1
|
Zhang J, Shi J, Zeng K, Cai M, Lan X. Transcriptomic landscape of staminate catkins development during overwintering process in Betula platyphylla. FRONTIERS IN PLANT SCIENCE 2024; 14:1249122. [PMID: 38259941 PMCID: PMC10801112 DOI: 10.3389/fpls.2023.1249122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 01/24/2024]
Abstract
Betula platyphylla, belonging to the cold-specialized lineage Betulaceae, exhibits a unique reproductive strategy where staminate catkins emerge in the first summer and undergo an overwintering process, culminating in flowering in the following year. However, the underlying regulatory mechanism remains unclear. In this study, we investigated the male germline development of B. platyphylla in four distinct stages: microsporocytes in Oct. (S1), uninuclear microspores from Dec. (S2) to Mar. of the following year (S3), and bicellular microspores in Apr. (S4). We performed RNA sequencing on mature pollen and the four stages of staminate catkins. Using weighted gene co-expression network analysis (WGCNA), we identified five highly correlated gene modules with distinct expression profiles. These modules exhibited strong correlations with sugar metabolism, cell cycle, flowering, and cell wall dynamics, highlighting their dynamic roles during male germline developmental stages. During the overwintering process, we observed that the expression of transcription factors such as BpDUO1 and BpAMS at the appropriate developmental stages, suggests their significant roles in male germline development. The expression patterns of BpFLC and BpFT suggest their potential involvement in temperature perception during male reproductive development. These findings offer valuable insights into the reproductive success of plants adapting to cold environments.
Collapse
Affiliation(s)
| | | | | | | | - Xingguo Lan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Lu W, Wang Y, Shi Y, Liang Q, Lu X, Su D, Xu X, Pirrello J, Gao Y, Huang B, Li Z. Identification of SRS transcription factor family in Solanum lycopersicum, and functional characterization of their responses to hormones and abiotic stresses. BMC PLANT BIOLOGY 2023; 23:495. [PMID: 37833639 PMCID: PMC10576376 DOI: 10.1186/s12870-023-04506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
The SHI RELATED SEQUENCE (SRS) family plays a vital role in the development of multiple plant organs such as floral meristem determinacy, organ morphogenesis, and signal transduction. Nevertheless, there is little understanding of the biological significance of tomato SRS family at this point. Our research identified eight SlSRS family members and classified them into three subfamilies based on phylogenetics, conserved motifs, and characteristic domain analysis. The intraspecies and interspecies collinearity analysis revealed clues of SRS family evolution. Many cis-elements related to hormones, stresses, and plant development can be found in the promoter region of SlSRS genes. All of eight SlSRS proteins were located in the nucleus and possessed transcriptional activity, half of which were transcriptional activators, and the other half were transcriptional repressors. Except for SlSRS1, which showed high transcript accumulation in vegetative organs, most SlSRS genes expressed ubiquitously in all flower organs. In addition, all SlSRS genes could significantly respond to at least four different plant hormones. Further, expression of SlSRS genes were regulated by various abiotic stress conditions. In summary, we systematically analyzed and characterized the SlSRS family, reviewed the expression patterns and preliminarily investigated the protein function, and provided essential information for further functional research of the tomato SRS genes in the determination of reproductive floral organs and the development of plants, and possibly other plants.
Collapse
Affiliation(s)
- Wang Lu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Yan Wang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Yuan Shi
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Qin Liang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Xiangyin Lu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Deding Su
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Julien Pirrello
- Laboratory of Plant Science Research, Fruit Genomics and Biotechnology, UMR5546, University of Toulouse, CNRS, UPS, Toulouse-NP, Toulouse, France
| | - Ying Gao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
3
|
Huang H, Song J, Feng Y, Zheng L, Chen Y, Luo K. Genome-Wide Identification and Expression Analysis of the SHI-Related Sequence Family in Cassava. Genes (Basel) 2023; 14:genes14040870. [PMID: 37107628 PMCID: PMC10138042 DOI: 10.3390/genes14040870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
The SHORT INTERNODES (SHI)-related sequences (SRS) are plant-specific transcription factors that have been quantitatively characterized during plant growth, regeneration, and stress responses. However, the genome-wide discovery of SRS family genes and their involvement in abiotic stress-related activities in cassava have not been documented. A genome-wide search strategy was used to identify eight family members of the SRS gene family in cassava (Manihot esculenta Crantz). Based on their evolutionary linkages, all MeSRS genes featured homologous RING-like zinc finger and IXGH domains. Genetic architecture and conserved motif analysis validated the categorization of MeSRS genes into four groups. Eight pairs of segmental duplications were detected, resulting in an increase in the number of MeSRS genes. Orthologous studies of SRS genes among cassava and three different plant species (Arabidopsis thaliana, Oryza sativa, and Populus trichocarpa) provided important insights into the probable history of the MeSRS gene family. The functionality of MeSRS genes was elucidated through the prediction of protein–protein interaction networks and cis-acting domains. RNA-seq data demonstrated tissue/organ expression selectivity and preference of the MeSRS genes. Furthermore, qRT-PCR investigation of MeSRS gene expression after exposure to salicylic acid (SA) and methyl jasmonate (MeJA) hormone treatments, as well as salt (NaCl) and osmotic (polyethylene glycol, PEG) stresses, showed their stress-responsive patterns. This genome-wide characterization and identification of the evolutionary relationships and expression profiles of the cassava MeSRS family genes will be helpful for further research into this gene family and its function in stress response. It may also assist future agricultural efforts to increase the stress tolerance of cassava.
Collapse
Affiliation(s)
- Huling Huang
- Sanya Nanfan Research Institute, School of Tropical Crops, Hainan University, Haikou 572025, China
| | - Jiming Song
- Institute of Tropical and subtropical Economic Crops, Yunnan Provincial Academy of Agricultural Sciences, Baoshan 678000, China
| | - Yating Feng
- Sanya Nanfan Research Institute, School of Tropical Crops, Hainan University, Haikou 572025, China
| | - Linling Zheng
- Sanya Nanfan Research Institute, School of Tropical Crops, Hainan University, Haikou 572025, China
| | - Yinhua Chen
- Sanya Nanfan Research Institute, School of Tropical Crops, Hainan University, Haikou 572025, China
| | - Kai Luo
- Sanya Nanfan Research Institute, School of Tropical Crops, Hainan University, Haikou 572025, China
| |
Collapse
|
4
|
Sun C, Yu L, Zhang S, Gu Q, Wang M. Genome-wide characterization of the SHORT INTER-NODES/STYLISH and Shi-Related Sequence family in Gossypium hirsutum and functional identification of GhSRS21 under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 13:1078083. [PMID: 36684735 PMCID: PMC9846857 DOI: 10.3389/fpls.2022.1078083] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Saline stress is a significant factor that caused crop growth inhibition and yield decline. SHORT INTERNODES/STYLISH (SHI/STY) and SHI-RELATED SEQUENCE (SRS) transcription factors are specific to plants and share a conserved RING-like zinc-finger domain (CX2CX7CX4CX2C2X6C). However, the functions of SHI/STY and SRS genes in cotton responses to salt stress remain unclear. In this study, 26 GhSRSs were identified in Gossypium hirsutum, which further divided into three subgroups. Phylogenetic analysis of 88 SRSs from8 plant species revealed independent evolutionary pattern in some of SRSs derived from monocots. Conserved domain and subcellular location predication of GhSRSs suggested all of them only contained the conserved RING-like zinc-finger domain (DUF702) domain and belonged to nucleus-localized transcription factors except for the GhSRS22. Furthermore, synteny analysis showed structural variation on chromosomes during the process of cotton polyploidization. Subsequently, expression patterns of GhSRS family members in response to salt and drought stress were analyzed in G. hirsutum and identified a salt stress-inducible gene GhSRS21. The GhSRS21 was proved to localize in the nuclear and silencing it in G. hirsutum increased the cotton resistance to salt using the virus-induced gene silencing (VIGS) system. Finally, our transcriptomic data revealed that GhSRS21 negatively controlled cotton salt tolerance by regulating the balance between ROS production and scavenging. These results will increase our understanding of the SRS gene family in cotton and provide the candidate resistant gene for cotton breeding.
Collapse
Affiliation(s)
- Chendong Sun
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Li Yu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuojun Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qijuan Gu
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Mei Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
5
|
Fang D, Zhang W, Ye Z, Hu F, Cheng X, Cao J. The plant specific SHORT INTERNODES/STYLISH (SHI/STY) proteins: Structure and functions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:685-695. [PMID: 36565613 DOI: 10.1016/j.plaphy.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Plant specific SHORT INTERNODES/STYLISH (SHI/STY) protein is a transcription factor involved in the formation and development of early lateral organs in plants. However, research on the SHI/STY protein family is not focused enough. In this article, we review recent studies on SHI/STY genes and explore the evolution and structure of SHI/STY. The biological functions of SHI/STYs are discussed in detail in this review, and the application of each biological function to modern agriculture is discussed. All SHI/STY proteins contain typical conserved RING-like zinc finger domain and IGGH domain. SHI/STYs are involved in the formation and development of lateral root, stem extension, leaf morphogenesis, and root nodule development. They are also involved in the regulation of pistil and stamen development and flowering time. At the same time, the regulation of some GA, JA, and auxin signals also involves these family proteins. For each aspect, unanswered or poorly understood questions were identified to help define future research areas. This review will provide a basis for further functional study of this gene family.
Collapse
Affiliation(s)
- Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiuzhu Cheng
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
6
|
Ma B, Nian L, Ain NU, Liu X, Yang Y, Zhu X, Haider FU, Lv Y, Bai P, Zhang X, Li Q, Mao Z, Xue Z. Genome-Wide Identification and Expression Profiling of the SRS Gene Family in Melilotus albus Reveals Functions in Various Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:3101. [PMID: 36432830 PMCID: PMC9693462 DOI: 10.3390/plants11223101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The plant-specific SHI-related sequence (SRS) family of transcription factors plays a vital role in growth regulation, plant development, phytohormone biosynthesis, and stress response. However, the genome-wide identification and role in the abiotic stress-related functions of the SRS gene family were not reported in white sweet clover (Melilotus albus). In this study, nine M. albus SRS genes (named MaSRS01-MaSRS09) were identified via a genome-wide search method. All nine genes were located on six out of eight chromosomes in the genome of M. albus and duplication analysis indicated eight segmentally duplicated genes in the MaSRS family. These MaSRS genes were classified into six groups based on their phylogenetic relationships. The gene structure and motif composition results indicated that MaSRS members in the same group contained analogous intron/exon and motif organizations. Further, promoter region analysis of MaSRS genes uncovered various growth, development, and stress-responsive cis-acting elements. Protein interaction networks showed that each gene has both functions of interacting with other genes and members within the family. Moreover, real-time quantitative PCR was also performed to verify the expression patterns of nine MaSRS genes in the leaves of M. albus. The results showed that nine MaSRSs were up- and down-regulated at different time points after various stress treatments, such as salinity, low-temperature, salicylic acid (SA), and methyl jasmonate (MeJA). This is the first systematic study of the M. albus SRS gene family, and it can serve as a strong foundation for further elucidation of the stress response and physiological improvement of the growth functions in M. albus.
Collapse
Affiliation(s)
- Biao Ma
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Lili Nian
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Noor ul Ain
- Centre of Genomics and Biotechnology, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Xuelu Liu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Yingbo Yang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ying Lv
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengpeng Bai
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoning Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Quanxi Li
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Zixuan Mao
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Zongyang Xue
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Zhu X, Wang B, Wang X, Wei X. Genome-wide identification, structural analysis and expression profiles of short internodes related sequence gene family in quinoa. Front Genet 2022; 13:961925. [PMID: 36072673 PMCID: PMC9443693 DOI: 10.3389/fgene.2022.961925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 11/27/2022] Open
Abstract
Based on the whole genome data information of Chenopodium quinoa Willd, the CqSRS gene family members were systematically identified and analyzed by bioinformatics methods, and the responses of CqSRS genes to NaCl (100 mmol/L), salicylic acid (200 umol/L) and low temperature (4°C) were detected by qRT-PCR. The results showed that a total of 10 SHI related sequence genes were identified in quinoa, and they were distributed on 9 chromosomes, and there were four pairs of duplicated genes. The number of amino acids encoded ranged from 143 aa to 370 aa, and the isoelectric point ranged from 4.81 to 8.90. The secondary structure was mainly composed of random coil (Cc). Most of the SRS gene encoding proteins were located in the cytoplasm (5 CqSRS). Phylogenetic analysis showed that the CqSRS genes were divided into three groups, and the gene structure showed that the number of exons of CqSRS was between two-five. Promoter analysis revealed that there are a total of 44 elements related to plant hormone response elements, light response elements, stress response elements and tissue-specific expression in the upstream regin of the gene. Protein interaction showed that all 10 CqSRS proteins appeared in the known protein interaction network diagram in Arabidopsis. Expression profile analysis showed that CqSRS genes had different expression patterns, and some genes had tissue-specific expression. qRT-PCR showed that all SRS family genes responded to ABA、NaCl、drought and low-temperature treatments, but the expression levels of different CqSRS genes were significantly different under various stresses. This study lays a foundation for further analyzed the function of CqSRS genes.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Baoqiang Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xian Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaohong Wei
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Xiaohong Wei,
| |
Collapse
|
8
|
Fang D, Zhang W, Cheng X, Hu F, Ye Z, Cao J. Molecular evolutionary analysis of the SHI/STY gene family in land plants: A focus on the Brassica species. FRONTIERS IN PLANT SCIENCE 2022; 13:958964. [PMID: 35991428 PMCID: PMC9386158 DOI: 10.3389/fpls.2022.958964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The plant-specific SHORT INTERNODES/STYLISH (SHI/STY) proteins belong to a family of transcription factors that are involved in the formation and development of early lateral roots. However, the molecular evolution of this family is rarely reported. Here, a total of 195 SHI/STY genes were identified in 21 terrestrial plants, and the Brassica species is the focus of our research. Their physicochemical properties, chromosome location and duplication, motif distribution, exon-intron structures, genetic evolution, and expression patterns were systematically analyzed. These genes are divided into four clades (Clade 1/2/3/4) based on phylogenetic analysis. Motif distribution and gene structure are similar in each clade. SHI/STY proteins are localized in the nucleus by the prediction of subcellular localization. Collinearity analysis indicates that the SHI/STYs are relatively conserved in evolution. Whole-genome duplication is the main factor for their expansion. SHI/STYs have undergone intense purifying selection, but several positive selection sites are also identified. Most promoters of SHI/STY genes contain different types of cis-elements, such as light, stress, and hormone-responsive elements, suggesting that they may be involved in many biological processes. Protein-protein interaction predicted some important SHI/STY interacting proteins, such as LPAT4, MBOATs, PPR, and UBQ3. In addition, the RNA-seq and qRT-PCR analysis were studied in detail in rape. As a result, SHI/STYs are highly expressed in root and bud, and can be affected by Sclerotinia sclerotiorum, drought, cold, and heat stresses. Moreover, quantitative real-time PCR (qRT-PCR) analyses indicates that expression levels of BnSHI/STYs are significantly altered in different treatments (cold, salt, drought, IAA, auxin; ABA, abscisic acid; 6-BA, cytokinin). It provides a new understanding of the evolution and expansion of the SHI/STY family in land plants and lays a foundation for further research on their functions.
Collapse
|
9
|
Salava H, Thula S, Sánchez AS, Nodzyński T, Maghuly F. Genome Wide Identification and Annotation of NGATHA Transcription Factor Family in Crop Plants. Int J Mol Sci 2022; 23:7063. [PMID: 35806066 PMCID: PMC9266525 DOI: 10.3390/ijms23137063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
The NGATHA (NGA) transcription factor (TF) belongs to the ABI3/VP1 (RAV) transcriptional subfamily, a subgroup of the B3 superfamily, which is relatively well-studied in Arabidopsis. However, limited data are available on the contributions of NGA TF in other plant species. In this study, 207 NGA gene family members were identified from a genome-wide search against Arabidopsis thaliana in the genome data of 18 dicots and seven monocots. The phylogenetic and sequence alignment analyses divided NGA genes into different clusters and revealed that the numbers of genes varied depending on the species. The phylogeny was followed by the characterization of the Solanaceae (tomato, potato, capsicum, tobacco) and Poaceae (Brachypodium distachyon, Oryza sativa L. japonica, and Sorghum bicolor) family members in comparison with A. thaliana. The gene and protein structures revealed a similar pattern for NGA and NGA-like sequences, suggesting that both are conserved during evolution. Promoter cis-element analysis showed that phytohormones such as abscisic acid, auxin, and gibberellins play a crucial role in regulating the NGA gene family. Gene ontology analysis revealed that the NGA gene family participates in diverse biological processes such as flower development, leaf morphogenesis, and the regulation of transcription. The gene duplication analysis indicates that most of the genes are evolved due to segmental duplications and have undergone purifying selection pressure. Finally, the gene expression analysis implicated that the NGA genes are abundantly expressed in lateral organs and flowers. This analysis has presented a detailed and comprehensive study of the NGA gene family, providing basic knowledge of the gene, protein structure, function, and evolution. These results will lay the foundation for further understanding of the role of the NGA gene family in various plant developmental processes.
Collapse
Affiliation(s)
- Hymavathi Salava
- Plant Functional Genomics, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Sravankumar Thula
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (S.T.); (A.S.S.); (T.N.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Adrià Sans Sánchez
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (S.T.); (A.S.S.); (T.N.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (S.T.); (A.S.S.); (T.N.)
| | - Fatemeh Maghuly
- Plant Functional Genomics, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
10
|
Li M, Wrobel-Marek J, Heidmann I, Horstman A, Chen B, Reis R, Angenent GC, Boutilier K. Auxin biosynthesis maintains embryo identity and growth during BABY BOOM-induced somatic embryogenesis. PLANT PHYSIOLOGY 2022; 188:1095-1110. [PMID: 34865162 PMCID: PMC8825264 DOI: 10.1093/plphys/kiab558] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/03/2021] [Indexed: 05/18/2023]
Abstract
Somatic embryogenesis is a type of plant cell totipotency where embryos develop from nonreproductive (vegetative) cells without fertilization. Somatic embryogenesis can be induced in vitro by auxins, and by ectopic expression of embryo-expressed transcription factors like the BABY BOOM (BBM) AINTEGUMENTA-LIKE APETALA2/ETHYLENE RESPONSE FACTOR domain protein. These different pathways are thought to converge to promote auxin response and biosynthesis, but the specific roles of the endogenous auxin pathway in somatic embryogenesis induction have not been well-characterized. Here we show that BBM transcriptionally regulates the YUCCA3 (YUC3) and YUC8 auxin biosynthesis genes during BBM-mediated somatic embryogenesis in Arabidopsis (Arabidopsis thaliana) seedlings. BBM induced local and ectopic YUC3 and YUC8 expression in seedlings, which coincided with increased DR5 auxin response and indole-3-acetic acid (IAA) biosynthesis and with ectopic expression of the WOX2 embryo reporter. YUC-driven auxin biosynthesis was required for BBM-mediated somatic embryogenesis, as the number of embryogenic explants was reduced by ca. 50% in yuc3 yuc8 mutants and abolished after chemical inhibition of YUC enzyme activity. However, a detailed YUC inhibitor time-course study revealed that YUC-dependent IAA biosynthesis is not required for the re-initiation of totipotent cell identity in seedlings. Rather, YUC enzymes are required later in somatic embryo development for the maintenance of embryo identity and growth. This study resolves a long-standing question about the role of endogenous auxin biosynthesis in transcription factor-mediated somatic embryogenesis and also provides an experimental framework for understanding the role of endogenous auxin biosynthesis in other in planta and in vitro embryogenesis systems.
Collapse
Affiliation(s)
- Mengfan Li
- Bioscience, Wageningen University and Research, Wageningen, 6700 AA, Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, 6700 AP, Netherlands
| | - Justyna Wrobel-Marek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Iris Heidmann
- Bioscience, Wageningen University and Research, Wageningen, 6700 AA, Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, 6700 AP, Netherlands
- Enza Zaden Research and Development B.V, Enkhuizen, 1602 DB, The Netherlands
| | - Anneke Horstman
- Bioscience, Wageningen University and Research, Wageningen, 6700 AA, Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, 6700 AP, Netherlands
| | - Baojian Chen
- Bioscience, Wageningen University and Research, Wageningen, 6700 AA, Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, 6700 AP, Netherlands
| | - Ricardo Reis
- Bioscience, Wageningen University and Research, Wageningen, 6700 AA, Netherlands
| | - Gerco C Angenent
- Bioscience, Wageningen University and Research, Wageningen, 6700 AA, Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, 6700 AP, Netherlands
| | - Kim Boutilier
- Bioscience, Wageningen University and Research, Wageningen, 6700 AA, Netherlands
- Author for communication:
| |
Collapse
|
11
|
Yang Y, Qi L, Nian L, Zhu X, Yi X, Jiyu Z, Qiu J. Genome-Wide Identification and Expression Analysis of the SRS Gene Family in Medicago sativa. DNA Cell Biol 2021; 40:1539-1553. [PMID: 34931872 DOI: 10.1089/dna.2021.0462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
SHI-related sequence (SRS) transcription factors, specific to plants, act as crucial regulators of plant organ growth and development. Here, we examined the Medicago sativa (alfalfa) SRS gene family (MsSRSs) to analyze the structure and function of MsSRSs using bioinformatics methods, and verify their abiotic stress responses through growth experiments. Twenty-seven MsSRS genes were identified from the genome-wide data of nontransgenic alfalfa. MsSRSs were distributed on 16 chromosomes and classified into seven different subfamilies by phylogenetic analysis. Forty-five cis-regulatory elements related to stress and phytohormone responsiveness, and tissue-specific expression occurred in the promoter sequences of MsSRSs. Ks values and Ka/Ks ratios of duplicate gene pairs showed that purifying selection affected most duplicate genes during their evolutionary history, while rapid recent positive selection strongly influenced MsSRS25 and MsSRS01. Real-time fluorescence quantitative PCR results showed that MsSRS genes could be induced by cold and salt stress. Within 12 h of salt stress exposure, the expression levels of seven and nine MsSRSs showed significant upregulation and downregulation, respectively. Within 12 h of cold stress exposure, the expression levels of the 3 and 13 selected MsSRSs showed significant upregulation and downregulation, respectively. Thus, this study provides novel comprehensive information on the MsSRS gene family, helpful for the study of SRS-mediated tolerance in alfalfa and the functional characteristics of SRS genes in other plants.
Collapse
Affiliation(s)
- Yingbo Yang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China.,Guangxi Institute of Animal Sciences, Nanning, China
| | - Lin Qi
- College of Agricultural, Henan Science and Technology University, Luoyang, China
| | - Lili Nian
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xianfeng Yi
- Guangxi Institute of Animal Sciences, Nanning, China
| | - Zhang Jiyu
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jinhua Qiu
- Guangxi Institute of Animal Sciences, Nanning, China
| |
Collapse
|
12
|
Ballester P, Martínez-Godoy MA, Ezquerro M, Navarrete-Gómez M, Trigueros M, Rodríguez-Concepción M, Ferrándiz C. A transcriptional complex of NGATHA and bHLH transcription factors directs stigma development in Arabidopsis. THE PLANT CELL 2021; 33:3645-3657. [PMID: 34586419 PMCID: PMC8643694 DOI: 10.1093/plcell/koab236] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/17/2021] [Indexed: 05/27/2023]
Abstract
The stigma is an angiosperm-specific tissue that is essential for pollination. In the last two decades, several transcription factors with key roles in stigma development in Arabidopsis thaliana have been identified. However, genetic analyses have thus far been unable to unravel the precise regulatory interactions among these transcription factors or the molecular basis for their selective roles in different spatial and temporal domains. Here, we show that the NGATHA (NGA) and HECATE (HEC) transcription factors, which are involved in different developmental processes but are both essential for stigma development, require each other to perform this function. This relationship is likely mediated by their physical interaction in the apical gynoecium. NGA/HEC transcription factors subsequently upregulate INDEHISCENT (IND) and SPATULA and are indispensable for the binding of IND to some of its targets to allow stigma differentiation. Our findings support a nonhierarchical regulatory scenario in which the combinatorial action of different transcription factors provides exquisite temporal and spatial specificity of their developmental outputs.
Collapse
Affiliation(s)
- Patricia Ballester
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Valencia, Spain
| | - Maria A Martínez-Godoy
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Valencia, Spain
| | - Miguel Ezquerro
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Valencia, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | - Marisa Navarrete-Gómez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Valencia, Spain
| | - Marina Trigueros
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Valencia, Spain
| | - Manuel Rodríguez-Concepción
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Valencia, Spain
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
13
|
Full-length transcriptome analysis provides new insights into the early bolting occurrence in medicinal Angelica sinensis. Sci Rep 2021; 11:13000. [PMID: 34155325 PMCID: PMC8217430 DOI: 10.1038/s41598-021-92494-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Angelica sinensis (Oliv.) Diels root part is an integral component of traditional Chinese medicine, widely prescribed to improve blood circulation and blood stasis. However, early bolting of A. sinensis compromises the quality of the roots and hence is a major limitation for yield of medicinal materials. To date, little information about the molecular mechanisms underlying bolting is available for this important medicinal plant. To identify genes putatively involved in early bolting, we have conducted the transcriptome analysis of the shoot tips of the early-bolting plants and non-bolting (normal) plants of A. sinensis, respectively, using a combination of third-generation sequencing and next-generation sequencing. A total of 43,438 non-redundant transcripts were collected and 475 unique differentially expressed genes (DEGs) were identified. Gene annotation and functional analyses revealed that DEGs were highly involved in plant hormone signaling and biosynthesis pathways, three main flowering pathways, pollen formation, and very-long-chain fatty acids biosynthesis pathways. The levels of endogenous hormones were also changed significantly in the early bolting stage of A. sinensis. This study provided new insights into the transcriptomic control of early bolting in A. sinensis, which could be further applied to enhance the yield of medicinally important raw materials.
Collapse
|
14
|
Cucinotta M, Cavalleri A, Chandler JW, Colombo L. Auxin and Flower Development: A Blossoming Field. Cold Spring Harb Perspect Biol 2021; 13:a039974. [PMID: 33355218 PMCID: PMC7849340 DOI: 10.1101/cshperspect.a039974] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The establishment of the species-specific floral organ body plan involves many coordinated spatiotemporal processes, which include the perception of positional information that specifies floral meristem and floral organ founder cells, coordinated organ outgrowth coupled with the generation and maintenance of inter-organ and inter-whorl boundaries, and the termination of meristem activity. Auxin is integrated within the gene regulatory networks that control these processes and plays instructive roles at the level of tissue-specific biosynthesis and polar transport to generate local maxima, perception, and signaling. Key features of auxin function in several floral contexts include cell nonautonomy, interaction with cytokinin gradients, and the central role of MONOPTEROS and ETTIN to regulate canonical and noncanonical auxin response pathways, respectively. Arabidopsis flowers are not representative of the enormous angiosperm floral diversity; therefore, comparative studies are required to understand how auxin underlies these developmental differences. It will be of great interest to compare the conservation of auxin pathways among flowering plants and to discuss the evolutionary role of auxin in floral development.
Collapse
Affiliation(s)
- Mara Cucinotta
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Alex Cavalleri
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
15
|
Glowa D, Comelli P, Chandler JW, Werr W. Clonal sector analysis and cell ablation confirm a function for DORNROESCHEN-LIKE in founder cells and the vasculature in Arabidopsis. PLANTA 2021; 253:27. [PMID: 33420666 PMCID: PMC7794208 DOI: 10.1007/s00425-020-03545-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/20/2020] [Indexed: 06/02/2023]
Abstract
Inducible lineage analysis and cell ablation via conditional toxin expression in cells expressing the DORNRÖSCHEN-LIKE transcription factor represent an effective and complementary adjunct to conventional methods of functional gene analysis. Classical methods of functional gene analysis via mutational and expression studies possess inherent limitations, and therefore, the function of a large proportion of transcription factors remains unknown. We have employed two complementary, indirect methods to obtain functional information for the AP2/ERF transcription factor DORNRÖSCHEN-LIKE (DRNL), which is dynamically expressed in flowers and marks lateral organ founder cells. An inducible, two-component Cre-Lox system was used to express beta-glucuronidase GUS in cells expressing DRNL, to perform a sector analysis that reveals lineages of cells that transiently expressed DRNL throughout plant development. In a complementary approach, an inducible system was used to ablate cells expressing DRNL using diphtheria toxin A chain, to visualise the phenotypic consequences. These complementary analyses demonstrate that DRNL functionally marks founder cells of leaves and floral organs. Clonal sectors also included the vasculature of the leaves and petals, implicating a previously unidentified role for DRNL in provasculature development, which was confirmed in cotyledons by closer analysis of drnl mutants. Our findings demonstrate that inducible gene-specific lineage analysis and cell ablation via conditional toxin expression represent an effective and informative adjunct to conventional methods of functional gene analysis.
Collapse
Affiliation(s)
- Dorothea Glowa
- Developmental Biology, Institute of Zoology, Cologne Biocenter, Cologne University, Zülpicher Straße 47b, 50674, Cologne, Germany
| | - Petra Comelli
- Developmental Biology, Institute of Zoology, Cologne Biocenter, Cologne University, Zülpicher Straße 47b, 50674, Cologne, Germany
| | - John W Chandler
- Developmental Biology, Institute of Zoology, Cologne Biocenter, Cologne University, Zülpicher Straße 47b, 50674, Cologne, Germany
| | - Wolfgang Werr
- Developmental Biology, Institute of Zoology, Cologne Biocenter, Cologne University, Zülpicher Straße 47b, 50674, Cologne, Germany.
| |
Collapse
|
16
|
Zhao SP, Song XY, Guo LL, Zhang XZ, Zheng WJ. Genome-Wide Analysis of the Shi-Related Sequence Family and Functional Identification of GmSRS18 Involving in Drought and Salt Stresses in Soybean. Int J Mol Sci 2020; 21:E1810. [PMID: 32155727 PMCID: PMC7084930 DOI: 10.3390/ijms21051810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 11/25/2022] Open
Abstract
The plant-special SHI-RELATED SEQUENCE (SRS) family plays vital roles in various biological processes. However, the genome-wide analysis and abiotic stress-related functions of this family were less reported in soybean. In this work, 21 members of soybean SRS family were identified, which were divided into three groups (Group I, II, and III). The chromosome location and gene structure were analyzed, which indicated that the members in the same group may have similar functions. The analysis of stress-related cis-elements showed that the SRS family may be involved in abiotic stress signaling pathway. The analysis of expression patterns in various tissues demonstrated that SRS family may play crucial roles in special tissue-dependent regulatory networks. The data based on soybean RNA sequencing (RNA-seq) and quantitative Real-Time PCR (qRT-PCR) proved that SRS genes were induced by drought, NaCl, and exogenous abscisic acid (ABA). GmSRS18 significantly induced by drought and NaCl was selected for further functional verification. GmSRS18, encoding a cell nuclear protein, could negatively regulate drought and salt resistance in transgenic Arabidopsis. It can affect stress-related physiological index, including chlorophyll, proline, and relative electrolyte leakage. Additionally, it inhibited the expression levels of stress-related marker genes. Taken together, these results provide valuable information for understanding the classification of soybean SRS transcription factors and indicates that SRS plays important roles in abiotic stress responses.
Collapse
Affiliation(s)
- Shu-Ping Zhao
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China; (S.-P.Z.); (X.-Z.Z.)
| | - Xin-Yuan Song
- Agro-biotechnology Research Institute, Jilin Academy of Agriculture Sciences, Changchun 130033, China;
| | - Lin-Lin Guo
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China; (S.-P.Z.); (X.-Z.Z.)
| | - Xiang-Zhan Zhang
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China; (S.-P.Z.); (X.-Z.Z.)
| | - Wei-Jun Zheng
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China; (S.-P.Z.); (X.-Z.Z.)
| |
Collapse
|
17
|
Singh S, Yadav S, Singh A, Mahima M, Singh A, Gautam V, Sarkar AK. Auxin signaling modulates LATERAL ROOT PRIMORDIUM1 (LRP1) expression during lateral root development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:87-100. [PMID: 31483536 DOI: 10.1111/tpj.14520] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 05/18/2023]
Abstract
Auxin signaling mediated by various auxin/indole-3-acetic acid (Aux/IAAs) and AUXIN RESPONSE FACTORs (ARFs) regulate lateral root (LR) development by controlling the expression of downstream genes. LATERAL ROOT PRIMORDIUM1 (LRP1), a member of the SHORT INTERNODES/STYLISH (SHI/STY) family, was identified as an auxin-inducible gene. The precise developmental role and molecular regulation of LRP1 in root development remain to be understood. Here we show that LRP1 is expressed in all stages of LR development, besides the primary root. The expression of LRP1 is regulated by histone deacetylation in an auxin-dependent manner. Our genetic interaction studies showed that LRP1 acts downstream of auxin responsive Aux/IAAs-ARFs modules during LR development. We showed that auxin-mediated induction of LRP1 is lost in emerging LRs of slr-1 and arf7arf19 mutants roots. NPA treatment studies showed that LRP1 acts after LR founder cell specification and asymmetric division during LR development. Overexpression of LRP1 (LRP1 OE) showed an increased number of LR primordia (LRP) at stages I, IV and V, resulting in reduced emerged LR density, which suggests that it is involved in LRP development. Interestingly, LRP1-induced expression of YUC4, which is involved in auxin biosynthesis, contributes to the increased accumulation of endogenous auxin in LRP1 OE roots. LRP1 interacts with SHI, STY1, SRS3, SRS6 and SRS7 proteins of the SHI/STY family, indicating their possible redundant role during root development. Our results suggested that auxin and histone deacetylation affect LRP1 expression and it acts downstream of LR forming auxin response modules to negatively regulate LRP development by modulating auxin homeostasis in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Sharmila Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Alka Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mahima Mahima
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vibhav Gautam
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
18
|
Genome-Wide Computational Identification of Biologically Significant Cis-Regulatory Elements and Associated Transcription Factors from Rice. PLANTS 2019; 8:plants8110441. [PMID: 31652796 PMCID: PMC6918188 DOI: 10.3390/plants8110441] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/12/2023]
Abstract
The interactions between transcription factors (TFs) and cis-acting regulatory elements (CREs) provide crucial information on the regulation of gene expression. The determination of TF-binding sites and CREs experimentally is costly and time intensive. An in silico identification and annotation of TFs, and the prediction of CREs from rice are made possible by the availability of whole genome sequence and transcriptome data. In this study, we tested the applicability of two algorithms developed for other model systems for the identification of biologically significant CREs of co-expressed genes from rice. CREs were identified from the DNA sequences located upstream from the transcription start sites, untranslated regions (UTRs), and introns, and downstream from the translational stop codons of co-expressed genes. The biologically significance of each CRE was determined by correlating their absence and presence in each gene with that gene's expression profile using a meta-database constructed from 50 rice microarray data sets. The reliability of these methods in the predictions of CREs and their corresponding TFs was supported by previous wet lab experimental data and a literature review. New CREs corresponding to abiotic stresses, biotic stresses, specific tissues, and developmental stages were identified from rice, revealing new pieces of information for future experimental testing. The effectiveness of some-but not all-CREs was found to be affected by copy number, position, and orientation. The corresponding TFs that were most likely correlated with each CRE were also identified. These findings not only contribute to the prioritization of candidates for further analysis, the information also contributes to the understanding of the gene regulatory network.
Collapse
|
19
|
Min Y, Bunn JI, Kramer EM. Homologs of the STYLISH gene family control nectary development in Aquilegia. THE NEW PHYTOLOGIST 2019; 221:1090-1100. [PMID: 30145791 DOI: 10.1111/nph.15406] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/17/2018] [Indexed: 05/09/2023]
Abstract
Floral nectaries are an interesting example of a convergent trait in flowering plants, and are associated with the diversification of numerous angiosperm lineages, including the adaptive radiation of the New World Aquilegia species. However, we know very little as to what genes contribute to nectary development and evolution, particularly in noncore eudicot taxa. We analyzed expression patterns and used RNAi-based methods to investigate the functions of homologs from the STYLISH (STY) family in nectar spur development in Aquilegia coerulea. We found that AqSTY1 exhibits concentrated expression in the presumptive nectary of the growing spur tip, and triple gene silencing of the three STY-like genes revealed that they function in style and nectary development. Strong expression of STY homologs was also detected in the nectary-bearing petals of Delphinium and Epimedium. Our results suggest that the novel recruitment of STY homologs to control nectary development is likely to have occurred before the diversification of the Ranunculaceae and Berberidaceae. To date, the STY homologs of the Ranunculales are the only alternative loci for the control of nectary development in flowering plants, providing a critical data point in understanding the evolutionary origin and developmental basis of nectaries.
Collapse
Affiliation(s)
- Ya Min
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA, 02138, USA
| | - J Imani Bunn
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA, 02138, USA
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA, 02138, USA
| |
Collapse
|
20
|
Suarez-Gonzalez A, Hefer CA, Lexer C, Cronk QCB, Douglas CJ. Scale and direction of adaptive introgression between black cottonwood (Populus trichocarpa) and balsam poplar (P. balsamifera). Mol Ecol 2018; 27:1667-1680. [DOI: 10.1111/mec.14561] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 02/17/2018] [Accepted: 02/23/2018] [Indexed: 12/31/2022]
Affiliation(s)
| | - Charles A. Hefer
- Department of Botany; University of British Columbia; Vancouver BC Canada
| | - Christian Lexer
- Department of Botany and Biodiversity Research; University of Vienna; Vienna Austria
| | | | | |
Collapse
|
21
|
Estornell LH, Landberg K, Cierlik I, Sundberg E. SHI/ STY Genes Affect Pre- and Post-meiotic Anther Processes in Auxin Sensing Domains in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:150. [PMID: 29491878 PMCID: PMC5817092 DOI: 10.3389/fpls.2018.00150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/29/2018] [Indexed: 05/13/2023]
Abstract
In flowering plants, mature sperm cells are enclosed in pollen grains formed in structures called anthers. Several cell layers surrounding the central sporogenous cells of the anther are essential for directing the developmental processes that lead to meiosis, pollen formation, and the subsequent pollen release. The specification and function of these tissues are regulated by a large number of genetic factors. Additionally, the plant hormone auxin has previously been shown to play important roles in the later phases of anther development. Using the R2D2 auxin sensor system we here show that auxin is sensed also in the early phases of anther cell layer development, suggesting that spatiotemporal regulation of auxin levels is important for early anther morphogenesis. Members of the SHI/STY transcription factor family acting as direct regulators of YUC auxin biosynthesis genes have previously been demonstrated to affect early anther patterning. Using reporter constructs we show that SHI/STY genes are dynamically active throughout anther development and their expression overlaps with those of three additional downstream targets, PAO5, EOD3 and PGL1. Characterization of anthers carrying mutations in five SHI/STY genes clearly suggests that SHI/STY transcription factors affect anther organ identity. In addition, their activity is important to repress periclinal cell divisions as well as premature entrance into programmed cell death and cell wall lignification, which directly influences the timing of anther dehiscence and the pollen viability. The SHI/STY proteins also prevent premature pollen germination suggesting that they may play a role in the induction or maintenance of pollen dormancy.
Collapse
|
22
|
Abstract
A defining characteristic of grasses, including major cereal crops, is the way in which flowers are arranged on an inflorescence. A new study finds that regulation of hormone levels during development is crucial for determining the arrangement of flowers on a barley inflorescence, opening new doors for increasing grain yield.
Collapse
Affiliation(s)
- Scott A Boden
- John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
23
|
Gomariz-Fernández A, Sánchez-Gerschon V, Fourquin C, Ferrándiz C. The Role of SHI/STY/SRS Genes in Organ Growth and Carpel Development Is Conserved in the Distant Eudicot Species Arabidopsis thaliana and Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2017; 8:814. [PMID: 28588595 PMCID: PMC5440560 DOI: 10.3389/fpls.2017.00814] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/01/2017] [Indexed: 05/02/2023]
Abstract
Carpels are a distinctive feature of angiosperms, the ovule-bearing female reproductive organs that endow them with multiple selective advantages likely linked to the evolutionary success of flowering plants. Gene regulatory networks directing the development of carpel specialized tissues and patterning have been proposed based on genetic and molecular studies carried out in Arabidopsis thaliana. However, studies on the conservation/diversification of the elements and the topology of this network are still scarce. In this work, we have studied the functional conservation of transcription factors belonging to the SHI/STY/SRS family in two distant species within the eudicots, Eschscholzia californica and Nicotiana benthamiana. We have found that the expression patterns of EcSRS-L and NbSRS-L genes during flower development are similar to each other and to those reported for Arabidopsis SHI/STY/SRS genes. We have also characterized the phenotypic effects of NbSRS-L gene inactivation and overexpression in Nicotiana. Our results support the widely conserved role of SHI/STY/SRS genes at the top of the regulatory network directing style and stigma development, specialized tissues specific to the angiosperm carpels, at least within core eudicots, providing new insights on the possible evolutionary origin of the carpels.
Collapse
|
24
|
Hossain MS, Shrestha A, Zhong S, Miri M, Austin RS, Sato S, Ross L, Huebert T, Tromas A, Torres-Jerez I, Tang Y, Udvardi M, Murray JD, Szczyglowski K. Lotus japonicus NF-YA1 Plays an Essential Role During Nodule Differentiation and Targets Members of the SHI/STY Gene Family. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:950-964. [PMID: 27929718 DOI: 10.1094/mpmi-10-16-0206-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Legume plants engage in intimate relationships with rhizobial bacteria to form nitrogen-fixing nodules, root-derived organs that accommodate the microsymbiont. Members of the Nuclear Factor Y (NF-Y) gene family, which have undergone significant expansion and functional diversification during plant evolution, are essential for this symbiotic liaison. Acting in a partially redundant manner, NF-Y proteins were shown, previously, to regulate bacterial infection, including selection of a superior rhizobial strain, and to mediate nodule structure formation. However, the exact mechanism by which these transcriptional factors exert their symbiotic functions has remained elusive. By carrying out detailed functional analyses of Lotus japonicus mutants, we demonstrate that LjNF-YA1 becomes indispensable downstream from the initial cortical cell divisions but prior to nodule differentiation, including cell enlargement and vascular bundle formation. Three affiliates of the SHORT INTERNODES/STYLISH transcription factor gene family, called STY1, STY2, and STY3, are demonstrated to be among likely direct targets of LjNF-YA1, and our results point to their involvement in nodule formation.
Collapse
Affiliation(s)
- Md Shakhawat Hossain
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Arina Shrestha
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
- 2 Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Sihui Zhong
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Mandana Miri
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
- 2 Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Ryan S Austin
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
- 2 Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Shusei Sato
- 3 Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan; and
| | - Loretta Ross
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Terry Huebert
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Alexandre Tromas
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Ivone Torres-Jerez
- 4 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, U.S.A
| | - Yuhong Tang
- 4 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, U.S.A
| | - Michael Udvardi
- 4 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, U.S.A
| | - Jeremy D Murray
- 4 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, U.S.A
| | - Krzysztof Szczyglowski
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
- 2 Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| |
Collapse
|
25
|
Youssef HM, Eggert K, Koppolu R, Alqudah AM, Poursarebani N, Fazeli A, Sakuma S, Tagiri A, Rutten T, Govind G, Lundqvist U, Graner A, Komatsuda T, Sreenivasulu N, Schnurbusch T. VRS2 regulates hormone-mediated inflorescence patterning in barley. Nat Genet 2016; 49:157-161. [PMID: 27841879 DOI: 10.1038/ng.3717] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022]
Abstract
Plant architecture has clear agronomic and economic implications for crops such as wheat and barley, as it is a critical factor for determining grain yield. Despite this, only limited molecular information is available about how grain-bearing inflorescences, called spikes, are formed and maintain their regular, distichous pattern. Here we elucidate the molecular and hormonal role of Six-rowed spike 2 (Vrs2), which encodes a SHORT INTERNODES (SHI) transcriptional regulator during barley inflorescence and shoot development. We show that Vrs2 is specifically involved in floral organ patterning and phase duration by maintaining hormonal homeostasis and gradients during normal spike development and similarly influences plant stature traits. Furthermore, we establish a link between the SHI protein family and sucrose metabolism during organ growth and development that may have implications for deeper molecular insights into inflorescence and plant architecture in crops.
Collapse
Affiliation(s)
- Helmy M Youssef
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.,Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Kai Eggert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ravi Koppolu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ahmad M Alqudah
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Naser Poursarebani
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Arash Fazeli
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Shun Sakuma
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.,Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Akemi Tagiri
- National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Geetha Govind
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.,Reliance R&D Centre, Reliance Corporate Park, Ghansoli, Navi Mumbai, India
| | - Udda Lundqvist
- Nordic Genetic Resource Center (NordGen), Alnarp, Sweden
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Takao Komatsuda
- National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan
| | - Nese Sreenivasulu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.,International Rice Research Institute (IRRI), Grain Quality and Nutrition Center, Metro Manila, Philippines
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
26
|
Chen MS, Pan BZ, Fu Q, Tao YB, Martínez-Herrera J, Niu L, Ni J, Dong Y, Zhao ML, Xu ZF. Comparative Transcriptome Analysis between Gynoecious and Monoecious Plants Identifies Regulatory Networks Controlling Sex Determination in Jatropha curcas. FRONTIERS IN PLANT SCIENCE 2016; 7:1953. [PMID: 28144243 PMCID: PMC5239818 DOI: 10.3389/fpls.2016.01953] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/09/2016] [Indexed: 05/11/2023]
Abstract
Most germplasms of the biofuel plant Jatropha curcas are monoecious. A gynoecious genotype of J. curcas was found, whose male flowers are aborted at early stage of inflorescence development. To investigate the regulatory mechanism of transition from monoecious to gynoecious plants, a comparative transcriptome analysis between gynoecious and monoecious inflorescences were performed. A total of 3,749 genes differentially expressed in two developmental stages of inflorescences were identified. Among them, 32 genes were involved in floral development, and 70 in phytohormone biosynthesis and signaling pathways. Six genes homologous to KNOTTED1-LIKE HOMEOBOX GENE 6 (KNAT6), MYC2, SHI-RELATED SEQUENCE 5 (SRS5), SHORT VEGETATIVE PHASE (SVP), TERMINAL FLOWER 1 (TFL1), and TASSELSEED2 (TS2), which control floral development, were considered as candidate regulators that may be involved in sex differentiation in J. curcas. Abscisic acid, auxin, gibberellin, and jasmonate biosynthesis were lower, whereas cytokinin biosynthesis was higher in gynoecious than that in monoecious inflorescences. Moreover, the exogenous application of gibberellic acid (GA3) promoted perianth development in male flowers and partly prevented pistil development in female flowers to generate neutral flowers in gynoecious inflorescences. The arrest of stamen primordium at early development stage probably causes the abortion of male flowers to generate gynoecious individuals. These results suggest that some floral development genes and phytohormone signaling pathways orchestrate the process of sex determination in J. curcas. Our study provides a basic framework for the regulation networks of sex determination in J. curcas and will be helpful for elucidating the evolution of the plant reproductive system.
Collapse
Affiliation(s)
- Mao-Sheng Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Bang-Zhen Pan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Qiantang Fu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Yan-Bin Tao
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Jorge Martínez-Herrera
- Instituto Nacional de Investigaciones Forestales, Agrícolas y PecuariasHuimanguillo, Mexico
| | - Longjian Niu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Jun Ni
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Yuling Dong
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Mei-Li Zhao
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Zeng-Fu Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
- *Correspondence: Zeng-Fu Xu,
| |
Collapse
|
27
|
Suzuki M, Yamazaki C, Mitsui M, Kakei Y, Mitani Y, Nakamura A, Ishii T, Soeno K, Shimada Y. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis. PLANT CELL REPORTS 2015; 34:1343-52. [PMID: 25903543 DOI: 10.1007/s00299-015-1791-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 05/23/2023]
Abstract
The IPyA pathway, the major auxin biosynthesis pathway, is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels. The phytohormone auxin plays an important role in plant growth and development, and levels of active free auxin are determined by biosynthesis, conjugation, and polar transport. Unlike conjugation and polar transport, little is known regarding the regulatory mechanism of auxin biosynthesis. We discovered that expression of genes encoding indole-3-pyruvic acid (IPyA) pathway enzymes is regulated by elevated or reduced active auxin levels. Expression levels of TAR2, YUC1, YUC2, YUC4, and YUC6 were downregulated in response to synthetic auxins [1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D)] exogenously applied to Arabidopsis thaliana L. seedlings. Concomitantly, reduced levels of endogenous indole-3-acetic acid (IAA) were observed. Alternatively, expression of these YUCCA genes was upregulated by the auxin biosynthetic inhibitor kynurenine in Arabidopsis seedlings, accompanied by reduced IAA levels. These results indicate that expression of YUCCA genes is regulated by active auxin levels. Similar results were also observed in auxin-overproduction and auxin-deficient mutants. Exogenous application of IPyA to Arabidopsis seedlings preincubated with kynurenine increased endogenous IAA levels, while preincubation with 2,4-D reduced endogenous IAA levels compared to seedlings exposed only to IPyA. These results suggest that in vivo conversion of IPyA to IAA was enhanced under reduced auxin levels, while IPyA to IAA conversion was depressed in the presence of excess auxin. Based on these results, we propose that the IPyA pathway is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels.
Collapse
Affiliation(s)
- Masashi Suzuki
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Robert HS, Crhak Khaitova L, Mroue S, Benková E. The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5029-42. [PMID: 26019252 DOI: 10.1093/jxb/erv256] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant sexual reproduction involves highly structured and specialized organs: stamens (male) and gynoecia (female, containing ovules). These organs synchronously develop within protective flower buds, until anthesis, via tightly coordinated mechanisms that are essential for effective fertilization and production of viable seeds. The phytohormone auxin is one of the key endogenous signalling molecules controlling initiation and development of these, and other, plant organs. In particular, its uneven distribution, resulting from tightly controlled production, metabolism and directional transport, is an important morphogenic factor. In this review we discuss how developmentally controlled and localized auxin biosynthesis and transport contribute to the coordinated development of plants' reproductive organs, and their fertilized derivatives (embryos) via the regulation of auxin levels and distribution within and around them. Current understanding of the links between de novo local auxin biosynthesis, auxin transport and/or signalling is presented to highlight the importance of the non-cell autonomous action of auxin production on development and morphogenesis of reproductive organs and embryos. An overview of transcription factor families, which spatiotemporally define local auxin production by controlling key auxin biosynthetic enzymes, is also presented.
Collapse
Affiliation(s)
- Hélène S Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Lucie Crhak Khaitova
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Souad Mroue
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Eva Benková
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| |
Collapse
|
29
|
Cardarelli M, Cecchetti V. Auxin polar transport in stamen formation and development: how many actors? FRONTIERS IN PLANT SCIENCE 2014; 5:333. [PMID: 25076953 PMCID: PMC4100440 DOI: 10.3389/fpls.2014.00333] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/24/2014] [Indexed: 05/20/2023]
Abstract
In flowering plants, proper development of stamens, the male reproductive organs, is required for successful sexual reproduction. In Arabidopsis thaliana normally six stamen primordia arise in the third whorl of floral organs and subsequently differentiate into stamen filaments and anthers, where male meiosis occurs, thus ending the early developmental phase. This early phase is followed by a late developmental phase, which consists of a rapid elongation of stamen filaments coordinated with anther dehiscence and pollen maturation, and terminates with mature pollen grain release at anthesis. Increasing evidence suggests that auxin transport is necessary for both early and late phases of stamen development. It has been shown that different members of PIN (PIN-FORMED) family are involved in the early phase, whereas members of both PIN and P-glycoproteins of the ABCB (PGP) transporter families are required during the late developmental phase. In this review we provide an overview of the increasing knowledge on auxin transporters involved in Arabidopsis stamen formation and development and we discuss their role and functional conservation across plant species.
Collapse
Affiliation(s)
- Maura Cardarelli
- Istituto di Biologia, Medicina Molecolare e Nanotecnologie, CNR, Sapienza Università di RomaRome, Italy
- *Correspondence: Maura Cardarelli, Istituto di Biologia, Medicina Molecolare e Nanotecnologie, CNR, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy e-mail:
| | - Valentina Cecchetti
- Istituto di Biologia, Medicina Molecolare e Nanotecnologie, CNR, Sapienza Università di RomaRome, Italy
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di RomaRome, Italy
| |
Collapse
|
30
|
Reyes-Olalde JI, Zuñiga-Mayo VM, Chávez Montes RA, Marsch-Martínez N, de Folter S. Inside the gynoecium: at the carpel margin. TRENDS IN PLANT SCIENCE 2013; 18:644-55. [PMID: 24008116 DOI: 10.1016/j.tplants.2013.08.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 07/09/2013] [Accepted: 08/07/2013] [Indexed: 05/05/2023]
Abstract
The gynoecium, which is produced at the center of most flowers, is the female reproductive organ and consists of one or more carpels. The Arabidopsis gynoecium consists of two fused carpels. Its inner tissues possess meristematic characteristics and are called the carpel margin meristem (CMM), because they are located at the margins of the carpels and generate the 'marginal' tissues of the gynoecium (placenta, ovules, septum, transmitting tract, style, and stigma). A key question is which factors are guiding the correct development of all these tissues, many of which are essential for reproduction. Besides regulatory genes, hormones play an important part in the development of the marginal tissues, and recent reports have highlighted the role of cytokinins, as discussed in this review.
Collapse
Affiliation(s)
- J Irepan Reyes-Olalde
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36821 Irapuato, Gto., México
| | | | | | | | | |
Collapse
|
31
|
Landberg K, Pederson ER, Viaene T, Bozorg B, Friml J, Jönsson H, Thelander M, Sundberg E. The MOSS Physcomitrella patens reproductive organ development is highly organized, affected by the two SHI/STY genes and by the level of active auxin in the SHI/STY expression domain. PLANT PHYSIOLOGY 2013; 162:1406-19. [PMID: 23669745 PMCID: PMC3707547 DOI: 10.1104/pp.113.214023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In order to establish a reference for analysis of the function of auxin and the auxin biosynthesis regulators SHORT INTERNODE/STYLISH (SHI/STY) during Physcomitrella patens reproductive development, we have described male (antheridial) and female(archegonial) development in detail, including temporal and positional information of organ initiation. This has allowed us to define discrete stages of organ morphogenesis and to show that reproductive organ development in P. patens is highly organized and that organ phyllotaxis differs between vegetative and reproductive development. Using the PpSHI1 and PpSHI2 reporter and knockout lines, the auxin reporters GmGH3(pro):GUS and PpPINA(pro):GFP-GUS, and the auxin-conjugating transgene PpSHI2(pro):IAAL, we could show that the PpSHI genes, and by inference also auxin, play important roles for reproductive organ development in moss. The PpSHI genes are required for the apical opening of the reproductive organs, the final differentiation of the egg cell, and the progression of canal cells into a cell death program. The apical cells of the archegonium, the canal cells, and the egg cell are also sites of auxin responsiveness and are affected by reduced levels of active auxin, suggesting that auxin mediates PpSHI function in the reproductive organs.
Collapse
|
32
|
Baylis T, Cierlik I, Sundberg E, Mattsson J. SHORT INTERNODES/STYLISH genes, regulators of auxin biosynthesis, are involved in leaf vein development in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2013; 197:737-750. [PMID: 23293954 DOI: 10.1111/nph.12084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/30/2012] [Indexed: 05/05/2023]
Abstract
Leaves depend on highly developed venation systems to collect fixed carbon for transport and to distribute water. We hypothesized that local regulation of auxin biosynthesis plays a role in vein development. To this effect, we assessed the role of the SHORT INTERNODES/STYLISH (SHI/STY) gene family, zinc-finger transcription factors linked to regulation of auxin biosynthesis, in Arabidopsis thaliana leaf vein development. Gene functions were assessed by a combination of high-resolution spatio-temporal expression analysis of promoter-marker lines and phenotypic analysis of plants homozygous for single and multiple mutant combinations. The SHI/STY genes showed expression patterns with variations on a common theme of activity in incipient and developing cotyledon and leaf primordia, narrowing to apices and hydathode regions. Mutant analysis of single to quintuple mutant combinations revealed dose-dependent defects in vein patterning affecting multiple vein traits, most notably in cotyledons. Here we demonstrate that local regulation of auxin biosynthesis is an important aspect of leaf vein development. Our findings also support a model in which auxin synthesized at the periphery of primordia affects vein development.
Collapse
Affiliation(s)
- Tammy Baylis
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Izabela Cierlik
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, SE-750 07, Uppsala, Sweden
| | - Eva Sundberg
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, SE-750 07, Uppsala, Sweden
| | - Jim Mattsson
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
33
|
Overexpression of the AtSHI gene in poinsettia, Euphorbia pulcherrima, results in compact plants. PLoS One 2013; 8:e53377. [PMID: 23308204 PMCID: PMC3538768 DOI: 10.1371/journal.pone.0053377] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/27/2012] [Indexed: 01/14/2023] Open
Abstract
Euphorbia pulcherrima, poinsettia, is a non-food and non-feed vegetatively propagated ornamental plant. Appropriate plant height is one of the most important traits in poinsettia production and is commonly achieved by application of chemical growth retardants. To produce compact poinsettia plants with desirable height and reduce the utilization of growth retardants, the Arabidopsis SHORT INTERNODE (AtSHI) gene controlled by the cauliflower mosaic virus 35S promoter was introduced into poinsettia by Agrobacterium-mediated transformation. Three independent transgenic lines were produced and stable integration of transgene was verified by PCR and Southern blot analysis. Reduced plant height (21–52%) and internode lengths (31–49%) were obtained in the transgenic lines compared to control plants. This correlates positively with the AtSHI transcript levels, with the highest levels in the most dwarfed transgenic line (TL1). The indole-3-acetic acid (IAA) content appeared lower (11–31% reduction) in the transgenic lines compared to the wild type (WT) controls, with the lowest level (31% reduction) in TL1. Total internode numbers, bract numbers and bract area were significantly reduced in all transgenic lines in comparison with the WT controls. Only TL1 showed significantly lower plant diameter, total leaf area and total dry weight, whereas none of the AtSHI expressing lines showed altered timing of flower initiation, cyathia abscission or bract necrosis. This study demonstrated that introduction of the AtSHI gene into poinsettia by genetic engineering can be an effective approach in controlling plant height without negatively affecting flowering time. This can help to reduce or avoid the use of toxic growth retardants of environmental and human health concern. This is the first report that AtSHI gene was overexpressed in poinsettia and transgenic poinsettia plants with compact growth were produced.
Collapse
|