1
|
Sharma R, Yadav V, Jha S, Dighe S, Jain S. Unveiling the potential of ursolic acid modified hyaluronate nanoparticles for combination drug therapy in triple negative breast cancer. Carbohydr Polym 2024; 338:122196. [PMID: 38763723 DOI: 10.1016/j.carbpol.2024.122196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
Triple negative breast cancer (TNBC) represents the most aggressive and heterogenous disease, and combination therapy holds promising potential. Here, an enzyme-responsive polymeric prodrug with self-assembly properties was synthesized for targeted co-delivery of paclitaxel (PTX) and ursolic acid (UA). Hyaluronic acid (HA) was conjugated with UA, yielding an amphiphilic prodrug with 13.85 mol% UA and a CMC of 32.3 μg/mL. The HA-UA conjugate exhibited ∼14 % and 47 % hydrolysis at pH 7.4 and in tumor cell lysate. HA-UA/PTX NPs exhibited a spherical structure with 173 nm particle size, and 0.15 PDI. The nanoparticles showed high drug loading (11.58 %) and entrapment efficiency (76.87 %) of PTX. Release experiments revealed accelerated drug release (∼78 %) in the presence of hyaluronidase enzyme. Cellular uptake in MDA-MB-231 cells showed enhanced uptake of HA-UA/PTX NPs through CD44 receptor-mediated endocytosis. In vitro, HA-UA/PTX NPs exhibited higher cytotoxicity, apoptosis, and mitochondrial depolarization compared to PTX alone. In vivo, HA-UA/PTX NPs demonstrated improved pharmacokinetic properties, with 2.18, 2.40, and 2.35-fold higher AUC, t1/2, and MRT compared to free PTX. Notably, HA-UA/PTX NPs exhibited superior antitumor efficacy with a 90 % tumor inhibition rate in 4T1 tumor model and low systemic toxicity, showcasing their significant potential as carriers for TNBC combination therapy.
Collapse
Affiliation(s)
- Reena Sharma
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Shikha Jha
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Sayali Dighe
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
2
|
Yu Q, Ding J, Li S, Li Y. Autophagy in cancer immunotherapy: Perspective on immune evasion and cell death interactions. Cancer Lett 2024; 590:216856. [PMID: 38583651 DOI: 10.1016/j.canlet.2024.216856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Both the innate and adaptive immune systems work together to produce immunity. Cancer immunotherapy is a novel approach to tumor suppression that has arisen in response to the ineffectiveness of traditional treatments like radiation and chemotherapy. On the other hand, immune evasion can diminish immunotherapy's efficacy. There has been a lot of focus in recent years on autophagy and other underlying mechanisms that impact the possibility of cancer immunotherapy. The primary feature of autophagy is the synthesis of autophagosomes, which engulf cytoplasmic components and destroy them by lysosomal degradation. The planned cell death mechanism known as autophagy can have opposite effects on carcinogenesis, either increasing or decreasing it. It is autophagy's job to maintain the balance and proper functioning of immune cells like B cells, T cells, and others. In addition, autophagy controls whether macrophages adopt the immunomodulatory M1 or M2 phenotype. The ability of autophagy to control the innate and adaptive immune systems is noteworthy. Interleukins and chemokines are immunological checkpoint chemicals that autophagy regulates. Reducing antigen presentation to induce immunological tolerance is another mechanism by which autophagy promotes cancer survival. Therefore, targeting autophagy is of importance for enhancing potential of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jiajun Ding
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Shisen Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yunlong Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Abhang A, Katari O, Ghadi R, Chaudhari D, Jain S. Exploring the synergistic behavior of paclitaxel and vorinostat upon co-loading in albumin nanoparticles for breast cancer management. Drug Deliv Transl Res 2024; 14:510-523. [PMID: 37605040 DOI: 10.1007/s13346-023-01415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Breast cancer is challenging to treat accompanied with poor clinical outcomes. Paclitaxel (PTX) is a first-line chemotherapeutic agent, but possesses limitations due to side effects, high dose, non-specific tissue distribution, and drug resistance. An epigenetic modulator, vorinostat (VOR) is known to enhance PTX efficacy and therefore to resolve the issues of conventional PTX formulations, we designed PTX- and VOR-bound albumin nanoparticles (PTX-VOR-BSA-NPs) using antisolvent precipitation technique where albumin is used as a carrier and a targeting agent. The PTX-VOR-BSA-NPs were of 140 nm size, polydispersity index around 0.18, and about 78% and 68% of entrapment efficiency for PTX and VOR, respectively. A bi-pattern release of both PTX and VOR was observed from PTX-VOR-BSA-NPs with a burst release for 2 h succeeded by sustained release until 24 h. A significantly lower %cell viability was observed in MCF-7 cell lines, while efficient cellular drug uptake was found in MDA-MB-231 cells. Furthermore, a greater apoptotic index was found compared to free PTX and VOR because of the synergistic activity of these drugs. The PTX-VOR-BSA-NPs also showcased superior pharmacokinetic profile and noteworthy reduction in the tumor volume compared to Intaxel in 4T1 cell line-induced breast tumor model. Further, the NPs showed similar levels of toxicity biomarkers as that of control. Overall, the developed PTX-VOR-BSA-NPs were found to have less toxicity and more effectiveness compared to the marketed formulation, thus affirming the generation of a potent as well as and safe product.
Collapse
Affiliation(s)
- Ashwin Abhang
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India
| | - Oly Katari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India
| | - Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India
| | - Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India.
| |
Collapse
|
4
|
Behera C, Kaur Sandha K, Banjare N, Kumar Shukla M, Mudassir Ali S, Singh M, Gupta PN. Biodegradable nanocarrier of gemcitabine and tocopherol succinate synergistically ameliorates anti-proliferative response in MIA PaCa-2 cells. Int J Pharm 2024; 649:123599. [PMID: 37992978 DOI: 10.1016/j.ijpharm.2023.123599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Gemcitabine (GEM) is an important chemotherapeutic agent used alone or in combination with other anticancer agents for the treatment of various solid tumors. In this study, the potential of a dietary supplement, α-tocopherol succinate (TOS) was investigated in combination with GEM by utilizing human serum albumin-based nanoparticles (HSA NPs). The developed nanoparticles were characterized using DLS, SEM and FTIR and evaluated in a panel of cell lines to inspect cytotoxic efficacy. The ratio metric selected combination of the NPs was further investigated in human pancreatic cancer cell line (MIA PaCa-2 cells) to assess the cellular death mechanism via a myriad of biochemical and bio-analytical assays including nuclear morphometric analysis by DAPI staining, ROS generation, MMP loss, intracellular calcium release, in vitro clonogenic assay, cell migration assay, cell cycle analysis, immunocytochemical staining followed by western blotting, Annexin V-FITC and cellular uptake studies. The desolvation-crosslinking method was used to prepare the NPs. The average size of TOS-HSA NPs and GEM-HSA NPs was found to be 189.47 ± 5 nm and 143.42 ± 7.4 nm, respectively. In combination, the developed nanoparticles exhibited synergism by enhancing cytotoxicity in a fixed molar ratio. The selected combination also significantly triggered ROS generation and mitochondrial destabilization, alleviated cell migration potential and clonogenic cell survival in MIA PaCa-2 cells. Further, cell cycle analysis, Annexin-V FITC assay and caspase-3 activation, up regulation of Bax and down regulation of Bcl-2 protein confirmed the occurrence of apoptotic event coupled with the G0/G1 phase arrest. Nanocarriers based this combination also offered approximately 14-folds dose reduction of GEM. Overall, the combined administration of TOS-HSA NPs and GEM-HSA NPs showed synergistic cytotoxicity accompanied with dose reduction of the gemcitabine. These encouraging findings could have implication in designing micronutrient based-combination therapy with gemcitabine and demands further investigation.
Collapse
Affiliation(s)
- Chittaranjan Behera
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Kamalpreet Kaur Sandha
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagma Banjare
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Monu Kumar Shukla
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Syed Mudassir Ali
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Manisha Singh
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prem N Gupta
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Cui T, Corrales-Guerrero S, Castro-Aceituno V, Nair S, Maneval DC, Monnig C, Kearney P, Ellis S, Raheja N, Raheja N, Williams TM. JNTX-101, a novel albumin-encapsulated gemcitabine prodrug, is efficacious and operates via caveolin-1-mediated endocytosis. Mol Ther Oncolytics 2023; 30:181-192. [PMID: 37674628 PMCID: PMC10477748 DOI: 10.1016/j.omto.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023] Open
Abstract
Albumin is an attractive candidate carrier for the development of novel therapeutic drugs. Gemcitabine has been FDA approved for the treatment of solid tumors; however, new drugs that optimize gemcitabine delivery are not available for clinical use. The aim of this study was to test the efficacy of a novel albumin-encapsulated gemcitabine prodrug, JNTX-101, and investigate whether Cav-1 expression predicts the therapeutic efficacy of JNTX-101. We first determined the treatment efficacy of JNTX-101 in a panel of pancreatic/lung cancer cell lines and found that increases in Cav-1 expression resulted in higher uptake of albumin, while Cav-1 depletion attenuated the sensitivity of cells to JNTX-101. In addition, decreased Cav-1 expression markedly reduced JNTX-101-induced apoptotic cell death in a panel of cells, particularly in low-serum conditions. Furthermore, we tested the therapeutic efficacy of JNTX-101 in xenograft models and the role of Cav-1 in JNTX-101 sensitivity using a Tet-on-inducible tumor model in vivo. Our data suggest that JNTX-101 effectively inhibits cell viability and tumor growth, and that Cav-1 expression dictates optimal sensitivity to JNTX-101. These data indicate that Cav-1 correlates with JNTX-101 sensitivity, especially under nutrient-deprived conditions, and supports a role for Cav-1 as a predictive biomarker for albumin-encapsulated therapeutics such as JNTX-101.
Collapse
Affiliation(s)
- Tiantian Cui
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | - Sindhu Nair
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | - Sam Ellis
- January Therapeutics, San Diego, CA 92121, USA
| | | | - Neil Raheja
- January Therapeutics, San Diego, CA 92121, USA
| | - Terence M. Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Negi S, Chaudhuri A, Kumar DN, Dehari D, Singh S, Agrawal AK. Nanotherapeutics in autophagy: a paradigm shift in cancer treatment. Drug Deliv Transl Res 2022; 12:2589-2612. [PMID: 35149969 DOI: 10.1007/s13346-022-01125-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 12/15/2022]
Abstract
Autophagy is a catabolic process in which an organism responds to its nutrient or metabolic emergencies. It involves the degradation of cytoplasmic proteins and organelles by forming double-membrane vesicles called "autophagosomes." They sequester cargoes, leading them to degradation in the lysosomes. Although autophagy acts as a protective mechanism for maintaining homeostasis through cellular recycling, it is ostensibly a cause of certain cancers, but a cure for others. In other words, insufficient autophagy, due to genetic or cellular dysfunctions, can lead to tumorigenesis. However, many autophagy modulators are developed for cancer therapy. Diverse nanoparticles have been documented to induce autophagy. Also, the highly stable nanoparticles show blockage to autophagic flux. In this review, we revealed a general mechanism by which autophagy can be induced or blocked via nanoparticles as well as several studies recently performed to prove the stated fact. In addition, we have also elucidated the paradoxical roles of autophagy in cancer and how their differential role at different stages of various cancers can affect its treatment outcomes. And finally, we summarize the breakthroughs in cancer disease treatments by using metallic, polymeric, and liposomal nanoparticles as potent autophagy modulators.
Collapse
Affiliation(s)
- Shloka Negi
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Deepa Dehari
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Sanjay Singh
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India.
| |
Collapse
|
7
|
Chaudhuri A, Ramesh K, Kumar DN, Dehari D, Singh S, Kumar D, Agrawal AK. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Paul M, Itoo AM, Ghosh B, Biswas S. Current trends in the use of human serum albumin for drug delivery in cancer. Expert Opin Drug Deliv 2022; 19:1449-1470. [PMID: 36253957 DOI: 10.1080/17425247.2022.2134341] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Human serum albumin is the most abundant transport protein in plasma, which has recently been extensively utilized to form nanoparticles for drug delivery in cancer. The primary reason for selecting albumin protein as drug delivery cargo is its excellent biocompatibility, biodegradability, and non-immunogenicity. Moreover, the albumin structure containing three homologous domains constituted of a single polypeptide (585 amino acid) incorporates various hydrophobic drugs by non-covalent interactions. Albumin shows active tumor targeting via their interaction with gp60 and SPARC proteins abundant in the tumor-associated endothelial cells and the tumor microenvironment. AREAS COVERED The review discusses the importance of albumin as a drug-carrier system, general procedures to prepare albumin NPs, and the current trends in using albumin-based nanomedicines to deliver various chemotherapeutic agents. The various applications of albumin in the nanomedicines, such as NPs surface modifier and fabrication of hybrid/active-tumor targeted NPs, are delineated based on current trends. EXPERT OPINION Nanomedicines have the potential to revolutionize cancer treatment. However, clinical translation is limited majorly due to the lack of suitable nanomaterials offering systemic stability, optimum drug encapsulation, tumor-targeted delivery, sustained drug release, and biocompatibility. The potential of albumin could be explored in nanomedicines fabrication for superior treatment outcomes in cancer.
Collapse
Affiliation(s)
- Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, India
| | - Asif Mohd Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, India
| |
Collapse
|
9
|
Chaudhuri A, Kumar DN, Shaik RA, Eid BG, Abdel-Naim AB, Md S, Ahmad A, Agrawal AK. Lipid-Based Nanoparticles as a Pivotal Delivery Approach in Triple Negative Breast Cancer (TNBC) Therapy. Int J Mol Sci 2022; 23:ijms231710068. [PMID: 36077466 PMCID: PMC9456313 DOI: 10.3390/ijms231710068] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer is considered the most aggressive type of breast cancer among women and the lack of expressed receptors has made treatment options substantially limited. Recently, various types of nanoparticles have emerged as a therapeutic option against TNBC, to elevate the therapeutic efficacy of the existing chemotherapeutics. Among the various nanoparticles, lipid-based nanoparticles (LNPs) viz. liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid nanocarriers, and lipid–polymer hybrid nanoparticles are developed for cancer treatment which is well confirmed and documented. LNPs include various therapeutic advantages as compared to conventional therapy and other nanoparticles, including increased loading capacity, enhanced temporal and thermal stability, decreased therapeutic dose and associated toxicity, and limited drug resistance. In addition to these, LNPs overcome physiological barriers which provide increased accumulation of therapeutics at the target site. Extensive efforts by the scientific community could make some of the liposomal formulations the clinical reality; however, the relatively high cost, problems in scaling up the formulations, and delivery in a more targetable fashion are some of the major issues that need to be addressed. In the present review, we have compiled the state of the art about different types of LNPs with the latest advances reported for the treatment of TNBC in recent years, along with their clinical status and toxicity in detail.
Collapse
Affiliation(s)
- Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rasheed A. Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aftab Ahmad
- Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
- Correspondence:
| |
Collapse
|
10
|
Chaudhari D, Katari O, Ghadi R, Kuche K, Date T, Bhargavi N, Jain S. Unfolding the Potency of Adenosine in Targeting Triple Negative Breast Cancer via Paclitaxel-Incorporated pH-Responsive Stealth Liposomes. ACS Biomater Sci Eng 2022; 8:3473-3484. [PMID: 35896042 DOI: 10.1021/acsbiomaterials.2c00594] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Triple-negative breast cancer (TNBC) belongs to the category of the most destructive forms of breast cancer. Being a highly potent chemotherapeutic agent, paclitaxel (PTX) is extensively utilized in the management of various cancers. Commercially available PTX formulations contain non-targeted drug carriers that result in low antitumor activity because of non-specific tissue distribution. Thus, to resolve this issue, we designed PTX-loaded pH-sensitive liposomes (pH Lipos) in the present investigation and used adenosine (ADN) as a targeting ligand. Further, d-α-tocopheryl polyethylene glycol succinate (TPGS) was incorporated into the liposomes to impart a stealth effect to the system. For the development of these pH Lipos, different conjugates were synthesized (ADN-CHEMS and TPGS-ADN) and further utilized for the preparation of ADN-PEG-pH Lipo and ADN-pH Lipo by a thin-film hydration method. DOPE:HSPC:CHEMS:cholesterol at a molar ratio of 3:3:2:2 was selected for the preparation of pH-Lipo possessing 7.5% w/w drug loading. They showed a particle size below 140 nm, a PDI below 0.205, and a % EE greater than 60%. All of the pH Lipos displayed a biphasic pattern of PTX release at pH 7.4 and 5.5. However, the percent drug release at pH 5.5 was substantially greater because of the pH-sensitive nature of the liposomes. The MDA MB 231 and 4T1 cell lines depicted improvement in the qualitative as well as quantitative cellular uptake of PTX ADN-PEG-pH Lipo with a substantial decrease in the IC50 value. Moreover, a higher apoptotic index was observed with pH Lipo compared to free PTX. PTX ADN-PEG-pH Lipo revealed a 3.98- and 3.41-fold rise in the AUC and t1/2 values of PTX compared to Intaxel, respectively. Overall, characteristic decreases in tumor volume and serum toxicity marker levels were observed, which confirmed the development of an efficient and safe formulation.
Collapse
Affiliation(s)
- Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| | - Oly Katari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| | - Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| | - Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| | - Nallamothu Bhargavi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
11
|
Behl A, Sarwalia P, Kumar S, Behera C, Mintoo MJ, Datta TK, Gupta PN, Chhillar AK. Codelivery of Gemcitabine and MUC1 Inhibitor Using PEG-PCL Nanoparticles for Breast Cancer Therapy. Mol Pharm 2022; 19:2429-2440. [PMID: 35639628 DOI: 10.1021/acs.molpharmaceut.2c00175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In breast cancer therapy, Gemcitabine (Gem) is an antineoplastic antimetabolite with greater anticancer efficacy and tolerability. However, effectiveness of Gem is limited by its off-target effects. The synergistic potential of MUC1 (mucin 1) inhibitors and Gem-loaded polymeric nanoparticles (NPs) was discussed in this work in order to reduce dose-related toxicities and enhance the therapeutic efficacy. The double emulsion solvent evaporation method was used to prepare poly(ethylene glycol) methyl ether-block-poly-caprolactone (PEG-PCL)-loaded Gem and MUC 1 inhibitor NPs. The average size of Gem and MUC 1 inhibitor-loaded NPs was 128 nm, with a spherical shape. Twin-loaded NPs containing Gem and the MUC1 inhibitor decreased IC50 and behaved synergistically. Furthermore, in vitro mechanistic studies, that is, loss of MMP, clonogenic assay, Annexin V FITC assay, and Western blotting to confirm apoptosis with simultaneous induction of autophagy using acridine orange (AO) staining were performed in this study. Furthermore, the investigated NPs upon combination exhibited greater loss of MMP and decreased clonogenic potential with simultaneous induction of autophagy in MCF-7 cells. Annexin V FITC clearly showed the percentage of apoptosis while Western blotting protein expression analysis revealed an increase in caspase-3 activity with simultaneous decrease in Bcl-2 protein expression, a hallmark of apoptosis. The effectiveness of the Ehrlich ascites solid (EAT) mice treated with Gem-MUC1 inhibitor NPs was higher than that of the animals treated alone. Overall, the combined administration of Gem and MUC1 inhibitor-loaded NPs was found to be more efficacious than Gem and MUC1 inhibitor delivered separately.
Collapse
Affiliation(s)
- Akanksha Behl
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124 001, India
| | - Parul Sarwalia
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sushil Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Chittaranjan Behera
- PK-PD Tox and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Mubashir Javed Mintoo
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Prem N Gupta
- PK-PD Tox and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Anil K Chhillar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124 001, India
| |
Collapse
|
12
|
Jain S, Dongare K, Nallamothu B, Parkash Dora C, Kushwah V, Katiyar SS, Sharma R. Enhanced stability and oral bioavailability of erlotinib by solid self nano emulsifying drug delivery systems. Int J Pharm 2022; 622:121852. [PMID: 35618179 DOI: 10.1016/j.ijpharm.2022.121852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 01/02/2023]
Abstract
The present investigation demonstrates the preparation of solid self nanoemulsfying drug delivery system (sSNEDDS) to enhance stability and bioavailability of Erlotinib (ERL) via the oral route. Capmul®MCM EP (CPM EP, oil), Cremophor® RH 40 (CMR RH 40, surfactant), and LBF CS (LBF CS, cosurfactant) were chosen as chief components for preparing Liquids SNEDDS (L-ERL-SNEDDS) based on solubility and emulsion forming ability. Pseudo ternary phase diagram and constrained mixture designs were applied to identify the self-emulsifying area and it was found that CPM EP, CMR RH 40, and LBF CS in the ratio of 59:11:30 showed optimized particle size (110.08 nm), with narrow PDI (0.114) and high ERL loading capacity (14.31 mg/g). Adsorption method was implemented for solidification of L-ERL-SNEDDS. Among various solid carriers were studied, Aerosil® 200 (A200) was finalized based on free flowing property and reconstitution ability. DSC and XRD studies revealed that crystallinity of drug was reduced in developed system. The developed formulation (named as, A200-ERL-sSNEDDS) showed increased cytotoxicity and apoptosis in PANC-1 and MIA PaCa-2 cells. Pharmacokinetic studies revealed ∼2.2 times increase in AUC0-∞values in case of A200-ERL-sSNEDDS as compared to free ERL. Thus current strategy can be extrapolated for delivering of poorly soluble drugs via oral route.
Collapse
Affiliation(s)
- Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India.
| | - Kiran Dongare
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Bhargavi Nallamothu
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Chander Parkash Dora
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Sameer S Katiyar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Reena Sharma
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
13
|
Zhang R, Han Y, Xie W, Liu F, Chen S. Advances in Protein-Based Nanocarriers of Bioactive Compounds: From Microscopic Molecular Principles to Macroscopical Structural and Functional Attributes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6354-6367. [PMID: 35603429 DOI: 10.1021/acs.jafc.2c01936] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many proteins can be used to fabricate nanocarriers for encapsulation, protection, and controlled release of nutraceuticals. This review examined the protein-based nanocarriers from microscopic molecular characteristics to the macroscopical structural and functional attributes. Structural, physical, and chemical properties of protein-based nanocarriers were introduced in detail. The spatial size, shape, water dispersibility, colloidal stability, etc. of protein-based nanocarriers were largely determined by the molecular physicochemical principles of protein. Different preparative techniques, including antisolvent precipitation, pH-driven, electrospray, and gelation methods, among others, can be used to fabricate different protein-based nanocarriers. Various modifications based on physical, chemical, and enzymatic approaches can be used to improve the functional performance of these nanocarriers. Protein is a natural resource with a wide range of sources, including plant, animal, and microbial, which are usually used to fabricate the nanocarriers. Protein-based nanocarriers have many advantages in aid of the application of bioactive ingredients to the medical, food, and cosmetic industries.
Collapse
Affiliation(s)
- Ruyi Zhang
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei 430071, People's Republic of China
| | - Yahong Han
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Weijie Xie
- Shanghai Mental Health Centre, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shuai Chen
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei 430071, People's Republic of China
| |
Collapse
|
14
|
Radziwon A, Bhangu SK, Fernandes S, Cortez-Jugo C, De Rose R, Dyett B, Wojnilowicz M, Laznickova P, Fric J, Forte G, Caruso F, Cavalieri F. Triggering the nanophase separation of albumin through multivalent binding to glycogen for drug delivery in 2D and 3D multicellular constructs. NANOSCALE 2022; 14:3452-3466. [PMID: 35179174 DOI: 10.1039/d1nr08429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Engineered nanoparticles for the encapsulation of bioactive agents hold promise to improve disease diagnosis, prevention and therapy. To advance this field and enable clinical translation, the rational design of nanoparticles with controlled functionalities and a robust understanding of nanoparticle-cell interactions in the complex biological milieu are of paramount importance. Herein, a simple platform obtained through the nanocomplexation of glycogen nanoparticles and albumin is introduced for the delivery of chemotherapeutics in complex multicellular 2D and 3D systems. We found that the dendrimer-like structure of aminated glycogen nanoparticles is key to controlling the multivalent coordination and phase separation of albumin molecules to form stable glycogen-albumin nanocomplexes. The pH-responsive glycogen scaffold conferred the nanocomplexes the ability to undergo partial endosomal escape in tumour, stromal and immune cells while albumin enabled nanocomplexes to cross endothelial cells and carry therapeutic agents. Limited interactions of nanocomplexes with T cells, B cells and natural killer cells derived from human blood were observed. The nanocomplexes can accommodate chemotherapeutic drugs and release them in multicellular 2D and 3D constructs. The drugs loaded on the nanocomplexes retained their cytotoxic activity, which is comparable with the activity of the free drugs. Cancer cells were found to be more sensitive to the drugs in the presence of stromal and immune cells. Penetration and cytotoxicity of the drug-loaded nanocomplexes in tumour mimicking tissues were validated using a 3D multicellular-collagen construct in a perfusion bioreactor. The results highlight a simple and potentially scalable strategy for engineering nanocomplexes made entirely of biological macromolecules with potential use for drug delivery.
Collapse
Affiliation(s)
- Agata Radziwon
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Sukhvir K Bhangu
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Soraia Fernandes
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Robert De Rose
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Brendan Dyett
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Marcin Wojnilowicz
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Petra Laznickova
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Jan Fric
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Giancarlo Forte
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Francesca Cavalieri
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| |
Collapse
|
15
|
Nanomedicine in Pancreatic Cancer: Current Status and Future Opportunities for Overcoming Therapy Resistance. Cancers (Basel) 2021; 13:cancers13246175. [PMID: 34944794 PMCID: PMC8699181 DOI: 10.3390/cancers13246175] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Despite access to a vast arsenal of anticancer agents, many fail to realise their full therapeutic potential in clinical practice. One key determinant of this is the evolution of multifaceted resistance mechanisms within the tumour that may either pre-exist or develop during the course of therapy. This is particularly evident in pancreatic cancer, where limited responses to treatment underlie dismal survival rates, highlighting the urgent need for new therapeutic approaches. Here, we discuss the major features of pancreatic tumours that contribute to therapy resistance, and how they may be alleviated through exploitation of the mounting and exciting promise of nanomedicines; a unique collection of nanoscale platforms with tunable and multifunctional capabilities that have already elicited a widespread impact on cancer management. Abstract The development of drug resistance remains one of the greatest clinical oncology challenges that can radically dampen the prospect of achieving complete and durable tumour control. Efforts to mitigate drug resistance are therefore of utmost importance, and nanotechnology is rapidly emerging for its potential to overcome such issues. Studies have showcased the ability of nanomedicines to bypass drug efflux pumps, counteract immune suppression, serve as radioenhancers, correct metabolic disturbances and elicit numerous other effects that collectively alleviate various mechanisms of tumour resistance. Much of this progress can be attributed to the remarkable benefits that nanoparticles offer as drug delivery vehicles, such as improvements in pharmacokinetics, protection against degradation and spatiotemporally controlled release kinetics. These attributes provide scope for precision targeting of drugs to tumours that can enhance sensitivity to treatment and have formed the basis for the successful clinical translation of multiple nanoformulations to date. In this review, we focus on the longstanding reputation of pancreatic cancer as one of the most difficult-to-treat malignancies where resistance plays a dominant role in therapy failure. We outline the mechanisms that contribute to the treatment-refractory nature of these tumours, and how they may be effectively addressed by harnessing the unique capabilities of nanomedicines. Moreover, we include a brief perspective on the likely future direction of nanotechnology in pancreatic cancer, discussing how efforts to develop multidrug formulations will guide the field further towards a therapeutic solution for these highly intractable tumours.
Collapse
|
16
|
Lam BQ, Srivastava R, Morvant J, Shankar S, Srivastava RK. Association of Diabetes Mellitus and Alcohol Abuse with Cancer: Molecular Mechanisms and Clinical Significance. Cells 2021; 10:cells10113077. [PMID: 34831299 PMCID: PMC8620339 DOI: 10.3390/cells10113077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/28/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM), one of the metabolic diseases which is characterized by sustained hyperglycemia, is a life-threatening disease. The global prevalence of DM is on the rise, mainly in low- and middle-income countries. Diabetes is a major cause of blindness, heart attacks, kidney failure, stroke, and lower limb amputation. Type 2 diabetes mellitus (T2DM) is a form of diabetes that is characterized by high blood sugar and insulin resistance. T2DM can be prevented or delayed by a healthy diet, regular physical activity, maintaining normal body weight, and avoiding alcohol and tobacco use. Ethanol and its metabolites can cause differentiation defects in stem cells and promote inflammatory injury and carcinogenesis in several tissues. Recent studies have suggested that diabetes can be treated, and its consequences can be avoided or delayed with proper management. DM has a greater risk for several cancers, such as breast, colorectal, endometrial, pancreatic, gallbladder, renal, and liver cancer. The incidence of cancer is significantly higher in patients with DM than in those without DM. In addition to DM, alcohol abuse is also a risk factor for many cancers. We present a review of the recent studies investigating the association of both DM and alcohol abuse with cancer incidence.
Collapse
Affiliation(s)
- Bao Q. Lam
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (B.Q.L.); (S.S.)
| | - Rashmi Srivastava
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Jason Morvant
- Department of Surgery, Ochsner Health System, 120 Ochsner Boulevard, Gretna, LA 70056, USA;
- A.B. Freeman School of Business, Tulane University, New Orleans, LA 70118, USA
| | - Sharmila Shankar
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (B.Q.L.); (S.S.)
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| | - Rakesh K. Srivastava
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (B.Q.L.); (S.S.)
- A.B. Freeman School of Business, Tulane University, New Orleans, LA 70118, USA
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Correspondence:
| |
Collapse
|
17
|
Pathania S, Singh PK, Narang RK, Rawal RK. Structure based designing of thiazolidinone-pyrimidine derivatives as ERK2 inhibitors: Synthesis and in vitro evaluation. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:793-816. [PMID: 34583590 DOI: 10.1080/1062936x.2021.1973094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Breast cancer has been associated with an overexpression of various molecular targets; accordingly, various target-specific chemotherapeutic agents have been developed. Inhibition of ERK2, a member of MAPK pathway, is an important target involved in the treatment of both oestrogen receptor-positive and triple-negative breast cancer. Thus, in continuation of our previous work on the ERK2 target, we here report novel inhibitors of this kinase. Out of three lead molecules reported in our previous study, we selected the thiazolidinone-pyrimidine scaffold for further development of small molecule inhibitors of ERK2. Analogues of the lead molecule were docked in the target kinase, followed by molecular dynamic simulations and MM-GBSA calculations. Analogues maintaining key interactions with amino acid residues in the ATP-binding domain of ERK2 were selected and duly synthesized. In vitro biochemical evaluation of these molecules against ERK2 kinase disclosed that two molecules possess significant kinase inhibitory potential with IC50 values ≤ 0.5 µM.
Collapse
Affiliation(s)
- S Pathania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - P K Singh
- Integrative Physiology and Pharmacology, Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - R K Narang
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - R K Rawal
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Ambala, India
- CSIR-North East Institute of Science and Technology, Jorhat, India
| |
Collapse
|
18
|
Kumari N, Mathe VL, Krishna CM, Dongre PM. BSA-drug-ZnO-PEI conjugates interaction with glycans of gp60 endothelial cell receptor protein for targeted drug delivery: a comprehensive spectroscopic study. J Biomol Struct Dyn 2021; 40:9253-9269. [PMID: 34018472 DOI: 10.1080/07391102.2021.1925155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The zinc oxide (ZnO) nanoparticles (NPs) have several biomedical applications such as drug delivery, bio-imaging, and biomedical research. ZnO NPs were remedied with polyethyleneimine (PEI) and modified with bovine serum albumin (BSA). Two anticancer drugs - Cisplatin (CIS) and Gemcitabine (GEM) were used in conjugation with BSA. BSA-ZnO-PEI (conjugate 1), BSA-CIS-ZnO-PEI (conjugate 2), and BSA-GEM-ZnO-PEI (conjugate 3) can be used for targeted drug delivery via glycans - N-acetylneuraminic acid (NANA), L-fucose (FUC), N-acetyl glucosamine (NAG), D-mannose (MAN), and D-galactose (GAL), of albumin binding membrane receptor protein (gp60). Considerable interaction and the strong binding of conjugate 2 and conjugate 3 with NANA were observed by UV-visible absorption and fluorescence spectra. The electrostatic stability of conjugate 2 and conjugate 3 with NANA was considerably increased in comparison to conjugate 1 as evident with zeta potential values. The fluorescence quenching data (Ksv and kq) and binding parameters (K and n) of BSA-CIS, BSA-GEM, conjugate 2, and conjugate 3 with NANA and FUC attributes to the strong binding. Amide I and amide III bands of the Raman signal suggested insignificant loss in alpha-helical and beta-sheet content of conjugate 2 and conjugate 3 with NANA and FUC. Therefore, the present study is going to assist in the comprehensive development of conjugates for targeted drug delivery based on the differential glycation pattern of gp60 protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neha Kumari
- Department of Biophysics, University of Mumbai, Mumbai, Maharashtra, India.,Department of Physics, Savitribai Phule Pune University, Ganeshkhind Pune, Maharashtra, India
| | - V L Mathe
- Department of Physics, Savitribai Phule Pune University, Ganeshkhind Pune, Maharashtra, India
| | - C Murali Krishna
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Navi Mumbai, Maharashtra, India
| | - P M Dongre
- Department of Biophysics, University of Mumbai, Mumbai, Maharashtra, India
| |
Collapse
|
19
|
Karunanidhi P, Verma N, Kumar DN, Agrawal AK, Singh S. Triphenylphosphonium functionalized Ficus religiosa L. extract loaded nanoparticles improve the mitochondrial function in oxidative stress induced diabetes. AAPS PharmSciTech 2021; 22:158. [PMID: 34009603 DOI: 10.1208/s12249-021-02016-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The present study was aimed to enhance the mitochondrial function in oxidative stress-induced diabetes. To achieve this, Ficus religiosa L. extract loaded solid lipid nanoparticles (ETNPs) were prepared and functionalized by using triphenylphosphonium. Developed nanoparticles demonstrated desired quality attributes with sustained release for up to 24 h and excellent storage stability for up to 180 days at 40 ± 2°C and 75 ± 5% relative humidity. In vitro cytotoxicity assessment showed no toxicity of ETNPs. Interestingly, oral administration of ETNPs to diabetic rats demonstrated improved mitochondrial function by normalizing the mitochondrial morphology, intracellular calcium ion concentration, complexes I, II, IV, and V activity, mitochondrial membrane potential, and antioxidant levels. Further, reduction in apoptotic markers viz. cytochrome-C, caspase-3, and caspase-9 was observed following the ETNP treatment. Moreover, significant reduction in blood glucose and glycosylated hemoglobin while significant improvement in plasma insulin was observed as compared to the diabetic group following the treatment with developed formulation. Furthermore, histopathology studies confirmed the safety of the developed formulation and thus, data in hand collectively suggest that proposed strategy can be effectively used to improve the mitochondrial function in oxidative stress-induced diabetes along with better control over blood glucose and glycosylated hemoglobin.
Collapse
|
20
|
Kirar S, Chaudhari D, Thakur NS, Jain S, Bhaumik J, Laha JK, Banerjee UC. Light-assisted anticancer photodynamic therapy using porphyrin-doped nanoencapsulates. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 220:112209. [PMID: 34049179 DOI: 10.1016/j.jphotobiol.2021.112209] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/17/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Light activatable porphyrinic photosensitizers (PSs) are essential components of anticancer and antimicrobial therapy and diagnostic imaging. However, their biological applications are quite challenging due to the lack of hydrophilicity and biocompatibility. To overcome such drawbacks, photosensitizers can be doped into a biocompatible polymer such as gelatin and further can be used for biomedical applications. Herein, first, a novel A4 type porphyrin PS [5,10,15,20-tetrakis(4-pyridylamidephenyl)porphyrin; TPyAPP] was synthesized via a rational route with good yield. Further, this porphyrin was encapsulated into the gelatin nanoparticles (GNPs) to develop hydrophilic phototherapeutic nanoagents (PTNAs, A4por-GNPs). Notably, the synthesis of such porphyrin-doped GNPs avoids the use of any toxic chemicals or solvents. The nanoprobes have also shown good fluorescence quantum yield demonstrating their applicability in bioimaging. Further, the mechanistic aspects of the anticancer and antimicrobial efficacy of the developed A4por-GNPs were evaluated via singlet oxygen generation studies. Overall, our results indicated porphyrin-doped biodegradable polymeric nanoparticles act as effective phototherapeutic agents against a broad range of cancer cell lines and microbes upon activation by the low-cost LED light.
Collapse
Affiliation(s)
- Seema Kirar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Dasharath Chaudhari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Neeraj S Thakur
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India; Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Sanyog Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Uttam C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India.
| |
Collapse
|
21
|
Hama M, Ishima Y, Chuang VTG, Ando H, Shimizu T, Ishida T. Evidence for Delivery of Abraxane via a Denatured-Albumin Transport System. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19736-19744. [PMID: 33881292 DOI: 10.1021/acsami.1c03065] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Abraxane, an albumin-bound paclitaxel nanoparticle formulation, is superior to conventional paclitaxel preparations because it has better efficacy against unresectable pancreatic cancer. Previous reports suggest that this better efficacy of Abraxane than conventional paclitaxel preparation is probably due to its transport through Gp60, an albumin receptor on the surface of vascular endothelial cells. The increased tumor accumulation of Abraxane is also caused by the secreted protein acid and rich in cysteine in the tumor stroma. However, the uptake mechanism of Abraxane remains poorly understood. In this study, we demonstrated that the delivery of Abraxane occurred via different receptor pathways from that of endogenous albumin. Our results showed that the uptake of endogenous albumin was inhibited by a Gp60 pathway inhibitor in the process of endocytosis through endothelial cells or tumor cells. In contrast, the uptake of Abraxane-derived HSA was less affected by the Gp60 pathway inhibitor but significantly reduced by denatured albumin receptor inhibitors. In conclusion, these data indicate that Abraxane-derived HSA was taken up into endothelial cells or tumor cells by a mechanism different from normal endogenous albumin. These new data on distinct cellular transport pathways of denatured albumin via gp family proteins different from those of innate albumin shed light on the mechanisms of tumor delivery and antitumor activity of Abraxane and provide new scientific rationale for the development of a novel albumin drug delivery strategy via a denatured albumin receptor.
Collapse
Affiliation(s)
- Maichi Hama
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Victor Tuan Giam Chuang
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| |
Collapse
|
22
|
Hu X, Xia F, Lee J, Li F, Lu X, Zhuo X, Nie G, Ling D. Tailor-Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002545. [PMID: 33854877 PMCID: PMC8025024 DOI: 10.1002/advs.202002545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/25/2020] [Indexed: 05/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide due to its aggressiveness and the challenge to early diagnosis and treatment. In recent decades, nanomaterials have received increasing attention for diagnosis and therapy of PDAC. However, these designs are mainly focused on the macroscopic tumor therapeutic effect, while the crucial nano-bio interactions in the heterogeneous microenvironment of PDAC remain poorly understood. As a result, the majority of potent nanomedicines show limited performance in ameliorating PDAC in clinical translation. Therefore, exploiting the unique nature of the PDAC by detecting potential biomarkers together with a deep understanding of nano-bio interactions that occur in the tumor microenvironment is pivotal to the design of PDAC-tailored effective nanomedicine. This review will introduce tailor-made nanomaterials-enabled laboratory tests and advanced noninvasive imaging technologies for early and accurate diagnosis of PDAC. Moreover, the fabrication of a myriad of tailor-made nanomaterials for various PDAC therapeutic modalities will be reviewed. Furthermore, much preferred theranostic multifunctional nanomaterials for imaging-guided therapies of PDAC will be elaborated. Lastly, the prospects of these nanomaterials in terms of clinical translation and potential breakthroughs will be briefly discussed.
Collapse
Affiliation(s)
- Xi Hu
- Department of Clinical PharmacyZhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Researchthe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Fan Xia
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Jiyoung Lee
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Fangyuan Li
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Biomedical Engineering of the Ministry of EducationCollege of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhou310058China
| | - Xiaoyang Lu
- Department of Clinical PharmacyZhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Researchthe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Xiaozhen Zhuo
- Department of Cardiologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'an710061China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyNo.11 Zhongguancun BeiyitiaoBeijing100190China
- GBA Research Innovation Institute for NanotechnologyGuangzhou510700China
| | - Daishun Ling
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Biomedical Engineering of the Ministry of EducationCollege of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhou310058China
| |
Collapse
|
23
|
Waghmare MN, Qureshi TS, Krishna CM, Pansare K, Gadewal N, Hole A, Dongre PM. β-Lactoglobulin-gold nanoparticles interface and its interaction with some anticancer drugs - an approach for targeted drug delivery. J Biomol Struct Dyn 2021; 40:6193-6210. [PMID: 33509048 DOI: 10.1080/07391102.2021.1879270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The protein-nanoparticle interface plays a crucial role in drug binding and stability, in turn enhancing efficacy in targeted drug delivery. In the present study, whey protein β-lactoglobulin (BLG) is conjugated with gold nanoparticles (AuNP) and its interaction with curcumin (CUR) and gemcitabine (GEM) has been explored. Further, AuNP-BLG conjugate interactions with anticancer drugs were characterized using dynamic light scattering (DLS), zeta potential, UV-visible, Raman spectroscopy, fluorescence, circular dichroism along with molecular dynamics simulation. The cytotoxicity studies were performed using breast cancer cell lines (MCF-7). ∼8 µM of BLG resides on AuNP (∼29 nm) surface revealed by DLS. Raman scattering of AuNP-BLG conjugate showed orientation of the central calyx of BLG towards solvent. BLG fluorescence confirmed the interaction between AuNP-BLG conjugate with drugs and indicated strong binding and affinity (for CUR KD = 3.71 x 108 M -1, n = 1.83, and for GEM KD = 3.78 x 103 M -1, n = 0.94), enhanced in the presence of AuNP. CD and Raman analysis exhibited selective hydrophilic and hydrophobic conformations induced by drug binding. Computational studies on BLG-drug complexes revealed that the residues Pro38, Leu39 and Met107 are largely associated with CUR binding, while GEM interaction is via hydrophilic contacts which significantly matches with spectroscopic investigation. IC50 values were calculated for all components of this loading system on MCF-7. The possible mechanisms of interaction between AuNP-BLG with anticancer drugs has been explored at the molecular level. We believe that these conjugates could be considered in the targeted drug delivery studies for cancer research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manik N Waghmare
- Department of Biophysics, University of Mumbai, Mumbai, Maharashtra, India
| | - Tazeen S Qureshi
- Department of Biophysics, University of Mumbai, Mumbai, Maharashtra, India
| | - C Murali Krishna
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Kshama Pansare
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Nikhil Gadewal
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Arti Hole
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Prabhakar M Dongre
- Department of Biophysics, University of Mumbai, Mumbai, Maharashtra, India
| |
Collapse
|
24
|
Paroha S, Verma J, Dubey RD, Dewangan RP, Molugulu N, Bapat RA, Sahoo PK, Kesharwani P. Recent advances and prospects in gemcitabine drug delivery systems. Int J Pharm 2021; 592:120043. [DOI: 10.1016/j.ijpharm.2020.120043] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
|
25
|
Ray P, Dutta D, Haque I, Nair G, Mohammed J, Parmer M, Kale N, Orr M, Jain P, Banerjee S, Reindl KM, Mallik S, Kambhampati S, Banerjee SK, Quadir M. pH-Sensitive Nanodrug Carriers for Codelivery of ERK Inhibitor and Gemcitabine Enhance the Inhibition of Tumor Growth in Pancreatic Cancer. Mol Pharm 2020; 18:87-100. [PMID: 33231464 DOI: 10.1021/acs.molpharmaceut.0c00499] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a metabolic disorder, remains one of the leading cancer mortality sources worldwide. An initial response to treatments, such as gemcitabine (GEM), is often followed by emergent resistance reflecting an urgent need for alternate therapies. The PDAC resistance to GEM could be due to ERK1/2 activity. However, successful ERKi therapy is hindered due to low ligand efficiency, poor drug delivery, and toxicity. In this study, to overcome these limitations, we have designed pH-responsive nanoparticles (pHNPs) with a size range of 100-150 nm for the simultaneous delivery of ERKi (SCH 772984) and GEM with tolerable doses. These pHNPs are polyethylene glycol (PEG)-containing amphiphilic polycarbonate block copolymers with tertiary amine side chains. They are systemically stable and capable of improving in vitro and in vivo drug delivery at the cellular environment's acidic pH. The functional analysis indicates that the nanomolar doses of ERKi or GEM significantly decreased the 50% growth inhibition (IC50) of PDAC cells when encapsulated in pHNPs compared to free drugs. The combination of ERKi with GEM displayed a synergistic inhibitory effect. Unexpectedly, we uncover that the minimum effective dose of ERKi significantly promotes GEM activities on PDAC cells. Furthermore, we found that pHNP-encapsulated combination therapy of ERKi with GEM was superior to unencapsulated combination drug therapy. Our findings, thus, reveal a simple, yet efficient, drug delivery approach to overcome the limitations of ERKi for clinical applications and present a new model of sensitization of GEM by ERKi with no or minimal toxicity.
Collapse
Affiliation(s)
- Priyanka Ray
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Debasmita Dutta
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Inamul Haque
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Gauthami Nair
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Jiyan Mohammed
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Meredith Parmer
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Narendra Kale
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Megan Orr
- Department of Statistics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Pooja Jain
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Katie M Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Suman Kambhampati
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States
| | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
26
|
Saadeh HA, Sweidan KA, Mubarak MS. Recent Advances in the Synthesis and Biological Activity of 8-Hydroxyquinolines. Molecules 2020; 25:molecules25184321. [PMID: 32967141 PMCID: PMC7571046 DOI: 10.3390/molecules25184321] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Compounds containing the 8-hydroxyquinoline (8-HQ) 1 nucleus exhibit a wide range of biological activities, including antimicrobial, anticancer, and antifungal effects. The chemistry and biology of this group have attracted the attention of chemists, medicinal chemists, and professionals in health sciences. A number of prescribed drugs incorporate this group, and numerous 8-HQ- based molecules can be used to develop potent lead compounds with good efficacy and low toxicity. This review focusses on the recent advances in the synthesis of 8-HQ derivatives with different pharmacological properties, including anticancer, antiviral, and antibacterial activities. For this purpose, recent relevant references were searched in different known databases and search engines, such as MEDLINE (PubMed), Google Scholar, Science Direct, Scopus, Cochrane, Scientific Information Database (SID), SciFinder, and Institute for Scientific Information (ISI) Web of Knowledge. This review article provides a literature overview of the various synthetic strategies and biological activities of 8-HQ derivatives and covers the recent related literature. Taken together, compounds containing the 8-HQ moiety have huge therapeutic value and can act as potential building blocks for various pharmacologically active scaffolds. In addition, several described compounds in this review could act leads for the development of drugs against numerous diseases including cancer.
Collapse
Affiliation(s)
- Haythem A. Saadeh
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan;
| | - Kamal A. Sweidan
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan;
| | - Mohammad S. Mubarak
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan;
- Correspondence: ; Tel.: +962-791-016-126
| |
Collapse
|
27
|
Quality by design (QbD) approach in processing polymeric nanoparticles loading anticancer drugs by high pressure homogenizer. Heliyon 2020; 6:e03846. [PMID: 32373744 PMCID: PMC7193322 DOI: 10.1016/j.heliyon.2020.e03846] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/11/2020] [Accepted: 04/21/2020] [Indexed: 01/04/2023] Open
Abstract
Polymeric nanoparticles prepared using high pressure homogenizer (HPH) present some unique challenges during manufacturing which can be better understood by application of quality by design (QbD) approaches. The present review highlights the ways to identify the critical material attributes which includes the anticancer drugs, polymers, surfactants, solvent system and dispersion system. A comprehensive understanding of the critical processing parameters like pressure and number of cycles during the working of HPH used in putting forward the critical quality attributes such as size, shape, surface charge or droplet stabilization. Such QbD approach will involve development of an effective control strategy for would ensure safe encapsulation of anticancer drugs for successful product development. Proper addressing of the issues related to scaling-up would lead to successful commercialization of the nano-sized formulations loaded with anticancer drugs.
Collapse
|
28
|
Manzanares D, Ceña V. Endocytosis: The Nanoparticle and Submicron Nanocompounds Gateway into the Cell. Pharmaceutics 2020; 12:pharmaceutics12040371. [PMID: 32316537 PMCID: PMC7238190 DOI: 10.3390/pharmaceutics12040371] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles (NPs) and submicron particles are increasingly used as carriers for delivering therapeutic compounds to cells. Their entry into the cell represents the initial step in this delivery process, being most of the nanoparticles taken up by endocytosis, although other mechanisms can contribute to the uptake. To increase the delivery efficiency of therapeutic compounds by NPs and submicron particles is very relevant to understand the mechanisms involved in the uptake process. This review covers the proposed pathways involved in the cellular uptake of different NPs and submicron particles types as well as the role that some of the physicochemical nanoparticle characteristics play in the uptake pathway preferentially used by the nanoparticles to gain access and deliver their cargo inside the cell.
Collapse
Affiliation(s)
- Darío Manzanares
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- CIBERNED, Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- CIBERNED, Instituto de Salud Carlos III, 28031 Madrid, Spain
- Correspondence:
| |
Collapse
|
29
|
Yadav KS, Kale K. High Pressure Homogenizer in Pharmaceuticals: Understanding Its Critical Processing Parameters and Applications. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09413-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Glycine-Poly-L-Lactic Acid Copolymeric Nanoparticles for the Efficient Delivery of Bortezomib. Pharm Res 2019; 36:160. [PMID: 31520196 DOI: 10.1007/s11095-019-2686-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Bortezomib (BTZ) is a proteasome inhibitor used for multiple myeloma and mantle cell lymphoma treatment. BTZ's aqueous in solubility is the main hindrance in its successful development as a commercial formulation. The main objective of the present study is to develop and characterize folic acid-glycine-poly-L-lactic acid (FA-Gly4-PLA) based nanoformulation (NPs) to improve solubility and efficacy of BTZ. METHODS BTZ loaded FA-Gly4-PLA NPs were prepared and characterized for size, zeta potential, in vitro studies such as release, kinetics modeling, hemolytic toxicity, and cell line-based studies (Reactive Oxygen Species: ROS and cytotoxicity). RESULTS BTZ loaded NPs (BTZ-loaded FA-Gly4-PLA) and blank NPs (FA-Gly4-PLA) size, zeta, and PDI were found to be 110 ± 8.1 nm, 13.7 ± 1.01 mV, 0.19 ± 0.03 and 198 ± 9.01 nm, 8.63 ± 0.21 mV, 0.21 ± 0.08 respectively. The percent encapsulation efficiency (% EE) and percent drug loading (% DL) of BTZ loaded FA-Gly4-PLA NPs was calculated to be 78.3 ± 4.1 and 12.38 ± 2.1. The Scanning Electron Microscopy (SEM) showed that NPs were slightly biconcave in shape. The in vitro release of BTZ from FA-Gly4-PLA NPs resulted in the sustained manner. The prepared NPs were less hemolytic than BTZ. CONCLUSIONS BTZ loaded Gly4-PLA NPs apoptotic index was found to be much higher than BTZ but lesser than BTZ loaded FA-Gly4-PLA against breast cancer cell lines (MDA-MB-231). ROS intracellular assessment assay indicated that BTZ and BTZ loaded FA-Gly4-PLA NPs exhibited higher ROS production. Conclusively, the BTZ loaded FA-Gly4-PLA NPs were able to encapsulate more BTZ than BTZ loaded Gly4-PLA NPs and were found to be more effective as per as in vitro anti-cancer effect is concerned.
Collapse
|
31
|
Patel KK, Agrawal AK, Anjum MM, Tripathi M, Pandey N, Bhattacharya S, Tilak R, Singh S. DNase-I functionalization of ciprofloxacin-loaded chitosan nanoparticles overcomes the biofilm-mediated resistance of Pseudomonas aeruginosa. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01129-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Zhang D, Wang Y. Functional Protein-Based Bioinspired Nanomaterials: From Coupled Proteins, Synthetic Approaches, Nanostructures to Applications. Int J Mol Sci 2019; 20:E3054. [PMID: 31234528 PMCID: PMC6627797 DOI: 10.3390/ijms20123054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
Protein-based bioinspired nanomaterials (PBNs) combines the advantage of the size, shape, and surface chemistry of nanomaterials, the morphology and functions of natural materials, and the physical and chemical properties of various proteins. Recently, there are many exciting developments on biomimetic nanomaterials using proteins for different applications including, tissue engineering, drug delivery, diagnosis and therapy, smart materials and structures, and water collection and separation. Protein-based biomaterials with high biocompatibility and biodegradability could be modified to obtain the healing effects of natural organisms after injury by mimicking the extracellular matrix. For cancer and other diseases that are difficult to cure now, new therapeutic methods involving different kinds of biomaterials are studied. The nanomaterials with surface modification, which can achieve high drug loading, can be used as drug carriers to enhance target and trigger deliveries. For environment protection and the sustainability of the world, protein-based nanomaterials are also applied for water treatment. A wide range of contaminants from natural water source, such as organic dyes, oil substances, and multiple heavy ions, could be absorbed by protein-based nanomaterials. This review summarizes the formation and application of functional PBNs, and the details of their nanostructures, the proteins involved, and the synthetic approaches are addressed.
Collapse
Affiliation(s)
- Dong Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hum, Kowloon 999077, Hong Kong.
| | - Yi Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hum, Kowloon 999077, Hong Kong.
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057, China.
| |
Collapse
|
33
|
Improved antitumor efficacy and reduced toxicity of docetaxel using anacardic acid functionalized stealth liposomes. Colloids Surf B Biointerfaces 2018; 172:213-223. [DOI: 10.1016/j.colsurfb.2018.08.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022]
|
34
|
Shah P, Abadi LF, Gaikwad S, Chaudhari D, Kushwah V, Jain S, Bhutani KK, Kulkarni S, Singh IP. Synthesis and Biological Evaluation of 8-Hydroxyquinoline-hydrazones for Anti-HIV-1 and Anticancer Potential. ChemistrySelect 2018. [DOI: 10.1002/slct.201802283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Purvi Shah
- Department of Natural Products; National Institute of Pharmaceutical Education and Research (NIPER) Sector-67, S.A.S. Nagar; Punjab- 160062 India
| | - Leila F. Abadi
- Department of Virology; National AIDS Research Institute (NARI) 73 G block, MIDC, Bhosari, Pune; Maharashtra- 411026 India
| | - Shraddha Gaikwad
- Department of Virology; National AIDS Research Institute (NARI) 73 G block, MIDC, Bhosari, Pune; Maharashtra- 411026 India
| | - Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology; Department of Pharmaceutics; National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar; Punjab- 160062 India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology; Department of Pharmaceutics; National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar; Punjab- 160062 India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology; Department of Pharmaceutics; National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar; Punjab- 160062 India
| | - Kamlesh K. Bhutani
- Department of Natural Products; National Institute of Pharmaceutical Education and Research (NIPER) Sector-67, S.A.S. Nagar; Punjab- 160062 India
| | - Smita Kulkarni
- Department of Virology; National AIDS Research Institute (NARI) 73 G block, MIDC, Bhosari, Pune; Maharashtra- 411026 India
| | - Inder P. Singh
- Department of Natural Products; National Institute of Pharmaceutical Education and Research (NIPER) Sector-67, S.A.S. Nagar; Punjab- 160062 India
| |
Collapse
|
35
|
Kushwah V, Katiyar SS, Agrawal AK, Saraf I, Singh IP, Lamprou DA, Gupta RC, Jain S. Implication of linker length on cell cytotoxicity, pharmacokinetic and toxicity profile of gemcitabine-docetaxel combinatorial dual drug conjugate. Int J Pharm 2018; 548:357-374. [PMID: 29981409 DOI: 10.1016/j.ijpharm.2018.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 01/23/2023]
Abstract
The present study investigates effect of linkers [zero length (without linker), short length linker (glycine and lysine) and long length linker (PEG1000, PEG2000 and PEG3500)] on pharmacokinetics and toxicity of docetaxel (DTX) and gemcitabine (GEM) bio-conjugates. Conjugates were synthesized via carbodiimide chemistry and characterized by 1H NMR and FTIR. Conjugation of DTX and GEM via linkers showed diverse physiochemical and plasma stability profile. Cellular uptake mechanism in MCF-7 and MDA-MB-231 cell lines revealed clathrin mediated internalization of bio-conjugates developed by using long length linkers, leading to higher cytotoxicity compared with free drug congeners. DTX-PEG3500-GEM and DTX-PEG2000-GEM demonstrated 4.21 and 3.81-fold higher AUC(0-∞) of GEM in comparison with GEM alone. DTX-PEG2000-GEM and DTX-PEG3500-GEM exhibited reduced hepato-, nephro- and haemolytic toxicity as evident via histopathology, biochemical markers and SEM analysis of RBCs. Conclusively, PEG2000 and PEG3500 significantly improved pharmacokinetics without any sign of toxicity and hence can be explored further for the development of dual-drug conjugates for better therapeutic efficacy.
Collapse
Affiliation(s)
- Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India; James Graham Brown Cancer Centre, University of Louisville, Louisville, KY, USA; Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom
| | - Sameer S Katiyar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India
| | - Ashish Kumar Agrawal
- James Graham Brown Cancer Centre, University of Louisville, Louisville, KY, USA; Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT BHU), Varanasi, Uttar Pradesh, India
| | - Isha Saraf
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India
| | - Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India
| | - Dimitrios A Lamprou
- Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom; School of Pharmacy, Queen's University Belfast, Lisburn Road, Belfast, United Kingdom
| | - Ramesh C Gupta
- James Graham Brown Cancer Centre, University of Louisville, Louisville, KY, USA
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India.
| |
Collapse
|