1
|
Huang L, Liang S, Luo L, Wu M, Fu H, Zhong Z. Transcriptomic analysis reveals effects of fertilization towards growth and quality of Fritillariae thunbergii bulbus. PLoS One 2024; 19:e0309978. [PMID: 39302908 DOI: 10.1371/journal.pone.0309978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/17/2024] [Indexed: 09/22/2024] Open
Abstract
Fritillariae thunbergii Bulbus (FTB) is a traditional Chinese medicine that has been widely cultivated for its expectorant, antitussive, antiasthmatic, antiviral, and anticancer properties. The yield and quality of F. thunbergii are influenced by cultivation conditions, such as the use of fertilizers. However, the optimal type of fertilizers for maximum quality and yield and underlying mechanisms are not clear. We collected F. thunbergii using raw chicken manure (RC), organic fertilizer (OF), and plant ash (PA) as the base fertilizer in Pan'an County, Jinhua City, Zhejiang Province as experimental materials. The combined results of HPLC-ELSD detection and yield statistics showed that the F. thunbergii with OF application was the best, with the content of peimine and peiminine reaching 0.0603% and 0.0502%, respectively. In addition, the yield was 2.70 kg/m2. Transcriptome analysis indicated that up-regulation of the ABA signaling pathway might promote bulb yield. Furthermore, putative key genes responsible for steroidal alkaloid accumulation were identified. These results provided guiding significance for the rational fertilization conditions of F. thunbergii as well as the basis for the exploration of functional genes related to the alkaloid biosynthesis pathway.
Collapse
Affiliation(s)
- Luman Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Shuang Liang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Lei Luo
- Zhejiang Institute for Food and Drug Control, Hangzhou, P.R. China
| | - Mengmin Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Hongwei Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Zhuoheng Zhong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| |
Collapse
|
2
|
Zebosi B, Vollbrecht E, Best NB. Brassinosteroid biosynthesis and signaling: Conserved and diversified functions of core genes across multiple plant species. PLANT COMMUNICATIONS 2024; 5:100982. [PMID: 38816993 DOI: 10.1016/j.xplc.2024.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Brassinosteroids (BRs) are important regulators that control myriad aspects of plant growth and development, including biotic and abiotic stress responses, such that modulating BR homeostasis and signaling presents abundant opportunities for plant breeding and crop improvement. Enzymes and other proteins involved in the biosynthesis and signaling of BRs are well understood from molecular genetics and phenotypic analysis in Arabidopsis thaliana; however, knowledge of the molecular functions of these genes in other plant species, especially cereal crop plants, is minimal. In this manuscript, we comprehensively review functional studies of BR genes in Arabidopsis, maize, rice, Setaria, Brachypodium, and soybean to identify conserved and diversified functions across plant species and to highlight cases for which additional research is in order. We performed phylogenetic analysis of gene families involved in the biosynthesis and signaling of BRs and re-analyzed publicly available transcriptomic data. Gene trees coupled with expression data provide a valuable guide to supplement future research on BRs in these important crop species, enabling researchers to identify gene-editing targets for BR-related functional studies.
Collapse
Affiliation(s)
- Brian Zebosi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Erik Vollbrecht
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA.
| | - Norman B Best
- USDA-ARS, Plant Genetics Research Unit, Columbia, MO 65201, USA.
| |
Collapse
|
3
|
Kaur A, Best NB, Hartwig T, Budka J, Khangura RS, McKenzie S, Aragón-Raygoza A, Strable J, Schulz B, Dilkes BP. A maize semi-dwarf mutant reveals a GRAS transcription factor involved in brassinosteroid signaling. PLANT PHYSIOLOGY 2024; 195:3072-3096. [PMID: 38709680 PMCID: PMC11288745 DOI: 10.1093/plphys/kiae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 05/08/2024]
Abstract
Brassinosteroids (BR) and gibberellins (GA) regulate plant height and leaf angle in maize (Zea mays). Mutants with defects in BR or GA biosynthesis or signaling identify components of these pathways and enhance our knowledge about plant growth and development. In this study, we characterized three recessive mutant alleles of GRAS transcription factor 42 (gras42) in maize, a GRAS transcription factor gene orthologous to the DWARF AND LOW TILLERING (DLT) gene of rice (Oryza sativa). These maize mutants exhibited semi-dwarf stature, shorter and wider leaves, and more upright leaf angle. Transcriptome analysis revealed a role for GRAS42 as a determinant of BR signaling. Analysis of the expression consequences from loss of GRAS42 in the gras42-mu1021149 mutant indicated a weak loss of BR signaling in the mutant, consistent with its previously demonstrated role in BR signaling in rice. Loss of BR signaling was also evident by the enhancement of weak BR biosynthetic mutant alleles in double mutants of nana plant1-1 and gras42-mu1021149. The gras42-mu1021149 mutant had little effect on GA-regulated gene expression, suggesting that GRAS42 is not a regulator of core GA signaling genes in maize. Single-cell expression data identified gras42 expressed among cells in the G2/M phase of the cell cycle consistent with its previously demonstrated role in cell cycle gene expression in Arabidopsis (Arabidopsis thaliana). Cis-acting natural variation controlling GRAS42 transcript accumulation was identified by expression genome-wide association study (eGWAS) in maize. Our results demonstrate a conserved role for GRAS42/SCARECROW-LIKE 28 (SCL28)/DLT in BR signaling, clarify the role of this gene in GA signaling, and suggest mechanisms of tillering and leaf angle control by BR.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907USA
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Norman B Best
- Plant Genetics Research Unit, USDA-ARS, Columbia, MO 65211, USA
| | - Thomas Hartwig
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Josh Budka
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907USA
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Rajdeep S Khangura
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907USA
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Steven McKenzie
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907USA
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Alejandro Aragón-Raygoza
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Josh Strable
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Burkhard Schulz
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Brian P Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907USA
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Ai Y, Qian X, Wang X, Chen Y, Zhang T, Chao Y, Zhao Y. Uncovering early transcriptional regulation during adventitious root formation in Medicago sativa. BMC PLANT BIOLOGY 2023; 23:176. [PMID: 37016323 PMCID: PMC10074720 DOI: 10.1186/s12870-023-04168-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Alfalfa (Medicago sativa L.) as an important legume plant can quickly produce adventitious roots (ARs) to form new plants by cutting. But the regulatory mechanism of AR formation in alfalfa remains unclear. RESULTS To better understand the rooting process of alfalfa cuttings, plant materials from four stages, including initial separation stage (C stage), induction stage (Y stage), AR primordium formation stage (P stage) and AR maturation stage (S stage) were collected and used for RNA-Seq. Meanwhile, three candidate genes (SAUR, VAN3 and EGLC) were selected to explore their roles in AR formation. The numbers of differentially expressed genes (DEGs) of Y-vs-C (9,724) and P-vs-Y groups (6,836) were larger than that of S-vs-P group (150), indicating highly active in the early AR formation during the complicated development process. Pathways related to cell wall and sugar metabolism, root development, cell cycle, stem cell, and protease were identified, indicating that these genes were involved in AR production. A large number of hormone-related genes associated with the formation of alfalfa ARs have also been identified, in which auxin, ABA and brassinosteroids are thought to play key regulatory roles. Comparing with TF database, it was found that AP2/ERF-ERF, bHLH, WRKY, NAC, MYB, C2H2, bZIP, GRAS played a major regulatory role in the production of ARs of alfalfa. Furthermore, three identified genes showed significant promotion effect on AR formation. CONCLUSIONS Stimulation of stem basal cells in alfalfa by cutting induced AR production through the regulation of various hormones, transcription factors and kinases. This study provides new insights of AR formation in alfalfa and enriches gene resources in crop planting and cultivation.
Collapse
Affiliation(s)
- Ye Ai
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Xu Qian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqian Wang
- Beijing Tide Pharmaceutical Co., Ltd, Beijing, 100176, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, and UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia
| | - Tiejun Zhang
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Yuehui Chao
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| | - Yan Zhao
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Key Laboratory of Grassland Resources (IMAU), Ministry of Education, Hohhot, 010021, China.
| |
Collapse
|
5
|
Li G, Yao X, Chen Z, Tian X, Lu L. The Overexpression of Oryza sativa L. CYP85A1 Promotes Growth and Biomass Production in Transgenic Trees. Int J Mol Sci 2023; 24:ijms24076480. [PMID: 37047459 PMCID: PMC10095185 DOI: 10.3390/ijms24076480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Brassinosteroids (BRs) are important hormones that play crucial roles in plant growth, reproduction, and responses to abiotic and biotic stresses. CYP85A1 is a castasterone (CS) synthase that catalyzes C-6 oxidation of 6-deoxocastasterone (6-deoxoCS) to CS, after which CS is converted into brassinolide (BL) in a reaction catalyzed by CYP85A2. Here, we report the functional characteristics of rice (Oryza sativa L.) OsCYP85A1. Constitutive expression of OsCYP85A1 driven by the cauliflower mosaic virus 35S promoter increased endogenous BR levels and significantly promoted growth and biomass production in three groups of transgenic Populus tomentosa lines. The plant height and stem diameter of the transgenic poplar plants were increased by 17.6% and 33.6%, respectively, in comparison with control plants. Simultaneously, we showed that expression of OsCYP85A1 enhanced xylem formation in transgenic poplar without affecting cell wall thickness or the composition of cellulose. Our findings suggest that OsCYP85A1 represents a potential target candidate gene for engineering fast-growing trees with improved wood production.
Collapse
Affiliation(s)
- Guodong Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Zhouzhuoer Chen
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Xingyu Tian
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Litang Lu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Phenotypic Characterization and Fine Mapping of a Major-Effect Fruit Shape QTL FS5.2 in Cucumber, Cucumis sativus L., with Near-Isogenic Line-Derived Segregating Populations. Int J Mol Sci 2022; 23:ijms232113384. [DOI: 10.3390/ijms232113384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Cucumber (Cucumis sativus L.) fruit size/shape (FS) is an important yield and quality trait that is quantitatively inherited. Many quantitative trait loci (QTLs) for fruit size/shape have been identified, but very few have been fine-mapped or cloned. In this study, through marker-assisted foreground and background selections, we developed near-isogenic lines (NILs) for a major-effect fruit size/shape QTL FS5.2 in cucumber. Morphological and microscopic characterization of NILs suggests that the allele of fs5.2 from the semi-wild Xishuangbanna (XIS) cucumber (C. s. var. xishuangbannesis) reduces fruit elongation but promotes radial growth resulting in shorter but wider fruit, which seems to be due to reduced cell length, but increased cellular layers. Consistent with this, the NIL carrying the homozygous XIS allele (fs5.2) had lower auxin/IAA contents in both the ovary and the developing fruit. Fine genetic mapping with NIL-derived segregating populations placed FS5.2 into a 95.5 kb region with 15 predicted genes, and a homolog of the Arabidopsis CRABS CLAW (CsCRC) appeared to be the most possible candidate for FS5.2. Transcriptome profiling of NIL fruits at anthesis identified differentially expressed genes enriched in the auxin biosynthesis and signaling pathways, as well as genes involved in cell cycle, division, and cell wall processes. We conclude that the major-effect QTL FS5.2 controls cucumber fruit size/shape through regulating auxin-mediated cell division and expansion for the lateral and longitudinal fruit growth, respectively. The gibberellic acid (GA) signaling pathway also plays a role in FS5.2-mediated fruit elongation.
Collapse
|
7
|
Zhu X, Sun F, Sang M, Ye M, Bo W, Dong A, Wu R. Genetic Architecture of Heterophylly: Single and Multi-Leaf Genome-Wide Association Mapping in Populus euphratica. FRONTIERS IN PLANT SCIENCE 2022; 13:870876. [PMID: 35783952 PMCID: PMC9240601 DOI: 10.3389/fpls.2022.870876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Heterophylly is an adaptive strategy used by some plants in response to environmental changes. Due to the lack of representative plants with typical heteromorphic leaves, little is known about the genetic architecture of heterophylly in plants and the genes underlying its control. Here, we investigated the genetic characteristics underlying changes in leaf shape based on the model species, Populus euphratica, which exhibits typical heterophylly. A set of 401,571 single-nucleotide polymorphisms (SNPs) derived from whole-genome sequencing of 860 genotypes were associated with nine leaf traits, which were related to descriptive and shape data using single- and multi-leaf genome-wide association studies (GWAS). Multi-leaf GWAS allows for a more comprehensive understanding of the genetic architecture of heterophylly by considering multiple leaves simultaneously. The single-leaf GWAS detected 140 significant SNPs, whereas the multi-leaf GWAS detected 200 SNP-trait associations. Markers were found across 19 chromosomes, and 21 unique genes were implicated in traits and serve as potential targets for selection. Our results provide novel insights into the genomic architecture of heterophylly, and provide candidate genes for breeding or engineering P. euphratica. Our observations also improve understanding of the intrinsic mechanisms of plant growth, evolution, and adaptation in response to climate change.
Collapse
Affiliation(s)
- Xuli Zhu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Fengshuo Sun
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mengmeng Sang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Meixia Ye
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Wenhao Bo
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Ang Dong
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
8
|
Peng H, Neff MM. Two ATAF transcription factors ANAC102 and ATAF1 contribute to the suppression of cytochrome P450-mediated brassinosteroid catabolism in Arabidopsis. PHYSIOLOGIA PLANTARUM 2021; 172:1493-1505. [PMID: 33491178 DOI: 10.1111/ppl.13339] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/16/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
PHYB ACTIVATION TAGGED SUPPRESSOR 1 (BAS1) and SUPPRESSOR OF PHYB-4 7 (SOB7) are two cytochrome P450 enzymes that inactivate brassinosteroids (BRs) in Arabidopsis. The NAC transcription factor (TF) ATAF2 (ANAC081) and the core circadian clock regulator CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) both suppress the expression of BAS1 and SOB7 via direct promoter binding. Additionally, BRs cause feedback suppression on ATAF2 expression. Here, we report that two ATAF-subgroup TFs, ANAC102 and ATAF1 (ANAC002), also contribute to the transcriptional suppression of BAS1 and SOB7. ANAC102 and ATAF1 gene-knockout mutants exhibit elevated expression of both BAS1 and SOB7, expanded tissue-level accumulation of their protein products and reduced hypocotyl growth in response to exogenous BR treatments. Similar to ATAF2, both ANAC102 and ATAF1 are transcriptionally suppressed by BRs and white light. Neither BAS1 nor SOB7 expression is further elevated in ATAF double or triple mutants, suggesting that the suppression effect of these three ATAFs is not additive. In addition, ATAF single, double, and triple mutants have similar levels of BR responsiveness with regard to hypocotyl elongation. ATAF2, ANAC102, ATAF1, and CCA1 physically interact with itself and each other, suggesting that they may coordinately suppress BAS1 and SOB7 expression via protein-protein interactions. Despite the absence of CCA1-binding elements in their promoters, ANAC102 and ATAF1 have similar transcript circadian oscillation patterns as that of CCA1, suggesting that these two ATAF genes may be indirectly regulated by the circadian clock.
Collapse
Affiliation(s)
- Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
| | | |
Collapse
|
9
|
van Haperen P, Voorrips RE, van Kaauwen M, van Eekelen HDLM, de Vos RCH, van Loon JJA, Vosman B. Fine mapping of a thrips resistance QTL in Capsicum and the role of diterpene glycosides in the underlying mechanism. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1557-1573. [PMID: 33609141 PMCID: PMC8081677 DOI: 10.1007/s00122-021-03790-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/05/2021] [Indexed: 05/27/2023]
Abstract
A major thrips resistance QTL in Capsicum was fine-mapped to a region of 0.4 Mbp, and a multidisciplinary approach has been used to study putative underlying mechanisms. Resistance to thrips is an important trait for pepper growers. These insects can cause extensive damage to fruits, flowers and leaves on field and greenhouse grown plants worldwide. Two independent studies in Capsicum identified diterpene glycosides as metabolites that are correlated with thrips resistance. In this study, we fine-mapped a previously defined thrips resistance QTL on chromosome 6, to a region of 0.4 Mbp harbouring 15 genes. Two of these 15 candidate genes showed differences in gene expression upon thrips induction, when comparing plants carrying the resistance allele in homozygous state to plants with the susceptibility allele in homozygous state for the QTL region. Three genes, including the two genes that showed difference in gene expression, contained a SNP that was predicted to lead to changes in protein structure. Therefore, these three genes, i.e. an acid phosphatase 1 (APS1), an organic cation/carnitine transporter 7 (OCT7) and an uncharacterized locus LOC107874801, are the most likely candidates for playing a role in thrips resistance and are a first step in elucidating the genetic basis of thrips resistance in Capsicum. In addition, we show that the diterpene glycoside profiles did not differ between plants with the resistance and susceptibility allele for the chromosome 6 QTL, suggesting that these compounds do not play a role in the resistance conferred by the genes located in the major thrips resistance QTL studied.
Collapse
Affiliation(s)
- Pauline van Haperen
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
- Keygene N.V, P.O. Box 216, 6700 AE, Wageningen, The Netherlands
| | - Roeland E Voorrips
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Martijn van Kaauwen
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | | | - Ric C H de Vos
- Bioscience, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Ben Vosman
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands.
| |
Collapse
|
10
|
Peng H, Phung J, Zhai Y, Neff MM. Self-transcriptional repression of the Arabidopsis NAC transcription factor ATAF2 and its genetic interaction with phytochrome A in modulating seedling photomorphogenesis. PLANTA 2020; 252:48. [PMID: 32892254 DOI: 10.1007/s00425-020-03456-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
The NAC transcription factor ATAF2 suppresses its own transcription via self-promoter binding. ATAF2 genetically interacts with the circadian regulator CCA1 and phytochrome A to modulate seedling photomorphogenesis in Arabidopsis thaliana. ATAF2 (ANAC081) is a NAC (NAM, ATAF and CUC) transcription factor (TF) that participates in the regulation of disease resistance, stress tolerance and hormone metabolism in Arabidopsis thaliana. We previously reported that ATAF2 promotes Arabidopsis hypocotyl growth in a light-dependent manner via transcriptionally suppressing the brassinosteroid (BR)-inactivating cytochrome P450 genes BAS1 (CYP734A1, formerly CYP72B1) and SOB7 (CYP72C1). Assays using low light intensities suggest that the photoreceptor phytochrome A (PHYA) may play a more critical role in ATAF2-regulated photomorphogenesis than phytochrome B (PHYB) and cryptochrome 1 (CRY1). In addition, ATAF2 is also regulated by the circadian clock. The core circadian TF CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) physically interacts with ATAF2 at the DNA-protein and protein-protein levels, and both differentially suppress BAS1- and SOB7-mediated BR catabolism. In this research, we show that ATAF2 can bind its own promoter as a transcriptional self-repressor. This self-feedback-suppression loop is a typical feature of multiple circadian-regulated genes. Additionally, ATAF2 and CCA1 synergistically suppress seedling photomorphogenesis as reflected by the light-dependent hypocotyl growth analysis of their single and double gene knock-out mutants. Similar fluence-rate response assays using ATAF2 and photoreceptor (PHYB, CRY1 and PHYA) knock-out mutants demonstrate that PHYA is required for ATAF2-regulated photomorphogenesis in a wide range of light intensities. Furthermore, disruption of PHYA can suppress the BR-insensitive hypocotyl-growth phenotype of ATAF2 loss-of-function seedlings in the light, but not in darkness. Collectively, our results provide a genetic interaction synopsis of the circadian-clock-photomorphogenesis-BR integration node involving ATAF2, CCA1 and PHYA.
Collapse
Affiliation(s)
- Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Jessica Phung
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Michael M Neff
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
11
|
Rastogi S, Satapathy S, Shah S, Mytrai, Prakash H. In silico identification of cytochrome P450s involved in Ocimum tenuiflorum subjected to four abiotic stresses. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Szeliga M, Ciura J, Tyrka M. Representational Difference Analysis of Transcripts Involved in Jervine Biosynthesis. Life (Basel) 2020; 10:life10060088. [PMID: 32575579 PMCID: PMC7344996 DOI: 10.3390/life10060088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/28/2022] Open
Abstract
Veratrum-type steroidal alkaloids (VSA) are the major bioactive ingredients that strongly determine the pharmacological activities of Veratrum nigrum. Biosynthesis of VSA at the molecular and genetic levels is not well understood. Next-generation sequencing of representational difference analysis (RDA) products after elicitation and precursor feeding was applied to identify candidate genes involved in VSA biosynthesis. A total of 12,048 contigs with a median length of 280 bases were received in three RDA libraries obtained after application of methyl jasmonate, squalene and cholesterol. The comparative analysis of annotated sequences was effective in identifying candidate genes. GABAT2 transaminase and hydroxylases active at C-22, C-26, C-11, and C-16 positions in late stages of jervine biosynthesis were selected. Moreover, genes coding pyrroline-5-carboxylate reductase and enzymes from the short-chain dehydrogenases/reductases family (SDR) associated with the reduction reactions of the VSA biosynthesis process were proposed. The data collected contribute to better understanding of jervine biosynthesis and may accelerate implementation of biotechnological methods of VSA biosynthesis.
Collapse
Affiliation(s)
- Magdalena Szeliga
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-959 Rzeszow, Poland; (J.C.); (M.T.)
- Correspondence:
| | - Joanna Ciura
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-959 Rzeszow, Poland; (J.C.); (M.T.)
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-959 Rzeszow, Poland; (J.C.); (M.T.)
| |
Collapse
|
13
|
Peng H, Neff MM. CIRCADIAN CLOCK ASSOCIATED 1 and ATAF2 differentially suppress cytochrome P450-mediated brassinosteroid inactivation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:970-985. [PMID: 31639820 PMCID: PMC6977193 DOI: 10.1093/jxb/erz468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 10/15/2019] [Indexed: 05/20/2023]
Abstract
Brassinosteroids (BRs) are a group of steroid hormones regulating plant growth and development. Since BRs do not undergo transport among plant tissues, their metabolism is tightly regulated by transcription factors (TFs) and feedback loops. BAS1 (CYP734A1, formerly CYP72B1) and SOB7 (CYP72C1) are two BR-inactivating cytochrome P450s identified in Arabidopsis thaliana. We previously found that a TF ATAF2 (ANAC081) suppresses BAS1 and SOB7 expression by binding to the Evening Element (EE) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1)-binding site (CBS) on their promoters. Both the EE and CBS are known binding targets of the circadian regulatory protein CCA1. Here, we confirm that CCA1 binds the EE and CBS motifs on BAS1 and SOB7 promoters, respectively. Elevated accumulations of BAS1 and SOB7 transcripts in the CCA1 null mutant cca1-1 indicate that CCA1 is a repressor of their expression. When compared with either cca1-1 or the ATAF2 null mutant ataf2-2, the cca1-1 ataf2-2 double mutant shows higher SOB7 transcript accumulations and a stronger BR-insensitive phenotype of hypocotyl elongation in white light. CCA1 interacts with ATAF2 at both DNA-protein and protein-protein levels. ATAF2, BAS1, and SOB7 are all circadian regulated with distinct expression patterns. These results demonstrate that CCA1 and ATAF2 differentially suppress BAS1- and SOB7-mediated BR inactivation.
Collapse
Affiliation(s)
- Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Michael M Neff
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
- Correspondence:
| |
Collapse
|
14
|
Wei Z, Li J. Regulation of Brassinosteroid Homeostasis in Higher Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:583622. [PMID: 33133120 PMCID: PMC7550685 DOI: 10.3389/fpls.2020.583622] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 05/03/2023]
Abstract
Brassinosteroids (BRs) are known as one of the major classes of phytohormones essential for various processes during normal plant growth, development, and adaptations to biotic and abiotic stresses. Significant progress has been achieved on revealing mechanisms regulating BR biosynthesis, catabolism, and signaling in many crops and in model plant Arabidopsis. It is known that BRs control plant growth and development in a dosage-dependent manner. Maintenance of BR homeostasis is therefore critical for optimal functions of BRs. In this review, updated discoveries on mechanisms controlling BR homeostasis in higher plants in response to internal and external cues are discussed.
Collapse
|
15
|
Rozhon W, Akter S, Fernandez A, Poppenberger B. Inhibitors of Brassinosteroid Biosynthesis and Signal Transduction. Molecules 2019; 24:E4372. [PMID: 31795392 PMCID: PMC6930552 DOI: 10.3390/molecules24234372] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Chemical inhibitors are invaluable tools for investigating protein function in reverse genetic approaches. Their application bears many advantages over mutant generation and characterization. Inhibitors can overcome functional redundancy, their application is not limited to species for which tools of molecular genetics are available and they can be applied to specific tissues or developmental stages, making them highly convenient for addressing biological questions. The use of inhibitors has helped to elucidate hormone biosynthesis and signaling pathways and here we review compounds that were developed for the plant hormones brassinosteroids (BRs). BRs are steroids that have strong growth-promoting capacities, are crucial for all stages of plant development and participate in adaptive growth processes and stress response reactions. In the last two decades, impressive progress has been made in BR inhibitor development and application, which has been instrumental for studying BR modes of activity and identifying and characterizing key players. Both, inhibitors that target biosynthesis, such as brassinazole, and inhibitors that target signaling, such as bikinin, exist and in a comprehensive overview we summarize knowledge and methodology that enabled their design and key findings of their use. In addition, the potential of BR inhibitors for commercial application in plant production is discussed.
Collapse
Affiliation(s)
- Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany
| | | | | | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany
| |
Collapse
|
16
|
Ruan Y, Halat LS, Khan D, Jancowski S, Ambrose C, Belmonte MF, Wasteneys GO. The Microtubule-Associated Protein CLASP Sustains Cell Proliferation through a Brassinosteroid Signaling Negative Feedback Loop. Curr Biol 2018; 28:2718-2729.e5. [DOI: 10.1016/j.cub.2018.06.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/19/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022]
|
17
|
Changes in endogenous phytohormones regulated by microRNA-target mRNAs contribute to the development of Dwarf Autotetraploid Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Mol Genet Genomics 2018; 293:1535-1546. [PMID: 30116946 DOI: 10.1007/s00438-018-1480-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/09/2018] [Indexed: 12/22/2022]
Abstract
Polyploidization is considered as the major force that drives plant species evolution and biodiversity. The leaves of Chinese cabbage, an important vegetable crop valued for its nutritional quality, constitute the main edible organ. In this study, we found that autotetraploid Chinese cabbage (Brassica rapa ssp. pekinensis) generated from a doubled haploid (DH) line via isolated microspore culture exhibits a dwarf phenotype, along with thick leaves and delayed flowering. Abscisic acid (ABA) and brassinosteroid (BR) levels were significantly lower in autotetraploids compared to DHs. Comparative transcriptome analysis was performed to examine the gene regulatory network. A total of 13,225 differentially expressed genes (DEGs) were detected. Further microRNA (miRNA) analysis identified 102 DEGs that correspond to 35 differentially expressed miRNAs (DEMs). Subsequent screening of these 102 genes identified 13 key genes with 12 corresponding differentially expressed miRNAs that are related to leaf development and dwarfism. These 13 genes are involved in the regulation of various processes, including BR synthesis (dwarfing), plant growth, flowering time delay, ABA pathway-related growth and metabolism, leaf morphology and development, and cell extension. Two dwarfing-related genes (BraA01000252 and BraA05004386) regulated by two miRNAs (novel_15 and novel_54) were determined to be downregulated, indicating their possible role in leaf thickness and dwarfism in autotetraploid plants. We also propose two possible miRNA-dependent regulatory pathways that contribute to trait formation in autotetraploid Chinese cabbage. These results provide a theoretical basis for further work involving Chinese cabbage varieties by inducing polyploidy.
Collapse
|
18
|
Zhang Z, Xu L. Arabidopsis BRASSINOSTEROID INACTIVATOR2 is a typical BAHD acyltransferase involved in brassinosteroid homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1925-1941. [PMID: 29462426 DOI: 10.1093/jxb/ery057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Brassinosteroids (BRs) are plant-specific steroidal hormones; BR homeostasis is crucial for various aspects of plant growth and development. However, to date, the BR inactivation process has not been thoroughly elucidated. In this study, we identified and characterized a novel BAHD family acyltransferase gene, BRASSINOSTEROID INACTIVATOR2 (BIA2), involved in BR inactivation. BIA2-overexpressing (OE-BIA2) plants displayed typical BR-deficient phenotypes, which were rescued by exogenous BR treatment. Real-time qRT-PCR and transcriptome analyses showed that expression levels of virtually all of the BR biosynthetic genes were increased, whereas the expression of many BR inactivation genes was reduced in OE-BIA2 plants. Root inhibition assays showed that the root growth of OE-BIA2 plants was inhibited. We obtained plants with an intermediate phenotype by crossing the OE-BIA2 plants with BRASSINOSTEROID-INSENSITIVE1 (BRI1)-overexpressing plants. The null BIA2 mutants had longer hypocotyls in the dark. BIA2 was predominantly expressed in roots, and its expression was induced by 24-epibrassinolide or dark treatment, but it exhibited a differential expression pattern compared with its homologue, BIA1. Furthermore, genetic transformation with point-mutant and deleted-BIA2 constructs confirmed that the HXXXD motif is essential for the function of BIA2. Taken together, these findings indicate that BIA2 is a typical BAHD acyltransferase that is involved in BR homeostasis and may inactivate bioactive BRs by esterification, particularly in roots and hypocotyls under dark conditions.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, China
| | - Liping Xu
- National Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
19
|
Han YJ, Kim YS, Hwang OJ, Roh J, Ganguly K, Kim SK, Hwang I, Kim JI. Overexpression of Arabidopsis thaliana brassinosteroid-related acyltransferase 1 gene induces brassinosteroid-deficient phenotypes in creeping bentgrass. PLoS One 2017; 12:e0187378. [PMID: 29084267 PMCID: PMC5662239 DOI: 10.1371/journal.pone.0187378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/18/2017] [Indexed: 11/19/2022] Open
Abstract
Brassinosteroids (BRs) are naturally occurring steroidal hormones that play diverse roles in various processes during plant growth and development. Thus, genetic manipulation of endogenous BR levels might offer a way of improving the agronomic traits of crops, including plant architecture and stress tolerance. In this study, we produced transgenic creeping bentgrass (Agrostis stolonifera L.) overexpressing a BR-inactivating enzyme, Arabidopsis thaliana BR-related acyltransferase 1 (AtBAT1), which is known to catalyze the conversion of BR intermediates to inactive acylated conjugates. After putative transgenic plants were selected using herbicide resistance assay, genomic integration of the AtBAT1 gene was confirmed by genomic PCR and Southern blot analysis, and transgene expression was validated by northern blot analysis. The transgenic creeping bentgrass plants exhibited BR-deficient phenotypes, including reduced plant height with shortened internodes (i.e., semi-dwarf), reduced leaf growth rates with short, wide, and thick architecture, high chlorophyll contents, decreased numbers of vascular bundles, and large lamina joint bending angles (i.e., erect leaves). Subsequent analyses showed that the transgenic plants had significantly reduced amounts of endogenous BR intermediates, including typhasterol, 6-deoxocastasterone, and castasterone. Moreover, the AtBAT1 transgenic plants displayed drought tolerance as well as delayed senescence. Therefore, the results of the present study demonstrate that overexpression of an Arabidopsis BR-inactivating enzyme can reduce the endogenous levels of BRs in creeping bentgrass resulting in BR-deficient phenotypes, indicating that the AtBAT1 gene from a dicot plant is also functional in the monocot crop.
Collapse
Affiliation(s)
- Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Young Soon Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Ok-Jin Hwang
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Jeehee Roh
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Keya Ganguly
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ildoo Hwang
- Department of Life Sciences and Biotechnology Research Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
20
|
Prall W, Hendy O, Thornton LE. Utility of a Phylogenetic Perspective in Structural Analysis of CYP72A Enzymes from Flowering Plants. PLoS One 2016; 11:e0163024. [PMID: 27669508 PMCID: PMC5036807 DOI: 10.1371/journal.pone.0163024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
Plant adaptation to external pressures depends on functional diversity in cytochrome P450 (CYP) enzymes. CYPs contain structural domains necessary for the characteristic P450 fold that allows monooxygenation, but they also have great variation in substrate binding affinity. Plant genomes typically contain hundreds of CYPs that contribute to essential functions and species-specific metabolism. The CYP72A subfamily is conserved in angiosperms but its contribution to physiological functions is largely unknown. With genomic information available for many plants, a focused analysis of CYP subfamily diversity is important to understand the contributions of these enzymes to plant evolution. This study examines the extent to which independent gene duplication and evolution have contributed to structural diversification of CYP72A enzymes in different plant lineages. CYP72A genes are prevalent across angiosperms, but the number of genes within each genome varies greatly. The prevalence of CYP72As suggest that the last common ancestor of flowering plants contained a CYP72A sequence, but gene duplication and retention has varied greatly for this CYP subfamily. Sequence comparisons show that CYP72As are involved in species-specific metabolic functions in some plants while there is likely functional conservation between closely related species. Analysis of structural and functional domains within groups of CYP72As reveals clade-specific residues that contribute to functional constraints within subsets of CYP72As. This study provides a phylogenetic framework that allows comparisons of structural features within subsets of the CYP72A subfamily. We examined a large number of sequences from a broad collection of plant species to detect patterns of functional conservation across the subfamily. The evolutionary relationships between CYPs in plant genomes are an important component in understanding the evolution of biochemical diversity in plants.
Collapse
Affiliation(s)
- Wil Prall
- Department of Biology, The College of New Jersey, Ewing, New Jersey, United States of America
| | - Oliver Hendy
- Department of Biology, The College of New Jersey, Ewing, New Jersey, United States of America
| | - Leeann E. Thornton
- Department of Biology, The College of New Jersey, Ewing, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
21
|
Peng H, Zhao J, Neff MM. ATAF2 integrates Arabidopsis brassinosteroid inactivation and seedling photomorphogenesis. Development 2015; 142:4129-38. [PMID: 26493403 DOI: 10.1242/dev.124347] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 10/12/2015] [Indexed: 01/24/2023]
Abstract
The Arabidopsis thaliana hypocotyl is a robust system for studying the interplay of light and plant hormones, such as brassinosteroids (BRs), in the regulation of plant growth and development. Since BRs cannot be transported between plant tissues, their cellular levels must be appropriate for given developmental fates. BR homeostasis is maintained in part by transcriptional feedback regulation loops that control the expression of key metabolic enzymes, including the BR-inactivating enzymes BAS1 (CYP734A1, formerly CYP72B1) and SOB7 (CYP72C1). Here, we find that the NAC transcription factor (TF) ATAF2 binds the promoters of BAS1 and SOB7 to suppress their expression. ATAF2 restricts the tissue-specific expression of BAS1 and SOB7 in planta. ATAF2 loss- and gain-of-function seedlings have opposite BR-response phenotypes for hypocotyl elongation. ATAF2 modulates hypocotyl growth in a light-dependent manner, with the photoreceptor phytochrome A playing a major role. The photomorphogenic phenotypes of ATAF2 loss- and gain-of-function seedlings are suppressed by treatment with the BR biosynthesis inhibitor brassinazole. Moreover, the disruption of BAS1 and SOB7 abolishes the short-hypocotyl phenotype of ATAF2 loss-of-function seedlings in low fluence rate white light, demonstrating an ATAF2-mediated connection between BR catabolism and photomorphogenesis. ATAF2 expression is suppressed by both BRs and light, which demonstrates the existence of an ATAF2-BAS1/SOB7-BR-ATAF2 feedback regulation loop, as well as a light-ATAF2-BAS1/SOB7-BR-photomorphogenesis pathway. ATAF2 also modulates root growth by regulating BR catabolism. As it is known to regulate plant defense and auxin biosynthesis, ATAF2 therefore acts as a central regulator of plant defense, hormone metabolism and light-mediated seedling development.
Collapse
Affiliation(s)
- Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jianfei Zhao
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA Molecular Plant Science Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Michael M Neff
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA Molecular Plant Science Graduate Program, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
22
|
Chai L, Li Y, Chen S, Perl A, Zhao F, Ma H. RNA sequencing reveals high resolution expression change of major plant hormone pathway genes after young seedless grape berries treated with gibberellin. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:215-224. [PMID: 25443848 DOI: 10.1016/j.plantsci.2014.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/15/2014] [Accepted: 09/21/2014] [Indexed: 05/19/2023]
Abstract
Seedless varieties are of particular importance to the table-grape and raisin industries. Gibberellin (GA) application is widely used in the early stages of seedless berry development to increase berry size and economic value. However, the underlying mechanism of GA induction of berry enlargement is not well understood. Here, RNA-sequencing analysis of 'Centennial Seedless' (Vitis vinifera L.) berries treated with GA3 12 days after flowering is reported. Pair-wise comparison of GA3-treated and control samples detected 165, 444, 463 genes with an over two-fold change in expression 1, 3, and 7 days after GA3 treatment, respectively. The number of differentially expressed genes increased with time after GA3 treatment, and the differential expression was dominated by downregulation. Significantly modulated expression included genes encoding synthesis and catabolism to manage plant hormone homeostasis, hormone transporters, receptors and key components in signaling pathways; exogenous GA3 induced multipoint cross talk with auxin, cytokinin, brassinosteroid, ABA and ethylene. The temporal gene-expression patterns of cell-wall-modification enzymes, cytoskeleton and membrane components and transporters revealed a pivotal role for cell-wall-relaxation genes in GA3-induced berry enlargement. Our results provide the first sequential transcriptomic atlas of exogenous GA3-induced berry enlargement and reveal the complexity of GA3's effect on berry sizing.
Collapse
Affiliation(s)
- Lijuan Chai
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Yanmei Li
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Shangwu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Avihai Perl
- Department of Fruit Tree Breeding and Molecular Genetics, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel.
| | - Fengxia Zhao
- Tobacco Institute, Henan Academy of Agricultural Sciences, Xuchang 461000, China.
| | - Huiqin Ma
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Sandhu KS, Neff MM. The Arabidopsis gene ATST4a in not a typical brassinosteroid catabolic gene. PLANT SIGNALING & BEHAVIOR 2013. [PMID: 24494235 PMCID: PMC4091065 DOI: 10.4161/psb.26847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Brassinosteroid (BR) homeostasis is maintained in part by this hormone’s catabolism. The presence of multiple BR-catabolic pathways in Arabidopsis demonstrates the importance of this process in growth and development. Previous biochemical analyses suggest that AT ST4a has BR catalytic activity. We have used both overexpression and loss-of-function genetic approaches to further explore the role of ATST4a in Arabidopsis. Up to 1000-fold overexpression of the ATST4a gene did not result in any characteristic BR-deficient phenotypes. In addition, the T-DNA insertion null mutant atst4a1-1 did not display enhanced seedling hypocotyl growth in the presence or absence of the active BR brassinolide when grown in white light. This lack of hallmark characteristics for BR-inacitivion genes suggests that ATST4a encodes an atypical BR catabolic enzyme.
Collapse
|
24
|
Sandhu KS, Neff MM. The Arabidopsis gene ATST4a in not a typical brassinosteroid catabolic gene. PLANT SIGNALING & BEHAVIOR 2013; 8:doi: 10.4161/psb.26847. [PMID: 24494235 DOI: 10.4161/psb26847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Brassinosteroid (BR) homeostasis is maintained in part by this hormone’s catabolism. The presence of multiple BR-catabolic pathways in Arabidopsis demonstrates the importance of this process in growth and development. Previous biochemical analyses suggest that AT ST4a has BR catalytic activity. We have used both overexpression and loss-of-function genetic approaches to further explore the role of ATST4a in Arabidopsis. Up to 1000-fold overexpression of the ATST4a gene did not result in any characteristic BR-deficient phenotypes. In addition, the T-DNA insertion null mutant atst4a1-1 did not display enhanced seedling hypocotyl growth in the presence or absence of the active BR brassinolide when grown in white light. This lack of hallmark characteristics for BR-inacitivion genes suggests that ATST4a encodes an atypical BR catabolic enzyme.
Collapse
|
25
|
Zhu W, Wang H, Fujioka S, Zhou T, Tian H, Tian W, Wang X. Homeostasis of brassinosteroids regulated by DRL1, a putative acyltransferase in Arabidopsis. MOLECULAR PLANT 2013. [PMID: 23204503 DOI: 10.1093/mp/sss144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Brassinosteroids (BRs) play essential roles in regulating various aspects of plant growth and development and in responding to diverse environmental cues, and their metabolism is an important way to regulate their homeostasis in plants. Here, we identified a dominant mutant, dwarf and round leaf-1 (drl1-D), which exhibits weak BR-deficient or BR-insensitive mutant phenotypes, including short and round leaves, prolonged senescence, dwarfed shape, and altered expression levels of the BR-responsive genes. Hypocotyl length and root inhibition assays suggest that the drl1-D mutant responds to BRs normally, but has decreased BR signaling outputs. The endogenous levels of several BRs, including typhasterol (TY), 6-deoxotyphasterol (6-deoxoTY), and 6-deoxocastasterone (6-deoxoCS), are significantly lower in the drl1-D mutant than in the wild-type. The DRL1 gene encodes an acyltransferase and is widely expressed in leaves, roots, flowers, and siliques. Plants without DRL1 and its homologs are larger with an enhanced BR signaling. The expression of DRL1 was induced by eBL and inhibited by ABA. DRL1 is involved in the BR metabolism likely by catalyzing the BR conjugation through esterification, which plays important roles in regulating the BR homeostasis and responding to abiotic stresses in Arabidopsis.
Collapse
Affiliation(s)
- Wenjiao Zhu
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | | | | | | | | | | | | |
Collapse
|
26
|
Choi S, Cho YH, Kim K, Matsui M, Son SH, Kim SK, Fujioka S, Hwang I. BAT1, a putative acyltransferase, modulates brassinosteroid levels in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:380-91. [PMID: 23020607 DOI: 10.1111/tpj.12036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/15/2012] [Accepted: 09/19/2012] [Indexed: 05/20/2023]
Abstract
Brassinosteroids (BRs) are essential for various aspects of plant development. Cellular BR homeostasis is critical for proper growth and development of plants; however, its regulatory mechanism remains largely unknown. BAT1 (BR-related acyltransferase 1), a gene encoding a putative acyltransferase, was found to be involved in vascular bundle development in a full-length cDNA over-expressor (FOX) screen. Over-expression of BAT1 resulted in typical BR-deficient phenotypes, which were rescued by exogenously applied castasterone and brassinolide. Analyses of BR profiles demonstrated that BAT1 alters levels of several brassinolide biosynthetic intermediates, including 6-deoxotyphasterol, typhasterol and 6-deoxocastasterone. BAT1 is mainly localized in the endoplasmic reticulum. BAT1 is highly expressed in young tissues and vascular bundles, and its expression is induced by auxin. These data suggest that BAT1 is involved in BR homeostasis, probably by conversion of brassinolide intermediates into acylated BR conjugates.
Collapse
Affiliation(s)
- Sunhwa Choi
- Department of Life Science, POSTECH, Pohang, 790-784, Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hamberger B, Bak S. Plant P450s as versatile drivers for evolution of species-specific chemical diversity. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120426. [PMID: 23297350 DOI: 10.1098/rstb.2012.0426] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The irreversible nature of reactions catalysed by P450s makes these enzymes landmarks in the evolution of plant metabolic pathways. Founding members of P450 families are often associated with general (i.e. primary) metabolic pathways, restricted to single copy or very few representatives, indicative of purifying selection. Recruitment of those and subsequent blooms into multi-member gene families generates genetic raw material for functional diversification, which is an inherent characteristic of specialized (i.e. secondary) metabolism. However, a growing number of highly specialized P450s from not only the CYP71 clan indicate substantial contribution of convergent and divergent evolution to the observed general and specialized metabolite diversity. We will discuss examples of how the genetic and functional diversification of plant P450s drives chemical diversity in light of plant evolution. Even though it is difficult to predict the function or substrate of a P450 based on sequence similarity, grouping with a family or subfamily in phylogenetic trees can indicate association with metabolism of particular classes of compounds. Examples will be given that focus on multi-member gene families of P450s involved in the metabolic routes of four classes of specialized metabolites: cyanogenic glucosides, glucosinolates, mono- to triterpenoids and phenylpropanoids.
Collapse
Affiliation(s)
- Björn Hamberger
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871 Copenhagen, Denmark.
| | | |
Collapse
|
28
|
Genetic interactions between brassinosteroid-inactivating P450s and photomorphogenic photoreceptors in Arabidopsis thaliana. G3-GENES GENOMES GENETICS 2012; 2:1585-93. [PMID: 23275881 PMCID: PMC3516480 DOI: 10.1534/g3.112.004580] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/03/2012] [Indexed: 01/12/2023]
Abstract
Plants use light as a source of information via a suite of photomorphogenic photoreceptors to optimize growth in response to their light environment. Growth-promoting hormones such as brassinosteroids also can modulate many of these responses. BAS1 and SOB7 are brassinosteroid-catabolizing P450s in Arabidopsis thaliana that synergistically/redundantly modulate photomorphogenic traits such as flowering time. The role of BAS1 and SOB7 in photomorphogenesis has been investigated by studying null-mutant genetic interactions with the photoreceptors phyA, phyB, and cry1 with regard to seed germination and flowering time. The removal of BAS1 and/or SOB7 rescued the low germination rate of the phyA-211 phyB-9 double-null mutant. With regard to floral induction, bas1-2 and sob7-1 showed a complex set of genetic interactions with photoreceptor-null mutants. Histochemical analysis of transgenic plants harboring BAS1:BAS1-GUS and SOB7:SOB7-GUS translational fusions under the control of their endogenous promoters revealed overlapping and distinct expression patterns. BAS1’s expression in the shoot apex increases during the phase transition from short-to-long-day growth conditions and requires phyB in red light. In summary, BAS1 and SOB7 displayed both simple and complex genetic interactions with the phytochromes in a plant-stage specific manner.
Collapse
|
29
|
Schneider K, Breuer C, Kawamura A, Jikumaru Y, Hanada A, Fujioka S, Ichikawa T, Kondou Y, Matsui M, Kamiya Y, Yamaguchi S, Sugimoto K. Arabidopsis PIZZA has the capacity to acylate brassinosteroids. PLoS One 2012; 7:e46805. [PMID: 23071642 PMCID: PMC3465265 DOI: 10.1371/journal.pone.0046805] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/06/2012] [Indexed: 01/11/2023] Open
Abstract
Brassinosteroids (BRs) affect a wide range of developmental processes in plants and compromised production or signalling of BRs causes severe growth defects. To identify new regulators of plant organ growth, we searched the Arabidopsis FOX (Full-length cDNA Over-eXpressor gene) collection for mutants with altered organ size and isolated two overexpression lines that display typical BR deficient dwarf phenotypes. The phenotype of these lines, caused by an overexpression of a putative acyltransferase gene PIZZA (PIZ), was partly rescued by supplying exogenous brassinolide (BL) and castasterone (CS), indicating that endogenous BR levels are rate-limiting for the growth of PIZ overexpression lines. Our transcript analysis further showed that PIZ overexpression leads to an elevated expression of genes involved in BR biosynthesis and a reduced expression of BR inactivating hydroxylases, a transcriptional response typical to low BR levels. Taking the advantage of relatively high endogenous BR accumulation in a mild bri1-301 background, we found that overexpression of PIZ results in moderately reduced levels of BL and CS and a strong reduction of typhasterol (TY) and 6-deoxocastasterone (6-deoxoCS), suggesting a role of PIZ in BR metabolism. We tested a set of potential substrates in vitro for heterologously expressed PIZ and confirmed its acyltransferase activity with BL, CS and TY. The PIZ gene is expressed in various tissues but as reported for other genes involved in BR metabolism, the loss-of-function mutants did not display obvious growth phenotypes under standard growth conditions. Together, our data suggest that PIZ can modify BRs by acylation and that these properties might help modulating endogenous BR levels in Arabidopsis.
Collapse
Affiliation(s)
- Katja Schneider
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, Japan
| | | | - Ayako Kawamura
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, Japan
| | - Yusuke Jikumaru
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, Japan
| | - Atsushi Hanada
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, Japan
| | - Shozo Fujioka
- RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | | | - Youichi Kondou
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, Japan
| | - Minami Matsui
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, Japan
| | - Yuji Kamiya
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, Japan
| | | | - Keiko Sugimoto
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
30
|
Zhao B, Li J. Regulation of brassinosteroid biosynthesis and inactivation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:746-59. [PMID: 22963251 DOI: 10.1111/j.1744-7909.2012.01168.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Brassinosteroids (BRs) are a group of naturally-occurring steroidal phytohormones playing fundamental roles during normal plant growth and development. Using a combination of experimental approaches, including analytical chemistry, genetics, and biochemistry, the major BR biosynthetic pathway has been largely elucidated. The least-understood knowledge in the BR research field is probably the molecular mechanisms controlling the bioactive levels of BRs in response to various developmental and environmental cues. In this review, we focus our discussion on a recently-proposed, 8-step predominant BR biosynthetic pathway, several newly-identified transcription factors regulating the expression of key enzymes that catalyze BR biosynthesis, and up-to-date information about the mechanisms that plants use to inactivate unnecessary BRs.
Collapse
Affiliation(s)
- Baolin Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
31
|
Roh H, Jeong CW, Fujioka S, Kim YK, Lee S, Ahn JH, Do Choi Y, Lee JS. Genetic evidence for the reduction of brassinosteroid levels by a BAHD acyltransferase-like protein in Arabidopsis. PLANT PHYSIOLOGY 2012; 159:696-709. [PMID: 22544867 PMCID: PMC3375935 DOI: 10.1104/pp.112.197202] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/25/2012] [Indexed: 05/18/2023]
Abstract
Brassinosteroids (BRs) are a group of steroidal hormones involved in plant development. Although the BR biosynthesis pathways are well characterized, the BR inactivation process, which contributes to BR homeostasis, is less understood. Here, we show that a member of the BAHD (for benzylalcohol O-acetyltransferase, anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase, and deacetylvindoline 4-O-acetyltransferase) acyltransferase family may play a role in BR homeostasis in Arabidopsis (Arabidopsis thaliana). We isolated two gain-of-function mutants, brassinosteroid inactivator1-1Dominant (bia1-1D) and bia1-2D, in which a novel BAHD acyltransferase-like protein was transcriptionally activated. Both mutants exhibited dwarfism, reduced male fertility, and deetiolation in darkness, which are typical phenotypes of plants defective in BR biosynthesis. Exogenous BR treatment rescued the phenotypes of the bia1-1D mutant. Endogenous levels of BRs were reduced in the bia1-1D mutant, demonstrating that BIA1 regulates endogenous BR levels. When grown in darkness, the bia1 loss-of-function mutant showed a longer hypocotyl phenotype and was more responsive to exogenous BR treatment than the wild-type plant. BIA1 expression was predominantly observed in the root, where low levels of BRs were detected. These results indicate that the BAHD acyltransferase family member encoded by BIA1 plays a role in controlling BR levels, particularly in the root and hypocotyl in darkness. Taken together, our study provides new insights into a mechanism that maintains BR homeostasis in Arabidopsis, likely via acyl conjugation of BRs.
Collapse
|
32
|
Thornton LE, Peng H, Neff MM. Rice CYP734A cytochrome P450s inactivate brassinosteroids in Arabidopsis. PLANTA 2011; 234:1151-62. [PMID: 21735198 DOI: 10.1007/s00425-011-1464-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/16/2011] [Indexed: 05/05/2023]
Abstract
Endogenous brassinosteroid concentrations are an important target for optimizing the growth of crop plants because these hormones influence yield and stress tolerance. The CYP734A subfamily of cytochrome P450 enzymes has been shown to inactivate brassinosteroid hormones in Arabidopsis and tomato. Rice has three genes for CYP734A enzymes whose expression appears to be up-regulated by exogenous brassinolide. The amino acids predicted to be in the active site of the rice enzymes vary when compared with the Arabidopsis protein sequence, suggesting that there could be differences in their ability to inactivate the hormone. We have cloned three CYP734A rice genes and expressed them in Arabidopsis to assess their efficacy as brassinosteroid-inactivating enzymes. We found that incorrect transcript splicing can complicate the expression of monocot genomic clones in a eudicot. However, the Arabidopsis system allowed us to characterize an atypical splice variant in one of the rice genes. cDNA clones produced high levels of expression and conferred the brassinosteroid inactivation phenotype. This study shows that Arabidopsis is a useful heterologous system for testing plant genes predicted to act in biochemical pathways that are conserved between monocots and eudicots.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Amino Acid Sequence
- Arabidopsis/drug effects
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Brassinosteroids/chemistry
- Brassinosteroids/metabolism
- Brassinosteroids/pharmacology
- Cholestanols/chemistry
- Cholestanols/metabolism
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Gene Expression Regulation, Enzymologic/genetics
- Gene Expression Regulation, Plant/genetics
- Molecular Sequence Data
- Mutation
- Oryza/enzymology
- Oryza/genetics
- Phenotype
- Phylogeny
- Plant Growth Regulators/chemistry
- Plant Growth Regulators/metabolism
- Plant Growth Regulators/pharmacology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- RNA, Messenger/genetics
- RNA, Plant/genetics
- Reproducibility of Results
- Sequence Homology, Amino Acid
- Steroids, Heterocyclic/chemistry
- Steroids, Heterocyclic/metabolism
- Steroids, Heterocyclic/pharmacology
Collapse
Affiliation(s)
- Leeann E Thornton
- Department of Biology, The College of New Jersey, 2000 Pennington Rd, Ewing, NJ 08628, USA.
| | | | | |
Collapse
|
33
|
Jensen K, Osmani SA, Hamann T, Naur P, Møller BL. Homology modeling of the three membrane proteins of the dhurrin metabolon: catalytic sites, membrane surface association and protein-protein interactions. PHYTOCHEMISTRY 2011; 72:2113-2123. [PMID: 21620426 DOI: 10.1016/j.phytochem.2011.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/29/2011] [Accepted: 05/01/2011] [Indexed: 05/30/2023]
Abstract
Formation of metabolons (macromolecular enzyme complexes) facilitates the channelling of substrates in biosynthetic pathways. Metabolon formation is a dynamic process in which transient structures mediated by weak protein-protein interactions are formed. In Sorghum, the cyanogenic glucoside dhurrin is derived from l-tyrosine in a pathway involving the two cytochromes P450 (CYPs) CYP79A1 and CYP71E1, a glucosyltransferase (UGT85B1), and the redox partner NADPH-dependent cytochrome P450 reductase (CPR). Experimental evidence suggests that the enzymes of this pathway form a metabolon. Homology modeling of the three membrane bound proteins was carried out using the Sybyl software and available relevant crystal structures. Residues involved in tight positioning of the substrates and intermediates in the active sites of CYP79A1 and CYP71E1 were identified. In both CYPs, hydrophobic surface domains close to the N-terminal trans-membrane anchor and between the F' and G helices were identified as involved in membrane anchoring. The proximal surface of both CYPs showed positively charged patches complementary to a negatively charged bulge on CPR carrying the FMN domain. A patch of surface exposed, positively charged amino acid residues positioned on the opposite face of the membrane anchor was identified in CYP71E1 and might be involved in binding UGT85B1 via a hypervariable negatively charged loop in this protein.
Collapse
Affiliation(s)
- Kenneth Jensen
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
34
|
Abstract
Brassinosteroids (BRs) are endogenous plant hormones essential for the proper regulation of multiple physiological processes required for normal plant growth and development. Since their discovery more than 30 years ago, extensive research on the mechanisms of BR action using biochemistry, mutant studies, proteomics and genome-wide transcriptome analyses, has helped refine the BR biosynthetic pathway, identify the basic molecular components required to relay the BR signal from perception to gene regulation, and expand the known physiological responses influenced by BRs. These mechanistic advances have helped answer the intriguing question of how BRs can have such dramatic pleiotropic effects on a broad range of diverse developmental pathways and have further pointed to BR interactions with other plant hormones and environmental cues. This chapter briefly reviews historical aspects of BR research and then summarizes the current state of knowledge on BR biosynthesis, metabolism and signal transduction. Recent studies uncovering novel phosphorelays and gene regulatory networks through which BR influences both vegetative and reproductive development are examined and placed in the context of known BR physiological responses including cell elongation and division, vascular differentiation, flowering, pollen development and photomorphogenesis.
Collapse
Affiliation(s)
- Steven D Clouse
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609 USA
| |
Collapse
|
35
|
Han JY, Kim HJ, Kwon YS, Choi YE. The Cyt P450 Enzyme CYP716A47 Catalyzes the Formation of Protopanaxadiol from Dammarenediol-II During Ginsenoside Biosynthesis in Panax ginseng. ACTA ACUST UNITED AC 2011; 52:2062-73. [DOI: 10.1093/pcp/pcr150] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
36
|
Bak S, Beisson F, Bishop G, Hamberger B, Höfer R, Paquette S, Werck-Reichhart D. Cytochromes p450. THE ARABIDOPSIS BOOK 2011; 9:e0144. [PMID: 22303269 PMCID: PMC3268508 DOI: 10.1199/tab.0144] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization.
Collapse
Affiliation(s)
- Søren Bak
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Fred Beisson
- Department of Plant Biology and Environmental Microbiology, CEA/CNRS/Aix-Marseille Université, UMR 6191 Cadarache, F-13108 Saint-Paul-lez-Durance, France
| | - Gerard Bishop
- Division of Biology, Faculty of Natural Sciences, Imperial College London, SW7 2AZ
| | - Björn Hamberger
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - René Höfer
- Institute of Plant Molecular Biology, CNRS UPR 2357, University of Strasbourg, 28 rue Goethe, F-67083 Strasbourg Cedex, France
| | - Suzanne Paquette
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Department of Biological Structure, HSB G-514, Box 357420, University of Washington, Seattle, WA, 98195-9420
| | - Danièle Werck-Reichhart
- Institute of Plant Molecular Biology, CNRS UPR 2357, University of Strasbourg, 28 rue Goethe, F-67083 Strasbourg Cedex, France
| |
Collapse
|
37
|
Ye H, Li L, Yin Y. Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:455-68. [PMID: 21554539 DOI: 10.1111/j.1744-7909.2011.01046.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Brassinosteroids (BRs) play important roles in plant growth, development and responses to environmental cues. BRs signal through plasma membrane receptor BRI1 and co-receptor BAK1, and several positive (BSK1, BSU1, PP2A) and negative (BKI1, BIN2 and 14-3-3) regulators to control the activities of BES1 and BZR1 family transcription factors, which regulate the expression of hundreds to thousands of genes for various BR responses. Recent studies identified novel signaling components in the BR pathways and started to establish the detailed mechanisms on the regulation of BR signaling. In addition, the molecular mechanism and transcriptional network through which BES1 and BZR1 control gene expression and various BR responses are beginning to be revealed. BES1 recruits histone demethylases ELF6 and REF6 as well as a transcription elongation factor IWS1 to regulate target gene expression. Identification of BES1 and BZR1 target genes established a transcriptional network for BR response and crosstalk with other signaling pathways. Recent studies also revealed regulatory mechanisms of BRs in many developmental processes and regulation of BR biosynthesis. Here we provide an overview and discuss some of the most recent progress in the regulation of BR signaling and biosynthesis pathways.
Collapse
Affiliation(s)
- Huaxun Ye
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, USA
| | | | | |
Collapse
|
38
|
Nelson D, Werck-Reichhart D. A P450-centric view of plant evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:194-211. [PMID: 21443632 DOI: 10.1111/j.1365-313x.2011.04529.x] [Citation(s) in RCA: 421] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Being by far the largest family of enzymes to support plant metabolism, the cytochrome P450s (CYPs) constitute an excellent reporter of metabolism architecture and evolution. The huge superfamily of CYPs found in angiosperms is built on the successful evolution of 11 ancestral genes, with very different fates and progenies. Essential functions in the production of structural components (membrane sterols), light harvesting (carotenoids) or hormone biosynthesis kept some of them under purifying selection, limiting duplication and sub/neofunctionalization. One group (the CYP71 clan) after an early trigger to diversification, has kept growing, producing bursts of gene duplications at an accelerated rate. The CYP71 clan now represents more than half of all CYPs in higher plants. Such bursts of gene duplication are likely to contribute to adaptation to specific niches and to speciation. They also occur, although with lower frequency, in gene families under purifying selection. The CYP complement (CYPomes) of rice and the model grass weed Brachypodium distachyon have been compared to view evolution in a narrower time window. The results show that evolution of new functions in plant metabolism is a very long-term process. Comparative analysis of the plant CYPomes provides information on the successive steps required for the evolution of land plants, and points to several cases of convergent evolution in plant metabolism. It constitutes a very useful tool for spotting essential functions in plant metabolism and to guide investigations on gene function.
Collapse
Affiliation(s)
- David Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Suite G01, Memphis TN 38163, USA
| | | |
Collapse
|
39
|
Rapp RA, Haigler CH, Flagel L, Hovav RH, Udall JA, Wendel JF. Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication. BMC Biol 2010; 8:139. [PMID: 21078138 PMCID: PMC2992495 DOI: 10.1186/1741-7007-8-139] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 11/15/2010] [Indexed: 12/16/2022] Open
Abstract
Background Understanding the evolutionary genetics of modern crop phenotypes has a dual relevance to evolutionary biology and crop improvement. Modern upland cotton (Gossypium hirsutum L.) was developed following thousands of years of artificial selection from a wild form, G. hirsutum var. yucatanense, which bears a shorter, sparser, layer of single-celled, ovular trichomes ('fibre'). In order to gain an insight into the nature of the developmental genetic transformations that accompanied domestication and crop improvement, we studied the transcriptomes of cotton fibres from wild and domesticated accessions over a developmental time course. Results Fibre cells were harvested between 2 and 25 days post-anthesis and encompassed the primary and secondary wall synthesis stages. Using amplified messenger RNA and a custom microarray platform designed to interrogate expression for 40,430 genes, we determined global patterns of expression during fibre development. The fibre transcriptome of domesticated cotton is far more dynamic than that of wild cotton, with over twice as many genes being differentially expressed during development (12,626 versus 5273). Remarkably, a total of 9465 genes were diagnosed as differentially expressed between wild and domesticated fibres when summed across five key developmental time points. Human selection during the initial domestication and subsequent crop improvement has resulted in a biased upregulation of components of the transcriptional network that are important for agronomically advanced fibre, especially in the early stages of development. About 15% of the differentially expressed genes in wild versus domesticated cotton fibre have no homology to the genes in databases. Conclusions We show that artificial selection during crop domestication can radically alter the transcriptional developmental network of even a single-celled structure, affecting nearly a quarter of the genes in the genome. Gene expression during fibre development within accessions and expression alteration arising from evolutionary change appears to be 'modular' - complex genic networks have been simultaneously and similarly transformed, in a coordinated fashion, as a consequence of human-mediated selection. These results highlight the complex alteration of the global gene expression machinery that resulted from human selection for a longer, stronger and finer fibre, as well as other aspects of fibre physiology that were not consciously selected. We illustrate how the data can be mined for genes that were unwittingly targeted by aboriginal and/or modern domesticators during crop improvement and/or which potentially control the improved qualities of domesticated cotton fibre. See Commentary: http://www.biomedcentral.com/1741-7007/8/137
Collapse
Affiliation(s)
- Ryan A Rapp
- Department of Ecology, 251 Bessey Hall, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | |
Collapse
|