1
|
Netherer S, Lehmanski L, Bachlehner A, Rosner S, Savi T, Schmidt A, Huang J, Paiva MR, Mateus E, Hartmann H, Gershenzon J. Drought increases Norway spruce susceptibility to the Eurasian spruce bark beetle and its associated fungi. THE NEW PHYTOLOGIST 2024; 242:1000-1017. [PMID: 38433329 DOI: 10.1111/nph.19635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Drought affects the complex interactions between Norway spruce, the bark beetle Ips typographus and associated microorganisms. We investigated the interplay of tree water status, defense and carbohydrate reserves with the incidence of bark beetle attack and infection of associated fungi in mature spruce trees. We installed roofs to induce a 2-yr moderate drought in a managed spruce stand to examine a maximum of 10 roof and 10 control trees for resin flow (RF), predawn twig water potentials, terpene, phenolic and carbohydrate bark concentrations, and bark beetle borings in field bioassays before and after inoculation with Endoconidiophora polonica and Grosmannia penicillata. Drought-stressed trees showed more attacks and significantly longer fungal lesions than controls, but maintained terpene resin defenses at predrought levels. Reduced RF and lower mono- and diterpene, but not phenolic concentrations were linked with increased host selection. Bark beetle attack and fungi stimulated chemical defenses, yet G. penicillata reduced phenolic and carbohydrate contents. Chemical defenses did not decrease under mild, prolonged drought in our simulated small-scale biotic infestations. However, during natural mass attacks, reductions in carbon fixation under drought, in combination with fungal consumption of carbohydrates, may deplete tree defenses and facilitate colonization by I. typographus.
Collapse
Affiliation(s)
- Sigrid Netherer
- Department of Forest and Soil Sciences, Institute of Forest Entomology, Forest Pathology and Forest Protection, University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Straße 82/I, Vienna, 1190, Austria
| | - Linda Lehmanski
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07743, Germany
| | - Albert Bachlehner
- Department of Forest and Soil Sciences, Institute of Forest Entomology, Forest Pathology and Forest Protection, University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Straße 82/I, Vienna, 1190, Austria
| | - Sabine Rosner
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, Vienna, 1180, Austria
| | - Tadeja Savi
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, Vienna, 1180, Austria
| | - Axel Schmidt
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Jianbei Huang
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07743, Germany
| | - Maria Rosa Paiva
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, Center for Environmental and Sustainability Research (CENSE), NOVA University of Lisbon, Caparica, 2829-516, Portugal
| | - Eduardo Mateus
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, Center for Environmental and Sustainability Research (CENSE), NOVA University of Lisbon, Caparica, 2829-516, Portugal
| | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07743, Germany
- Institute for Forest Protection, Julius Kühn-Institute for Cultivated Plants, Erwin-Baur-Str. 27, Quedlinburg, 06484, Germany
- Faculty of Forest Sciences and Forest Ecology, Georg-August-University Göttingen, Büsgenweg 5, Göttingen, 37077, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| |
Collapse
|
2
|
Krokene P, Børja I, Carneros E, Eldhuset TD, Nagy NE, Volařík D, Gebauer R. Effects of combined drought and pathogen stress on growth, resistance and gene expression in young Norway spruce trees. TREE PHYSIOLOGY 2023; 43:1603-1618. [PMID: 37171580 DOI: 10.1093/treephys/tpad062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/20/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Drought-induced mortality is a major direct effect of climate change on tree health, but drought can also affect trees indirectly by altering their susceptibility to pathogens. Here, we report how a combination of mild or severe drought and pathogen infection affected the growth, pathogen resistance and gene expression in potted 5-year-old Norway spruce trees [Picea abies (L.) Karst.]. After 5 weeks of drought, trees were inoculated with the fungal pathogen Endoconidiophora polonica. Combined drought-pathogen stress over the next 8 weeks led to significant reductions in the growth of drought-treated trees relative to well-watered trees and more so in trees subjected to severe drought. Belowground, growth of the smallest fine roots was most affected. Aboveground, shoot diameter change was most sensitive to the combined stress, followed by shoot length growth and twig biomass. Both drought-related and some resistance-related genes were upregulated in bark samples collected after 5 weeks of drought (but before pathogen infection), and gene expression levels scaled with the intensity of drought stress. Trees subjected to severe drought were much more susceptible to pathogen infection than well-watered trees or trees subjected to mild drought. Overall, our results show that mild drought stress may increase the tree resistance to pathogen infection by upregulating resistance-related genes. Severe drought stress, on the other hand, decreased tree resistance. Because drought episodes are expected to become more frequent with climate change, combined effects of drought and pathogen stress should be studied in more detail to understand how these stressors interactively influence tree susceptibility to pests and pathogens.
Collapse
Affiliation(s)
- P Krokene
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, P.O. Box 115, Ås, 1431, Norway
| | - I Børja
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, P.O. Box 115, Ås, 1431, Norway
| | - E Carneros
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, P.O. Box 115, Ås, 1431, Norway
- Center for Biological Research Margarita Salas-Spanish National Research Council (CSIC), Madrid, Spain
| | - T D Eldhuset
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, P.O. Box 115, Ås, 1431, Norway
- Sagveien 17, 1414, Trollåsen, Norway
| | - N E Nagy
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, P.O. Box 115, Ås, 1431, Norway
| | - D Volařík
- Department of Forest Botany, Dendrology and Geobicoenology, Mendel University in Brno, Zemědělská 3, Brno, 61300, Czech Republic
| | - R Gebauer
- Department of Forest Botany, Dendrology and Geobicoenology, Mendel University in Brno, Zemědělská 3, Brno, 61300, Czech Republic
| |
Collapse
|
3
|
Krause T, Wiesinger P, González-Cabanelas D, Lackus N, Köllner TG, Klüpfel T, Williams J, Rohwer J, Gershenzon J, Schmidt A. HDR, the last enzyme in the MEP pathway, differently regulates isoprenoid biosynthesis in two woody plants. PLANT PHYSIOLOGY 2023; 192:767-788. [PMID: 36848194 DOI: 10.1093/plphys/kiad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 06/01/2023]
Abstract
Dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP) serves as the universal C5 precursors of isoprenoid biosynthesis in plants. These compounds are formed by the last step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, catalyzed by (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase (HDR). In this study, we investigated the major HDR isoforms of two woody plant species, Norway spruce (Picea abies) and gray poplar (Populus × canescens), to determine how they regulate isoprenoid formation. Since each of these species has a distinct profile of isoprenoid compounds, they may require different proportions of DMADP and IDP with proportionally more IDP being needed to make larger isoprenoids. Norway spruce contained two major HDR isoforms differing in their occurrence and biochemical characteristics. PaHDR1 produced relatively more IDP than PaHDR2 and it encoding gene was expressed constitutively in leaves, likely serving to form substrate for production of carotenoids, chlorophylls, and other primary isoprenoids derived from a C20 precursor. On the other hand, Norway spruce PaHDR2 produced relatively more DMADP than PaHDR1 and its encoding gene was expressed in leaves, stems, and roots, both constitutively and after induction with the defense hormone methyl jasmonate. This second HDR enzyme likely forms a substrate for the specialized monoterpene (C10), sesquiterpene (C15), and diterpene (C20) metabolites of spruce oleoresin. Gray poplar contained only one dominant isoform (named PcHDR2) that produced relatively more DMADP and the gene of which was expressed in all organs. In leaves, where the requirement for IDP is high to make the major carotenoid and chlorophyll isoprenoids derived from C20 precursors, excess DMADP may accumulate, which could explain the high rate of isoprene (C5) emission. Our results provide new insights into the biosynthesis of isoprenoids in woody plants under conditions of differentially regulated biosynthesis of the precursors IDP and DMADP.
Collapse
Affiliation(s)
- Toni Krause
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Piera Wiesinger
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Diego González-Cabanelas
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Nathalie Lackus
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Thomas Klüpfel
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Germany
| | - Jonathan Williams
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Germany
| | - Johann Rohwer
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| |
Collapse
|
4
|
Wilkinson SW, Dalen LS, Skrautvol TO, Ton J, Krokene P, Mageroy MH. Transcriptomic changes during the establishment of long-term methyl jasmonate-induced resistance in Norway spruce. PLANT, CELL & ENVIRONMENT 2022; 45:1891-1913. [PMID: 35348221 PMCID: PMC9321552 DOI: 10.1111/pce.14320] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Norway spruce (Picea abies) is an economically and ecologically important tree species that grows across northern and central Europe. Treating Norway spruce with jasmonate has long-lasting beneficial effects on tree resistance to damaging pests, such as the European spruce bark beetle Ips typographus and its fungal associates. The (epi)genetic mechanisms involved in such long-lasting jasmonate induced resistance (IR) have gained much recent interest but remain largely unknown. In this study, we treated 2-year-old spruce seedlings with methyl jasmonate (MeJA) and challenged them with the I. typographus vectored necrotrophic fungus Grosmannia penicillata. MeJA treatment reduced the extent of necrotic lesions in the bark 8 weeks after infection and thus elicited long-term IR against the fungus. The transcriptional response of spruce bark to MeJA treatment was analysed over a 4-week time course using mRNA-seq. This analysis provided evidence that MeJA treatment induced a transient upregulation of jasmonic acid, salicylic acid and ethylene biosynthesis genes and downstream signalling genes. Our data also suggests that defence-related genes are induced while genes related to growth are repressed by methyl jasmonate treatment. These results provide new clues about the potential underpinning mechanisms and costs associated with long-term MeJA-IR in Norway spruce.
Collapse
Affiliation(s)
- Samuel W. Wilkinson
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodUniversity of SheffieldSheffieldUK
- Division for Biotechnology and Plant HealthNorwegian Institute of Bioeconomy ResearchÅsNorway
| | - Lars S. Dalen
- Department of CommunicationsNorwegian Institute of Bioeconomy ResearchÅsNorway
| | - Thomas O. Skrautvol
- Division for Biotechnology and Plant HealthNorwegian Institute of Bioeconomy ResearchÅsNorway
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | - Jurriaan Ton
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodUniversity of SheffieldSheffieldUK
| | - Paal Krokene
- Division for Biotechnology and Plant HealthNorwegian Institute of Bioeconomy ResearchÅsNorway
| | - Melissa H. Mageroy
- Division for Biotechnology and Plant HealthNorwegian Institute of Bioeconomy ResearchÅsNorway
| |
Collapse
|
5
|
Nagel R, Hammerbacher A, Kunert G, Phillips MA, Gershenzon J, Schmidt A. Bark Beetle Attack History Does Not Influence the Induction of Terpene and Phenolic Defenses in Mature Norway Spruce ( Picea abies) Trees by the Bark Beetle-Associated Fungus Endoconidiophora polonica. FRONTIERS IN PLANT SCIENCE 2022; 13:892907. [PMID: 35599904 PMCID: PMC9120863 DOI: 10.3389/fpls.2022.892907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 06/02/2023]
Abstract
Terpenes and phenolics are important constitutive and inducible conifer defenses against bark beetles and their associated fungi. In this study, the inducible defenses of mature Norway spruce (Picea abies) trees with different histories of attack by the spruce bark beetle, Ips typographus were tested by inoculation with the I. typographus-associated fungus Endoconidiophora polonica. We compared trees that had been under previous attack with those under current attack and those that had no record of attack. After fungal inoculation, the concentrations of mono-, sesqui-, and diterpenes in bark increased 3- to 9-fold. For the phenolics, the flavan-3-ols, catechin, and gallocatechin, increased significantly by 2- and 5-fold, respectively, while other flavonoids and stilbenes did not. The magnitudes of these inductions were not influenced by prior bark beetle attack history for all the major compounds and compound classes measured. Before fungal inoculation, the total amounts of monoterpenes, diterpenes, and phenolics (constitutive defenses) were greater in trees that had been previously attacked compared to those under current attack, possibly a result of previous induction. The transcript levels of many genes involved in terpene formation (isoprenyl diphosphate synthases and terpene synthases) and phenolic formation (chalcone synthases) were significantly enhanced by fungal inoculation suggesting de novo biosynthesis. Similar inductions were found for the enzymatic activity of isoprenyl diphosphate synthases and the concentration of their prenyl diphosphate products after fungal inoculation. Quantification of defense hormones revealed a significant induction of the jasmonate pathway, but not the salicylic acid pathway after fungal inoculation. Our data highlight the coordinated induction of terpenes and phenolics in spruce upon infection by E. polonica, a fungal associate of the bark beetle I. typographus, but provide no evidence for the priming of these defense responses by prior beetle attack.
Collapse
|
6
|
Liu B, Liu Q, Zhou Z, Yin H, Xie Y. Overexpression of geranyl diphosphate synthase (PmGPPS1) boosts monoterpene and diterpene production involved in the response to pine wood nematode invasion. TREE PHYSIOLOGY 2022; 42:411-424. [PMID: 34378055 DOI: 10.1093/treephys/tpab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Outbreaks of pine wood nematode (PWN; Bursaphelenchus xylophilus) represent a severe biotic epidemic for the Pinus massoniana in China. When invaded by the PWN, the resistant P. massoniana might secret abundant oleoresin terpenoid to form certain defensive fronts for survival. However, the regulatory mechanisms of this process remain unclear. Here, the geranyl diphosphate synthase (PmGPPS1) gene was identified from resistant P. massoniana. Tissue-specific expression patterns of PmGPPS1 at transcript and protein level in resistant P. massoniana were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry. Functional characteristics analysis of PmGPPS1 was performed on transgenic Nicotiana benthamiana by overexpression, as genetic transformation of P. massoniana is, so far, not possible. In summary, we identified and functionally characterized PmGPPS1 from the resistant P. massoniana following PWN inoculation. Tissue-specific expression patterns and localization of PmGPPS1 indicated that it may play a positive role involved in the metabolic and defensive processes of oleoresin terpenes production in response to PWN attack. Furthermore, overexpression of PmGPPS1 may enhance the production of monoterpene, among which limonene reduced the survival of PWN in vitro. In addition, PmGPPS1 upregulated the expression level of key genes involved in mevalonic acid (MVA) pathway, the methylerythritol phosphate (MEP) pathway and gibberellins (GAs) biosynthesis to boost the growth and development of tobacco through a feedback regulation mechanism. Our results offered new insights into the pivotal role of the PmGPPS1 involved in terpene-based defense mechanisms responding to the PWN invasion in resistant P. massoniana and provided a new metabolic engineering scenario to improve monoterpene production in tobacco.
Collapse
Affiliation(s)
- Bin Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China
| | - Qinghua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China
| | - Zhichun Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China
| | - Hengfu Yin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Yini Xie
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
7
|
Vázquez-González C, Zas R, Erbilgin N, Ferrenberg S, Rozas V, Sampedro L. Resin ducts as resistance traits in conifers: linking dendrochronology and resin-based defences. TREE PHYSIOLOGY 2020; 40:1313-1326. [PMID: 32478382 DOI: 10.1093/treephys/tpaa064] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 05/26/2020] [Indexed: 05/20/2023]
Abstract
Conifers have evolved different chemical and anatomical defences against a wide range of antagonists. Resin ducts produce, store and translocate oleoresin, a complex terpenoid mixture that acts as both a physical and a chemical defence. Although resin duct characteristics (e.g., number, density, area) have been positively related to biotic resistance in several conifer species, the literature reporting this association remains inconclusive. Axial resin ducts recorded in annual growth rings are an archive of annual defensive investment in trees. This whole-life record of defence investment can be analysed using standard dendrochronological procedures, which allows us to assess interannual variability and the effect of understudied drivers of phenotypic variation on resin-based defences. Understanding the sources of phenotypic variation in defences, such as genetic differentiation and environmental plasticity, is essential for assessing the adaptive potential of forest tree populations to resist pests under climate change. Here, we reviewed the evidence supporting the importance of resin ducts in conifer resistance, and summarized current knowledge about the sources of variation in resin duct production. We propose a standardized methodology to measure resin duct production by means of dendrochronological procedures. This approach will illuminate the roles of resin ducts in tree defence across species, while helping to fill pivotal knowledge gaps in plant defence theory, and leading to a robust understanding of the patterns of variation in resin-based defences throughout the tree's lifespan.
Collapse
Affiliation(s)
- Carla Vázquez-González
- Misión Biológica de Galicia, National Spanish Research Council (MBG-CSIC), Carballeira 8, Salcedo, Pontevedra 3614, Spain
| | - Rafael Zas
- Misión Biológica de Galicia, National Spanish Research Council (MBG-CSIC), Carballeira 8, Salcedo, Pontevedra 3614, Spain
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, T6G 2H1 Alberta, Canada
| | - Scott Ferrenberg
- Department of Biology, New Mexico State University, 1305 Frenger St., Las Cruces, 88001, NM, USA
| | - Vicente Rozas
- iuFOR-EiFAB, Campus Duques de Soria, Universidad de Valladolid, Soria 42004, Spain
- Laboratorio de Dendrocronología y Cambio Global, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Luis Sampedro
- Misión Biológica de Galicia, National Spanish Research Council (MBG-CSIC), Carballeira 8, Salcedo, Pontevedra 3614, Spain
| |
Collapse
|
8
|
Liu Q, Xie Y, Liu B, Zhou Z, Feng Z, Chen Y. A transcriptomic variation map provides insights into the genetic basis of Pinus massoniana Lamb. evolution and the association with oleoresin yield. BMC PLANT BIOLOGY 2020; 20:375. [PMID: 32791991 PMCID: PMC7427074 DOI: 10.1186/s12870-020-02577-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/26/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Masson pine (Pinus massoniana Lamb.), the dominant native coniferous species in southern China, is commercially important for supplying timber and oleoresin. However, knowledge of the genetic variability of masson pine germplasm is still limited. In this study, the genetic diversity and population structure of masson pine germplasm were assessed using 204 wild accessions from 10 main distribution regions using 94,194 core single-nucleotide polymorphisms (SNPs) obtained from transcriptome sequencing data. RESULTS The average expected heterozygosity was 0.2724, implying abundant genetic diversity within masson pine germplasm. Analysis of molecular variance (AMOVA) revealed that 3.29% of the variation was sourced from genetic differentiation. Structure analysis identified two geographically distinct groups. Discriminant analysis of principal components (DAPC) showed that one of those groups was further divided into two clusters. Sichuan and Chongqing provenance is the geographical origin, which diffused outward along two different lines. Oleoresin yield is reflected in the evolution of the two groups, and exhibits two different trends along the two lines of diffusion. The oleoresin yield may be associated with the genes of chitinase, CYP720B, cytochrome P450, ABC transporter, and AP2/ethylene-responsive transcription factor (ERF) based on SNPs and expression. CONCLUSIONS SNP markers from transcriptome sequencing are highly capable of evaluating genetic diversity within different species, as well as the genetic control of objective traits. The functions of these genes will be verified in future studies, and those genes strongly associated with oleoresin yield will be used to improve yields by means of early genotype selection and genetic engineering.
Collapse
Affiliation(s)
- Qinghua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, 311400, Zhejiang, People's Republic of China
| | - Yini Xie
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, 311400, Zhejiang, People's Republic of China
| | - Bin Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, 311400, Zhejiang, People's Republic of China
| | - Zhichun Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, People's Republic of China.
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, 311400, Zhejiang, People's Republic of China.
| | - Zhongping Feng
- Laoshan Forest Farm of Chunan County, Chunan, 311700, Zhejiang, People's Republic of China
| | - Yadong Chen
- Biomarker Technologies Corporation, Beijing, 101300, People's Republic of China
| |
Collapse
|
9
|
del Rosario Cappellari L, Chiappero J, Palermo TB, Giordano W, Banchio E. Impact of Soil Rhizobacteria Inoculation and Leaf-Chewing Insect Herbivory on Mentha piperita Leaf Secondary Metabolites. J Chem Ecol 2020; 46:619-630. [DOI: 10.1007/s10886-020-01193-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
|
10
|
López-Goldar X, Lundborg L, Borg-Karlson AK, Zas R, Sampedro L. Resin acids as inducible chemical defences of pine seedlings against chewing insects. PLoS One 2020; 15:e0232692. [PMID: 32357193 PMCID: PMC7194405 DOI: 10.1371/journal.pone.0232692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/19/2020] [Indexed: 11/23/2022] Open
Abstract
Inducibility of defences in response to biotic stimuli is considered an important trait in plant resistance. In conifers, previous research has mostly focused on the inducibility of the volatile fraction of the oleoresin (mono- and sesquiterpenes), leaving the inducibility of the non-volatile resin acids largely unexplored, particularly in response to real herbivory. Here we investigated the differences in the inducibility of resin acids in two pine species, one native from Europe (Pinus pinaster Ait.) and another from North America (Pinus radiata D. Don), in response to wounding by two European insects: a bark chewer, the pine weevil (Hylobius abietis L.), and a defoliator, the pine processionary caterpillar (Thaumetopoea pityocampa Schiff.). We quantified the constitutive (control) and induced concentrations of resin acids in the stem and needles of both pine species by gas chromatography techniques. Both pine species strongly increased the concentration of resin acids in the stem after pine weevil feeding, although the response was greater in P. pinaster than in P. radiata. However, systemic defensive responses in the needles were negligible in both pine species after pine weevil feeding in the stem. On the other hand, P. radiata locally reduced the resin acid concentration in the needles after pine caterpillar feeding, whereas in P. pinaster resin acid concentration was apparently unaffected. Nevertheless, systemic induction of resin acids was only observed in the stem of P. pinaster in response to pine caterpillar feeding. In summary, pine induced responses were found highly compartmentalized, and specific to herbivore identity. Particularly, plant defence suppression mechanisms by the pine caterpillar, and ontogenetic factors might be potentially affecting the induced response of resin acids in both pine species.
Collapse
Affiliation(s)
- Xosé López-Goldar
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - Lina Lundborg
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Anna Karin Borg-Karlson
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Rafael Zas
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - Luis Sampedro
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| |
Collapse
|
11
|
Mageroy MH, Christiansen E, Långström B, Borg-Karlson AK, Solheim H, Björklund N, Zhao T, Schmidt A, Fossdal CG, Krokene P. Priming of inducible defenses protects Norway spruce against tree-killing bark beetles. PLANT, CELL & ENVIRONMENT 2020; 43:420-430. [PMID: 31677172 DOI: 10.1111/pce.13661] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Plants can form an immunological memory known as defense priming, whereby exposure to a priming stimulus enables quicker or stronger response to subsequent attack by pests and pathogens. Such priming of inducible defenses provides increased protection and reduces allocation costs of defense. Defense priming has been widely studied for short-lived model plants such as Arabidopsis, but little is known about this phenomenon in long-lived plants like spruce. We compared the effects of pretreatment with sublethal fungal inoculations or application of the phytohormone methyl jasmonate (MeJA) on the resistance of 48-year-old Norway spruce (Picea abies) trees to mass attack by a tree-killing bark beetle beginning 35 days later. Bark beetles heavily infested and killed untreated trees but largely avoided fungus-inoculated trees and MeJA-treated trees. Quantification of defensive terpenes at the time of bark beetle attack showed fungal inoculation induced 91-fold higher terpene concentrations compared with untreated trees, whereas application of MeJA did not significantly increase terpenes. These results indicate that resistance in fungus-inoculated trees is a result of direct induction of defenses, whereas resistance in MeJA-treated trees is due to defense priming. This work extends our knowledge of defense priming from model plants to an ecologically important tree species.
Collapse
Affiliation(s)
- Melissa H Mageroy
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, 1431, Norway
| | - Erik Christiansen
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, 1431, Norway
| | - Bo Långström
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Anna-Karin Borg-Karlson
- Ecological Chemistry Group, Department of Chemistry, Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Halvor Solheim
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, 1431, Norway
| | - Niklas Björklund
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Tao Zhao
- School of Science and Technology, Örebro University, Örebro, SE-701 82, Sweden
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, D-07745, Germany
| | - Carl Gunnar Fossdal
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, 1431, Norway
| | - Paal Krokene
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, 1431, Norway
| |
Collapse
|
12
|
Cappellari LDR, Santoro MV, Schmidt A, Gershenzon J, Banchio E. Improving Phenolic Total Content and Monoterpene in Mentha x piperita by Using Salicylic Acid or Methyl Jasmonate Combined with Rhizobacteria Inoculation. Int J Mol Sci 2019; 21:E50. [PMID: 31861733 PMCID: PMC6981552 DOI: 10.3390/ijms21010050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/23/2023] Open
Abstract
The effects of plant inoculation with plant growth-promoting rhizobacteria (PGPR) and those resulting from the exogenous application of salicylic acid (SA) or methyl jasmonte (MeJA) on total phenolic content (TPC) and monoterpenes in Mentha x piperita plants were investigated. Although the PGPR inoculation response has been studied for many plant species, the combination of PGPR and exogenous phytohormones has not been investigated in aromatic plant species. The exogenous application of SA produced an increase in TPC that, in general, was of a similar level when applied alone as when combined with PGPR. This increase in TPC was correlated with an increase in the activity of the enzyme phenylalanine ammonia lyase (PAL). Also, the application of MeJA at different concentrations in combination with inoculation with PGPR produced an increase in TPC, which was more relevant at 4 mM, with a synergism effect being observed. With respect to the main monoterpene concentrations present in peppermint essential oil (EO), it was observed that SA or MeJA application produced a significant increase similar to that of the combination with rhizobacteria. However, when plants were exposed to 2 mM MeJA and inoculated, an important increase was produced in the concentration on menthol, pulegone, linalool, limonene, and menthone concentrations. Rhizobacteria inoculation, the treatment with SA and MeJA, and the combination of both were found to affect the amount of the main monoterpenes present in the EO of M. piperita. For this reason, the expressions of genes related to the biosynthesis of monoterpene were evaluated, with this expression being positively affected by MeJA application and PGPR inoculation, but was not modified by SA application. Our results demonstrate that MeJA or SA application combined with inoculation with PGPR constitutes an advantageous management practice for improving the production of secondary metabolites from M. piperita.
Collapse
Affiliation(s)
| | - Maricel Valeria Santoro
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany; (M.V.S.); (A.S.)
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany; (M.V.S.); (A.S.)
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany; (M.V.S.); (A.S.)
| | - Erika Banchio
- INBIAS (CONICET-Universidad Nacional de Río Cuarto), Campus Universitario, 5800 Río Cuarto, Argentina;
| |
Collapse
|
13
|
Celedon JM, Bohlmann J. Oleoresin defenses in conifers: chemical diversity, terpene synthases and limitations of oleoresin defense under climate change. THE NEW PHYTOLOGIST 2019; 224:1444-1463. [PMID: 31179548 DOI: 10.1111/nph.15984] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/16/2019] [Indexed: 05/20/2023]
Abstract
Conifers have evolved complex oleoresin terpene defenses against herbivores and pathogens. In co-evolved bark beetles, conifer terpenes also serve chemo-ecological functions as pheromone precursors, chemical barcodes for host identification, or nutrients for insect-associated microbiomes. We highlight the genomic, molecular and biochemical underpinnings of the large chemical space of conifer oleoresin terpenes and volatiles. Conifer terpenes are predominantly the products of the conifer terpene synthase (TPS) gene family. Terpene diversity is increased by cytochromes P450 of the CYP720B class. Many conifer TPS are multiproduct enzymes. Multisubstrate CYP720B enzymes catalyse multistep oxidations. We summarise known terpenoid gene functions in various different conifer species with reference to the annotated terpenoid gene space in a spruce genome. Overall, biosynthesis of terpene diversity in conifers is achieved through a system of biochemical radiation and metabolic grids. Expression of TPS and CYP720B genes can be specific to individual cell types of constitutive or traumatic resin duct systems. Induced terpenoid transcriptomes in resin duct cells lead to dynamic changes of terpene composition and quantity to fend off herbivores and pathogens. While terpenoid defenses have contributed much to the evolutionary success of conifers, under new conditions of climate change, these defences may become inconsequential against range-expanding forest pests.
Collapse
Affiliation(s)
- Jose M Celedon
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
14
|
Bai Q, He B, Cai Y, Lian H, Zhang Q. Transcriptomic and metabolomic analyses reveal several critical metabolic pathways and candidate genes involved in resin biosynthesis in Pinus massoniana. Mol Genet Genomics 2019; 295:327-341. [PMID: 31735985 DOI: 10.1007/s00438-019-01624-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/06/2019] [Indexed: 10/25/2022]
Abstract
Pine resin, which typically consists of terpenoids, is a natural product used in various industrial applications. Oleoresin can be obtained from the xylem tissue by wounding the stem bark. Pinus massoniana (masson pine) is an important resin-tapping tree species that originated in southern China. Masson pines with different genetic backgrounds typically have different resin-yielding capacities (RYCs). However, the mechanisms underlying high resin yield in masson pines are unclear. The aim of this study was to identify the possible genetic regulation pathways and functional genes that influence the resin yield. In this study, we conducted transcriptomic and metabolomic studies of masson pine secondary xylem with high, medium, and low RYCs. A total of 230,068 unigenes and 3894 metabolites were identified from the tissue of the secondary xylem. Several differentially expressed regulation factors, including WRKY, bHLH, and ERF, and functional genes such as PKc and LRR-RLKs, were identified among these masson pines. The Kyoto Encyclopedia of Genes and Genomes pathways were mainly focused on diterpenoid biosynthesis, plant hormone signal transduction, and ABC transporters. Furthermore, integration of the transcriptomic and metabolomic data indicated that the PKc- and LRR-RLK-related regulatory and metabolic pathways may play critical roles in the biosynthesis of terpenoids. These above results improve our understanding of the biosynthesis mechanism of oleoresin in P. massoniana and facilitate further research work into the functional analysis of these candidate genes.
Collapse
Affiliation(s)
- Qingsong Bai
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Boxiang He
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Yanling Cai
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Huiming Lian
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Qian Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China.
| |
Collapse
|
15
|
Cappellari LDR, Santoro MV, Schmidt A, Gershenzon J, Banchio E. Induction of essential oil production in Mentha x piperita by plant growth promoting bacteria was correlated with an increase in jasmonate and salicylate levels and a higher density of glandular trichomes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:142-153. [PMID: 31163341 DOI: 10.1016/j.plaphy.2019.05.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 05/14/2023]
Abstract
Plant growth promoting bacteria (PGPB) are agriculturally important soil bacteria that increase plant growth. We subjected peppermint to inoculation with three species of PGPB. After inoculation, the plants were sprayed with methyl jasmonate solution (MeJA) or SA (salicylic acid). Then, the plants were harvested and the plant growth parameters, trichome density, EO content and endogenous phytohormones were measured. Shoot fresh weight was reduced in plants inoculated and treated with MeJA whereas EO content varied depending on the MeJA concentration applied. Plants inoculated and treated with MeJA 2 mM showed the maximum increase in EO production, revealing a synergism between PGPB and MeJA. SA treatments also enhanced EO yield. The increased growth and EO production observed upon PGPB application were at least partly due to an increase in the JA and SA concentrations in the plant, as well as to an associated rise in the glandular trichome density.
Collapse
Affiliation(s)
- Lorena Del Rosario Cappellari
- Dpto. Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Campus Universitario, 5800, Río Cuarto, Argentina
| | - Maricel Valeria Santoro
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Erika Banchio
- Dpto. Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Campus Universitario, 5800, Río Cuarto, Argentina.
| |
Collapse
|
16
|
Robert CAM, Pellissier L, Moreira X, Defossez E, Pfander M, Guyer A, van Dam NM, Rasmann S. Correlated Induction of Phytohormones and Glucosinolates Shapes Insect Herbivore Resistance of Cardamine Species Along Elevational Gradients. J Chem Ecol 2019; 45:638-648. [DOI: 10.1007/s10886-019-01084-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
|
17
|
Coppola M, Diretto G, Digilio MC, Woo SL, Giuliano G, Molisso D, Pennacchio F, Lorito M, Rao R. Transcriptome and Metabolome Reprogramming in Tomato Plants by Trichoderma harzianum strain T22 Primes and Enhances Defense Responses Against Aphids. Front Physiol 2019; 10:745. [PMID: 31293434 PMCID: PMC6599157 DOI: 10.3389/fphys.2019.00745] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/31/2019] [Indexed: 12/02/2022] Open
Abstract
Beneficial fungi in the genus Trichoderma are among the most widespread biocontrol agents of plant pathogens. Their role in triggering plant defenses against pathogens has been intensely investigated, while, in contrast, very limited information is available on induced barriers active against insects. The growing experimental evidence on this latter topic looks promising, and paves the way toward the development of Trichoderma strains and/or consortia active against multiple targets. However, the predictability and reproducibility of the effects that these beneficial fungi is still somewhat limited by the lack of an in-depth understanding of the molecular mechanisms underlying the specificity of their interaction with different crop varieties, and on how the environmental factors modulate this interaction. To fill this research gap, here we studied the transcriptome changes in tomato plants (cultivar "Dwarf San Marzano") induced by Trichoderma harzianum (strain T22) colonization and subsequent infestation by the aphid Macrosiphum euphorbiae. A wide transcriptome reprogramming, related to metabolic processes, regulation of gene expression and defense responses, was induced both by separate experimental treatments, which showed a synergistic interaction when concurrently applied. The most evident expression changes of defense genes were associated with the multitrophic interaction Trichoderma-tomato-aphid. Early and late genes involved in direct defense against insects were induced (i.e., peroxidase, GST, kinases and polyphenol oxidase, miraculin, chitinase), along with indirect defense genes, such as sesquiterpene synthase and geranylgeranyl phosphate synthase. Targeted and untargeted semi-polar metabolome analysis revealed a wide metabolome alteration showing an increased accumulation of isoprenoids in Trichoderma treated plants. The wide array of transcriptomic and metabolomics changes nicely fit with the higher mortality of aphids when feeding on Trichoderma treated plants, herein reported, and with the previously observed attractiveness of these latter toward the aphid parasitoid Aphidius ervi. Moreover, Trichoderma treated plants showed the over-expression of transcripts coding for several families of defense-related transcription factors (bZIP, MYB, NAC, AP2-ERF, WRKY), suggesting that the fungus contributes to the priming of plant responses against pest insects. Collectively, our data indicate that Trichoderma treatment of tomato plants induces transcriptomic and metabolomic changes, which underpin both direct and indirect defense responses.
Collapse
Affiliation(s)
| | | | - Maria Cristina Digilio
- Department of Agricultural Sciences, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Sheridan Lois Woo
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- National Research Council, Institute for Sustainable Plant Protection, Portici, Italy
| | | | | | - Francesco Pennacchio
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Matteo Lorito
- Department of Agricultural Sciences, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- National Research Council, Institute for Sustainable Plant Protection, Portici, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
18
|
Bathe U, Tissier A. Cytochrome P450 enzymes: A driving force of plant diterpene diversity. PHYTOCHEMISTRY 2019; 161:149-162. [PMID: 30733060 DOI: 10.1016/j.phytochem.2018.12.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 05/06/2023]
Abstract
In plant terpene biosynthesis, oxidation of the hydrocarbon backbone produced by terpene synthases is typically carried out by cytochrome P450 oxygenases (CYPs). The modifications introduced by CYPs include hydroxylations, sequential oxidations at one position and ring rearrangements and closures. These reactions significantly expand the structural diversity of terpenoids, but also provide anchoring points for further decorations by various transferases. In recent years, there has been a significant increase in reports of CYPs involved in plant terpene pathways. Plant diterpenes represent an important class of metabolites that includes hormones and a number of industrially relevant compounds such as pharmaceutical, aroma or food ingredients. In this review, we provide a comprehensive survey on CYPs reported to be involved in plant diterpene biosynthesis to date. A phylogenetic analysis showed that only few CYP clans are represented in diterpene biosynthesis, namely CYP71, CYP85 and CYP72. Remarkably few CYP families and subfamilies within those clans are involved, indicating specific expansion of these clades in plant diterpene biosynthesis. Nonetheless, the evolutionary trajectory of CYPs of specialized diterpene biosynthesis is diverse. Some are recently derived from gibberellin biosynthesis, while others have a more ancient history with recent expansions in specific plant families. Among diterpenoids, labdane-related diterpenoids represent a dominant class. The availability of CYPs from diverse plant species able to catalyze oxidations in specific regions of the labdane-related backbones provides opportunities for combinatorial biosynthesis to produce novel diterpene compounds that can be screened for biological activities of interest.
Collapse
Affiliation(s)
- Ulschan Bathe
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany.
| |
Collapse
|
19
|
Effect of Oxylipins, Terpenoid Precursors and Wounding on Soft Corals' Secondary Metabolism as Analyzed via UPLC/MS and Chemometrics. Molecules 2017; 22:molecules22122195. [PMID: 29232862 PMCID: PMC6149794 DOI: 10.3390/molecules22122195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 12/13/2022] Open
Abstract
The effect of three oxylipin analogues, a terpenoid intermediate and wounding on the secondary metabolism of the soft corals Sarcophyton glaucum and Lobophyton pauciflorum was assessed. Examined oxylipins included prostaglandin (PG-E1), methyl jasmonate (MeJA), and arachidonic acid (AA) in addition to the diterpene precursor geranylgeranylpyrophosphate (GGP). Post-elicitation, metabolites were extracted from coral heads and analyzed via UPLC-MS followed by multivariate data analyses. Both supervised and unsupervised data analyses were used for sample classification. Multivariate data analysis revealed clear segregation of PG-E1 and MeJA elicited S. glaucum at 24 and 48 h post elicitation from other elicitor samples and unelicited control group. PG-E1 was found more effective in upregulating S. glaucum terpene/sterol levels compared to MeJA. Metabolites showing upregulation in S. glaucum include campestene-triol and a cembranoid, detected at ca. 30- and 2-fold higher levels compared to unelicited corals. Such an elicitation effect was less notable in the other coral species L. pauciflorum, suggesting a differential oxylipin response in soft corals. Compared to MeJA and PG, no elicitation effect was observed for GGP, AA or wounding on the metabolism of either coral species.
Collapse
|
20
|
Berasategui A, Salem H, Paetz C, Santoro M, Gershenzon J, Kaltenpoth M, Schmidt A. Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness. Mol Ecol 2017; 26:4099-4110. [DOI: 10.1111/mec.14186] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Aileen Berasategui
- Biochemistry Department; Max Planck Institute for Chemical Ecology; Jena Germany
- Insect Symbiosis Research Group; Max Planck Institute for Chemical Ecology; Jena Germany
| | - Hassan Salem
- Insect Symbiosis Research Group; Max Planck Institute for Chemical Ecology; Jena Germany
- Department of Biology; Emory University; Atlanta GA USA
| | - Christian Paetz
- NMR Department; Max Planck Institute for Chemical Ecology; Jena Germany
| | - Maricel Santoro
- Biochemistry Department; Max Planck Institute for Chemical Ecology; Jena Germany
- Departamento de Biología Molecular; Universidad Nacional de Río Cuarto; Río Cuarto Argentina
| | - Jonathan Gershenzon
- Biochemistry Department; Max Planck Institute for Chemical Ecology; Jena Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology; Johannes Gutenberg University Mainz; Mainz Germany
| | - Axel Schmidt
- Biochemistry Department; Max Planck Institute for Chemical Ecology; Jena Germany
| |
Collapse
|
21
|
Burke JL, Bohlmann J, Carroll AL. Consequences of distributional asymmetry in a warming environment: invasion of novel forests by the mountain pine beetle. Ecosphere 2017. [DOI: 10.1002/ecs2.1778] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Jordan Lewis Burke
- Department of Forest and Conservation Sciences Faculty of Forestry The University of British Columbia 2424 Main Mall Vancouver British Columbia V6T 1Z4 Canada
| | - Joerg Bohlmann
- Department of Forest and Conservation Sciences Faculty of Forestry The University of British Columbia 2424 Main Mall Vancouver British Columbia V6T 1Z4 Canada
- Michael Smith Laboratories The University of British Columbia 2185 East Mall Vancouver British Columbia V6T 1Z4 Canada
| | - Allan L. Carroll
- Department of Forest and Conservation Sciences Faculty of Forestry The University of British Columbia 2424 Main Mall Vancouver British Columbia V6T 1Z4 Canada
| |
Collapse
|
22
|
Niederbacher B, Winkler JB, Schnitzler JP. Volatile organic compounds as non-invasive markers for plant phenotyping. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5403-16. [PMID: 25969554 DOI: 10.1093/jxb/erv219] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plants emit a great variety of volatile organic compounds (VOCs) that can actively participate in plant growth and protection against biotic and abiotic stresses. VOC emissions are strongly dependent on environmental conditions; the greatest ambiguity is whether or not the predicted change in climate will influence and modify plant-pest interactions that are mediated by VOCs. The constitutive and induced emission patterns between plant genotypes, species, and taxa are highly variable and can be used as pheno(chemo)typic markers to distinguish between different origins and provenances. In recent years significant progress has been made in molecular and genetic plant breeding. However, there is actually a lack of knowledge in functionally linking genotypes and phenotypes, particularly in analyses of plant-environment interactions. Plant phenotyping, the assessment of complex plant traits such as growth, development, tolerance, resistance, etc., has become a major bottleneck, and quantitative information on genotype-environment relationships is the key to addressing major future challenges. With increasing demand to support and accelerate progress in breeding for novel traits, the plant research community faces the need to measure accurately increasingly large numbers of plants and plant traits. In this review article, we focus on the promising outlook of VOC phenotyping as a fast and non-invasive measure of phenotypic dynamics. The basic principle is to define plant phenotypes according to their disease resistance and stress tolerance, which in turn will help in improving the performance and yield of economically relevant plants.
Collapse
Affiliation(s)
- B Niederbacher
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - J B Winkler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - J P Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| |
Collapse
|
23
|
Genome-Wide Identification of Differentially Expressed Genes Associated with the High Yielding of Oleoresin in Secondary Xylem of Masson Pine (Pinus massoniana Lamb) by Transcriptomic Analysis. PLoS One 2015; 10:e0132624. [PMID: 26167875 PMCID: PMC4500461 DOI: 10.1371/journal.pone.0132624] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/16/2015] [Indexed: 11/19/2022] Open
Abstract
Masson pine is an important timber and resource for oleoresin in South China. Increasing yield of oleoresin in stems can raise economic benefits and enhance the resistance to bark beetles. However, the genetic mechanisms for regulating the yield of oleoresin were still unknown. Here, high-throughput sequencing technology was used to investigate the transcriptome and compare the gene expression profiles of high and low oleoresin-yielding genotypes. A total of 40,690,540 reads were obtained and assembled into 137,499 transcripts from the secondary xylem tissues. We identified 84,842 candidate unigenes based on sequence annotation using various databases and 96 unigenes were candidates for terpenoid backbone biosynthesis in pine. By comparing the expression profiles of high and low oleoresin-yielding genotypes, 649 differentially expressed genes (DEGs) were identified. GO enrichment analysis of DEGs revealed that multiple pathways were related to high yield of oleoresin. Nine candidate genes were validated by QPCR analysis. Among them, the candidate genes encoding geranylgeranyl diphosphate synthase (GGPS) and (-)-alpha/beta-pinene synthase were up-regulated in the high oleoresin-yielding genotype, while tricyclene synthase revealed lower expression level, which was in good agreement with the GC/MS result. In addition, DEG encoding ABC transporters, pathogenesis-related proteins (PR5 and PR9), phosphomethylpyrimidine synthase, non-specific lipid-transfer protein-like protein and ethylene responsive transcription factors (ERFs) were also confirmed to be critical for the biosynthesis of oleoresin. The next-generation sequencing strategy used in this study has proven to be a powerful means for analyzing transcriptome variation related to the yield of oleoresin in masson pine. The candidate genes encoding GGPS, (-)-alpha/beta-pinene, tricyclene synthase, ABC transporters, non-specific lipid-transfer protein-like protein, phosphomethylpyrimidine synthase, ERFs and pathogen responses may play important roles in regulating the yield of oleoresin. These DEGs are worthy of special attention in future studies.
Collapse
|
24
|
Nagel R, Berasategui A, Paetz C, Gershenzon J, Schmidt A. Overexpression of an isoprenyl diphosphate synthase in spruce leads to unexpected terpene diversion products that function in plant defense. PLANT PHYSIOLOGY 2014; 164:555-69. [PMID: 24346420 PMCID: PMC3912089 DOI: 10.1104/pp.113.228940] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Spruce (Picea spp.) and other conifers employ terpenoid-based oleoresin as part of their defense against herbivores and pathogens. The short-chain isoprenyl diphosphate synthases (IDS) are situated at critical branch points in terpene biosynthesis, producing the precursors of the different terpenoid classes. To determine the role of IDS and to create altered terpene phenotypes for assessing the defensive role of terpenoids, we overexpressed a bifunctional spruce IDS, a geranyl diphosphate and geranylgeranyl diphosphate synthase in white spruce (Picea glauca) saplings. While transcript level (350-fold), enzyme activity level (7-fold), and in planta geranyl diphosphate and geranylgeranyl diphosphate levels (4- to 8-fold) were significantly increased in the needles of transgenic plants, there was no increase in the major monoterpenes and diterpene acids of the resin and no change in primary isoprenoids, such as sterols, chlorophylls, and carotenoids. Instead, large amounts of geranylgeranyl fatty acid esters, known from various gymnosperm and angiosperm plant species, accumulated in needles and were shown to act defensively in reducing the performance of larvae of the nun moth (Lymantria monacha), a conifer pest in Eurasia. These results show the impact of overexpression of an IDS and the defensive role of an unexpected accumulation product of terpenoid biosynthesis with the potential for a broader function in plant protection.
Collapse
|
25
|
Terpenes tell different tales at different scales: glimpses into the Chemical Ecology of conifer - bark beetle - microbial interactions. J Chem Ecol 2013; 40:1-20. [PMID: 24337719 DOI: 10.1007/s10886-013-0368-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/09/2013] [Accepted: 11/21/2013] [Indexed: 12/18/2022]
Abstract
Chemical signaling mediates nearly all aspects of species interactions. Our knowledge of these signals has progressed dramatically, and now includes good characterizations of the bioactivities, modes of action, biosynthesis, and genetic programming of numerous compounds affecting a wide range of species. A major challenge now is to integrate this information so as to better understand actual selective pressures under natural conditions, make meaningful predictions about how organisms and ecosystems will respond to a changing environment, and provide useful guidance to managers who must contend with difficult trade-offs among competing socioeconomic values. One approach is to place stronger emphasis on cross-scale interactions, an understanding of which can help us better connect pattern with process, and improve our ability to make mechanistically grounded predictions over large areas and time frames. The opportunity to achieve such progress has been heightened by the rapid development of new scientific and technological tools. There are significant difficulties, however: Attempts to extend arrays of lower-scale processes into higher scale functioning can generate overly diffuse patterns. Conversely, attempts to infer process from pattern can miss critically important lower-scale drivers in systems where their biological and statistical significance is negated after critical thresholds are breached. Chemical signaling in bark beetle - conifer interactions has been explored for several decades, including by the two pioneers after whom this award is named. The strong knowledge base developed by many researchers, the importance of bark beetles in ecosystem functioning, and the socioeconomic challenges they pose, establish these insects as an ideal model for studying chemical signaling within a cross-scale context. This report describes our recent work at three levels of scale: interactions of bacteria with host plant compounds and symbiotic fungi (tree level, biochemical time), relationships among inducible and constitutive defenses, population dynamics, and plastic host-selection behavior (stand level, ecological time), and climate-driven range expansion of a native eruptive species into semi-naïve and potentially naïve habitats (geographical level, evolutionary time). I approach this problem by focusing primarily on one chemical group, terpenes, by emphasizing the curvilinear and threshold-structured basis of most underlying relationships, and by focusing on the system's feedback structure, which can either buffer or amplify relationships across scales.
Collapse
|
26
|
Westbrook JW, Resende MFR, Munoz P, Walker AR, Wegrzyn JL, Nelson CD, Neale DB, Kirst M, Huber DA, Gezan SA, Peter GF, Davis JM. Association genetics of oleoresin flow in loblolly pine: discovering genes and predicting phenotype for improved resistance to bark beetles and bioenergy potential. THE NEW PHYTOLOGIST 2013; 199:89-100. [PMID: 23534834 DOI: 10.1111/nph.12240] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/15/2013] [Indexed: 05/28/2023]
Abstract
Rapidly enhancing oleoresin production in conifer stems through genomic selection and genetic engineering may increase resistance to bark beetles and terpenoid yield for liquid biofuels. We integrated association genetic and genomic prediction analyses of oleoresin flow (g 24 h(-1)) using 4854 single nucleotide polymorphisms (SNPs) in expressed genes within a pedigreed population of loblolly pine (Pinus taeda) that was clonally replicated at three sites in the southeastern United States. Additive genetic variation in oleoresin flow (h(2) ≈ 0.12-0.30) was strongly correlated between years in which precipitation varied (r(a) ≈ 0.95), while the genetic correlation between sites declined from 0.8 to 0.37 with increasing differences in soil and climate among sites. A total of 231 SNPs were significantly associated with oleoresin flow, of which 81% were specific to individual sites. SNPs in sequences similar to ethylene signaling proteins, ABC transporters, and diterpenoid hydroxylases were associated with oleoresin flow across sites. Despite this complex genetic architecture, we developed a genomic prediction model to accelerate breeding for enhanced oleoresin flow that is robust to environmental variation. Results imply that breeding could increase oleoresin flow 1.5- to 2.4-fold in one generation.
Collapse
Affiliation(s)
- Jared W Westbrook
- Forest Genomics Laboratory, Genetics Institute, University of Florida, 1376 Mowry Rd, Rm 320, Gainesville, FL, 32611, USA
| | - Marcio F R Resende
- Forest Genomics Laboratory, Genetics Institute, University of Florida, 1376 Mowry Rd, Rm 320, Gainesville, FL, 32611, USA
| | - Patricio Munoz
- Forest Genomics Laboratory, Genetics Institute, University of Florida, 1376 Mowry Rd, Rm 320, Gainesville, FL, 32611, USA
| | - Alejandro R Walker
- Forest Genomics Laboratory, Genetics Institute, University of Florida, 1376 Mowry Rd, Rm 320, Gainesville, FL, 32611, USA
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
| | - Jill L Wegrzyn
- Department of Plant Sciences, University of California at Davis, Mail Stop 4, Davis, CA, 95616, USA
| | - C Dana Nelson
- Southern Institute of Forest Genetics, USDA Forest Service, Southern Research Station, 23332 Success Rd, Saucier, MS, 39574, USA
| | - David B Neale
- Department of Plant Sciences, University of California at Davis, Mail Stop 4, Davis, CA, 95616, USA
| | - Matias Kirst
- Forest Genomics Laboratory, Genetics Institute, University of Florida, 1376 Mowry Rd, Rm 320, Gainesville, FL, 32611, USA
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
| | - Dudley A Huber
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
| | - Salvador A Gezan
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
| | - Gary F Peter
- Forest Genomics Laboratory, Genetics Institute, University of Florida, 1376 Mowry Rd, Rm 320, Gainesville, FL, 32611, USA
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
| | - John M Davis
- Forest Genomics Laboratory, Genetics Institute, University of Florida, 1376 Mowry Rd, Rm 320, Gainesville, FL, 32611, USA
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
| |
Collapse
|
27
|
|
28
|
Jirschitzka J, Mattern DJ, Gershenzon J, D'Auria JC. Learning from nature: new approaches to the metabolic engineering of plant defense pathways. Curr Opin Biotechnol 2012; 24:320-8. [PMID: 23141769 DOI: 10.1016/j.copbio.2012.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/12/2012] [Accepted: 10/18/2012] [Indexed: 12/31/2022]
Abstract
Biotechnological manipulation of plant defense pathways can increase crop resistance to herbivores and pathogens while also increasing yields of medicinal, industrial, flavor and fragrance compounds. The most successful achievements in engineering defense pathways can be attributed to researchers striving to imitate natural plant regulatory mechanisms. For example, the introduction of transcription factors that control several genes in one pathway is often a valuable strategy to increase flux in that pathway. The use of multi-gene cassettes which mimic natural gene clusters can facilitate coordinated regulation of a pathway and speed transformation efforts. The targeting of defense pathway genes to organs and tissues in which the defensive products are typically made and stored can also increase yield as well as defensive potential.
Collapse
Affiliation(s)
- Jan Jirschitzka
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
29
|
Erbilgin N, Colgan LJ. Differential effects of plant ontogeny and damage type on phloem and foliage monoterpenes in jack pine (Pinus banksiana). TREE PHYSIOLOGY 2012; 32:946-957. [PMID: 22659460 DOI: 10.1093/treephys/tps047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Coniferous trees have both constitutive and inducible defences that deter or kill herbivores and pathogens. We investigated constitutive and induced monoterpene responses of jack pine (Pinus banksiana Lamb.) to a number of damage types: a fungal associate of the mountain pine beetle (Dendroctonus ponderosae Hopkins), Grosmannia clavigera (Robinson-Jeffrey & R.W. Davidson); two phytohormones, methyl jasmonate (MJ) and methyl salicylate (MS); simulated herbivory; and mechanical wounding. We only included the fungal, MJ and mechanical wounding treatments in the field experiments while all treatments were part of the greenhouse studies. We focused on both constitutive and induced responses between juvenile and mature jack pine trees and differences in defences between phloem and needles. We found that phytohormone applications and fungal inoculation resulted in the greatest increase in monoterpenes in both juvenile and mature trees. Additionally, damage types differentially affected the proportions of individual monoterpenes: MJ-treated mature trees had higher myrcene and β-pinene than fungal-inoculated mature trees, while needles of juveniles inoculated with the fungus contained higher limonene than MJ- or MS-treated juveniles. Although the constitutive monoterpenes were higher in the phloem of juveniles than mature jack pine trees, the phloem of mature trees had a much higher magnitude of induction. Further, induced monoterpene concentrations in juveniles were higher in phloem than in needles. There was no difference in monoterpene concentration between phytohormone applications and G. clavigera inoculation in mature trees, while in juvenile trees MJ was different from both G. clavigera and simulated herbivory in needle monoterpenes, but there was no difference between phytohormone applications and simulated herbivory in the phloem.
Collapse
Affiliation(s)
- Nadir Erbilgin
- Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, AB, Canada T6G 2E3.
| | | |
Collapse
|
30
|
Nagel R, Gershenzon J, Schmidt A. Nonradioactive assay for detecting isoprenyl diphosphate synthase activity in crude plant extracts using liquid chromatography coupled with tandem mass spectrometry. Anal Biochem 2012; 422:33-8. [PMID: 22266300 DOI: 10.1016/j.ab.2011.12.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 11/15/2022]
Abstract
Terpenoids form the largest class of plant metabolites involved in primary and secondary metabolism. Isoprenyl diphosphate synthases (IDSs) catalyze the condensation of the C(5) terpenoid building blocks, isopentenyl diphosphate and dimethylallyl diphosphate, to form geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)), and geranylgeranyl diphosphate (C(20)). These branch point reactions control the flow of metabolites that act as precursors to each of the major terpene classes-monoterpenes, sequiterpenes, and diterpenes, respectively. Thus accurate and easily performed assays of IDS enzyme activity are critical to increase our knowledge about the regulation of terpene biosynthesis. Here we describe a new and sensitive nonradioactive method for carrying out IDS assays using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) to detect the short-chain prenyl diphosphate products directly without dephosphorylation. Furthermore, we were able to separate cisoid and transoid isomers of both C(10) enzyme products (geranyl diphosphate and neryl diphosphate) and three C(15) products [(E,E)-, (Z,E)-, and (Z,Z)-farnesyl diphosphate]. By applying the method to crude protein extracts from various organs of Arabidopsis thaliana, Nicotiana attenuata, Populus trichocarpa, and Picea abies, we could determine their IDS activity in a reproducible fashion.
Collapse
Affiliation(s)
- Raimund Nagel
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | |
Collapse
|