1
|
Kuznetsova X, Dodueva I, Afonin A, Gribchenko E, Danilov L, Gancheva M, Tvorogova V, Galynin N, Lutova L. Whole-Genome Sequencing and Analysis of Tumour-Forming Radish ( Raphanus sativus L.) Line. Int J Mol Sci 2024; 25:6236. [PMID: 38892425 PMCID: PMC11172632 DOI: 10.3390/ijms25116236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Spontaneous tumour formation in higher plants can occur in the absence of pathogen invasion, depending on the plant genotype. Spontaneous tumour formation on the taproots is consistently observed in certain inbred lines of radish (Raphanus sativus var. radicula Pers.). In this paper, using Oxford Nanopore and Illumina technologies, we have sequenced the genomes of two closely related radish inbred lines that differ in their ability to spontaneously form tumours. We identified a large number of single nucleotide variants (amino acid substitutions, insertions or deletions, SNVs) that are likely to be associated with the spontaneous tumour formation. Among the genes involved in the trait, we have identified those that regulate the cell cycle, meristem activity, gene expression, and metabolism and signalling of phytohormones. After identifying the SNVs, we performed Sanger sequencing of amplicons corresponding to SNV-containing regions to validate our results. We then checked for the presence of SNVs in other tumour lines of the radish genetic collection and found the ERF118 gene, which had the SNVs in the majority of tumour lines. Furthermore, we performed the identification of the CLAVATA3/ESR (CLE) and WUSCHEL (WOX) genes and, as a result, identified two unique radish CLE genes which probably encode proteins with multiple CLE domains. The results obtained provide a basis for investigating the mechanisms of plant tumour formation and also for future genetic and genomic studies of radish.
Collapse
Affiliation(s)
- Xenia Kuznetsova
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Irina Dodueva
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Alexey Afonin
- All-Russia Research Institute for Agricultural Microbiology, 190608 Saint Petersburg, Russia (E.G.)
| | - Emma Gribchenko
- All-Russia Research Institute for Agricultural Microbiology, 190608 Saint Petersburg, Russia (E.G.)
| | - Lavrentii Danilov
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Maria Gancheva
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Varvara Tvorogova
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia
| | - Nikita Galynin
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Lyudmila Lutova
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia
| |
Collapse
|
2
|
Armendariz I, López de Heredia U, Soler M, Puigdemont A, Ruiz MM, Jové P, Soto Á, Serra O, Figueras M. Rhytidome- and cork-type barks of holm oak, cork oak and their hybrids highlight processes leading to cork formation. BMC PLANT BIOLOGY 2024; 24:488. [PMID: 38825683 PMCID: PMC11145776 DOI: 10.1186/s12870-024-05192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND The periderm is basic for land plants due to its protective role during radial growth, which is achieved by the polymers deposited in the cell walls. In most trees, like holm oak, the first periderm is frequently replaced by subsequent internal periderms yielding a heterogeneous outer bark made of a mixture of periderms and phloem tissues, known as rhytidome. Exceptionally, cork oak forms a persistent or long-lived periderm which results in a homogeneous outer bark of thick phellem cell layers known as cork. Cork oak and holm oak distribution ranges overlap to a great extent, and they often share stands, where they can hybridize and produce offspring showing a rhytidome-type bark. RESULTS Here we use the outer bark of cork oak, holm oak, and their natural hybrids to analyse the chemical composition, the anatomy and the transcriptome, and further understand the mechanisms underlying periderm development. We also include a unique natural hybrid individual corresponding to a backcross with cork oak that, interestingly, shows a cork-type bark. The inclusion of hybrid samples showing rhytidome-type and cork-type barks is valuable to approach cork and rhytidome development, allowing an accurate identification of candidate genes and processes. The present study underscores that abiotic stress and cell death are enhanced in rhytidome-type barks whereas lipid metabolism and cell cycle are enriched in cork-type barks. Development-related DEGs showing the highest expression, highlight cell division, cell expansion, and cell differentiation as key processes leading to cork or rhytidome-type barks. CONCLUSION Transcriptome results, in agreement with anatomical and chemical analyses, show that rhytidome and cork-type barks are active in periderm development, and suberin and lignin deposition. Development and cell wall-related DEGs suggest that cell division and expansion are upregulated in cork-type barks whereas cell differentiation is enhanced in rhytidome-type barks.
Collapse
Affiliation(s)
- Iker Armendariz
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Unai López de Heredia
- Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, José Antonio Novais 10, Madrid, 28040, Spain
| | - Marçal Soler
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Adrià Puigdemont
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Maria Mercè Ruiz
- Institut Català del Suro. Carrer Miquel Vincke i Meyer 13, Palafrugell, 17200, Spain
| | - Patricia Jové
- Institut Català del Suro. Carrer Miquel Vincke i Meyer 13, Palafrugell, 17200, Spain
| | - Álvaro Soto
- Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, José Antonio Novais 10, Madrid, 28040, Spain
| | - Olga Serra
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Mercè Figueras
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain.
| |
Collapse
|
3
|
Iwase A, Kondo Y, Laohavisit A, Takebayashi A, Ikeuchi M, Matsuoka K, Asahina M, Mitsuda N, Shirasu K, Fukuda H, Sugimoto K. WIND transcription factors orchestrate wound-induced callus formation, vascular reconnection and defense response in Arabidopsis. THE NEW PHYTOLOGIST 2021; 232:734-752. [PMID: 34375004 PMCID: PMC9291923 DOI: 10.1111/nph.17594] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/24/2021] [Indexed: 05/05/2023]
Abstract
Wounding triggers de novo organogenesis, vascular reconnection and defense response but how wound stress evoke such a diverse array of physiological responses remains unknown. We previously identified AP2/ERF transcription factors, WOUND INDUCED DEDIFFERENTIATION1 (WIND1) and its homologs, WIND2, WIND3 and WIND4, as key regulators of wound-induced cellular reprogramming in Arabidopsis. To understand how WIND transcription factors promote downstream events, we performed time-course transcriptome analyses after WIND1 induction. We observed a significant overlap between WIND1-induced genes and genes implicated in cellular reprogramming, vascular formation and pathogen response. We demonstrated that WIND transcription factors induce several reprogramming genes to promote callus formation at wound sites. We, in addition, showed that WIND transcription factors promote tracheary element formation, vascular reconnection and resistance to Pseudomonas syringae pv. tomato DC3000. These results indicate that WIND transcription factors function as key regulators of wound-induced responses by promoting dynamic transcriptional alterations. This study provides deeper mechanistic insights into how plants control multiple physiological responses after wounding.
Collapse
Affiliation(s)
- Akira Iwase
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- JST, PRESTOKawaguchi332‐0012Japan
| | - Yuki Kondo
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
- Department of BiologyGraduate School of ScienceKobe UniversityKobe657‐8501Japan
| | | | | | - Momoko Ikeuchi
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- Department of BiologyFaculty of ScienceNiigata University8050 Ikarashi 2‐no‐cho, Nishi‐kuNiigataJapan
| | - Keita Matsuoka
- Department of BiosciencesTeikyo University1‐1 ToyosatodaiUtsunomiya320‐8551Japan
| | - Masashi Asahina
- Department of BiosciencesTeikyo University1‐1 ToyosatodaiUtsunomiya320‐8551Japan
- Advanced Instrumental Analysis CenterTeikyo University1‐1 ToyosatodaiUtsunomiya320‐8551Japan
| | - Nobutaka Mitsuda
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)Tsukuba305‐8566Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| | - Hiroo Fukuda
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| |
Collapse
|
4
|
Dodueva IE, Lebedeva MA, Kuznetsova KA, Gancheva MS, Paponova SS, Lutova LL. Plant tumors: a hundred years of study. PLANTA 2020; 251:82. [PMID: 32189080 DOI: 10.1007/s00425-020-03375-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/11/2020] [Indexed: 05/21/2023]
Abstract
The review provides information on the mechanisms underlying the development of spontaneous and pathogen-induced tumors in higher plants. The activation of meristem-specific regulators in plant tumors of various origins suggests the meristem-like nature of abnormal plant hyperplasia. Plant tumor formation has more than a century of research history. The study of this phenomenon has led to a number of important discoveries, including the development of the Agrobacterium-mediated transformation technique and the discovery of horizontal gene transfer from bacteria to plants. There are two main groups of plant tumors: pathogen-induced tumors (e.g., tumors induced by bacteria, viruses, fungi, insects, etc.), and spontaneous ones, which are formed in the absence of any pathogen in plants with certain genotypes (e.g., interspecific hybrids, inbred lines, and mutants). The causes of the transition of plant cells to tumor growth are different from those in animals, and they include the disturbance of phytohormonal balance and the acquisition of meristematic characteristics by differentiated cells. The aim of this review is to discuss the mechanisms underlying the development of most known examples of plant tumors.
Collapse
Affiliation(s)
- Irina E Dodueva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Maria A Lebedeva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Kseniya A Kuznetsova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Maria S Gancheva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Svetlana S Paponova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Ludmila L Lutova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
5
|
Sugimoto K, Temman H, Kadokura S, Matsunaga S. To regenerate or not to regenerate: factors that drive plant regeneration. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:138-150. [PMID: 30703741 DOI: 10.1016/j.pbi.2018.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 05/23/2023]
Abstract
Plants have a remarkable regenerative capacity, but it varies widely among species and tissue types. Whether plant cells/tissues initiate regeneration largely depends on the extent to which they are constrained to their original tissue fate. Once cells start the regeneration program, they acquire a new fate, form meristems, and develop into organs. During these processes, the cells must continuously overcome various barriers to the progression of the regeneration program until the organ (or whole plant) is complete. Recent studies have revealed key factors and signals affecting cell fate during plant regeneration. Here, we review recent research on: (i) environmental signal inputs and physical stimuli that act as initial triggers of regeneration; (ii) epigenetic and transcriptional cellular responses to those triggers leading to cellular reprograming; and (iii) molecules that direct the formation and development of the new stem cell niche. We also discuss differences and similarities between regeneration and normal development.
Collapse
Affiliation(s)
- Kaoru Sugimoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Haruka Temman
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Satoshi Kadokura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
6
|
Wilson ME, Mixdorf M, Berg RH, Haswell ES. Plastid osmotic stress influences cell differentiation at the plant shoot apex. Development 2016; 143:3382-93. [PMID: 27510974 DOI: 10.1242/dev.136234] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 08/02/2016] [Indexed: 01/05/2023]
Abstract
The balance between proliferation and differentiation in the plant shoot apical meristem is controlled by regulatory loops involving the phytohormone cytokinin and stem cell identity genes. Concurrently, cellular differentiation in the developing shoot is coordinated with the environmental and developmental status of plastids within those cells. Here, we employ an Arabidopsis thaliana mutant exhibiting constitutive plastid osmotic stress to investigate the molecular and genetic pathways connecting plastid osmotic stress with cell differentiation at the shoot apex. msl2 msl3 mutants exhibit dramatically enlarged and deformed plastids in the shoot apical meristem, and develop a mass of callus tissue at the shoot apex. Callus production in this mutant requires the cytokinin receptor AHK2 and is characterized by increased cytokinin levels, downregulation of cytokinin signaling inhibitors ARR7 and ARR15, and induction of the stem cell identity gene WUSCHEL Furthermore, plastid stress-induced apical callus production requires elevated plastidic reactive oxygen species, ABA biosynthesis, the retrograde signaling protein GUN1, and ABI4. These results are consistent with a model wherein the cytokinin/WUS pathway and retrograde signaling control cell differentiation at the shoot apex.
Collapse
Affiliation(s)
- Margaret E Wilson
- Department of Biology, Mailbox 1137, One Brookings Drive, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Matthew Mixdorf
- Department of Biology, Mailbox 1137, One Brookings Drive, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - R Howard Berg
- Integrated Microscopy Facility, Donald Danforth Plant Science Center, 975 North Warson Rd., Saint Louis, MO 63132 USA
| | - Elizabeth S Haswell
- Department of Biology, Mailbox 1137, One Brookings Drive, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| |
Collapse
|
7
|
Shang X, Chai Q, Zhang Q, Jiang J, Zhang T, Guo W, Ruan YL. Down-regulation of the cotton endo-1,4-β-glucanase gene KOR1 disrupts endosperm cellularization, delays embryo development, and reduces early seedling vigour. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3071-83. [PMID: 25805716 PMCID: PMC4449532 DOI: 10.1093/jxb/erv111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Towards the aim of examining the potential function of KORRIGAN (KOR), a highly conserved membrane-bound endoglucanase, in reproductive development, here transgenic evidence is provided that a cotton (Gossypium hirsutum) endoglucanase, GhKOR1, plays significant roles in endosperm and embryo development. RNA interference (RNAi)- and co-suppression-mediated down-regulation of GhKOR1 resulted in smaller filial tissue and reduced seed weight, which were characterized by disrupted endosperm cellularization and delayed embryo development, leading to a delayed germination and a weak growth of seedlings early in development. The transgenic seeds exhibited fewer and smaller endosperm cells with irregular and brittle cell walls, and their embryos developed only to the globular stage at 10 days post-anthesis (DPA) when the wild-type endosperm has become highly cellularized and the embryo has progressed to the heart stage. The transgenic seed also displayed a significant reduction of callose in the seed coat transfer cells and reduced cellulose content both in the seed coat and in mature fibres. These findings demonstrate that GhKOR1 is required for the developmental of both seed filial and maternal tissues and the establishment of seedling vigour.
Collapse
Affiliation(s)
- Xiaoguang Shang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia Australia-China Research Centre for Crop Improvement, the University of Newcastle, Callaghan, NSW 2308, Australia
| | - Qichao Chai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Qinghu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxiong Jiang
- College of Bioscience and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia Australia-China Research Centre for Crop Improvement, the University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
8
|
Bauchet G, Munos S, Sauvage C, Bonnet J, Grivet L, Causse M. Genes involved in floral meristem in tomato exhibit drastically reduced genetic diversity and signature of selection. BMC PLANT BIOLOGY 2014; 14:279. [PMID: 25325924 PMCID: PMC4210547 DOI: 10.1186/s12870-014-0279-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/06/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND Domestication and selection of crops have notably reshaped fruit morphology. With its large phenotypic diversity, tomato (Solanum lycopersicum) illustrates this evolutive trend. Genes involved in flower meristem development are known to regulate also fruit morphology. To decipher the genetic variation underlying tomato fruit morphology, we assessed the nucleotide diversity and selection footprints of candidate genes involved in flower and fruit development and performed genome-wide association studies. RESULTS Thirty candidate genes were selected according to their similarity with genes involved in meristem development or their known causal function in Arabidopsis thaliana. In tomato, these genes and flanking regions were sequenced in a core collection of 96 accessions (including cultivated, cherry-type and wild relative accessions) maximizing the molecular diversity, using the Roche 454 technology. A total amount of 17 Mb was sequenced allowing the discovery of 6,106 single nucleotide polymorphisms (SNPs). The annotation of the 30 gene regions identified 231 exons carrying 517 SNPs. Subsequently, the nucleotide diversity (π) and the neutral evolution of each region were compared against genome-wide values within the collection, using a SNP array carrying 7,667 SNPs mainly distributed in coding sequences.About half of the genes revealed footprints of selection and polymorphisms putatively involved in fruit size variation by showing negative Tajima's D and nucleotide diversity reduction in cultivated tomato compared to its wild relative. Among the candidates, FW2.2 and BAM1 sequences revealed selection footprints within their promoter regions suggesting their potential involvement in their regulation. Two associations co-localized with previously identified loci: LC (locule number) and Ovate (fruit shape). CONCLUSION Compared to whole genome genotypic data, a drastic reduction of nucleotide diversity was shown for several candidate genes. Strong selection patterns were identified in 15 candidates highlighting the critical role of meristem maintenance genes as well as the impact of domestication on candidates. The study highlighted a set of polymorphisms putatively important in the evolution of these genes.
Collapse
Affiliation(s)
- Guillaume Bauchet
- />INRA, UR1052, Génétique et Amélioration des Fruits et Légumes (GAFL), 67 Allée des Chênes Domaine Saint Maurice – CS60094, 84143 Montfavet Cedex, France
- />Syngenta Seeds, 12 chemin de l’Hobit, 31790 Saint Sauveur, France
| | - Stéphane Munos
- />INRA, UR1052, Génétique et Amélioration des Fruits et Légumes (GAFL), 67 Allée des Chênes Domaine Saint Maurice – CS60094, 84143 Montfavet Cedex, France
- />Present address: INRA, UMR CNRS-INRA 441-2594, 24 Chemin de Borde Rouge – Auzeville - CS 52627, 31326 Castanet Tolosan Cedex, France
| | - Christopher Sauvage
- />INRA, UR1052, Génétique et Amélioration des Fruits et Légumes (GAFL), 67 Allée des Chênes Domaine Saint Maurice – CS60094, 84143 Montfavet Cedex, France
| | - Julien Bonnet
- />Syngenta Seeds, 12 chemin de l’Hobit, 31790 Saint Sauveur, France
| | - Laurent Grivet
- />Syngenta Seeds, 12 chemin de l’Hobit, 31790 Saint Sauveur, France
| | - Mathilde Causse
- />INRA, UR1052, Génétique et Amélioration des Fruits et Légumes (GAFL), 67 Allée des Chênes Domaine Saint Maurice – CS60094, 84143 Montfavet Cedex, France
| |
Collapse
|
9
|
Lei L, Zhang T, Strasser R, Lee CM, Gonneau M, Mach L, Vernhettes S, Kim SH, J Cosgrove D, Li S, Gu Y. The jiaoyao1 Mutant Is an Allele of korrigan1 That Abolishes Endoglucanase Activity and Affects the Organization of Both Cellulose Microfibrils and Microtubules in Arabidopsis. THE PLANT CELL 2014; 26:2601-2616. [PMID: 24963054 PMCID: PMC4114954 DOI: 10.1105/tpc.114.126193] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In higher plants, cellulose is synthesized by plasma membrane-localized cellulose synthase complexes (CSCs). Arabidopsis thaliana GH9A1/KORRIGAN1 is a membrane-bound, family 9 glycosyl hydrolase that is important for cellulose synthesis in both primary and secondary cell walls. Most previously identified korrigan1 mutants show severe phenotypes such as embryo lethality; therefore, the role of GH9A1 in cellulose synthesis remains unclear. Here, we report a novel A577V missense mutation, designated jiaoyao1 (jia1), in the second of the glycosyl hydrolase family 9 active site signature motifs in GH9A1. jia1 is defective in cell expansion in dark-grown hypocotyls, roots, and adult plants. Consistent with its defect in cell expansion, this mutation in GH9A1 resulted in reduced cellulose content and reduced CSC velocity at the plasma membrane. Green fluorescent protein-GH9A1 is associated with CSCs at multiple locations, including the plasma membrane, Golgi, trans-Golgi network, and small CESA-containing compartments or microtubule-associated cellulose synthase compartments, indicating a tight association between GH9A1 and CSCs. GH9A1A577V abolishes the endoglucanase activity of GH9A1 in vitro but does not affect its interaction with CESAs in vitro, suggesting that endoglucanase activity is important for cellulose synthesis. Interestingly, jia1 results in both cellulose microfibril and microtubule disorganization. Our study establishes the important role of endoglucanase in cellulose synthesis and cellulose microfibril organization in plants.
Collapse
Affiliation(s)
- Lei Lei
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Tian Zhang
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Christopher M Lee
- Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Martine Gonneau
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 INRA-AgroParisTech, 78026 Versailles, France
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Samantha Vernhettes
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Seong H Kim
- Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Shundai Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
10
|
Li S, Bashline L, Lei L, Gu Y. Cellulose synthesis and its regulation. THE ARABIDOPSIS BOOK 2014; 12:e0169. [PMID: 24465174 PMCID: PMC3894906 DOI: 10.1199/tab.0169] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cellulose, the most abundant biopolymer synthesized on land, is made of linear chains of ß (1-4) linked D-glucose. As a major structural component of the cell wall, cellulose is important not only for industrial use but also for plant growth and development. Cellulose microfibrils are tethered by other cell wall polysaccharides such as hemicellulose, pectin, and lignin. In higher plants, cellulose is synthesized by plasma membrane-localized rosette cellulose synthase complexes. Despite the recent advances using a combination of molecular genetics, live cell imaging, and spectroscopic tools, many aspects of the cellulose synthesis remain a mystery. In this chapter, we highlight recent research progress towards understanding the mechanism of cellulose synthesis in Arabidopsis.
Collapse
Affiliation(s)
- Shundai Li
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Logan Bashline
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Lei Lei
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Ying Gu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- Address correspondence to
| |
Collapse
|
11
|
Li H, Soriano M, Cordewener J, Muiño JM, Riksen T, Fukuoka H, Angenent GC, Boutilier K. The histone deacetylase inhibitor trichostatin a promotes totipotency in the male gametophyte. THE PLANT CELL 2014; 26:195-209. [PMID: 24464291 PMCID: PMC3963568 DOI: 10.1105/tpc.113.116491] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/19/2013] [Accepted: 01/09/2014] [Indexed: 05/19/2023]
Abstract
The haploid male gametophyte, the pollen grain, is a terminally differentiated structure whose function ends at fertilization. Plant breeding and propagation widely use haploid embryo production from in vitro-cultured male gametophytes, but this technique remains poorly understood at the mechanistic level. Here, we show that histone deacetylases (HDACs) regulate the switch to haploid embryogenesis. Blocking HDAC activity with trichostatin A (TSA) in cultured male gametophytes of Brassica napus leads to a large increase in the proportion of cells that switch from pollen to embryogenic growth. Embryogenic growth is enhanced by, but not dependent on, the high-temperature stress that is normally used to induce haploid embryogenesis in B. napus. The male gametophyte of Arabidopsis thaliana, which is recalcitrant to haploid embryo development in culture, also forms embryogenic cell clusters after TSA treatment. Genetic analysis suggests that the HDAC protein HDA17 plays a role in this process. TSA treatment of male gametophytes is associated with the hyperacetylation of histones H3 and H4. We propose that the totipotency of the male gametophyte is kept in check by an HDAC-dependent mechanism and that the stress treatments used to induce haploid embryo development in culture impinge on this HDAC-dependent pathway.
Collapse
Affiliation(s)
- Hui Li
- Plant Research International, Bioscience, 6700 AP Wageningen, The Netherlands
| | - Mercedes Soriano
- Plant Research International, Bioscience, 6700 AP Wageningen, The Netherlands
| | - Jan Cordewener
- Plant Research International, Bioscience, 6700 AP Wageningen, The Netherlands
| | - Jose M. Muiño
- Plant Research International, Bioscience, 6700 AP Wageningen, The Netherlands
- Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
| | - Tjitske Riksen
- Plant Research International, Bioscience, 6700 AP Wageningen, The Netherlands
| | - Hiroyuki Fukuoka
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan
| | - Gerco C. Angenent
- Plant Research International, Bioscience, 6700 AP Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University, 6700 AP Wageningen, The Netherlands
| | - Kim Boutilier
- Plant Research International, Bioscience, 6700 AP Wageningen, The Netherlands
- Address correspondence to
| |
Collapse
|
12
|
Enugutti B, Kirchhelle C, Schneitz K. On the genetic control of planar growth during tissue morphogenesis in plants. PROTOPLASMA 2013; 250:651-61. [PMID: 22983223 DOI: 10.1007/s00709-012-0452-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/05/2012] [Indexed: 05/15/2023]
Abstract
Tissue morphogenesis requires extensive intercellular communication. Plant organs are composites of distinct radial cell layers. A typical layer, such as the epidermis, is propagated by stereotypic anticlinal cell divisions. It is presently unclear what mechanisms coordinate cell divisions relative to the plane of a layer, resulting in planar growth and maintenance of the layer structure. Failure in the regulation of coordinated growth across a tissue may result in spatially restricted abnormal growth and the formation of a tumor-like protrusion. Therefore, one way to approach planar growth control is to look for genetic mutants that exhibit localized tumor-like outgrowths. Interestingly, plants appear to have evolved quite robust genetic mechanisms that govern these aspects of tissue morphogenesis. Here we provide a short summary of the current knowledge about the genetics of tumor formation in plants and relate it to the known control of coordinated cell behavior within a tissue layer. We further portray the integuments of Arabidopsis thaliana as an excellent model system to study the regulation of planar growth. The value of examining this process in integuments was established by the recent identification of the Arabidopsis AGC VIII kinase UNICORN as a novel growth suppressor involved in the regulation of planar growth and the inhibition of localized ectopic growth in integuments and other floral organs. An emerging insight is that misregulation of central determinants of adaxial-abaxial tissue polarity can lead to the formation of spatially restricted multicellular outgrowths in several tissues. Thus, there may exist a link between the mechanisms regulating adaxial-abaxial tissue polarity and planar growth in plants.
Collapse
Affiliation(s)
- Balaji Enugutti
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Strasse 4, 85354, Freising, Germany.
| | | | | |
Collapse
|
13
|
Pelagio-Flores R, Ortiz-Castro R, López-Bucio J. dhm1, an Arabidopsis mutant with increased sensitivity to alkamides shows tumorous shoot development and enhanced lateral root formation. PLANT MOLECULAR BIOLOGY 2013; 81:609-625. [PMID: 23412925 DOI: 10.1007/s11103-013-0023-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 02/03/2013] [Indexed: 06/01/2023]
Abstract
The control of cell division by growth regulators is critical to proper shoot and root development. Alkamides belong to a class of small lipid amides involved in plant morphogenetic processes, from which N-isobutyl decanamide is one of the most active compounds identified. This work describes the isolation and characterization of an N-isobutyl decanamide-hypersensitive (dhm1) mutant of Arabidopsis (Arabidopsis thaliana). dhm1 seedlings grown in vitro develop disorganized tumorous tissue in petioles, leaves and stems. N-isobutyl decanamide treatment exacerbates the dhm1 phenotype resulting in widespread production of callus-like structures in the mutant. Together with these morphological alterations in shoot, dhm1 seedlings sustained increased lateral root formation and greater sensitivity to alkamides in the inhibition of primary root growth. The mutants also show reduced etiolation when grown in darkness. When grown in soil, adult dhm1 plants were characterized by reduced plant size, and decreased fertility. Genetic analysis indicated that the mutant phenotype segregates as a single recessive Mendelian trait. Developmental alterations in dhm1 were related to an enhanced expression of the cell division marker CycB1-uidA both in the shoot and root system, which correlated with altered expression of auxin and cytokinin responsive gene markers. Pharmacological inhibition of auxin transport decreased LR formation in WT and dhm1 seedlings in a similar manner, indicating that auxin transport is involved in the dhm1 root phenotype. These data show an important role of alkamide signaling in cell proliferation and plant architecture remodeling likely acting through the DHM1 protein.
Collapse
Affiliation(s)
- Ramón Pelagio-Flores
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | | | | |
Collapse
|
14
|
Goss CA, Brockmann DJ, Bushoven JT, Roberts AW. A CELLULOSE SYNTHASE (CESA) gene essential for gametophore morphogenesis in the moss Physcomitrella patens. PLANTA 2012; 235:1355-67. [PMID: 22215046 DOI: 10.1007/s00425-011-1579-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/19/2011] [Indexed: 05/11/2023]
Abstract
In seed plants, different groups of orthologous genes encode the CELLULOSE SYNTHASE (CESA) proteins that are responsible for cellulose biosynthesis in primary and secondary cell walls. The seven CESA sequences of the moss Physcomitrella patens (Hedw.) B. S. G. form a monophyletic sister group to seed plant CESAs, consistent with independent CESA diversification and specialization in moss and seed plant lines. The role of PpCESA5 in the development of P. patens was investigated by targeted mutagenesis. The cesa5 knockout lines were tested for cellulose deficiency using carbohydrate-binding module affinity cytochemistry and the morphology of the leafy gametophores was analyzed by 3D reconstruction of confocal images. No defects were identified in the development of the filamentous protonema or in production of bud initials that normally give rise to the leafy gametophores. However, the gametophore buds were cellulose deficient and defects in subsequent cell expansion, cytokinesis, and leaf initiation resulted in the formation of irregular cell clumps instead of leafy shoots. Analysis of the cesa5 knockout phenotype indicates that a biophysical model of organogenesis can be extended to the moss gametophore shoot apical meristem.
Collapse
Affiliation(s)
- Chessa A Goss
- Department of Biological Sciences, CBLS, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | |
Collapse
|
15
|
The AP2/ERF Transcription Factor WIND1 Controls Cell Dedifferentiation in Arabidopsis. Curr Biol 2011; 21:508-14. [DOI: 10.1016/j.cub.2011.02.020] [Citation(s) in RCA: 280] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 02/05/2023]
|
16
|
Abstract
In plants, as in animals, most cells that constitute the organism limit their reproductive potential in order to provide collective support for the immortal germ line. And, as in animals, the mechanisms that restrict the proliferation of somatic cells in plants can fail, leading to tumours. There are intriguing similarities in tumorigenesis between plants and animals, including the involvement of the retinoblastoma pathway as well as overlap with mechanisms that are used for stem cell maintenance. However, plant tumours are less frequent and are not as lethal as those in animals. We argue that fundamental differences between plant and animal development make it much more difficult for individual plant cells to escape communal controls.
Collapse
Affiliation(s)
- John H Doonan
- John Innes Centre, Conley Lane, Norwich NR4 7UH, UK.
| | | |
Collapse
|