1
|
Yi JW, Ge HT, Abbas F, Zhao JT, Huang XM, Hu GB, Wang HC. Function of a non-enzymatic hexokinase LcHXK1 as glucose sensor in regulating litchi fruit abscission. TREE PHYSIOLOGY 2023; 43:130-141. [PMID: 35951668 DOI: 10.1093/treephys/tpac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Fruit abscission is a severe hindrance to commercial crop production, and a lack of carbohydrates causes fruit abscission to intensify in a variety of plant species. However, the precise mechanism by which carbohydrates affect fruit setting potential has yet to be determined. In the current study, we noticed negative correlation between hexose level and fruit setting by comparing different cultivars, bearing shoots of varying diameters, and girdling and defoliation treatments. The cumulative fruit-dropping rate was significantly reduced in response to exogenous glucose dipping. These results suggested that hexose, especially glucose, is the key player in lowering litchi fruit abscission. Moreover, five putative litchi hexokinase genes (LcHXKs) were isolated and the subcellular localization as well as activity of their expressed proteins in catalyzing hexose phosphorylation were investigated. LcHXK2 was only found in mitochondria and expressed catalytic protein, whereas the other four HXKs were found in both mitochondria and nuclei and had no activity in catalyzing hexose phosphorylation. LcHXK1 and LcHXK4 were found in the same cluster as previously reported hexose sensors AtHXK1 and MdHXK1. Furthermore, VIGS-mediated silencing assay confirms that LcHXK1 suppression increases fruit abscission. These findings revealed that LcHXK1 functions as hexose sensor, negatively regulating litchi fruit abscission.
Collapse
Affiliation(s)
- Jun-Wen Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Han-Tao Ge
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Farhat Abbas
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jie-Tang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xu-Ming Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Gui-Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Cong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Department of Life Sciences and Technology, Yangtze Normal University, Fuling 408100, China
| |
Collapse
|
2
|
Asim M, Guo M, Khan R, Sun Y, Du S, Liu W, Li Y, Wang X, Wang M, Shi Y, Zhang Y. Investigation of sugar signaling behaviors involved in sucrose-induced senescence initiation and progression in N. tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 184:112-125. [PMID: 35640518 DOI: 10.1016/j.plaphy.2022.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Sugar is involved in initiating leaf senescence. However, its regulatory role, especially as a signal in the senescence process, is unclear. Therefore, this study was designed to illustrate how sugar stimulates the onset of leaf senescence and controls sugar homeostasis through the T6P-SnRK (sucrose non-fermenting (SNF)-related kinase) and HXK (hexokinase) signaling pathways. We used a leaf disc system detached from fully expanded leaves of Nicotiana tabacum cv. K326 and designed a time-course study (days 3, 5, 7, and 9) with exogenously gradient concentrations (0, 30, 60, 90, 120, and 150 mM) of sucrose (Suc) treatment to identify how Suc application affects sugar metabolism and induces senescence. Our results revealed that early decreases of Fv/Fm and increases in electrolyte leakage responded to Suc on day 3. Furthermore, a substantial increase in lipid peroxidation and up-regulated expression of senescence marker genes (NtSAG12) (except 60 mM on day 3) responded sequentially by day 5. The glucose, G6P, and HXK contents were first induced by Suc on day 3 and then repressed from day 5 to day 7. However, exogenous Suc treatment significantly improved the TPS content and the subsequent precursor T6P from day 3 to day 7. Following exogenous Suc treatments, the transcript level of NtSnRK1 was markedly down-regulated from day 3 to day 7. On the other hand, a linear regression analysis demonstrated that the T6P-NtSnRK1 signaling pathway was strongly associated with senescence initiation, and was accompanied by membrane degradation and NtCP1/NtSAG12 up-regulation by day 3. The T6P-NtSnRK1 signaling pathway experienced membrane and chloroplast degradation by day 5. HXK functioned as a metabolic enzyme promoting Glc-G6P and as a Glc sensor, accelerating the initiation of senescence through the HXK-dependent pathway by repressing PSII by day 3 and the senescence process through the Glycolytic pathway by day 7. These physiological, biochemical, and molecular analyses demonstrate that exogenous Suc regulates T6P accumulation, inducing senescence through the NtSnRK signaling pathway. These results illustrate the role of Suc and the transition of the sugar signaling pathway during the progression of senescence initiation.
Collapse
Affiliation(s)
- Muhammad Asim
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, 266101, China
| | - Mei Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, 266101, China; Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Rayyan Khan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, 266101, China
| | - Yanguo Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, 266101, China
| | - Shasha Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, 266101, China
| | - Wenting Liu
- Agricultural College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yang Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, 266101, China; Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Xiaolin Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, 266101, China
| | - Mengyun Wang
- Agricultural College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yi Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, 266101, China.
| | - Yan Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, 266101, China; Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, China.
| |
Collapse
|
3
|
Parrilla J, Medici A, Gaillard C, Verbeke J, Gibon Y, Rolin D, Laloi M, Finkelstein RR, Atanassova R. Grape ASR Regulates Glucose Transport, Metabolism and Signaling. Int J Mol Sci 2022; 23:ijms23116194. [PMID: 35682874 PMCID: PMC9181829 DOI: 10.3390/ijms23116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
To decipher the mediator role of the grape Abscisic acid, Stress, Ripening (ASR) protein, VvMSA, in the pathways of glucose signaling through the regulation of its target, the promoter of hexose transporter VvHT1, we overexpressed and repressed VvMSA in embryogenic and non-embryogenic grapevine cells. The embryogenic cells with organized cell proliferation were chosen as an appropriate model for high sensitivity to the glucose signal, due to their very low intracellular glucose content and low glycolysis flux. In contrast, the non-embryogenic cells displaying anarchic cell proliferation, supported by high glycolysis flux and a partial switch to fermentation, appeared particularly sensitive to inhibitors of glucose metabolism. By using different glucose analogs to discriminate between distinct pathways of glucose signal transduction, we revealed VvMSA positioning as a transcriptional regulator of the glucose transporter gene VvHT1 in glycolysis-dependent glucose signaling. The effects of both the overexpression and repression of VvMSA on glucose transport and metabolism via glycolysis were analyzed, and the results demonstrated its role as a mediator in the interplay of glucose metabolism, transport and signaling. The overexpression of VvMSA in the Arabidopsis mutant abi8 provided evidence for its partial functional complementation by improving glucose absorption activity.
Collapse
Affiliation(s)
- Jonathan Parrilla
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
| | - Anna Medici
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
- Institut des Sciences des Plantes de Montpellier (IPSiM), UMR CNRS/INRAE/Institut Agro/Université de Montpellier, 2 Place Pierre Viala, 34000 Montpellier, France
| | - Cécile Gaillard
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
| | - Jérémy Verbeke
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
- GReD-UMR CNRS 6293/INSERM U1103, CRBC, Faculté de Médecine, Université Clermont-Auvergne, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie (BFP), INRA, Université de Bordeaux, 33882 Bordeaux, France; (Y.G.); (D.R.)
| | - Dominique Rolin
- UMR 1332 Biologie du Fruit et Pathologie (BFP), INRA, Université de Bordeaux, 33882 Bordeaux, France; (Y.G.); (D.R.)
| | - Maryse Laloi
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
| | - Ruth R. Finkelstein
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA;
| | - Rossitza Atanassova
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
- Correspondence:
| |
Collapse
|
4
|
Barbier FF, Cao D, Fichtner F, Weiste C, Perez-Garcia MD, Caradeuc M, Le Gourrierec J, Sakr S, Beveridge CA. HEXOKINASE1 signalling promotes shoot branching and interacts with cytokinin and strigolactone pathways. THE NEW PHYTOLOGIST 2021; 231:1088-1104. [PMID: 33909299 DOI: 10.1111/nph.17427] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/18/2021] [Indexed: 05/08/2023]
Abstract
Plant architecture is controlled by several endogenous signals including hormones and sugars. However, only little information is known about the nature and roles of the sugar signalling pathways in this process. Here we test whether the sugar signalling pathway mediated by HEXOKINASE1 (HXK1) is involved in the control of shoot branching. To test the involvement of HXK1 in shoot branching and in the hormonal network controlling this process, we modulated the HXK1 pathway using physiological and genetic approaches in rose, pea and arabidopsis. Mannose-induced HXK signalling triggered bud outgrowth in rose and pea. In arabidopsis, both HXK1 deficiency and defoliation led to decreased shoot branching and conferred hypersensitivity to auxin. Complementation of the HXK1 knockout mutant gin2 with a catalytically inactive HXK1, restored shoot branching to the wild-type level. HXK1-deficient plants displayed decreased cytokinin levels and increased expression of MAX2, which is required for strigolactone signalling. The branching phenotype of HXK1-deficient plants could be partly restored by cytokinin treatment and strigolactone deficiency could override the negative impact of HXK1 deficiency on shoot branching. Our observations demonstrate that HXK1 signalling contributes to the regulation of shoot branching and interacts with hormones to modulate plant architecture.
Collapse
Affiliation(s)
- Francois F Barbier
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Da Cao
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Franziska Fichtner
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | | | - Mathieu Caradeuc
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
| | - José Le Gourrierec
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
| | - Soulaiman Sakr
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
| | - Christine A Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| |
Collapse
|
5
|
Rivlin M, Navon G. Molecular imaging of tumors by chemical exchange saturation transfer MRI of glucose analogs. Quant Imaging Med Surg 2019; 9:1731-1746. [PMID: 31728315 DOI: 10.21037/qims.2019.09.12] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Early detection of the cancerous process would benefit greatly from imaging at the cellular and molecular level. Increased glucose demand has been recognized as one of the hallmarks of cancerous cells (the "Warburg effect"), hence glucose and its analogs are commonly used for cancer imaging. One example is FDG-PET technique, that led to the use of chemical exchange saturation transfer (CEST) MRI of glucose ("glucoCEST") for tumor imaging. This technique combines high-resolution MRI obtained by conventional imaging with simultaneous molecular information obtained from the exploitation of agents with exchangeable protons from amine, amide or hydroxyl residues with the water signal. In the case of glucoCEST, these agents are based on glucose or its analogs. Recently, preclinical glucoCEST studies demonstrated the ability to increase the sensitivity of MRI to the level of metabolic activity, enabling identification of tumor staging, biologic potential, treatment planning, therapy response and local recurrence, in addition to guiding target biopsy for clinically suspected cancer. However, natural glucose limits this method because of its rapid conversion to lactic acid, leading to reduced CEST effect and short signal duration. For that reason, a variety of glucose analogs have been tested as alternatives to the original glucoCEST. This review discusses the merits of these analogs, including new data on glucose analogs heretofore not reported in the literature. This summarized preclinical data may help strengthen the translation of CEST MRI of glucose analogs into the clinic, improving cancer imaging to enable early intervention without the need for invasive techniques. The data should also broaden our knowledge of fundamental biological processes.
Collapse
Affiliation(s)
- Michal Rivlin
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Navon
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 57:2367-2379. [PMID: 30149541 DOI: 10.1093/pcp/pcw157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2018] [Accepted: 09/05/2016] [Indexed: 05/25/2023] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
7
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 19:ijms19092506. [PMID: 30149541 PMCID: PMC6165531 DOI: 10.3390/ijms19092506] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
8
|
Racca S, Welchen E, Gras DE, Tarkowská D, Turečková V, Maurino VG, Gonzalez DH. Interplay between cytochrome c and gibberellins during Arabidopsis vegetative development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:105-121. [PMID: 29385297 DOI: 10.1111/tpj.13845] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 01/04/2018] [Accepted: 01/15/2018] [Indexed: 05/18/2023]
Abstract
We studied the effect of reducing the levels of the mitochondrial electron carrier cytochrome c (CYTc) in Arabidopsis thaliana. Plants with CYTc deficiency have delayed growth and development, and reach flowering several days later than the wild-type but with the same number of leaves. CYTc-deficient plants accumulate starch and glucose during the day, and contain lower levels of active gibberellins (GA) and higher levels of DELLA proteins, involved in GA signaling. GA treatment abolishes the developmental delay and reduces glucose accumulation in CYTc-deficient plants, which also show a lower raise in ATP levels in response to glucose. Treatment of wild-type plants with inhibitors of mitochondrial energy production limits plant growth and increases the levels of DELLA proteins, thus mimicking the effects of CYTc deficiency. In addition, an increase in the amount of CYTc decreases DELLA protein levels and expedites growth, and this depends on active GA synthesis. We conclude that CYTc levels impinge on the activity of the GA pathway, most likely through changes in mitochondrial energy production. In this way, hormone-dependent growth would be coupled to the activity of components of the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Sofía Racca
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Veronika Turečková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Veronica G Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| |
Collapse
|
9
|
Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration. Proc Natl Acad Sci U S A 2018; 115:E2447-E2456. [PMID: 29440499 PMCID: PMC5878008 DOI: 10.1073/pnas.1718263115] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant grafting is an ancient and agriculturally important technique. Despite its widespread use, little is known about how plants graft. Here, we perform a genome-wide transcriptome analysis of tissues above and below graft junctions. We observed a sequential activation of genes important for vascular development including cambium-, phloem-, and xylem-related genes. Massive changes in gene expression that rapidly differentiate the top of the graft from the bottom occur. These changes disappear as the graft heals and the vasculature reconnects. Many genes below the junction rapidly respond to the presence of attached tissues including genes involved in vascular differentiation and cell division. This intertissue communication process occurs independently of functional vascular connections and acts as a signal to activate vascular regeneration. The ability for cut tissues to join and form a chimeric organism is a remarkable property of many plants; however, grafting is poorly characterized at the molecular level. To better understand this process, we monitored genome-wide gene expression changes in grafted Arabidopsis thaliana hypocotyls. We observed a sequential activation of genes associated with cambium, phloem, and xylem formation. Tissues above and below the graft rapidly developed an asymmetry such that many genes were more highly expressed on one side than on the other. This asymmetry correlated with sugar-responsive genes, and we observed an accumulation of starch above the graft junction. This accumulation decreased along with asymmetry once the sugar-transporting vascular tissues reconnected. Despite the initial starvation response below the graft, many genes associated with vascular formation were rapidly activated in grafted tissues but not in cut and separated tissues, indicating that a recognition mechanism was activated independently of functional vascular connections. Auxin, which is transported cell to cell, had a rapidly elevated response that was symmetric, suggesting that auxin was perceived by the root within hours of tissue attachment to activate the vascular regeneration process. A subset of genes was expressed only in grafted tissues, indicating that wound healing proceeded via different mechanisms depending on the presence or absence of adjoining tissues. Such a recognition process could have broader relevance for tissue regeneration, intertissue communication, and tissue fusion events.
Collapse
|
10
|
Aguilera-Alvarado GP, Sánchez-Nieto S. Plant Hexokinases are Multifaceted Proteins. PLANT & CELL PHYSIOLOGY 2017; 58:1151-1160. [PMID: 28449056 DOI: 10.1093/pcp/pcx062] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/19/2017] [Indexed: 05/09/2023]
Abstract
Sugars are the main carbon and energy source in cells, but they can also act as signaling molecules that affect the whole plant life cycle. Certain tissues can produce sugars and supply them to others, and this plant tissue heterogeneity makes sugar signaling a highly complex process that requires elements capable of perceiving changes in sugar concentrations among different tissues, cell compartments and developmental stages. In plants, the regulatory effects of glucose (Glc) have been the most studied to date. The first Glc sensor identified in plants was hexokinase (HXK), which is currently recognized as a dual-function protein. In addition to its catalytic activity, this enzyme can also repress the expression of some photosynthetic genes in response to high internal Glc concentrations. Additionally, the catalytic activity of HXKs has a profound impact on cell metabolism and other sugar signaling pathways that depend on phosphorylated hexoses and intermediate glycolytic products. HXKs are the only proteins that are able to phosphorylate Glc in plants, since no evidence has been provided to date concerning the existence of a glucokinase. Moreover, the intracellular localization of HXKs seems to be crucial to their activity and sensor functions. Recently, two new and surprising functions have been described for HXKs. In this review, we discuss the versatility of HXKs in regard to their catalytic and glucose sensor activities, intracellular location, protein-protein and hormone interactions, as well as how these HXK characteristics influence plant growth and development, in an effort to understand this enzyme's role in improving plant productivity.
Collapse
Affiliation(s)
- G Paulina Aguilera-Alvarado
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, México 04510, DF, México
| | - Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, México 04510, DF, México
| |
Collapse
|
11
|
Lipko A, Swiezewska E. Isoprenoid generating systems in plants - A handy toolbox how to assess contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthetic process. Prog Lipid Res 2016; 63:70-92. [PMID: 27133788 DOI: 10.1016/j.plipres.2016.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/07/2016] [Accepted: 04/22/2016] [Indexed: 12/21/2022]
Abstract
Isoprenoids comprise an astonishingly diverse group of metabolites with numerous potential and actual applications in medicine, agriculture and the chemical industry. Generation of efficient platforms producing isoprenoids is a target of numerous laboratories. Such efforts are generally enhanced if the native biosynthetic routes can be identified, and if the regulatory mechanisms responsible for the biosynthesis of the compound(s) of interest can be determined. In this review a critical summary of the techniques applied to establish the contribution of the two alternative routes of isoprenoid production operating in plant cells, the mevalonate and methylerythritol pathways, with a focus on their co-operation (cross-talk) is presented. Special attention has been paid to methodological aspects of the referred studies, in order to give the reader a deeper understanding for the nuances of these powerful techniques. This review has been designed as an organized toolbox, which might offer the researchers comments useful both for project design and for interpretation of results obtained.
Collapse
Affiliation(s)
- Agata Lipko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
12
|
Cordoba E, Aceves-Zamudio DL, Hernández-Bernal AF, Ramos-Vega M, León P. Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:147-59. [PMID: 25281700 PMCID: PMC4265152 DOI: 10.1093/jxb/eru394] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H(+)/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5' regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified.
Collapse
Affiliation(s)
- Elizabeth Cordoba
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos. México. C.P. 62210, Mexico
| | - Denise Lizeth Aceves-Zamudio
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos. México. C.P. 62210, Mexico
| | - Alma Fabiola Hernández-Bernal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos. México. C.P. 62210, Mexico
| | - Maricela Ramos-Vega
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos. México. C.P. 62210, Mexico
| | - Patricia León
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos. México. C.P. 62210, Mexico
| |
Collapse
|
13
|
Wang X, Jia N, Zhao C, Fang Y, Lv T, Zhou W, Sun Y, Li B. Knockout of AtDjB1, a J-domain protein from Arabidopsis thaliana, alters plant responses to osmotic stress and abscisic acid. PHYSIOLOGIA PLANTARUM 2014; 152:286-300. [PMID: 24521401 DOI: 10.1111/ppl.12169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 05/26/2023]
Abstract
AtDjB1 is a member of the Arabidopsis thaliana J-protein family. AtDjB1 is targeted to the mitochondria and plays a crucial role in A. thaliana heat and oxidative stress resistance. Herein, the role of AtDjB1 in adapting to saline and drought stress was studied in A. thaliana. AtDjB1 expression was induced through salinity, dehydration and abscisic acid (ABA) in young seedlings. Reverse genetic analyses indicate that AtDjB1 is a negative regulator in plant osmotic stress tolerance. Further, AtDjB1 knockout mutant plants (atj1-1) exhibited greater ABA sensitivity compared with the wild-type (WT) plants and the mutant lines with a rescued AtDjB1 gene. AtDjB1 gene knockout also altered the expression of several ABA-responsive genes, which suggests that AtDjB1 is involved in osmotic stress tolerance through its effects on ABA signaling pathways. Moreover, atj1-1 plants exhibited higher glucose levels and greater glucose sensitivity in the post-germination development stage. Applying glucose promoted an ABA response in seedlings, and the promotion was more evident in atj1-1 than WT seedlings. Taken together, higher glucose levels in atj1-1 plants are likely responsible for the greater ABA sensitivity and increased osmotic stress tolerance.
Collapse
Affiliation(s)
- Xingxing Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kunz S, Pesquet E, Kleczkowski LA. Functional dissection of sugar signals affecting gene expression in Arabidopsis thaliana. PLoS One 2014; 9:e100312. [PMID: 24950222 PMCID: PMC4065033 DOI: 10.1371/journal.pone.0100312] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/26/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sugars modulate expression of hundreds of genes in plants. Previous studies on sugar signaling, using intact plants or plant tissues, were hampered by tissue heterogeneity, uneven sugar transport and/or inter-conversions of the applied sugars. This, in turn, could obscure the identity of a specific sugar that acts as a signal affecting expression of given gene in a given tissue or cell-type. METHODOLOGY/PRINCIPAL FINDINGS To bypass those biases, we have developed a novel biological system, based on stem-cell-like Arabidopsis suspension culture. The cells were grown in a hormone-free medium and were sustained on xylose as the only carbon source. Using functional genomics we have identified 290 sugar responsive genes, responding rapidly (within 1 h) and specifically to low concentration (1 mM) of glucose, fructose and/or sucrose. For selected genes, the true nature of the signaling sugar molecules and sites of sugar perception were further clarified using non-metabolizable sugar analogues. Using both transgenic and wild-type A. thaliana seedlings, it was shown that the expression of selected sugar-responsive genes was not restricted to a specific tissue or cell type and responded to photoperiod-related changes in sugar availability. This suggested that sugar-responsiveness of genes identified in the cell culture system was not biased toward heterotrophic background and resembled that in whole plants. CONCLUSIONS Altogether, our research strategy, using a combination of cell culture and whole plants, has provided an unequivocal evidence for the identity of sugar-responsive genes and the identity of the sugar signaling molecules, independently from their inter-conversions or use for energy metabolism.
Collapse
Affiliation(s)
- Sabine Kunz
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Edouard Pesquet
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Leszek A. Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Yan J, Wang B, Jiang Y, Cheng L, Wu T. GmFNSII-controlled soybean flavone metabolism responds to abiotic stresses and regulates plant salt tolerance. PLANT & CELL PHYSIOLOGY 2014; 55:74-86. [PMID: 24192294 DOI: 10.1093/pcp/pct159] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Flavones, a major group of flavonoids in most plant tissues, play multiple roles in plant-environment interactions. In our study, the expression of the two soybean flavone synthase genes, GmFNSII-1 and GmFNSII-2, was significantly increased by methyl jasmonate (MeJA), glucose, mannitol and NaCl treatment, which were also found to increase flavone aglycone accumulation in Glycine max (L.) Merrill. In the GmFNSII-1 promoter, a specific CGTCA motif in the region (-979 bp to -806 bp) involved in the MeJA response was identified. Promoter deletion analysis of GmFNSII-2 revealed the presence of osmotic-responsive (-1,143 bp to -767 bp) and glucose-repressive sequence elements (-767 bp to -475 bp), which strongly supported the hypothesis that glucose induces soybean flavone production by acting as both an osmotic factor and a sugar signaling molecule simultaneously. Silencing of the GmFNSII gene clearly reduced the production of flavone aglycones (apigenin, luteolin and 7,4'-dihydroxyflavone) in hairy roots. The GmFNSII-RNAi (RNA interference) roots that had a reduced level of flavones accompanied by more malondialdehyde and H2O2 accumulation were more sensitive to salt stress compared with those of the control, and we concluded that flavones, as antioxidants, are associated with salt tolerance.
Collapse
Affiliation(s)
- Junhui Yan
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai, PR China 200240
| | | | | | | | | |
Collapse
|
16
|
Bates GW, Rosenthal DM, Sun J, Chattopadhyay M, Peffer E, Yang J, Ort DR, Jones AM. A comparative study of the Arabidopsis thaliana guard-cell transcriptome and its modulation by sucrose. PLoS One 2012. [PMID: 23185391 PMCID: PMC3504121 DOI: 10.1371/journal.pone.0049641] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Microarray analysis was performed on RNA isolated from guard cells that were manually dissected from leaves of Arabidopsis. By pooling our data with those of two earlier studies on Arabidopsis guard cell protoplasts, we provide a robust view of the guard-cell transcriptome, which is rich in transcripts for transcription factors, signaling proteins, transporters, and carbohydrate-modifying enzymes. To test the hypothesis that photosynthesis-derived sugar signals guard cells to adjust stomatal opening, we determined the profile of genes expressed in guard cells from leaves that had been treated with sucrose. The results revealed that expression of 440 genes changed in guard cells in response to sucrose. Consistent with this hypothesis, these genes encoded cellular functions for photosynthesis and transport of sugars, water, amino acids, and ions. Plants of T-DNA insertion lines for 50 genes highly responsive to sucrose were examined for defects in guard cell function. Twelve genes not previously known to function in guard cells were shown to be important in leaf conductance, water-use efficiency, and/or stomate development. Of these, three are of particular interest, having shown effects in nearly every test of stomatal function without a change in stomatal density: TPS5 (At4g17770), a TRAF domain-containing protein (At1g65370), and a WD repeat–containing protein (At1g15440).
Collapse
Affiliation(s)
- George W Bates
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wingler A, Delatte TL, O'Hara LE, Primavesi LF, Jhurreea D, Paul MJ, Schluepmann H. Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. PLANT PHYSIOLOGY 2012; 158:1241-51. [PMID: 22247267 PMCID: PMC3291265 DOI: 10.1104/pp.111.191908] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/12/2012] [Indexed: 05/17/2023]
Abstract
Trehalose 6-phosphate (T6P) is an important regulator of plant metabolism and development. T6P content increases when carbon availability is high, and in young growing tissue, T6P inhibits the activity of Snf1-related protein kinase (SnRK1). Here, strong accumulation of T6P was found in senescing leaves of Arabidopsis (Arabidopsis thaliana), in parallel with a rise in sugar contents. To determine the role of T6P in senescence, T6P content was altered by expressing the bacterial T6P synthase gene, otsA (to increase T6P), or the T6P phosphatase gene, otsB (to decrease T6P). In otsB-expressing plants, T6P accumulated less strongly during senescence than in wild-type plants, while otsA-expressing plants contained more T6P throughout. Mature otsB-expressing plants showed a similar phenotype as described for plants overexpressing the SnRK1 gene, KIN10, including reduced anthocyanin accumulation and delayed senescence. This was confirmed by quantitative reverse transcription-polymerase chain reaction analysis of senescence-associated genes and genes involved in anthocyanin synthesis. To analyze if the senescence phenotype was due to decreased sugar sensitivity, the response to sugars was determined. In combination with low nitrogen supply, metabolizable sugars (glucose, fructose, or sucrose) induced senescence in wild-type and otsA-expressing plants but to a smaller extent in otsB-expressing plants. The sugar analog 3-O-methyl glucose, on the other hand, did not induce senescence in any of the lines. Transfer of plants to and from glucose-containing medium suggested that glucose determines senescence during late development but that the effects of T6P on senescence are established by the sugar response of young plants.
Collapse
Affiliation(s)
- Astrid Wingler
- Research Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
18
|
Guo Y, Gan SS. Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. PLANT, CELL & ENVIRONMENT 2012; 35:644-55. [PMID: 21988545 DOI: 10.1111/j.1365-3040.2011.02442.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In addition to age and developmental progress, leaf senescence and senescence-associated genes (SAGs) can be induced by other factors such as plant hormones, pathogen infection and environmental stresses. The relationship is not clear, however, between these induced senescence processes and developmental leaf senescence, and to what extent these senescence-promoting signals mimic age and developmental senescence in terms of gene expression profiles. By analysing microarray expression data from 27 different treatments (that are known to promote senescence) and comparing them with that from developmental leaf senescence, we were able to show that at early stages of treatments, different hormones and stresses showed limited similarity in the induction of gene expression to that of developmental leaf senescence. Once the senescence process is initiated, as evidenced by visible yellowing, generally after a prolonged period of treatments, a great proportion of SAGs of developmental leaf senescence are shared by gene expression profiles in response to different treatments. This indicates that although different signals that lead to initiation of senescence may do so through distinct signal transduction pathways, senescence processes induced either developmentally or by different senescence-promoting treatments may share common execution events.
Collapse
Affiliation(s)
- Yongfeng Guo
- Department of Horticulture, Cornell University, Ithaca, NY 14853-5904, USA
| | | |
Collapse
|
19
|
Funck D, Clauß K, Frommer WB, Hellmann HA. The Arabidopsis CstF64-Like RSR1/ESP1 Protein Participates in Glucose Signaling and Flowering Time Control. FRONTIERS IN PLANT SCIENCE 2012; 3:80. [PMID: 22629280 PMCID: PMC3355569 DOI: 10.3389/fpls.2012.00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/10/2012] [Indexed: 05/03/2023]
Abstract
Mechanisms for sensing and regulating metabolic processes at the cellular level are critical for the general physiology and development of living organisms. In higher plants, sugar signaling is crucial for adequate regulation of carbon and energy metabolism and affects virtually every aspect of development. Although many genes are regulated by sugar levels, little is known on how sugar levels are measured by plants. Several components of the sugar signaling network have been unraveled and demonstrated to have extensive overlap with hormone signaling networks. Here we describe the reduced sugar response1-1 (rsr1-1) mutant as a new early flowering mutant that displays decreased sensitivity to abscisic acid. Both hexokinase1 (HXK1)-dependent and glucose phosphorylation-independent signaling is reduced in rsr1-1. Map-based identification of the affected locus demonstrated that rsr1-1 carries a premature stop codon in the gene for a CstF64-like putative RNA processing factor, ESP1, which is involved in mRNA 3'-end formation. The identification of RSR1/ESP1 as a nuclear protein with a potential threonine phosphorylation site may explain the impact of protein phosphorylation cascades on sugar-dependent signal transduction. Additionally, RSR1/ESP1 may be a crucial factor in linking sugar signaling to the control of flowering time.
Collapse
Affiliation(s)
- Dietmar Funck
- Department of Plant Physiology and Biochemistry, University KonstanzKonstanz, Germany
| | - Karen Clauß
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
| | - Wolf B. Frommer
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
- *Correspondence: Wolf B. Frommer, Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94306, USA. e-mail:
| | - Hanjo A. Hellmann
- School of Biological Sciences, Washington State UniversityPullman, WA, USA
| |
Collapse
|
20
|
Colville A, Alhattab R, Hu M, Labbé H, Xing T, Miki B. Role of HD2 genes in seed germination and early seedling growth in Arabidopsis. PLANT CELL REPORTS 2011; 30:1969-79. [PMID: 21739146 DOI: 10.1007/s00299-011-1105-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 05/25/2011] [Accepted: 06/02/2011] [Indexed: 05/06/2023]
Abstract
The Arabidopsis HD2 family of histone deacetylases consist of 4 members (HD2A, HD2B, HD2C, HD2D) that play diverse roles in plant development and physiology through chromatin remodelling. Here, we show that the transcripts of HD2 family members selectively accumulate in response to glucose through a HXK1-independent signal transduction pathway during the early stages of seedling growth. Germination was enhanced in hd2a null mutants relative to wild-type seeds. In contrast, hd2c mutants were restrained in germination relative to wild-type seeds. In hd2a/hd2c double mutants, germination was restored to wild-type levels. The data suggests that HD2A and HD2C may have different and opposing functions in germination with the glucose/HD2A pathway acting to restrain germination and the HD2C pathway acting to enhance germination. These pathways may function early in the regulation of seedling germination, independently of the glucose/HXK1/ABA signal transduction pathway, to fine tune the onset of germination.
Collapse
Affiliation(s)
- Adam Colville
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Matiolli CC, Tomaz JP, Duarte GT, Prado FM, Del Bem LEV, Silveira AB, Gauer L, Corrêa LGG, Drumond RD, Viana AJC, Di Mascio P, Meyer C, Vincentz M. The Arabidopsis bZIP gene AtbZIP63 is a sensitive integrator of transient abscisic acid and glucose signals. PLANT PHYSIOLOGY 2011; 157:692-705. [PMID: 21844310 PMCID: PMC3192551 DOI: 10.1104/pp.111.181743] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/13/2011] [Indexed: 05/18/2023]
Abstract
Glucose modulates plant metabolism, growth, and development. In Arabidopsis (Arabidopsis thaliana), Hexokinase1 (HXK1) is a glucose sensor that may trigger abscisic acid (ABA) synthesis and sensitivity to mediate glucose-induced inhibition of seedling development. Here, we show that the intensity of short-term responses to glucose can vary with ABA activity. We report that the transient (2 h/4 h) repression by 2% glucose of AtbZIP63, a gene encoding a basic-leucine zipper (bZIP) transcription factor partially involved in the Snf1-related kinase KIN10-induced responses to energy limitation, is independent of HXK1 and is not mediated by changes in ABA levels. However, high-concentration (6%) glucose-mediated repression appears to be modulated by ABA, since full repression of AtbZIP63 requires a functional ABA biosynthetic pathway. Furthermore, the combination of glucose and ABA was able to trigger a synergistic repression of AtbZIP63 and its homologue AtbZIP3, revealing a shared regulatory feature consisting of the modulation of glucose sensitivity by ABA. The synergistic regulation of AtbZIP63 was not reproduced by an AtbZIP63 promoter-5'-untranslated region::β-glucuronidase fusion, thus suggesting possible posttranscriptional control. A transcriptional inhibition assay with cordycepin provided further evidence for the regulation of mRNA decay in response to glucose plus ABA. Overall, these results indicate that AtbZIP63 is an important node of the glucose-ABA interaction network. The mechanisms by which AtbZIP63 may participate in the fine-tuning of ABA-mediated abiotic stress responses according to sugar availability (i.e., energy status) are discussed.
Collapse
|
22
|
Park JI, Ishimizu T, Suwabe K, Sudo K, Masuko H, Hakozaki H, Nou IS, Suzuki G, Watanabe M. UDP-glucose pyrophosphorylase is rate limiting in vegetative and reproductive phases in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2010; 51:981-96. [PMID: 20435647 DOI: 10.1093/pcp/pcq057] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
UDP-glucose pyrophosphorylase (UGPase) is an important enzyme in the metabolism of UDP-glucose, a precursor for the synthesis of carbohydrate cell wall components, such as cellulose and callose. The Arabidopsis thaliana genome contains two putative genes encoding UGPase, AtUGP1 and AtUGP2. These genes are expressed in all organs. In order to determine the role of UGPase in vegetative and reproductive organs, we employed a reverse genetic approach using the T-DNA insertion mutants, atugp1 and atugp2. Despite a significant decrease in UGPase activity in both the atugp1 and atugp2 single mutants, no decrease in normal growth and reproduction was observed. In contrast, the atugp1/atugp2 double mutant displayed drastic growth defects and male sterility. At the reproductive phase, in the anthers of atugp1/atugp2, pollen mother cells developed normally, but callose deposition around microspores was absent. Genes coding for enzymes at the subsequent steps in the cellulose and callose synthesis pathway were also down-regulated in the double mutant. Taken together, these results demonstrate that the AtUGP1 and AtUGP2 genes are functionally redundant and UGPase activity is essential for both vegetative and reproductive phases in Arabidopsis. Importantly, male fertility was not restored in the double knockout mutant by an application of external sucrose, whereas vegetative growth was comparable in size with that of the wild type. In contrast, an application of external UDP-glucose recovered male fertility in the double mutant, suggesting that control of UGPase in carbohydrate metabolism is different in the vegetative phase as compared with the reproductive phase in A. thaliana.
Collapse
Affiliation(s)
- Jong-In Park
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dekkers BJW, Schuurmans JAMJ, Smeekens SCM. Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis. PLANT MOLECULAR BIOLOGY 2008; 67:151-67. [PMID: 18278579 PMCID: PMC2295253 DOI: 10.1007/s11103-008-9308-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Accepted: 02/02/2008] [Indexed: 05/17/2023]
Abstract
Sugars regulate important processes and affect the expression of many genes in plants. Characterization of Arabidopsis (Arabidopsis thaliana) mutants with altered sugar sensitivity revealed the function of abscisic acid (ABA) signalling in sugar responses. However, the exact interaction between sugar signalling and ABA is obscure. Therefore ABA deficient plants with constitutive ABI4 expression (aba2-1/35S::ABI4) were generated. Enhanced ABI4 expression did not rescue the glucose insensitive (gin) phenotype of aba2 seedlings indicating that other ABA regulated factors are essential as well. Interestingly, both glucose and ABA treatment of Arabidopsis seeds trigger a post-germination seedling developmental arrest. The glucose-arrested seedlings had a drought tolerant phenotype and showed glucose-induced expression of ABSCISIC ACID INSENSITIVE3 (ABI3), ABI5 and LATE EMBRYOGENESIS ABUNDANT (LEA) genes reminiscent of ABA signalling during early seedling development. ABI3 is a key regulator of the ABA-induced arrest and it is shown here that ABI3 functions in glucose signalling as well. Multiple abi3 alleles have a glucose insensitive (gin) phenotype comparable to that of other known gin mutants. Importantly, glucose-regulated gene expression is disturbed in the abi3 background. Moreover, abi3 was insensitive to sugars during germination and showed sugar insensitive (sis) and sucrose uncoupled (sun) phenotypes. Mutant analysis further identified the ABA response pathway genes ENHANCED RESPONSE TO ABA1 (ERA1) and ABI2 as intermediates in glucose signalling. Hence, three previously unidentified sugar signalling genes have been identified, showing that ABA and glucose signalling overlap to a larger extend than originally thought.
Collapse
Affiliation(s)
- Bas J W Dekkers
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, Utrecht, The Netherlands.
| | | | | |
Collapse
|
24
|
Le Gall M, Tobin V, Stolarczyk E, Dalet V, Leturque A, Brot-Laroche E. Sugar sensing by enterocytes combines polarity, membrane bound detectors and sugar metabolism. J Cell Physiol 2007; 213:834-43. [PMID: 17786952 DOI: 10.1002/jcp.21245] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sugar consumption and subsequent sugar metabolism are known to regulate the expression of genes involved in intestinal sugar absorption and delivery. Here we investigate the hypothesis that sugar-sensing detectors in membranes facing the intestinal lumen or the bloodstream can also modulate intestinal sugar absorption. We used wild-type and GLUT2-null mice, to show that dietary sugars stimulate the expression of sucrase-isomaltase (SI) and L-pyruvate kinase (L-PK) by GLUT2-dependent mechanisms, whereas the expression of GLUT5 and SGLT1, did not rely on the presence of GLUT2. By providing sugar metabolites, sugar transporters, including GLUT2, fuelled a sensing pathway. In Caco2/TC7 enterocytes, we could disconnect the sensing triggered by detector from that produced by metabolism, and found that GLUT2 generated a metabolism-independent pathway to stimulate the expression of SI and L-PK. In cultured enterocytes, both apical and basolateral fructose could increase the expression of GLUT5, conversely, basolateral sugar administration could stimulate the expression of GLUT2. Finally, we located the sweet-taste receptors T1R3 and T1R2 in plasma membranes, and we measured their cognate G alpha Gustducin mRNA levels. Furthermore, we showed that a T1R3 inhibitor altered the fructose-induced expression of SGLT1, GLUT5, and L-PK. Intestinal gene expression is thus controlled by a combination of at least three sugar-signaling pathways triggered by sugar metabolites and membrane sugar receptors that, according to membrane location, determine sugar-sensing polarity. This provides a rationale for how intestine adapts sugar delivery to blood and dietary sugar provision.
Collapse
Affiliation(s)
- Maude Le Gall
- INSERM, UMR S 872, Centre de Recherche des Cordeliers, Paris, France.
| | | | | | | | | | | |
Collapse
|
25
|
Balasubramanian R, Karve A, Kandasamy M, Meagher RB, Moore BD. A role for F-actin in hexokinase-mediated glucose signaling. PLANT PHYSIOLOGY 2007; 145:1423-34. [PMID: 17965176 PMCID: PMC2151701 DOI: 10.1104/pp.107.108704] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 10/22/2007] [Indexed: 05/17/2023]
Abstract
HEXOKINASE1 (HXK1) from Arabidopsis (Arabidopsis thaliana) has dual roles in glucose (Glc) signaling and in Glc phosphorylation. The cellular context, though, for HXK1 function in either process is not well understood. Here we have shown that within normal experimental detection limits, AtHXK1 is localized continuously to mitochondria. Two mitochondrial porin proteins were identified as capable of binding to overexpressed HXK1 protein, both in vivo and in vitro. We also found that AtHXK1 can be associated with its structural homolog, F-actin, based on their coimmunoprecipitation from transgenic plants that overexpress HXK1-FLAG or from transient expression assays, and based on their localization in leaf cells after cryofixation. This association might be functionally important because Glc signaling in protoplast transient expression assays is compromised by disruption of F-actin. We also demonstrate that Glc treatment of Arabidopsis seedlings rapidly and reversibly disrupts fine mesh actin filaments. The possible roles of actin in HXK-dependent Glc signaling are discussed.
Collapse
|
26
|
Li Y, Smith C, Corke F, Zheng L, Merali Z, Ryden P, Derbyshire P, Waldron K, Bevan MW. Signaling from an altered cell wall to the nucleus mediates sugar-responsive growth and development in Arabidopsis thaliana. THE PLANT CELL 2007; 19:2500-15. [PMID: 17693536 PMCID: PMC2002624 DOI: 10.1105/tpc.106.049965] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sugars such as glucose function as signal molecules that regulate gene expression, growth, and development in plants, animals, and yeast. To understand the molecular mechanisms of sugar responses, we isolated and characterized an Arabidopsis thaliana mutant, high sugar response8 (hsr8), which enhances sugar-responsive growth and gene expression. Light-grown hsr8 plants exhibited increased starch and anthocyanin and reduced chlorophyll content in response to glucose treatment. Dark-grown hsr8 seedlings showed glucose-hypersensitive hypocotyl elongation and development. The HSR8 gene, isolated using map-based cloning, was allelic to the MURUS4 (MUR4) gene involved in arabinose synthesis. Dark-grown mur1 and mur3 seedlings also exhibited similar sugar responses to hsr8/mur4. The sugar-hypersensitive phenotypes of hsr8/mur4, mur1, and mur3 were rescued by boric acid, suggesting that alterations in the cell wall cause hypersensitive sugar-responsive phenotypes. Genetic analysis showed that sugar-hypersensitive responses in hsr8 mutants were suppressed by pleiotropic regulatory locus1 (prl1), indicating that nucleus-localized PRL1 is required for enhanced sugar responses in hsr8 mutant plants. Microarray analysis revealed that the expression of many cell wall-related and sugar-responsive genes was altered in mur4-1, and the expression of a significant proportion of these genes was restored to wild-type levels in the mur4-1 prl1 double mutant. These findings reveal a pathway that signals changes in the cell wall through PRL1 to altered gene expression and sugar-responsive metabolic, growth, and developmental changes.
Collapse
Affiliation(s)
- Yunhai Li
- Department of Cell and Developmental Biology, John Ines Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kim MJ, Lim GH, Kim ES, Ko CB, Yang KY, Jeong JA, Lee MC, Kim CS. Abiotic and biotic stress tolerance in Arabidopsis overexpressing the multiprotein bridging factor 1a (MBF1a) transcriptional coactivator gene. Biochem Biophys Res Commun 2007; 354:440-6. [PMID: 17234157 DOI: 10.1016/j.bbrc.2006.12.212] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2006] [Accepted: 12/30/2006] [Indexed: 11/30/2022]
Abstract
We conducted a genetic yeast screen to identify salt tolerance (SAT) genes in a maize kernel cDNA library. During the screening, we identified a maize clone (SAT41) that seemed to confer elevated salt tolerance in comparison to control cells. SAT41 cDNA encodes a 16-kDa protein which is 82.4% identical to the Arabidopsis Multiprotein bridging factor 1a (MBF1a) transcriptional coactivator gene. To further examine salinity tolerance in Arabidopsis, we functionally characterized the MBF1a gene and found that dehydration as well as heightened glucose (Glc) induced MBF1a expression. Constitutive expression of MBF1a in Arabidopsis led to elevated salt tolerance in transgenic lines. Interestingly, plants overexpressing MBF1a exhibited insensitivity to Glc and resistance to fungal disease. Our results suggest that MBF1a is involved in stress tolerance as well as in ethylene and Glc signaling in Arabidopsis.
Collapse
Affiliation(s)
- Min-Jung Kim
- Department of Plant Biotechnology and Agricultural Plant Stress Research Center, Chonnam National University, Kwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Müller R, Morant M, Jarmer H, Nilsson L, Nielsen TH. Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. PLANT PHYSIOLOGY 2007; 143:156-71. [PMID: 17085508 PMCID: PMC1761981 DOI: 10.1104/pp.106.090167] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 10/17/2006] [Indexed: 05/12/2023]
Abstract
Global gene expression was analyzed in Arabidopsis (Arabidopsis thaliana) by microarrays comprising 21,500 genes. Leaf segments derived from phosphorus (P)-starved and P-replenished plants were incubated with or without sucrose (Suc) to obtain tissues with contrasting combinations of P and carbohydrate levels. Transcript profiling revealed the influence of the two factors individually and the interactions between P- and sugar-dependent gene regulation. A large number of gene transcripts changed more than 2-fold: In response to P starvation, 171 genes were induced and 16 repressed, whereas Suc incubation resulted in 337 induced and 307 repressed genes. A number of new candidate genes involved in P acquisition were discovered. In addition, several putative transcription factors and signaling proteins of P sensing were disclosed. Several genes previously identified to be sugar responsive were also regulated by P starvation and known P-responsive genes were sugar inducible. Nearly 150 genes were synergistically or antagonistically regulated by the two factors. These genes exhibit more prominent or contrasting regulation in response to Suc and P in combination than expected from the effect of the two factors individually. The genes exhibiting interactions form three main clusters with different response patterns and functionality of genes. One cluster (cluster 1) most likely represents a regulatory program to support increased growth and development when both P and carbohydrates are ample. Another cluster (cluster 3) represents genes induced to alleviate P starvation and these are further induced by carbohydrate accumulation. Thus, interactions between P and Suc reveal two different signaling programs and novel interactions in gene regulation in response to environmental factors. cis-Regulatory elements were analyzed for each factor and for interaction clusters. PHR1 binding sites were more frequent in promoters of P-regulated genes as compared to the entire Arabidopsis genome, and E2F and PHR1 binding sites were more frequent in interaction clusters 1 and 3, respectively.
Collapse
Affiliation(s)
- Renate Müller
- Plant Biochemistry Laboratory, Department of Plant Biology, Royal Veterinary and Agricultural University, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
29
|
Nagira Y, Shimamura K, Hirai S, Shimanuki M, Kodama H, Ozeki Y. Identification and characterization of genes induced for anthocyanin synthesis and chlorophyll degradation in regenerated torenia shoots using suppression subtractive hybridization, cDNA microarrays, and RNAi techniques. JOURNAL OF PLANT RESEARCH 2006; 119:217-30. [PMID: 16602030 DOI: 10.1007/s10265-006-0264-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 01/04/2006] [Indexed: 05/08/2023]
Abstract
Anthocyanin synthesis and chlorophyll degradation in regenerated torenia (Torenia fournieri Linden ex Fourn.) shoots induced by osmotic stress with 7% sucrose were examined to identify the genes regulating the underlying molecular mechanism. To achieve this, suppression subtractive hybridization was performed to enrich the cDNAs of genes induced in anthocyanin-synthesizing and chlorophyll-degrading regenerated shoots. The nucleotide sequences of 1,388 random cDNAs were determined, and these were used in the preparation of cDNA microarrays for high-throughput screening. From 1,056 cDNAs analyzed in the microarrays, 116 nonredundant genes were identified, which were up regulated by 7% sucrose to induce anthocyanin synthesis and chlorophyll degradation in regenerated shoots. Of these, eight genes were selected and RNAi transformants prepared, six of which exhibited anthocyanin synthesis inhibition and/or chlorophyll degradation in their leaf discs. Notably, the RNAi transformants of the glucose 6-phosphate/phosphate translocator gene displayed inhibition both of anthocyanin synthesis and chlorophyll degradation in both leaf discs and regenerated shoots. There was also less accumulation of anthocyanin in the petals, and flowering time was shortened. The genes we identified as being up-regulated in the regenerated torenia shoots may help further elucidate the molecular mechanism underlying the induction of anthocyanin synthesis and chlorophyll degradation.
Collapse
Affiliation(s)
- Yozo Nagira
- Department of Biotechnology, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Gonzali S, Loreti E, Solfanelli C, Novi G, Alpi A, Perata P. Identification of sugar-modulated genes and evidence for in vivo sugar sensing in Arabidopsis. JOURNAL OF PLANT RESEARCH 2006; 119:115-23. [PMID: 16463203 DOI: 10.1007/s10265-005-0251-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 10/31/2005] [Indexed: 05/06/2023]
Abstract
Sugar status regulates mechanisms controlling growth and development of plants. We studied the effects of sucrose at a genome-wide level in dark-grown 4-day-old Arabidopsis thaliana seedlings, identifying 797 genes strongly responsive to sucrose. Starting from the microarray analysis data, four up-regulated (At5g41670, At1g20950, At1g61800, and At2g28900) and four down-regulated (DIN6, At4g37220, At1g28330, and At1g74670) genes were chosen for further characterisation and as sugar sensing markers for in vivo analysis. The sugar modulation pattern of all eight genes was confirmed by real time RT-PCR analysis, revealing different concentration thresholds for sugar modulation. Finally, sugar-regulation of gene expression was demonstrated in vivo by using the starchless pgm mutant, which is unable to produce transitory starch. Sucrose-inducible genes are upregulated in pgm leaves at the end of a light treatment, when soluble sugars levels are higher than in the wild type. Conversely, sucrose-repressible genes show a higher expression at the end of the dark period in the mutant, when the levels of sugars in the leaf are lower. The results obtained indicate that the transcriptional response to exogenous sucrose allows the identification of genes displaying a pattern of expression in leaves compatible with their sugar-modulation in vivo.
Collapse
Affiliation(s)
- Silvia Gonzali
- Department of Crop Plant Biology, University of Pisa, Via Mariscoglio 34, 56124 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:675-709. [PMID: 16669778 DOI: 10.1146/annurev.arplant.57.032905.105441] [Citation(s) in RCA: 1262] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Sugars not only fuel cellular carbon and energy metabolism but also play pivotal roles as signaling molecules. The experimental amenability of yeast as a unicellular model system has enabled the discovery of multiple sugar sensors and signaling pathways. In plants, different sugar signals are generated by photosynthesis and carbon metabolism in source and sink tissues to modulate growth, development, and stress responses. Genetic analyses have revealed extensive interactions between sugar and plant hormone signaling, and a central role for hexokinase (HXK) as a conserved glucose sensor. Diverse sugar signals activate multiple HXK-dependent and HXK-independent pathways and use different molecular mechanisms to control transcription, translation, protein stability and enzymatic activity. Important and complex roles for Snf1-related kinases (SnRKs), extracellular sugar sensors, and trehalose metabolism in plant sugar signaling are now also emerging.
Collapse
Affiliation(s)
- Filip Rolland
- Department of Molecular Microbiology, Flanders Interuniversity Institute for Biotechnology (VIB10), and Laboratory of Molecular Cell Biology K.U. Leuven, 3001 Heverlee-Leuven, Belgium.
| | | | | |
Collapse
|