.Conclusion: The study proposes that EXO-CLs could serve as an effective treatment for neurodegenerative diseases. This suggests a promising approach for targeted interventions in brain-related disorders, owing to the antioxidant properties and BBB permeability exhibited by EXO-CLs.
Collapse
Affiliation(s)
- Lobzang Dolma
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - Aswin Damodaran
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - Rajitha Panonnummal
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - Sreeja C Nair
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| |
Collapse
|
35
|
Seng Yue C, Scarsi C, Bettazzi E, Mautone G, Celi FS, Ducharme M. Proton Pump Inhibitors Do Not Affect the Bioavailability of a Novel Liquid Formulation of Levothyroxine. Endocr Pract 2024; 30:513-520. [PMID: 38554774 DOI: 10.1016/j.eprac.2024.03.388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE This study evaluates the impact of a representative proton pump inhibitor (PPI) (omeprazole), administered simultaneously or staggered, on the pharmacokinetics of levothyroxine (LT4) solution (Tirosint-SOL). METHODS This was a randomized, 3-way crossover, comparative bioavailability study in 36 healthy adults under fasting conditions. Omeprazole 40 mg delayed-release capsule was administered once daily from Day 1 to 6 (mornings, Treatment-A; evenings, Treatment-B; none, Treatment-C) to increase and stabilize gastric pH. In the morning of Day 5, a single dose of LT4 solution 600 mcg was administered. Blood samples were collected 0 to 48 hours post-LT4 administration. Noncompartmental pharmacokinetic parameters were calculated for total serum thyroxine using baseline-corrected data. Maximum concentration (Cmax) and area under the concentration-time curve (AUC0-48) were included in an analysis of variance to obtain geometric mean ratios and 90% confidence intervals. RESULTS For both comparisons (A/C and B/C), geometric mean ratios and 90% confidence intervals for all parameters were within the equivalence boundaries (80%-125%), indicating bioequivalence: for A/C, AUC0-48 98.98% [94%-104%], and Cmax 91.68% [87%-97%]; for B/C, AUC0-48 98.94% [95%-103%], and Cmax 94.90% [90%-100%]. Median Tmax (time associated with Cmax) was similar across treatments. CONCLUSION This study demonstrated that Tirosint-SOL bioavailability is unaffected by coadministration of a representative PPI, given simultaneously or staggered by about 12 hours, compared to administration of LT4 solution alone. For hypothyroid patients on PPI therapy, administration of LT4 solution may reduce variations in thyroid stimulating hormone levels related to intermittent use of acid-reducing drugs and consequently the need for dose adjustments.
Collapse
Affiliation(s)
| | | | | | | | - Francesco S Celi
- Department of Medicine at University of Connecticut Health, Farmington, Connecticut
| | | |
Collapse
|
36
|
Khizar N, Abbas N, Ahmed M, Ahmad M, Mustafa Z, Jehangir M, Mohammed Al-Ahmary K, Hussain A, Bukhari NI, Ali I. Amelioration of tableting properties and dissolution rate of naproxen co-grinded with nicotinamide: preparation and characterization of co-grinded mixture. Drug Dev Ind Pharm 2024; 50:537-549. [PMID: 38771120 DOI: 10.1080/03639045.2024.2358356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE AND SIGNIFICANCE Reducing the dimensions, when other additives are present, shows potential as a method to improve the dissolution and solubility of biopharmaceutical classification system class II drugs that have poor solubility. In this investigation, the process involved grinding naproxen with nicotinamide with the aim of improving solubility and the rate of dissolution. METHODS Naproxen was subjected to co-milling with urea, dimethylurea, and nicotinamide using a planetary ball mill for a duration of 90 min, maintaining a 1:1 molar ratio for the excipients (screening studies). The co-milled combinations, naproxen in its pure milled form, and a physical mixture were subjected to analysis using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), and solubility assessment. The mixture displaying the highest solubility (naproxen-nicotinamide) was chosen for further investigation, involving testing for intrinsic dissolution rate (IDR) and Fourier-transform infrared spectroscopy (FTIR) after co-milling for both 90 and 480 min. RESULTS AND CONCLUSION The co-milled combination, denoted as S-3b and consisting of the most substantial ratio of nicotinamide to naproxen at 1:3, subjected to 480 min of milling, exhibited a remarkable 45-fold increase in solubility and a 9-fold increase in IDR. XRPD analysis of the co-milled samples demonstrated no amorphization, while SEM images portrayed the aggregates of naproxen with nicotinamide. FTIR outcomes negate the presence of any chemical interactions between the components. The co-milled sample exhibiting the highest solubility and IDR was used to create a tablet, which was then subjected to comprehensive evaluation for standard attributes. The results revealed improved compressibility and dissolution properties.
Collapse
Affiliation(s)
- Nosheen Khizar
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Nasir Abbas
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zeeshan Mustafa
- Department of Physics, Lahore Garrison University, Lahore, Pakistan
| | - Muhammad Jehangir
- Department of Chemistry, FC College (A Chartered University), Lahore, Pakistan
| | | | - Amjad Hussain
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | | | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Hawally, Kuwait
| |
Collapse
|
37
|
Leane M, Pitt K, Reynolds G, Tantuccio A, Moreton C, Crean A, Kleinebudde P, Carlin B, Gamble J, Gamlen M, Stone E, Kuentz M, Gururajan B, Khimyak YZ, Van Snick B, Andersen S, Misic Z, Peter S, Sheehan S. Ten years of the manufacturing classification system: a review of literature applications and an extension of the framework to continuous manufacture. Pharm Dev Technol 2024; 29:395-414. [PMID: 38618690 DOI: 10.1080/10837450.2024.2342953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The MCS initiative was first introduced in 2013. Since then, two MCS papers have been published: the first proposing a structured approach to consider the impact of drug substance physical properties on manufacturability and the second outlining real world examples of MCS principles. By 2023, both publications had been extensively cited by over 240 publications. This article firstly reviews this citing work and considers how the MCS concepts have been received and are being applied. Secondly, we will extend the MCS framework to continuous manufacture. The review structure follows the flow of drug product development focussing first on optimisation of API properties. The exploitation of links between API particle properties and manufacturability using large datasets seems particularly promising. Subsequently, applications of the MCS for formulation design include a detailed look at the impact of percolation threshold, the role of excipients and how other classification systems can be of assistance. The final review section focusses on manufacturing process development, covering the impact of strain rate sensitivity and modelling applications. The second part of the paper focuses on continuous processing proposing a parallel MCS framework alongside the existing batch manufacturing guidance. Specifically, we propose that continuous direct compression can accommodate a wider range of API properties compared to its batch equivalent.
Collapse
Affiliation(s)
- Michael Leane
- Drug Product Development, Bristol Myers Squibb, Moreton, UK
| | - Kendal Pitt
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Gavin Reynolds
- Oral Product Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - Anthony Tantuccio
- Technology Intensification, Hovione LLC, East Windsor, New Jersey, USA
| | | | - Abina Crean
- SSPC, the SFI Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Peter Kleinebudde
- Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Brian Carlin
- Owner, Carlin Pharma Consulting, Lawrenceville, New Jersey, USA
| | - John Gamble
- Drug Product Development, Bristol Myers Squibb, Moreton, UK
| | - Michael Gamlen
- Chief Scientific Officer, Gamlen Tableting Ltd, Heanor, UK
| | - Elaine Stone
- Consultant, Stonepharma Ltd. ATIC, Loughborough, UK
| | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences FHNW, Muttenz, Switzerland
| | - Bindhu Gururajan
- Pharmaceutical Development, Novartis Pharma AG, Basel, Switzerland
| | - Yaroslav Z Khimyak
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Bernd Van Snick
- Oral Solids Development, Drug Product Development, JnJ Innovative Medicine, Beerse, Belgium
| | - Sune Andersen
- Oral Solids Development, Drug Product Development, JnJ Innovative Medicine, Beerse, Belgium
| | - Zdravka Misic
- Innovation Research and Development, dsm-firmenich, Kaiseraugst, Switzerland
| | - Stefanie Peter
- Research and Development Division, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Stephen Sheehan
- External Development and Manufacturing, Alkermes Pharma Ireland Limited, Dublin 4, Ireland
| |
Collapse
|
38
|
Maclean N, Armstrong JA, Carroll MA, Salehian M, Mann J, Reynolds G, Johnston B, Markl D. Flexible modelling of the dissolution performance of directly compressed tablets. Int J Pharm 2024; 656:124084. [PMID: 38580072 DOI: 10.1016/j.ijpharm.2024.124084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
In this study, a compartmental disintegration and dissolution model is proposed for the prediction and evaluation of the dissolution performance of directly compressed tablets. This dissolution model uses three compartments (Bound, Disintegrated, and Dissolved) to describe the state of each particle of active pharmaceutical ingredient. The disintegration of the tablet is captured by three fitting parameters. Two disintegration parameters, β0 and βt,0, describe the initial disintegration rate and the change in disintegration rate, respectively. A third parameter, α, describes the effect of the volume of dissolved drug on the disintegration process. As the tablet disintegrates, particles become available for dissolution. The dissolution rate is determined by the Nernst-Brunner equation, whilst taking into account the hydrodynamic effects within the vessel of a USP II (paddle) apparatus. This model uses the raw material properties of the active pharmaceutical ingredient (solubility, particle size distribution, true density), lending it towards early development activities during which time the amount of drug substance available may be limited. Additionally, the strong correlations between the fitting parameters and the tablet porosity indicate the potential to isolate the manufacturing effects and thus implement the model as part of a real-time release testing strategy for a continuous direct compression line.
Collapse
Affiliation(s)
- Natalie Maclean
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - John A Armstrong
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Mark A Carroll
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Mohammad Salehian
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - James Mann
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Gavin Reynolds
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Blair Johnston
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Daniel Markl
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
39
|
Sultan T, Rozin EH, Paul S, Tseng YC, Dave VS, Cetinkaya C. Machine learning modeling for ultrasonic quality attribute assessment of pharmaceutical tablets for continuous manufacturing and real-time release testing. Int J Pharm 2024; 655:124049. [PMID: 38537921 DOI: 10.1016/j.ijpharm.2024.124049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
In in-process quality monitoring for Continuous Manufacturing (CM) and Critical Quality Attributes (CQA) assessment for Real-time Release (RTR) testing, ultrasonic characterization is a critical technology for its direct, non-invasive, rapid, and cost-effective nature. In quality evaluation with ultrasound, relating a pharmaceutical tablet's ultrasonic response to its defect state and quality parameters is essential. However, ultrasonic CQA characterization requires a robust mathematical model, which cannot be obtained with traditional first principles-based modeling approaches. Machine Learning (ML) using experimental data is emerging as a critical analytical tool for overcoming such modeling challenges. In this work, a novel Deep Neural Network-based ML-driven Non-Destructive Evaluation (ML-NDE) modeling framework is developed, and its effectiveness for extracting and predicting three CQAs, namely defect states, compression force levels, and amounts of disintegrant, is demonstrated. Using a robotic tablet handling experimental rig, each attribute's distinct waveform dataset was acquired and utilized for training, validating, and testing the respective ML models. This study details an advanced algorithmic quality assessment framework for pharmaceutical CM in which automated RTR testing is expected to be critical in developing cost-effective in-process real-time monitoring systems. The presented ML-NDE approach has demonstrated its effectiveness through evaluations with separate (unused) test datasets.
Collapse
Affiliation(s)
- Tipu Sultan
- Photo-Acoustics Research Laboratory, Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY 13699-5725, USA.
| | - Enamul Hasan Rozin
- Photo-Acoustics Research Laboratory, Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY 13699-5725, USA.
| | - Shubhajit Paul
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA.
| | - Yin-Chao Tseng
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA.
| | - Vivek S Dave
- St. John Fisher University, Wegmans School of Pharmacy, Rochester, NY 14618, USA.
| | - Cetin Cetinkaya
- Photo-Acoustics Research Laboratory, Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY 13699-5725, USA.
| |
Collapse
|
40
|
Hao X, Tian Z, Wang Y, Xie Z, Ji X. Characterization of microcrystalline cellulose prepared from long and short fibers and its application in ibuprofen tablets. Int J Biol Macromol 2024; 265:130532. [PMID: 38431009 DOI: 10.1016/j.ijbiomac.2024.130532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
As a bio-based material, microcrystalline cellulose (MCC) has been applied in many fields including pharmaceuticals, foods, and cosmetics in recent years. However, traditional preparation methods of MCC are facing many challenges due to economic and eco-environmental issues. In this study, softwood dissolved pulp was sieved to long fiber (LF) and short fiber (SF), and subsequently to prepare LF-MCC and SF-MCC by hydrochloric acid hydrolysis at different acid dosages (3-7 wt%), reaction times (30-90 min), and temperatures (75-95 °C). The as-obtained MCC products were compared in terms of morphology, size, crystallinity, and chemical structure. The results indicated that the crystallinity and yield of LF-MCC were high, with maximum values of 78.41 % and 98.68 %, respectively. The particle size distribution of SF-MCC was more uniform in the range of 20-80 μm, with a maximum of 59.44 % at 20-80 μm occupancy proportion. Moreover, SF-MCC had a typical rod-like shape and larger surface area as well as better thermal behavior than LF-MCC. When LF-MCC and SF-MCC were used as fillers in the production of ibuprofen tablets, the tablets added with LF-MCC exhibited higher hardness, friability, dissolution rate, and shorter disintegration time. Therefore, this work is very beneficial for the preparation and application of MCC.
Collapse
Affiliation(s)
- Xiao Hao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Zhongjian Tian
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Yingchao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China; State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhaoyong Xie
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China; State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China.
| |
Collapse
|
41
|
Akbar T, Gershkovich P, Stamatopoulos K, Gowland PA, Stolnik S, Butler J, Marciani L. Use of Magnetic Resonance Imaging for Visualization of Oral Dosage Forms in the Human Stomach: A Scoping Review. Mol Pharm 2024; 21:1553-1562. [PMID: 38440796 PMCID: PMC10988553 DOI: 10.1021/acs.molpharmaceut.3c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
Oral dosage forms are the most widely and frequently used formulations to deliver active pharmaceutical ingredients (APIs), due to their ease of administration and noninvasiveness. Knowledge of intragastric release rates and gastric mixing is crucial for predicting the API release profile, especially for immediate release formulations. However, knowledge of the intragastric fate of oral dosage forms in vivo to date is limited, particularly for dosage forms administered when the stomach is in the fed state. An improved understanding of gastric food processing, dosage form location, disintegration times, and food effects is essential for greater understanding for effective API formulation design. In vitro standard and controlled modeling has played a significant role in predicting the behavior of dosage forms in vivo. However, discrepancies are reported between in vitro and in vivo disintegration times, with these discrepancies being greatest in the fed state. Studying the fate of a dosage form in vivo is a challenging process, usually requiring the use of invasive methods, such as intubation. Noninvasive, whole body imaging techniques can however provide unique insights into this process. A scoping review was performed systematically to identify and critically appraise published studies using MRI to visualize oral solid dosage forms in vivo in healthy human subjects. The review identifies that so far, an all-purpose robust contrast agent or dosage form type has not been established for dosage form visualization and disintegration studies in the gastrointestinal system. Opportunities have been identified for future studies, with particular focus on characterizing dosage form disintegration for development after the consumption food, as exemplified by the standard Food and Drug Administration (FDA) high fat meal.
Collapse
Affiliation(s)
- Tejal Akbar
- Nottingham
Digestive Diseases Centre and National Institute for Health Research
(NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham NG7 2UH, U.K.
| | - Pavel Gershkovich
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | | | - Penny A. Gowland
- Sir
Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2QX, U.K.
| | - Snow Stolnik
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - James Butler
- Drug
Product Development, GSK R&D, Ware, Hertfordshire SG12 0GX, U.K.
| | - Luca Marciani
- Nottingham
Digestive Diseases Centre and National Institute for Health Research
(NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham NG7 2UH, U.K.
| |
Collapse
|
42
|
Henry S, Carroll M, Murphy KN, Leys L, Markl D, Vanhoorne V, Vervaet C. Semi-crystalline materials for pharmaceutical fused filament fabrication: Dissolution and porosity. Int J Pharm 2024; 652:123816. [PMID: 38246479 DOI: 10.1016/j.ijpharm.2024.123816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
A better understanding of crystallization kinetics and the effect on drug product quality characteristics is needed to exploit the use of semi-crystalline polymers in pharmaceutical fused filament fabrication. Filaments were prepared from polycaprolactone or polyethylene oxide loaded with a crystallization inhibitor or inducer, which was either 10% (w/w) ibuprofen or theophylline. A design-of-experiments approach was conducted to investigate the effect of nozzle temperature, bed temperature and print speed on the printed tablets' microstructure and dissolution kinetics. Helium pycnometry derived porosity proved an ideal technique to capture significant distortions in the tablets' microstructure. On the other hand, terahertz time domain spectroscopy (THz-TDS) analysis proved valuable to investigate additional enclosed pores of the tablets' microstructure. The surface roughness was analyzed using optical coherence tomography, showing the importance of extensional viscosity for printed drug products. Drug release occurred via erosion for tablets consisting of polyethylene oxide, which partly reduced the effect of the inner microstructure on the drug release kinetics. An initial burst release effect was noted for polycaprolactone tablets, after which drug release continued via diffusion. Both the pore and crystalline microstructure were deemed essential to steer drug release. In conclusion, this research provided guidelines for material and process choice when a specific microstructure has to be constructed from semi-crystalline materials. In addition, non-destructive tests for the characterization of printed products were evaluated.
Collapse
Affiliation(s)
- S Henry
- Laboratory of Pharmaceutical Technology, Ghent University, Ghent, Belgium
| | - M Carroll
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, Glasgow, UK; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - K N Murphy
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, Glasgow, UK; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - L Leys
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, 9000 Ghent, Belgium
| | - D Markl
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, Glasgow, UK; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - V Vanhoorne
- Laboratory of Pharmaceutical Technology, Ghent University, Ghent, Belgium
| | - C Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Ghent, Belgium.
| |
Collapse
|
43
|
Waldner S, Wendelspiess E, Detampel P, Schlepütz CM, Huwyler J, Puchkov M. Advanced analysis of disintegrating pharmaceutical compacts using deep learning-based segmentation of time-resolved micro-tomography images. Heliyon 2024; 10:e26025. [PMID: 38384517 PMCID: PMC10878950 DOI: 10.1016/j.heliyon.2024.e26025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles, the current understanding of the process is based on indirect or superficial measurements. Formulation science could, therefore, additionally deepen the understanding of the fundamental physical principles governing disintegration based on direct observations of the process. We aim to help bridge the gap by generating a series of time-resolved X-ray micro-computed tomography (μCT) images capturing volumetric images of a broad range of mini-tablet formulations undergoing disintegration. Automated image segmentation was a prerequisite to overcoming the challenges of analyzing multiple time series of heterogeneous tomographic images at high magnification. We devised and trained a convolutional neural network (CNN) based on the U-Net architecture for autonomous, rapid, and consistent image segmentation. We created our own μCT data reconstruction pipeline and parameterized it to deliver image quality optimal for our CNN-based segmentation. Our approach enabled us to visualize the internal microstructures of the tablets during disintegration and to extract parameters of disintegration kinetics from the time-resolved data. We determine by factor analysis the influence of the different formulation components on the disintegration process in terms of both qualitative and quantitative experimental responses. We relate our findings to known formulation component properties and established experimental results. Our direct imaging approach, enabled by deep learning-based image processing, delivers new insights into the disintegration mechanism of pharmaceutical tablets.
Collapse
Affiliation(s)
- Samuel Waldner
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
| | - Erwin Wendelspiess
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
| | - Pascal Detampel
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
| | | | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
| | - Maxim Puchkov
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
44
|
Kaewpradit S, Chingunpitak J, Samhadthai W, Suppawattana T, Jantarat C. Comparison of Properties of Acetaminophen Tablets Prepared by Wet Granulation Using Freeze-Dried Versus Phase-Inversion Bacterial Cellulose as Diluent. AAPS PharmSciTech 2024; 25:32. [PMID: 38332361 DOI: 10.1208/s12249-024-02752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Bacterial cellulose (BC) is an interesting material for drug delivery applications due to its high purity. This study aimed to compare the properties of tablets prepared by the wet granulation method using bacterial cellulose prepared by different methods as a diluent, using acetaminophen as a model drug. BC used as diluents were prepared using two different methods: freeze-drying (BC-FD) and phase-inversion (BC-PI), and their characteristics were analyzed and compared with that of commercial microcrystalline cellulose PH 101 (Comprecel® M101). Acetaminophen tablets were prepared by wet granulation using BC-FD, BC-PI, or Comprecel® M101 as diluents, and their tablet properties were examined. The result showed that the morphology, polymorph, and crystallinity of BC-PI and Comprecel® M101 were similar but they were different compared with that of BC-FD. Tablets could be successfully formed using BC-PI and Comprecel® M101 as diluents without any physical defects but the tablet prepared using BC-FD as diluent appeared chipped edge. The characteristics (thickness, weight variation, hardness, friability, disintegration, drug content, and dissolution) of the tablets prepared using BC-PI diluent were also similar to those prepared using Comprecel® M101 diluent, but those of BC-FD diluent were inferior. This indicates that BC prepared in BC-PI can potentially be used as a diluent for tablets prepared by wet granulation.
Collapse
Affiliation(s)
- Sirikanya Kaewpradit
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Jiraporn Chingunpitak
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Wannaphorn Samhadthai
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | | | - Chutima Jantarat
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand.
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
45
|
Yang Y, Gengji J, Gong T, Zhang Z, Deng L. Time-Lapse Macro Imaging with Dissolution Tests for Exploring the Interrelationship Between Disintegration and Dissolution Behaviors of Solid Dosages. Pharm Res 2024; 41:387-400. [PMID: 38243127 DOI: 10.1007/s11095-024-03655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
OBJECTIVE This study aims to establish a Flow-through Visualization Dissolution System (FVDS) that combines time-lapse macro-imaging and a flow-through cell to simultaneously elucidate dissolution and disintegration profiles. METHODS Three cefaclor extended-release tablets (CEC-1, CEC-2, CEC-3) from different manufacturers were subjected to dissolution tests using both the US Pharmacopeia basket method and the FVDS method. Two dissolution media plans were implemented in FVDS: i) Plan I involved dissolution in pH1.0 medium for 12 h; ii) Plan II initiated dissolution in pH1.0 medium for 1 h, followed by pH6.8 phosphate buffer for 11 h. The resulting dissolution data were fitted using classic mathematical models. Pixel information was further extracted from images obtained using FVDS and plotted over time. RESULTS The basket method showed the cumulative dissolution of all three tablets in pH1.0, pH4.0 and water reached 80% within 6 h, but remained below 60% in the pH6.8 medium. The f2 values indicated CEC-2 was similar to CEC-1 in the pH4.0 medium, pH6.8 medium and water. Using FVDS with medium plan II, the cumulative dissolution of CEC-1 and CEC-2 reached about 80% showing similarity, while no similarity was observed between CEC-3 and CEC-1. The f2 factor of the percentage area change profiles also showed consistent results in the dissolution profile of medium plan II. However, FVDS with medium plan I cannot distinguish between CEC-2 and CEC-3. CONCLUSION FVDS offers an alternative to traditional dissolution methods by integrating imaging analysis as a complementary tool to disintegration and dissolution testing methods.
Collapse
Affiliation(s)
- Yichen Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiajia Gengji
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
46
|
Djuris J, Cvijic S, Djekic L. Model-Informed Drug Development: In Silico Assessment of Drug Bioperformance following Oral and Percutaneous Administration. Pharmaceuticals (Basel) 2024; 17:177. [PMID: 38399392 PMCID: PMC10892858 DOI: 10.3390/ph17020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
The pharmaceutical industry has faced significant changes in recent years, primarily influenced by regulatory standards, market competition, and the need to accelerate drug development. Model-informed drug development (MIDD) leverages quantitative computational models to facilitate decision-making processes. This approach sheds light on the complex interplay between the influence of a drug's performance and the resulting clinical outcomes. This comprehensive review aims to explain the mechanisms that control the dissolution and/or release of drugs and their subsequent permeation through biological membranes. Furthermore, the importance of simulating these processes through a variety of in silico models is emphasized. Advanced compartmental absorption models provide an analytical framework to understand the kinetics of transit, dissolution, and absorption associated with orally administered drugs. In contrast, for topical and transdermal drug delivery systems, the prediction of drug permeation is predominantly based on quantitative structure-permeation relationships and molecular dynamics simulations. This review describes a variety of modeling strategies, ranging from mechanistic to empirical equations, and highlights the growing importance of state-of-the-art tools such as artificial intelligence, as well as advanced imaging and spectroscopic techniques.
Collapse
Affiliation(s)
- Jelena Djuris
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (S.C.); (L.D.)
| | | | | |
Collapse
|
47
|
Commey KL, Enaka A, Nakamura R, Yamamoto A, Tsukigawa K, Nishi K, Iohara D, Hirayama F, Otagiri M, Yamasaki K. Development of α-Cyclodextrin-Based Orally Disintegrating Tablets for 4-Phenylbutyrate. Pharmaceutics 2024; 16:82. [PMID: 38258093 PMCID: PMC10818935 DOI: 10.3390/pharmaceutics16010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Despite major improvements brought about by the introduction of taste-masked formulations of 4-phenylbutyrate (PB), poor compliance remains a significant drawback to treatment for some pediatric and dysphagic patients with urea cycle disorders (UCDs). This study reports on the development of a cyclodextrin (CD)-based orally disintegrating tablet (ODT) formulation for PB as an alternative to existing formulations. This is based on previous reports of the PB taste-masking potential of CDs and the suitability of ODTs for improving compliance in pediatric and dysphagic populations. In preliminary studies, the interactions of PB with α and βCD in the solid state were characterized using X-ray diffraction, scanning electron microscopy, dissolution, and accelerated stability studies. Based on these studies, lyophilized PB-CD solid systems were formulated into ODTs after wet granulation. Evaluation of the ODTs showed that they had adequate physical characteristics, including hardness and friability and good storage stability. Notably, the developed αCD-based ODT for PB had a disintegration time of 28 s and achieved a slightly acidic and agreeable pH (≈5.5) in solution, which is suitable for effective PB-CD complexation and taste masking. The developed formulation could be helpful as an alternative to existing PB formulations, especially for pediatric and dysphagic UCD patients.
Collapse
Affiliation(s)
- Kindness L. Commey
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Airi Enaka
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
| | - Ryota Nakamura
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
| | - Asami Yamamoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
| | - Kenji Tsukigawa
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Daisuke Iohara
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Fumitoshi Hirayama
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| |
Collapse
|
48
|
Li Z, Wang H, Hou J, Li M, Shi X, Liu B, Chen Z, Liu Q, Fu Q. Cylindrical granules in the development of mesalazine solid formulations (Ⅱ): The contribution of high aspect ratio to favorable tabletability. Int J Pharm 2024; 649:123665. [PMID: 38048889 DOI: 10.1016/j.ijpharm.2023.123665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Recently, cylindrical granules have been applied in pharmaceutical fields and their aspect ratio (AR) is considered an important factor in the manufacturing process. However, the relationships between AR and the tableting process were seldom reported. This study aims to clarify the role of AR in the tableting process of cylindrical granules. First, mesalazine cylindrical granules with different AR were extruded, and their physical attributes were then comprehensively characterized. Subsequently, their compression behaviors and tableting performances were systematically assessed. Notably, it was found that the cylindrical granules with high AR possessed good anti-deformation capacity and favorable tabletability. Finally, the dissolution test suggested that tablets compressed from cylindrical granules with higher AR showed lower dissolution rates. Collectively, findings in this study identified that the AR of cylindrical granules was a critical factor in the tableting process and provided valuable guidance for the application of these granules in oral solid formulations.
Collapse
Affiliation(s)
- Zhaohua Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Hongge Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jiayue Hou
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China
| | - Bingyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Ziang Chen
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiwei Liu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
49
|
Hellebois T, Addiego F, Gaiani C, Shaplov AS, Soukoulis C. Unravelling the functionality of anionic and non-ionic plant seed gums on milk protein cryogels conveying Lacticaseibacillus rhamnosus GG. Carbohydr Polym 2024; 323:121376. [PMID: 37940272 DOI: 10.1016/j.carbpol.2023.121376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 11/10/2023]
Abstract
Cryogels offer a promising macroporous platform that can be employed as either a functional ingredient in food composites or a colloidal template for incorporating bioactives, including probiotic living cells. The aim of the present work is to explore the functionality of two plant seed polysaccharides, flaxseed gum (FG) and alfalfa galactomannan (AAG), in individual and combined (1:1 ratio) milk protein-based cryogels, namely sodium caseinate (NaCas) and whey protein isolate (WPI). These cryogels were created by freeze-drying hydrogels formed via L.rhamnosus GG - a human gut-relevant probiotic strain - fermentation. Our findings showed that including gum in the composition limited volume contraction during lyophilisation, reduced macropore size and thickened cryogel skeleton vessels. Furthermore, gum-containing cryogels displayed improved thermal stability and slower water disintegration rates. The AAG-stabilised cryogels specifically showed a notable reduction in monolayer water content compared to FG. From a mechanistic viewpoint, AAG influenced the physicochemical and microstructural properties of the cryogels, most probably via its self-association during cryogenic processing, promoting the development of intertwined protein-gum networks. FG, on the other hand, enhanced these properties through electrostatic complexation with proteins. Cryogels made from protein-polysaccharide blends exhibited promising techno-functional properties for enhancing and diversifying food product innovation.
Collapse
Affiliation(s)
- Thierry Hellebois
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg; Université de Lorraine, LIBio, F-54000 Nancy, France
| | - Frédéric Addiego
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Claire Gaiani
- Université de Lorraine, LIBio, F-54000 Nancy, France
| | - Alexander S Shaplov
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Christos Soukoulis
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg.
| |
Collapse
|
50
|
Seoane-Viaño I, Pérez-Ramos T, Liu J, Januskaite P, Guerra-Baamonde E, González-Ramírez J, Vázquez-Caruncho M, Basit AW, Goyanes A. Visualizing disintegration of 3D printed tablets in humans using MRI and comparison with in vitro data. J Control Release 2024; 365:348-357. [PMID: 37972762 DOI: 10.1016/j.jconrel.2023.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Three-dimensional (3D) printing is revolutionising the way that medicines are manufactured today, paving the way towards more personalised medicine. However, there is limited in vivo data on 3D printed dosage forms, and no studies to date have been performed investigating the intestinal behaviour of these drug products in humans, hindering the complete translation of 3D printed medications into clinical practice. Furthermore, it is unknown whether conventional in vitro release tests can accurately predict the in vivo performance of 3D printed formulations in humans. In this study, selective laser sintering (SLS) 3D printing technology has been used to produce two placebo torus-shaped tablets (printlets) using different laser scanning speeds. The printlets were administered to 6 human volunteers, and in vivo disintegration times were assessed using magnetic resonance imaging (MRI). In vitro disintegration tests were performed using a standard USP disintegration apparatus, as well as an alternative method based on the use of reduced media volume and minimal agitation. Printlets fabricated at a laser scanning speed of 90 mm/s exhibited an average in vitro disintegration time of 7.2 ± 1 min (measured using the USP apparatus) and 25.5 ± 4.1 min (measured using the alternative method). In contrast, printlets manufactured at a higher laser scanning speed of 130 mm/s had an in vitro disintegration time of 2.8 ± 0.8 min (USP apparatus) and 18.8 ± 1.9 min (alternative method). When tested in humans, printlets fabricated at a laser scanning speed of 90 mm/s showed an average disintegration time of 17.3 ± 7.2 min, while those manufactured at a laser scanning speed of 130 mm/s exhibited a shorter disintegration time of 12.7 ± 6.8 min. Although the disintegration times obtained using the alternative method more closely resembled those obtained in vivo, no clear correlation was observed between the in vitro and in vivo disintegration times, highlighting the need to develop better in vitro methodology for 3D printed drug products.
Collapse
Affiliation(s)
- Iria Seoane-Viaño
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Paraquasil Group (GI-2109), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - Tania Pérez-Ramos
- Radiology Department, University Hospital Lucus Augusti (HULA), Rúa Dr. Ulises Romero, 1, Lugo 27003, Spain
| | - Jiaqi Liu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Elena Guerra-Baamonde
- Radiology Department, University Hospital Lucus Augusti (HULA), Rúa Dr. Ulises Romero, 1, Lugo 27003, Spain
| | - Jorge González-Ramírez
- Radiology Department, University Hospital Lucus Augusti (HULA), Rúa Dr. Ulises Romero, 1, Lugo 27003, Spain
| | - Manuel Vázquez-Caruncho
- Radiology Department, University Hospital Lucus Augusti (HULA), Rúa Dr. Ulises Romero, 1, Lugo 27003, Spain.
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK.
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela (USC), Santiago de Compostela 15782, Spain.
| |
Collapse
|