1
|
Unravelling the treasure trove of drought-responsive genes in wild-type peanut through transcriptomics and physiological analyses of root. Funct Integr Genomics 2022; 22:215-233. [PMID: 35195841 DOI: 10.1007/s10142-022-00833-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/04/2022]
Abstract
Peanut is one of the most valuable legumes, grown mainly in arid and semi-arid regions, where its production may be hindered by the lack of water. Therefore, breeding drought tolerant varieties is of great importance for peanut breeding programs around the world. Unlike cultivated peanuts, wild peanuts have greater genetic diversity and are an important source of alleles conferring tolerance/resistance to abiotic and biotic stresses. To decipher the transcriptome changes under drought stress, transcriptomics of roots of highly tolerant Arachis duranensis (ADU) and moderately susceptible A. stenosperma (AST) genotypes were performed. Transcriptome analysis revealed an aggregate of 1465 differentially expressed genes (DEGs), and among the identified DEGs, there were 366 single nucleotide polymorphisms (SNPs). Gene ontology and Mapman analyses revealed that the ADU genotype had a higher number of transcripts related to DNA methylation or demethylation, phytohormone signal transduction and flavonoid production, transcription factors, and responses to ethylene. The transcriptome analysis was endorsed by qRT-PCR, which showed a strong correlation value (R2 = 0.96). Physio-biochemical analysis showed that the drought-tolerant plants produced more osmolytes, ROS phagocytes, and sugars, but less MDA, thus attenuating the effects of drought stress. In addition, three SNPs of the gene encoding transcription factor NFAY (Aradu.YE2F8), expansin alpha (Aradu.78HGD), and cytokinin dehydrogenase 1-like (Aradu.U999X) exhibited polymorphism in selected different genotypes. Such SNPs could be useful for the selection of drought-tolerant genotypes.
Collapse
|
2
|
Transcriptome Profiling Unravels the Involvement of Phytohormones in Tomato Resistance to the Tomato Yellow Leaf Curl Virus (TYLCV). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tomato yellow leaf curl virus (TYLCV) is a serious pathogen transmitted by the whitefly (Bemisia tabaci). Due to the quick spread of the virus, which is assisted by its vector, tomato yield and quality have suffered a crushing blow. Resistance to TYLCV has been intensively investigated in transmission, yet the mechanism of anti-TYLCV remains elusive. Herein, we conducted transcriptome profiling with a TYLCV-resistant cultivar (CLN2777A) and a susceptible line (Moneymaker) to identify the potential mechanism of resistance to TYLCV. Compared to the susceptible line, CLN2777A maintained a lower level of lipid peroxidation (LPO) after TYLCV infection. Through RNA-seq, over 1000 differentially expressed genes related to the metabolic process, cellular process, response to stimulus, biological regulation, and signaling were identified, indicating that the defense response was activated after the virus attack. Further analysis showed that TYLCV infection could induce the expression of the genes involved in salicylic and jasmonic acid biosynthesis and the signal transduction of phytohormones, which illustrated that phytohormones were essential for tomatoes to defend against TYLCV. These findings provide greater insight into the effective source of resistance for TYLCV control, indicating a potential molecular tool for the design of TYLCV-resistant tomatoes.
Collapse
|
3
|
Sudha M, Karthikeyan A, Madhumitha B, Veera Ranjani R, Kanimoli Mathivathana M, Dhasarathan M, Murukarthick J, Samu Shihabdeen MN, Eraivan Arutkani Aiyanathan K, Pandiyan M, Senthil N, Raveendran M. Dynamic Transcriptome Profiling of Mungbean Genotypes Unveil the Genes Respond to the Infection of Mungbean Yellow Mosaic Virus. Pathogens 2022; 11:pathogens11020190. [PMID: 35215133 PMCID: PMC8874377 DOI: 10.3390/pathogens11020190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Yellow mosaic disease (YMD), incited by mungbean yellow mosaic virus (MYMV), is a primary viral disease that reduces mungbean production in South Asia, especially in India. There is no detailed knowledge regarding the genes and molecular mechanisms conferring resistance of mungbean to MYMV. Therefore, disclosing the genetic and molecular bases related to MYMV resistance helps to develop the mungbean genotypes with MYMV resistance. In this study, transcriptomes of mungbean genotypes, VGGRU-1 (resistant) and VRM (Gg) 1 (susceptible) infected with MYMV were compared to those of uninfected controls. The number of differentially expressed genes (DEGs) in the resistant and susceptible genotypes was 896 and 506, respectively. Among them, 275 DEGs were common between the resistant and susceptible genotypes. Functional annotation of DEGs revealed that the DEGs belonged to the following categories defense and pathogenesis, receptor-like kinases; serine/threonine protein kinases, hormone signaling, transcription factors, and chaperons, and secondary metabolites. Further, we have confirmed the expression pattern of several DEGs by quantitative real-time PCR (qRT-PCR) analysis. Collectively, the information obtained in this study unveils the new insights into characterizing the MYMV resistance and paved the way for breeding MYMV resistant mungbean in the future.
Collapse
Affiliation(s)
- Manickam Sudha
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India; (R.V.R.); (M.N.S.S.); (M.R.)
- Correspondence:
| | - Adhimoolam Karthikeyan
- Department of Biotechnology, Centre of Innovation, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India;
| | - Balasubramaniam Madhumitha
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India;
| | - Rajagopalan Veera Ranjani
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India; (R.V.R.); (M.N.S.S.); (M.R.)
| | - Mayalagu Kanimoli Mathivathana
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India;
| | - Manickam Dhasarathan
- Agroclimate Research Centre, Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India;
| | - Jayakodi Murukarthick
- Gene Bank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Stadt See land, 06466 Seeland, OT Gatersleben, Germany;
| | - Madiha Natchi Samu Shihabdeen
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India; (R.V.R.); (M.N.S.S.); (M.R.)
| | | | - Muthaiyan Pandiyan
- Regional Research Station, Tamil Nadu Agricultural University, Virudhachalam 606001, Tamil Nadu, India;
| | - Natesan Senthil
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India;
| | - Muthurajan Raveendran
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India; (R.V.R.); (M.N.S.S.); (M.R.)
| |
Collapse
|
4
|
Beam K, Ascencio-Ibáñez JT. Geminivirus Resistance: A Minireview. FRONTIERS IN PLANT SCIENCE 2020; 11:1131. [PMID: 32849693 PMCID: PMC7396689 DOI: 10.3389/fpls.2020.01131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/10/2020] [Indexed: 05/04/2023]
Abstract
A continuing challenge to crop production worldwide is the spectrum of diseases caused by geminiviruses, a large family of small circular single-stranded DNA viruses. These viruses are quite diverse, some containing mono- or bi-partite genomes, and infecting a multitude of monocot and dicot plants. There are currently many efforts directed at controlling these diseases. While some of the methods include controlling the insect vector using pesticides or genetic insect resistance (Rodríguez-López et al., 2011), this review will focus on the generation of plants that are resistant to geminiviruses themselves. Genetic resistance was traditionally found by surveying the wild relatives of modern crops for resistance loci; this method is still widely used and successful. However, the quick rate of virus evolution demands a rapid turnover of resistance genes. With better information about virus-host interactions, scientists are now able to target early stages of geminivirus infection in the host, preventing symptom development and viral DNA accumulation.
Collapse
|
5
|
Sade D, Sade N, Brotman Y, Czosnek H. Tomato yellow leaf curl virus (TYLCV)-resistant tomatoes share molecular mechanisms sustaining resistance with their wild progenitor Solanum habrochaites but not with TYLCV-susceptible tomatoes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110439. [PMID: 32534617 DOI: 10.1016/j.plantsci.2020.110439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 05/25/2023]
Abstract
The wild tomato species Solanum habrochaites (Sh) has been used as a source for tomato yellow leaf curl virus (TYLCV) resistance in a breeding program to generate a TYLCV-resistant tomato line. Susceptible (S) and resistant (R) lines have been developed through this program. We compared the behavior of R, S and Sh tomato plants upon infection to find out whether the resistant phenotype of R plants originated from Sh. Results showed that mechanisms involving sugar-signaling (i.e., LIN6/HT1), water channels (i.e., TIP1;1), hormone homeostasis (i.e., ABA and SA) and urea accumulation were shared by S. habrochaites and R plants, but not by S. habrochaites and S tomatoes. This finding supports the hypothesis that these mechanisms were introgressed in the R genotype from the wild tomato progenitor during breeding for TYLCV resistance. Hence, identification of genes contributing to resistance to biotic stress from wild tomato species and their introgression into domestic plants ensures tomato supply and food security.
Collapse
Affiliation(s)
- Dagan Sade
- National Natural History Collections, Edmond J. Safra Campus at Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel; Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7630003, Israel
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7630003, Israel.
| |
Collapse
|
6
|
Zhao X, Li C, Wan S, Zhang T, Yan C, Shan S. Transcriptomic analysis and discovery of genes in the response of Arachis hypogaea to drought stress. Mol Biol Rep 2018; 45:119-131. [PMID: 29330721 DOI: 10.1007/s11033-018-4145-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 01/05/2018] [Indexed: 12/17/2022]
Abstract
The peanut (Arachis hypogaea) is an important crop species that is threatened by drought stress. The genome sequences of peanut, which was officially released in 2016, may help explain the molecular mechanisms that underlie drought tolerance in this species. We report here a gene expression profiling of A. hypogaea to gain a global view of its drought resistance. Using whole-transcriptome sequencing, we analysed differential gene expression in response to drought stress in the drought-resistant peanut cultivar J11. Pooled samples obtained at 6, 12, 18, 24, and 48 h were compared with control samples at 0 h. In total, 51,554 genes were found, including 49,289 known genes and 2265 unknown genes. We identified 224 differentially expressed transcription factors, 296,335 SNPs and 28,391 InDELs. In addition, we detected significant differences in the gene expression profiles of the treatment and control groups. After comparing the two groups, 4648 genes were identified. An in-depth analysis of the data revealed that a large number of genes were associated with drought stress, including transcription factors and genes involved in photosynthesis-antenna proteins, carbon metabolism and the citrate cycle. The results of this study provide insights into the diverse mechanisms that underlie the successful establishment of drought resistance in the peanut, thereby facilitating the identification of important genes in the peanut related to drought management. Transcriptome analysis based on RNA-Seq is a powerful approach for gene discovery and molecular marker development for this species.
Collapse
Affiliation(s)
- Xiaobo Zhao
- Laboratory of Genetics and Breeding, Shandong Peanut Research Institute, Qingdao, 266100, Shandong Province, People's Republic of China
| | - Chunjuan Li
- Laboratory of Genetics and Breeding, Shandong Peanut Research Institute, Qingdao, 266100, Shandong Province, People's Republic of China
| | - Shubo Wan
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong Province, People's Republic of China
| | - Tingting Zhang
- Laboratory of Genetics and Breeding, Shandong Peanut Research Institute, Qingdao, 266100, Shandong Province, People's Republic of China
| | - Caixia Yan
- Laboratory of Genetics and Breeding, Shandong Peanut Research Institute, Qingdao, 266100, Shandong Province, People's Republic of China
| | - Shihua Shan
- Laboratory of Genetics and Breeding, Shandong Peanut Research Institute, Qingdao, 266100, Shandong Province, People's Republic of China.
| |
Collapse
|
7
|
Abstract
Viruses transmitted by whiteflies are predominantly classified as having either persistent circulative or semipersistent transmission, and the majority of studies have addressed transmission of viruses in the genera Begomovirus (family Geminiviridae) and Crinivirus (family Closteroviridae), respectively. Early studies on vector transmission primarily addressed individual aspects of transmission; however, with the breadth of new technology now available, an increasingly greater number of studies involve coordinated research that is beginning to assemble a more complete picture of how whiteflies and viruses have coevolved to facilitate transmission. In particular the integration of gene expression and metabolomic studies into broader research topics is providing knowledge of changes within the whitefly vector in response to the presence of viruses that would have been impossible to identify previously. Examples include comparative studies on the response of Bemisia tabaci to begomovirus and crinivirus infection of common host plants, evolution of whitefly endosymbiont relationships, and opportunities to evaluate responses to specific transmission-related events. Integration of metabolomics, as well as the application of electrical penetration graphing, can lead to an ability to monitor the changes that occur in vector insects associated with specific aspects of virus transmission. Through gaining more complete knowledge of the mechanisms behind whitefly transmission of viruses new control strategies will undoubtedly emerge for control of whiteflies and the viruses they transmit.
Collapse
|
8
|
Gorovits R, Czosnek H. The Involvement of Heat Shock Proteins in the Establishment of Tomato Yellow Leaf Curl Virus Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:355. [PMID: 28360921 PMCID: PMC5352662 DOI: 10.3389/fpls.2017.00355] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/01/2017] [Indexed: 05/07/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV), a begomovirus, induces protein aggregation in infected tomatoes and in its whitefly vector Bemisia tabaci. The interactions between TYLCV and HSP70 and HSP90 in plants and vectors are necessity for virus infection to proceed. In infected host cells, HSP70 and HSP90 are redistributed from a soluble to an aggregated state. These aggregates contain, together with viral DNA/proteins and virions, HSPs and components of the protein quality control system such as ubiquitin, 26S proteasome subunits, and the autophagy protein ATG8. TYLCV CP can form complexes with HSPs in tomato and whitefly. Nonetheless, HSP70 and HSP90 play different roles in the viral cell cycle in the plant host. In the infected host cell, HSP70, but not HSP90, participates in the translocation of CP from the cytoplasm into the nucleus. Viral amounts decrease when HSP70 is inhibited, but increase when HSP90 is downregulated. In the whitefly vector, HSP70 impairs the circulative transmission of TYLCV; its inhibition increases transmission. Hence, the efficiency of virus acquisition by whiteflies depends on the functionality of both plant chaperones and their cross-talk with other protein mechanisms controlling virus-induced aggregation.
Collapse
|
9
|
Jeevalatha A, Siddappa S, Kumar A, Kaundal P, Guleria A, Sharma S, Nagesh M, Singh BP. An insight into differentially regulated genes in resistant and susceptible genotypes of potato in response to tomato leaf curl New Delhi virus-[potato] infection. Virus Res 2017; 232:22-33. [PMID: 28115198 DOI: 10.1016/j.virusres.2017.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 12/13/2022]
Abstract
Apical leaf curl disease, caused by tomato leaf curl New Delhi virus-[potato] (ToLCNDV-[potato]) is one of the most important viral diseases of potato in India. Genetic resistance source for ToLCNDV in potato is not identified so far. However, the cultivar Kufri Bahar is known to show lowest seed degeneration even under high vector levels. Hence, microarray analysis was performed to identify differentially regulated genes during ToLCNDV-[potato] infection in a resistant (Kufri Bahar) and a susceptible cultivar (Kufri Pukhraj). Under artificial inoculation conditions, in Kufri Pukhraj, symptom expressions started at 15days after inoculation (DAI) and then progressed to severe symptoms, whereas no or only very mild symptoms were observed in Kufri Bahar up to 35 DAI. Correspondingly, qPCR assay indicated a high viral load in Kufri Pukhraj and a very low viral load in Kufri Bahar. Microarray analysis showed that a total of 1111 genes and 2588 genes were differentially regulated (|log2 (Fold Change)|>2) in Kufri Bahar and Kufri Pukhraj, respectively, following ToLCNDV-[potato] infection. Gene ontology and mapman analyses revealed that these altered transcripts were involved in various biological & metabolic processes. Several genes with unknown functions were 5 to 100 fold expressed after virus infection and further experiments are necessary to ascertain their role in disease resistance or susceptibility. This study gives an insight into differentially regulated genes in response to ToLCNDV-[potato] infection in resistant and susceptible cultivars and could serve as the basis for the development of new strategies for disease management.
Collapse
Affiliation(s)
- Arjunan Jeevalatha
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India.
| | - Sundaresha Siddappa
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Ashwani Kumar
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Priyanka Kaundal
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Anupama Guleria
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Mandadi Nagesh
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Bir Pal Singh
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| |
Collapse
|
10
|
Moshe A, Gorovits R, Liu Y, Czosnek H. Tomato plant cell death induced by inhibition of HSP90 is alleviated by Tomato yellow leaf curl virus infection. MOLECULAR PLANT PATHOLOGY 2016; 17:247-60. [PMID: 25962748 PMCID: PMC6638530 DOI: 10.1111/mpp.12275] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
To ensure a successful long-term infection cycle, begomoviruses must restrain their destructive effect on host cells and prevent drastic plant responses, at least in the early stages of infection. The monopartite begomovirus Tomato yellow leaf curl virus (TYLCV) does not induce a hypersensitive response and cell death on whitefly-mediated infection of virus-susceptible tomato plants until diseased tomatoes become senescent. The way in which begomoviruses evade plant defences and interfere with cell death pathways is still poorly understood. We show that the chaperone HSP90 (heat shock protein 90) and its co-chaperone SGT1 (suppressor of the G2 allele of Skp1) are involved in the establishment of TYLCV infection. Inactivation of HSP90, as well as silencing of the Hsp90 and Sgt1 genes, leads to the accumulation of damaged ubiquitinated proteins and to a cell death phenotype. These effects are relieved under TYLCV infection. HSP90-dependent inactivation of 26S proteasome degradation and the transcriptional activation of the heat shock transcription factors HsfA2 and HsfB1 and of the downstream genes Hsp17 and Apx1/2 are suppressed in TYLCV-infected tomatoes. Following suppression of the plant stress response, TYLCV can replicate and accumulate in a permissive environment.
Collapse
Affiliation(s)
- Adi Moshe
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Yule Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
11
|
Sun WJ, Lv WJ, Li LN, Yin G, Hang X, Xue Y, Chen J, Shi Z. Eugenol confers resistance to Tomato yellow leaf curl virus (TYLCV) by regulating the expression of SlPer1 in tomato plants. N Biotechnol 2016; 33:345-54. [PMID: 26776605 DOI: 10.1016/j.nbt.2016.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/14/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
Abstract
Tomato yellow leaf curl virus (TYLCV) is one of the most devastating plant diseases, and poses a significant agricultural concern because of the lack of an efficient control method. Eugenol is a plant-derived natural compound that has been widely used as a food additive and in medicine. In the present study, we demonstrated the potential of eugenol to enhance the resistance of tomato plants to TYLCV. The anti-TYLCV efficiency of eugenol was significantly higher than that of moroxydine hydrochloride (MH), a widely used commercial antiviral agent. Eugenol application stimulated the production of endogenous nitric oxide (NO) and salicylic acid (SA) in tomato plants. The full-length cDNA of SlPer1, which has been suggested to be a host R gene specific to TYLCV, was isolated from tomato plants. A sequence analysis suggested that SlPer1 might be a nucleobase-ascorbate transporter (NAT) belonging to the permease family. The transcript levels of SlPer1 increased markedly in response to treatment with eugenol or TYLCV inoculation. The results of this study also showed that SlPer1 expression was strongly induced by SA, MeJA (jasmonic acid methyl ester), and NO. Thus, we propose that the increased transcription of SlPer1 contributed to the high anti-TYLCV efficiency of eugenol, which might involve in the generation of endogenous SA and NO. Such findings provide the basis for the development of eugenol as an environmental-friendly agricultural antiviral agent.
Collapse
Affiliation(s)
- Wei-Jie Sun
- College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Wen-Jing Lv
- College of Horticulture, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Li-Na Li
- College of Horticulture, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Gan Yin
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xiaofang Hang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| | - Yanfeng Xue
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China.
| | - Zhiqi Shi
- College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China; Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
12
|
Mandal A, Sarkar D, Kundu S, Kundu P. Mechanism of regulation of tomato TRN1 gene expression in late infection with tomato leaf curl New Delhi virus (ToLCNDV). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:221-237. [PMID: 26706073 DOI: 10.1016/j.plantsci.2015.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/12/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
Tomato leaf curl disease caused by geminiviruses is manifested by curling and puckering of leaves and thickening of veins, resembling developmental defects. This is probably due to the long-term altered regulation of expression of development related gene(s). Our results show that in the infected leaves the transcript level of TORNADO1 (SlTRN1), a gene important for cell expansion and vein formation, increased significantly. SlTRN1 is transcribed from two start sites. The preferential usage of one start site governs its expression in viral-stressed plants. To investigate the role of specific promoter elements in mediating differential expression of SlTRN1, we performed SlTRN1 promoter analysis. The promoter-regulatory sequences harbor multiple W-boxes. The SlWRKY16 transcription factor actively interacts with one of the W-boxes. WRKY proteins are commonly induced by salicylic acid (SA), and consequently SA treatment increased transcript level of SlWRKY16 and SlTRN1. Further mutational analyses confirmed the role of W-boxes in mediating SlTRN1 induction during ToLCNDV infection or SA treatment. We postulate that the activation of SA pathway during stress-response in tomato induces WRKY16, which in turn modulates transcription of SlTRN1 gene. This study unravels the mechanism of regulation of a developmental gene during stress-response, which may affect the severity of symptoms.
Collapse
Affiliation(s)
- Arunava Mandal
- Division of Plant Biology, Bose Institute, P1/12CIT Scheme VII(M), Kolkata 700054, India
| | - Deepti Sarkar
- Division of Plant Biology, Bose Institute, P1/12CIT Scheme VII(M), Kolkata 700054, India
| | - Surekha Kundu
- Botany Department, University of Calcutta, 35 Ballygunge Circular Rd, Ballygunge, Kolkata 700019, India
| | - Pallob Kundu
- Division of Plant Biology, Bose Institute, P1/12CIT Scheme VII(M), Kolkata 700054, India.
| |
Collapse
|
13
|
Lacerda ALM, Fonseca LN, Blawid R, Boiteux LS, Ribeiro SG, Brasileiro ACM. Reference Gene Selection for qPCR Analysis in Tomato-Bipartite Begomovirus Interaction and Validation in Additional Tomato-Virus Pathosystems. PLoS One 2015; 10:e0136820. [PMID: 26317870 PMCID: PMC4552598 DOI: 10.1371/journal.pone.0136820] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/09/2015] [Indexed: 12/15/2022] Open
Abstract
Quantitative Polymerase Chain Reaction (qPCR) is currently the most sensitive technique used for absolute and relative quantification of a target gene transcript, requiring the use of appropriated reference genes for data normalization. To accurately estimate the relative expression of target tomato (Solanum lycopersicum L.) genes responsive to several virus species in reverse transcription qPCR analysis, the identification of reliable reference genes is mandatory. In the present study, ten reference genes were analyzed across a set of eight samples: two tomato contrasting genotypes ('Santa Clara', susceptible, and its near-isogenic line 'LAM 157', resistant); subjected to two treatments (inoculation with Tomato chlorotic mottle virus (ToCMoV) and its mock-inoculated control) and in two distinct times after inoculation (early and late). Reference genes stability was estimated by three statistical programs (geNorm, NormFinder and BestKeeper). To validate the results over broader experimental conditions, a set of ten samples, corresponding to additional three tomato-virus pathosystems that included tospovirus, crinivirus and tymovirus + tobamovirus, was analyzed together with the tomato-ToCMoV pathosystem dataset, using the same algorithms. Taking into account the combined analyses of the ranking order outputs from the three algorithms, TIP41 and EF1 were identified as the most stable genes for tomato-ToCMoV pathosystem, and TIP41 and EXP for the four pathosystems together, and selected to be used as reference in the forthcoming expression qPCR analysis of target genes in experimental conditions involving the aforementioned tomato-virus pathosystems.
Collapse
Affiliation(s)
- Ana L. M. Lacerda
- Embrapa Recursos Genéticos e Biotecnologia, Embrapa, Brasília, DF, Brazil
| | | | - Rosana Blawid
- Embrapa Recursos Genéticos e Biotecnologia, Embrapa, Brasília, DF, Brazil
| | | | - Simone G. Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Embrapa, Brasília, DF, Brazil
| | | |
Collapse
|
14
|
Involvement of host regulatory pathways during geminivirus infection: a novel platform for generating durable resistance. Funct Integr Genomics 2015; 14:47-58. [PMID: 24233104 DOI: 10.1007/s10142-013-0346-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/04/2013] [Accepted: 10/21/2013] [Indexed: 12/20/2022]
Abstract
Geminiviruses are widely distributed throughout the world and cause devastating yield losses in almost all the economically important crops. In this review, the newly identified roles of various novel plant factors and pathways participating in plant–virus interaction are summarized with a particular focus on the exploitation of various pathways involving ubiquitin/26S proteasome pathway, small RNA pathways, cell division cycle components, and the epigenetic mechanism as defense responses during plant–pathogen interactions. Capturing the information on these pathways for the development of strategies against geminivirus infection is argued to provide the basis for new genetic approaches to resistance.
Collapse
|
15
|
Abstract
Tomato (Solanum lycopersicum), along with many other economically valuable species, belongs to the Solanaceae family. Understanding how plants in this family defend themselves against pathogens offers the opportunity of improving yield and quality of their edible products. The use of functional genomics has contributed to this purpose through both traditional and recently developed techniques that allow determination of changes in transcript abundance during pathogen attack. Such changes can implicate the affected gene as participating in plant defense. Testing the involvement of these candidate genes in defense has relied largely on posttranscriptional gene silencing, particularly virus-induced gene silencing. We discuss how functional genomics has played a key role in our current understanding of the defense response in tomato and related species and what are the challenges and opportunities for the future.
Collapse
|
16
|
Víquez-Zamora M, Caro M, Finkers R, Tikunov Y, Bovy A, Visser RGF, Bai Y, van Heusden S. Mapping in the era of sequencing: high density genotyping and its application for mapping TYLCV resistance in Solanum pimpinellifolium. BMC Genomics 2014; 15:1152. [PMID: 25526885 PMCID: PMC4367842 DOI: 10.1186/1471-2164-15-1152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/12/2014] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND A RIL population between Solanum lycopersicum cv. Moneymaker and S. pimpinellifolium G1.1554 was genotyped with a custom made SNP array. Additionally, a subset of the lines was genotyped by sequencing (GBS). RESULTS A total of 1974 polymorphic SNPs were selected to develop a linkage map of 715 unique genetic loci. We generated plots for visualizing the recombination patterns of the population relating physical and genetic positions along the genome.This linkage map was used to identify two QTLs for TYLCV resistance which contained favourable alleles derived from S. pimpinellifolium. Further GBS was used to saturate regions of interest, and the mapping resolution of the two QTLs was improved. The analysis showed highest significance on Chromosome 11 close to the region of 51.3 Mb (qTy-p11) and another on Chromosome 3 near 46.5 Mb (qTy-p3). Furthermore, we explored the population using untargeted metabolic profiling, and the most significant differences between susceptible and resistant plants were mainly associated with sucrose and flavonoid glycosides. CONCLUSIONS The SNP information obtained from an array allowed a first QTL screening of our RIL population. With additional SNP data of a RILs subset, obtained through GBS, we were able to perform an in silico mapping improvement to further confirm regions associated with our trait of interest. With the combination of different ~ omics platforms we provide valuable insight into the genetics of S. pimpinellifolium-derived TYLCV resistance.
Collapse
Affiliation(s)
- Marcela Víquez-Zamora
- />Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, Wageningen, AJ 6700 the Netherlands
- />Centre for Biosystems Genomics, P.O. Box 98, Wageningen, AB 6700 the Netherlands
- />Graduate School Experimental Plant Sciences, Wageningen, 6708 PB the Netherlands
| | - Myluska Caro
- />Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, Wageningen, AJ 6700 the Netherlands
- />Graduate School Experimental Plant Sciences, Wageningen, 6708 PB the Netherlands
| | - Richard Finkers
- />Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, Wageningen, AJ 6700 the Netherlands
- />Centre for Biosystems Genomics, P.O. Box 98, Wageningen, AB 6700 the Netherlands
| | - Yury Tikunov
- />Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, Wageningen, AJ 6700 the Netherlands
- />Centre for Biosystems Genomics, P.O. Box 98, Wageningen, AB 6700 the Netherlands
| | - Arnaud Bovy
- />Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, Wageningen, AJ 6700 the Netherlands
- />Centre for Biosystems Genomics, P.O. Box 98, Wageningen, AB 6700 the Netherlands
| | - Richard GF Visser
- />Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, Wageningen, AJ 6700 the Netherlands
- />Centre for Biosystems Genomics, P.O. Box 98, Wageningen, AB 6700 the Netherlands
| | - Yuling Bai
- />Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, Wageningen, AJ 6700 the Netherlands
| | - Sjaak van Heusden
- />Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, Wageningen, AJ 6700 the Netherlands
- />Centre for Biosystems Genomics, P.O. Box 98, Wageningen, AB 6700 the Netherlands
| |
Collapse
|
17
|
Allie F, Pierce EJ, Okoniewski MJ, Rey C. Transcriptional analysis of South African cassava mosaic virus-infected susceptible and tolerant landraces of cassava highlights differences in resistance, basal defense and cell wall associated genes during infection. BMC Genomics 2014; 15:1006. [PMID: 25412561 PMCID: PMC4253015 DOI: 10.1186/1471-2164-15-1006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 10/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cassava mosaic disease is caused by several distinct geminivirus species, including South African cassava mosaic virus-[South Africa:99] (SACMV). To date, there is limited gene regulation information on viral stress responses in cassava, and global transcriptome profiling in SACMV-infected cassava represents an important step towards understanding natural host responses to plant geminiviruses. RESULTS A RNA-seq time course (12, 32 and 67 dpi) study, monitoring gene expression in SACMV-challenged susceptible (T200) and tolerant (TME3) cassava landraces, was performed using the Applied Biosystems (ABI) SOLiD next-generation sequencing platform. The multiplexed paired end sequencing run produced a total of 523 MB and 693 MB of paired-end reads for SACMV-infected susceptible and tolerant cDNA libraries, respectively. Of these, approximately 50.7% of the T200 reads and 55.06% of TME3 reads mapped to the cassava reference genome available in phytozome. Using a log2 fold cut-off (p<0.05), comparative analysis between the six normalized cDNA libraries showed that 4181 and 1008 transcripts in total were differentially expressed in T200 and TME3, respectively, across 12, 32 and 67 days post infection, compared to mock-inoculated. The number of responsive transcripts increased dramatically from 12 to 32 dpi in both cultivars, but in contrast, in T200 the levels did not change significantly at 67 dpi, while in TME3 they declined. GOslim functional groups illustrated that differentially expressed genes in T200 and TME3 were overrepresented in the cellular component category for stress-related genes, plasma membrane and nucleus. Alterations in the expression of other interesting genes such as transcription factors, resistance (R) genes, and histone/DNA methylation-associated genes, were observed. KEGG pathway analysis uncovered important altered metabolic pathways, including phenylpropanoid biosynthesis, sucrose and starch metabolism, and plant hormone signalling. CONCLUSIONS Molecular mechanisms for TME3 tolerance are proposed, and differences in patterns and levels of transcriptome profiling between T200 and TME3 with susceptible and tolerant phenotypes, respectively, support the hypothesis that viruses rearrange their molecular interactions in adapting to hosts with different genetic backgrounds.
Collapse
Affiliation(s)
- Farhahna Allie
- />School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg, 2000 South Africa
| | - Erica J Pierce
- />School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg, 2000 South Africa
| | - Michal J Okoniewski
- />Functional Genomics Center, Zurich, UNI ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Chrissie Rey
- />School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg, 2000 South Africa
| |
Collapse
|
18
|
Sade D, Sade N, Shriki O, Lerner S, Gebremedhin A, Karavani A, Brotman Y, Osorio S, Fernie AR, Willmitzer L, Czosnek H, Moshelion M. Water Balance, Hormone Homeostasis, and Sugar Signaling Are All Involved in Tomato Resistance to Tomato Yellow Leaf Curl Virus. PLANT PHYSIOLOGY 2014; 165:1684-1697. [PMID: 24989233 PMCID: PMC4119048 DOI: 10.1104/pp.114.243402] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/01/2014] [Indexed: 05/22/2023]
Abstract
Vacuolar water movement is largely controlled by membrane channels called tonoplast-intrinsic aquaporins (TIP-AQPs). Some TIP-AQP genes, such as TIP2;2 and TIP1;1, are up-regulated upon exposure to biotic stress. Moreover, TIP1;1 transcript levels are higher in leaves of a tomato (Solanum lycopersicum) line resistant to Tomato yellow leaf curl virus (TYLCV) than in those of a susceptible line with a similar genetic background. Virus-induced silencing of TIP1;1 in the tomato resistant line and the use of an Arabidopsis (Arabidopsis thaliana) tip1;1 null mutant showed that resistance to TYLCV is severely compromised in the absence of TIP1:1. Constitutive expression of tomato TIP2;2 in transgenic TYLCV-susceptible tomato and Arabidopsis plants was correlated with increased TYLCV resistance, increased transpiration, decreased abscisic acid levels, and increased salicylic acid levels at the early stages of infection. We propose that TIP-AQPs affect the induction of leaf abscisic acid, which leads to increased levels of transpiration and gas exchange, as well as better salicylic acid signaling.
Collapse
Affiliation(s)
- Dagan Sade
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Nir Sade
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Oz Shriki
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Stephen Lerner
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Alem Gebremedhin
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Asaf Karavani
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Yariv Brotman
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Sonia Osorio
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Alisdair R Fernie
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Lothar Willmitzer
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Menachem Moshelion
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| |
Collapse
|
19
|
Chen T, Lv Y, Zhao T, Li N, Yang Y, Yu W, He X, Liu T, Zhang B. Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS One 2013; 8:e80816. [PMID: 24260487 PMCID: PMC3832472 DOI: 10.1371/journal.pone.0080816] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/07/2013] [Indexed: 11/19/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV) threatens tomato production worldwide by causing leaf yellowing, leaf curling, plant stunting and flower abscission. The current understanding of the host plant defense response to this virus is very limited. Using whole transcriptome sequencing, we analyzed the differential gene expression in response to TYLCV infection in the TYLCV-resistant tomato breeding line CLN2777A (R) and TYLCV-susceptible tomato breeding line TMXA48-4-0 (S). The mixed inoculated samples from 3, 5 and 7 day post inoculation (dpi) were compared to non-inoculated samples at 0 dpi. Of the total of 34831 mapped transcripts, 209 and 809 genes were differentially expressed in the R and S tomato line, respectively. The proportion of up-regulated differentially expressed genes (DEGs) in the R tomato line (58.37%) was higher than that in the S line (9.17%). Gene ontology (GO) analyses revealed that similar GO terms existed in both DEGs of R and S lines; however, some sets of defense related genes and their expression levels were not similar between the two tomato lines. Genes encoding for WRKY transcriptional factors, R genes, protein kinases and receptor (-like) kinases which were identified as down-regulated DEGs in the S line were up-regulated or not differentially expressed in the R line. The up-regulated DEGs in the R tomato line revealed the defense response of tomato to TYLCV infection was characterized by the induction and regulation of a series of genes involved in cell wall reorganization, transcriptional regulation, defense response, ubiquitination, metabolite synthesis and so on. The present study provides insights into various reactions underlining the successful establishment of resistance to TYLCV in the R tomato line, and helps in the identification of important defense-related genes in tomato for TYLCV disease management.
Collapse
Affiliation(s)
- Tianzi Chen
- Provincial key laboratory of agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuanda Lv
- Provincial key laboratory of agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tongming Zhao
- Provincial key laboratory of agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Nan Li
- Provincial key laboratory of agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuwen Yang
- Provincial key laboratory of agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wengui Yu
- Provincial key laboratory of agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin He
- Provincial key laboratory of agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tingli Liu
- Provincial key laboratory of agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Baolong Zhang
- Provincial key laboratory of agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
20
|
Luan JB, Ghanim M, Liu SS, Czosnek H. Silencing the ecdysone synthesis and signaling pathway genes disrupts nymphal development in the whitefly. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:740-6. [PMID: 23748027 DOI: 10.1016/j.ibmb.2013.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 05/13/2023]
Abstract
Sap-sucking insects are important pests in agriculture and good models to study insect biology. The role of ecdysone pathway genes in the life history of this group of insects is largely unknown likely due to a lack of efficient gene silencing methods allowing functional genetic analyses. Here, we developed a new and high throughput method to silence whitefly genes using a leaf-mediated dsRNA feeding method. We have applied this method to explore the roles of genes within the molting hormone-ecdysone synthesis and signaling pathway for the survival, reproduction and development of whiteflies. Silencing of genes in the ecdysone pathway had a limited effect on the survival and fecundity of adult whiteflies. However, gene silencing reduced survival and delayed development of the whitefly during nymphal stages. These data suggest that the silencing method developed here provides a useful tool for functional gene discovery studies of sap-sucking insects, and further indicate the potential of regulating the ecdysone pathway in whitefly control.
Collapse
Affiliation(s)
- Jun-Bo Luan
- Ministry of Agriculture, Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | |
Collapse
|
21
|
Czosnek H, Eybishtz A, Sade D, Gorovits R, Sobol I, Bejarano E, Rosas-Díaz T, Lozano-Durán R. Discovering host genes involved in the infection by the Tomato Yellow Leaf Curl Virus complex and in the establishment of resistance to the virus using Tobacco Rattle Virus-based post transcriptional gene silencing. Viruses 2013; 5:998-1022. [PMID: 23524390 PMCID: PMC3705308 DOI: 10.3390/v5030998] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 02/02/2023] Open
Abstract
The development of high-throughput technologies allows for evaluating gene expression at the whole-genome level. Together with proteomic and metabolomic studies, these analyses have resulted in the identification of plant genes whose function or expression is altered as a consequence of pathogen attacks. Members of the Tomato yellow leaf curl virus (TYLCV) complex are among the most important pathogens impairing production of agricultural crops worldwide. To understand how these geminiviruses subjugate plant defenses, and to devise counter-measures, it is essential to identify the host genes affected by infection and to determine their role in susceptible and resistant plants. We have used a reverse genetics approach based on Tobacco rattle virus-induced gene silencing (TRV-VIGS) to uncover genes involved in viral infection of susceptible plants, and to identify genes underlying virus resistance. To identify host genes with a role in geminivirus infection, we have engineered a Nicotiana benthamiana line, coined 2IRGFP, which over-expresses GFP upon virus infection. With this system, we have achieved an accurate description of the dynamics of virus replication in space and time. Upon silencing selected N. benthamiana genes previously shown to be related to host response to geminivirus infection, we have identified eighteen genes involved in a wide array of cellular processes. Plant genes involved in geminivirus resistance were studied by comparing two tomato lines: one resistant (R), the other susceptible (S) to the virus. Sixty-nine genes preferentially expressed in R tomatoes were identified by screening cDNA libraries from infected and uninfected R and S genotypes. Out of the 25 genes studied so far, the silencing of five led to the total collapse of resistance, suggesting their involvement in the resistance gene network. This review of our results indicates that TRV-VIGS is an exquisite reverse genetics tool that may provide new insights into the molecular mechanisms underlying plant infection and resistance to infection by begomoviruses.
Collapse
Affiliation(s)
- Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +972-8-9489249; Fax: +972- 8 9489899
| | - Assaf Eybishtz
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
| | - Dagan Sade
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
| | - Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
| | - Iris Sobol
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
| | - Eduardo Bejarano
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain; E-mail:
| | - Tábata Rosas-Díaz
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain; E-mail:
| | - Rosa Lozano-Durán
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain; E-mail:
| |
Collapse
|
22
|
Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RGF, Scott JW, Edwards JD, Bai Y. The Tomato Yellow Leaf Curl Virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS Genet 2013; 9:e1003399. [PMID: 23555305 PMCID: PMC3610679 DOI: 10.1371/journal.pgen.1003399] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/04/2013] [Indexed: 12/11/2022] Open
Abstract
Tomato Yellow Leaf Curl Virus Disease incited by Tomato yellow leaf curl virus (TYLCV) causes huge losses in tomato production worldwide and is caused by different related begomovirus species. Breeding for TYLCV resistance has been based on the introgression of multiple resistance genes originating from several wild tomato species. In this study we have fine-mapped the widely used Solanum chilense-derived Ty-1 and Ty-3 genes by screening nearly 12,000 plants for recombination events and generating recombinant inbred lines. Multiple molecular markers were developed and used in combination with disease tests to fine-map the genes to a small genomic region (approximately 70 kb). Using a Tobacco Rattle Virus-Virus Induced Gene Silencing approach, the resistance gene was identified. It is shown that Ty-1 and Ty-3 are allelic and that they code for a RNA-dependent RNA polymerase (RDR) belonging to the RDRγ type, which has an atypical DFDGD motif in the catalytic domain. In contrast to the RDRα type, characterized by a catalytic DLDGD motif, no clear function has yet been described for the RDRγ type, and thus the Ty-1/Ty-3 gene unveils a completely new class of resistance gene. Although speculative, the resistance mechanism of Ty-1/Ty-3 and its specificity towards TYLCV are discussed in light of the function of the related RDRα class in the amplification of the RNAi response in plants and transcriptional silencing of geminiviruses in plants.
Collapse
Affiliation(s)
- Maarten G. Verlaan
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Samuel F. Hutton
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, United States of America
| | - Ragy M. Ibrahem
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, United States of America
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Richard G. F. Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
| | - John W. Scott
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, United States of America
| | - Jeremy D. Edwards
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, United States of America
| | - Yuling Bai
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
| |
Collapse
|
23
|
Gorovits R, Moshe A, Kolot M, Sobol I, Czosnek H. Progressive aggregation of Tomato yellow leaf curl virus coat protein in systemically infected tomato plants, susceptible and resistant to the virus. Virus Res 2012; 171:33-43. [PMID: 23099086 DOI: 10.1016/j.virusres.2012.09.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/23/2012] [Accepted: 09/27/2012] [Indexed: 02/04/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) coat protein (CP) accumulated in tomato leaves during infection. The CP was immuno-detected in the phloem associated cells. At the early stages of infection, punctate signals were detected in the cytoplasm, while in the later stages aggregates of increasing size were localized in cytoplasm and nuclei. Sedimentation of protein extracts through sucrose gradients confirmed that progress of infection was accompanied by the formation of CP aggregates of increasing size. Genomic ssDNA was found in the cytoplasm and in the nucleus, while the dsDNA replicative form was exclusively associated with the nucleus. CP-DNA complexes were detected by immuno-capture PCR in nuclear and cytoplasmic large aggregates. Nuclear aggregates contained infectious particles transmissible to test plants by whiteflies. In contrast to susceptible tomatoes, the formation of large CP aggregates in resistant plants was delayed. By experimentally changing the level of resistance/susceptibility of plants, we showed that maintenance of midsized CP aggregates was associated with resistance, while large aggregates where characteristic of susceptibility. We propose that sequestering of virus CP into midsized aggregates and retarding the formation of large insoluble aggregates containing infectious particles is part of the response of resistant plants to TYLCV.
Collapse
Affiliation(s)
- Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture and the Otto Warburg Minerva Center for Agricultural Biotechnology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
24
|
Sade D, Eybishtz A, Gorovits R, Sobol I, Czosnek H. A developmentally regulated lipocalin-like gene is overexpressed in Tomato yellow leaf curl virus-resistant tomato plants upon virus inoculation, and its silencing abolishes resistance. PLANT MOLECULAR BIOLOGY 2012; 80:273-87. [PMID: 22843056 DOI: 10.1007/s11103-012-9946-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 07/17/2012] [Indexed: 05/21/2023]
Abstract
To discover genes involved in tomato resistance to Tomato yellow leaf curl virus (TYLCV), we previously compared cDNA libraries from susceptible (S) and resistant (R) tomato lines. Among the genes preferentially expressed in R plants and upregulated by TYLCV infection was a gene encoding a lipocalin-like protein. This gene was termed Solanum lycopersicum virus resistant/susceptible lipocalin (SlVRSLip). The SlVRSLip structural gene sequence of R and S plants was identical. SlVRSLip was expressed in leaves during a 15-day window starting about 40 days after sowing (20 days after planting). SlVRSLip was upregulated by Bemisia tabaci (the TYLCV vector) feeding on R plant leaves, and even more strongly upregulated following whitefly-mediated TYLCV inoculation. Silencing of SlVRSLip in R plants led to the collapse of resistance upon TYLCV inoculation and to a necrotic response along the stem and petioles accompanied by ROS production. Contrary to previously identified tomato lipocalin gene DQ222981, SlVRSLip was not regulated by cold, nor was it regulated by heat or salt. The expression of SlVRSLip was inhibited in R plants in which the hexose transporter gene LeHT1 was silenced. In contrast, the expression of LeHT1 was not inhibited in SlVRSLip-silenced R plants. Hence, in the hierarchy of the gene network conferring TYLCV resistance, SlVRSLip is downstream of LeHT1. Silencing of another gene involved in resistance, a Permease-I like protein, did not affect the expression of SlVRSLip and LeHT1; expression of the Permease was not affected by silencing SlVRSLip or LeHT1, suggesting that it does not belong to the same network. The triple co-silencing of SlVRSLip, LeHT1 and Permease provoked an immediate cessation of growth of R plants upon infection and the accumulation of large amounts of virus. SlVRSLip is the first lipocalin-like gene shown to be involved in resistance to a plant virus.
Collapse
Affiliation(s)
- Dagan Sade
- The Otto Warburg Minerva Center for Agricultural Biotechnology, Institute of Plant Science and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
25
|
Sahu PP, Puranik S, Khan M, Prasad M. Recent advances in tomato functional genomics: utilization of VIGS. PROTOPLASMA 2012; 249:1017-27. [PMID: 22669349 DOI: 10.1007/s00709-012-0421-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/17/2012] [Indexed: 05/07/2023]
Abstract
Tomato unquestionably occupies a significant position in world vegetable production owing to its world-wide consumption. The tomato genome sequencing efforts being recently concluded, it becomes more imperative to recognize important functional genes from this treasure of generated information for improving tomato yield. While much progress has been made in conventional tomato breeding, post-transcriptional gene silencing (PTGS) offers an alternative approach for advancement of tomato functional genomics. In particular, virus-induced gene silencing (VIGS) is increasingly being used as rapid, reliable, and lucrative screening strategy to elucidate gene function. In this review, we focus on the recent advancement made through exploiting the potential of this technique for manipulating different agronomically important traits in tomato by discussing several case studies.
Collapse
Affiliation(s)
- Pranav Pankaj Sahu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India
| | | | | | | |
Collapse
|
26
|
Eybishtz A, Peretz Y, Sade D, Gorovits R, Czosnek H. Tomato yellow leaf curl virus infection of a resistant tomato line with a silenced sucrose transporter gene LeHT1 results in inhibition of growth, enhanced virus spread, and necrosis. PLANTA 2010; 231:537-48. [PMID: 19946703 DOI: 10.1007/s00425-009-1072-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 11/13/2009] [Indexed: 05/21/2023]
Abstract
To identify genes involved in resistance of tomato to Tomato yellow leaf curl virus (TYLCV), cDNA libraries from lines resistant (R) and susceptible (S) to the virus were compared. The hexose transporter LeHT1 was found to be expressed preferentially in R tomato plants. The role of LeHT1 in the establishment of TYLCV resistance was studied in R plants where LeHT1 has been silenced using Tobacco rattle virus-induced gene silencing (TRV VIGS). Following TYLCV inoculation, LeHT1-silenced R plants showed inhibition of growth and enhanced virus accumulation and spread. In addition, a necrotic response was observed along the stem and petioles of infected LeHT1-silenced R plants, but not on infected not-silenced R plants. This response was specific of R plants since it was absent in infected LeHT1-silenced S plants. Necrosis had several characteristics of programmed cell death (PCD): DNA from necrotic tissues presented a PCD-characteristic ladder pattern, the amount of a JNK analogue increased, and production of reactive oxygen was identified by DAB staining. A similar necrotic reaction along stem and petioles was observed in LeHT1-silenced R plants infected with the DNA virus Bean dwarf mosaic virus and the RNA viruses Cucumber mosaic virus and Tobacco mosaic virus. These results constitute the first evidence for a necrotic response backing natural resistance to TYLCV in tomato, confirming that plant defense is organized in multiple layers. They demonstrate that the hexose transporter LeHT1 is essential for the expression of natural resistance against TYLCV and its expression correlates with inhibition of virus replication and movement.
Collapse
Affiliation(s)
- Assaf Eybishtz
- The Otto Warburg Minerva Center for Agricultural Biotechnology and Institute of Plant Science and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|