1
|
Yang C, Shi J, Qin Y, Hua S, Bao J, Liu X, Peng Y, Gu Y, Dong W. ClaPEPCK4: target gene for breeding innovative watermelon germplasm with low malic acid and high sweetness. GM CROPS & FOOD 2025; 16:156-170. [PMID: 39808450 PMCID: PMC11734648 DOI: 10.1080/21645698.2025.2452702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/08/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Malic acid markedly affects watermelon flavor. Reducing the malic acid content can significantly increase the sweetness of watermelon. An effective solution strategy is to reduce watermelon malic acid content through molecular breeding technology. In this study, we measured the TSS and pH of six watermelon varieties at four growth nodes. The TSS content was very low at 10 DAP and accumulated rapidly at 18, 26, and 34 DAP. Three phosphoenolpyruvate carboxykinase (PEPCK) genes of watermelon were identified and analyzed. The ClaPEPCK4 expression was inversely proportional to malate content variations in fruits. In transgenic watermelon plants, overexpressing the ClaPEPCK4 gene, malic acid content markedly decreased. In the knockout transgenic watermelon plants, two SNP mutations and one base deletion occurred in the ClaPEPCK4 gene, with the malic acid content in the leaves increasing considerably and the PEPCK enzyme activity reduced to half of the wild-type. It is interesting that the ClaPEPCK4 gene triggered the closure of leaf stomata under dark conditions in the knockout transgenic plants, which indicated its involvement in stomatal movement. In conclusion, this study provides a gene target ClaPEPCK4 for creating innovative new high-sweetness watermelon varieties.
Collapse
Affiliation(s)
- Congji Yang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiale Shi
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuanyuan Qin
- School of Life Science, Henan University, Kaifeng, Henan, People’s Republic of China
| | - ShengQi Hua
- School of Life Science, Henan University, Kaifeng, Henan, People’s Republic of China
| | - Jiancheng Bao
- School of Life Science, Henan University, Kaifeng, Henan, People’s Republic of China
| | - Xueyan Liu
- School of Life Science, Henan University, Kaifeng, Henan, People’s Republic of China
| | - Yuqi Peng
- School of Life Science, Henan University, Kaifeng, Henan, People’s Republic of China
| | - Yige Gu
- School of Life Science, Henan University, Kaifeng, Henan, People’s Republic of China
| | - Wei Dong
- School of Life Science, Henan University, Kaifeng, Henan, People’s Republic of China
| |
Collapse
|
2
|
Hu R, Yu H, Deng J, Chen S, Yang R, Xie H, Tang X, Yu Y, Duan Y, Zhang M, Zhu M, Yu Y. Phosphoenolpyruvate and Related Metabolic Pathways Contribute to the Regulation of Plant Growth and Development. Int J Mol Sci 2025; 26:391. [PMID: 39796250 PMCID: PMC11720000 DOI: 10.3390/ijms26010391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Phosphoenolpyruvate (PEP) plays a key role in the development of plants and exists in a wide variety of species. Research on the metabolic activities of PEP in plants has received increasing attention. PEP regulates multiple processes in plant growth and development. This article provides a comprehensive summary of these pathways, including embryo formation, root development, synthesis of secondary metabolites, and the formation of lignification. We also summarize new findings, including PEP's role in nodule energy sensing and carbon allocation under the influence of ozone. This review displays the complex and differential regulatory pathways in plant growth and development and provides a reference for basic and applied research on PEP metabolism in plants.
Collapse
Affiliation(s)
- Runzhou Hu
- Long Ping Branch, College of Biology, Hunan University, Changsha 410125, China; (R.H.); (H.Y.); (M.Z.)
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| | - Haiyang Yu
- Long Ping Branch, College of Biology, Hunan University, Changsha 410125, China; (R.H.); (H.Y.); (M.Z.)
| | - Jing Deng
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| | - Shanjing Chen
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| | - Ronglan Yang
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| | - Hongjun Xie
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| | - Xiao Tang
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| | - Yaying Yu
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| | - Yonghong Duan
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| | - Meng Zhang
- Long Ping Branch, College of Biology, Hunan University, Changsha 410125, China; (R.H.); (H.Y.); (M.Z.)
| | - Mingdong Zhu
- Long Ping Branch, College of Biology, Hunan University, Changsha 410125, China; (R.H.); (H.Y.); (M.Z.)
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| | - Yinghong Yu
- Long Ping Branch, College of Biology, Hunan University, Changsha 410125, China; (R.H.); (H.Y.); (M.Z.)
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| |
Collapse
|
3
|
Rojas BE, Iglesias AA. Integrating multiple regulations on enzyme activity: the case of phospho enolpyruvate carboxykinases. AOB PLANTS 2023; 15:plad053. [PMID: 37608926 PMCID: PMC10441589 DOI: 10.1093/aobpla/plad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/29/2022] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Data on protein post-translational modifications (PTMs) increased exponentially in the last years due to the refinement of mass spectrometry techniques and the development of databases to store and share datasets. Nevertheless, these data per se do not create comprehensive biochemical knowledge. Complementary studies on protein biochemistry are necessary to fully understand the function of these PTMs at the molecular level and beyond, for example, designing rational metabolic engineering strategies to improve crops. Phosphoenolpyruvate carboxykinases (PEPCKs) are critical enzymes for plant metabolism with diverse roles in plant development and growth. Multiple lines of evidence showed the complex regulation of PEPCKs, including PTMs. Herein, we present PEPCKs as an example of the integration of combined mechanisms modulating enzyme activity and metabolic pathways. PEPCK studies strongly advanced after the production of the recombinant enzyme and the establishment of standardized biochemical assays. Finally, we discuss emerging open questions for future research and the challenges in integrating all available data into functional biochemical models.
Collapse
Affiliation(s)
- Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
4
|
Torresi F, Rodriguez FM, Gomez-Casati DF, Martín M. Two phosphoenolpyruvate carboxykinases with differing biochemical properties in Chlamydomonas reinhardtii. FEBS Lett 2023; 597:585-597. [PMID: 36708098 DOI: 10.1002/1873-3468.14590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/29/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) catalyses the reversible reaction of decarboxylation and phosphorylation of oxaloacetate (OAA) to generate phosphoenolpyruvate (PEP) and CO2 playing mainly a gluconeogenic role in green algae. We found two PEPCK isoforms in Chlamydomonas reinhardtii and we cloned, purified and characterised both enzymes. ChlrePEPCK1 is more active as decarboxylase than ChlrePEPCK2. ChlrePEPCK1 is hexameric and its activity is affected by citrate, phenylalanine and malate, while ChlrePEPCK2 is monomeric and it is regulated by citrate, phenylalanine and glutamine. We postulate that the two PEPCK isoforms found originate from alternative splicing of the gene or regulated proteolysis of the enzyme. The presence of these two isoforms would be part of a mechanism to finely regulate the biological activity of PEPCKs.
Collapse
Affiliation(s)
- Florencia Torresi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Santa Fe, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Santa Fe, Argentina
| | - Fernanda M Rodriguez
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Santa Fe, Argentina.,Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Santa Fe, Argentina
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Santa Fe, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Santa Fe, Argentina
| | - Mariana Martín
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Santa Fe, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Santa Fe, Argentina
| |
Collapse
|
5
|
Gao ZF, Yang X, Mei Y, Zhang J, Chao Q, Wang BC. A dynamic phosphoproteomic analysis provides insight into the C4 plant maize (Zea mays L.) response to natural diurnal changes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:291-307. [PMID: 36440987 DOI: 10.1111/tpj.16047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/23/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
As sessile organisms, plants need to respond to rapid changes in numerous environmental factors, mainly diurnal changes of light, temperature, and humidity. Maize is the world's most grown crop, and as a C4 plant it exhibits high photosynthesis capacity, reaching the highest rate of net photosynthesis at midday; that is, there is no "midday depression." Revealing the physiological responses to diurnal changes and underlying mechanisms will be of great significance for guiding maize improvement efforts. In this study, we collected maize leaf samples and analyzed the proteome and phosphoproteome at nine time points during a single day/night cycle, quantifying 7424 proteins and 5361 phosphosites. The new phosphosites identified in our study increased the total maize phosphoproteome coverage by 8.5%. Kinase-substrate network analysis indicated that 997 potential substrates were phosphorylated by 20 activated kinases. Through analysis of proteins with significant changes in abundance and phosphorylation, we found that the response to a heat stimulus involves a change in the abundance of numerous proteins. By contrast, the high light at noon and rapidly changing light conditions induced changes in the phosphorylation level of proteins involved in processes such as chloroplast movement, photosynthesis, and C4 pathways. Phosphorylation is involved in regulating the activity of large number of enzymes; for example, phosphorylation of S55 significantly enhanced the activity of maize phosphoenolpyruvate carboxykinase1 (ZmPEPCK1). Overall, the database of dynamic protein abundance and phosphorylation we have generated provides a resource for the improvement of C4 crop plants.
Collapse
Affiliation(s)
- Zhi-Fang Gao
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiu Yang
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingchang Mei
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiao Zhang
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Chao
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Bai-Chen Wang
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
6
|
Fan Y, Scafaro AP, Asao S, Furbank RT, Agostino A, Day DA, von Caemmerer S, Danila FR, Rug M, Webb D, Lee J, Atkin OK. Dark respiration rates are not determined by differences in mitochondrial capacity, abundance and ultrastructure in C 4 leaves. PLANT, CELL & ENVIRONMENT 2022; 45:1257-1269. [PMID: 35048399 DOI: 10.1111/pce.14267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Our understanding of the regulation of respiration in C4 plants, where mitochondria play different roles in the different types of C4 photosynthetic pathway, remains limited. We examined how leaf dark respiration rates (Rdark ), in the presence and absence of added malate, vary in monocots representing the three classical biochemical types of C4 photosynthesis (NADP-ME, NAD-ME and PCK) using intact leaves and extracted bundle sheath strands. In particular, we explored to what extent rates of Rdark are associated with mitochondrial number, volume and ultrastructure. Based on examination of a single species per C4 type, we found that the respiratory response of NAD-ME and PCK type bundle sheath strands to added malate was associated with differences in mitochondrial number, volume, and/or ultrastructure, while NADP-ME type bundle sheath strands did not respond to malate addition. In general, mitochondrial traits reflected the contributions mitochondria make to photosynthesis in the three C4 types. However, despite the obvious differences in mitochondrial traits, no clear correlation was observed between these traits and Rdark . We suggest that Rdark is primarily driven by cellular maintenance demands and not mitochondrial composition per se, in a manner that is somewhat independent of mitochondrial organic acid cycling in the light.
Collapse
Affiliation(s)
- Yuzhen Fan
- Research School of Biology, ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Andrew P Scafaro
- Research School of Biology, ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Shinichi Asao
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Robert T Furbank
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Antony Agostino
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David A Day
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Susanne von Caemmerer
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Florence R Danila
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Melanie Rug
- Centre for Advanced Microscopy, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daryl Webb
- Centre for Advanced Microscopy, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jiwon Lee
- Centre for Advanced Microscopy, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Owen K Atkin
- Research School of Biology, ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
7
|
Rojas BE, Hartman MD, Figueroa CM, Iglesias AA. Proteolytic cleavage of Arabidopsis thaliana phosphoenolpyruvate carboxykinase-1 modifies its allosteric regulation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2514-2524. [PMID: 33315117 DOI: 10.1093/jxb/eraa583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/29/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) plays a crucial role in gluconeogenesis. In this work, we analyze the proteolysis of Arabidopsis thaliana PEPCK1 (AthPEPCK1) in germinating seedlings. We found that the amount of AthPEPCK1 protein peaks at 24-48 h post-imbibition. Concomitantly, we observed shorter versions of AthPEPCK1, putatively generated by metacaspase-9 (AthMC9). To study the impact of AthMC9 cleavage on the kinetic and regulatory properties of AthPEPCK1, we produced truncated mutants based on the reported AthMC9 cleavage sites. The Δ19 and Δ101 truncated mutants of AthPEPCK1 showed similar kinetic parameters and the same quaternary structure as the wild type. However, activation by malate and inhibition by glucose 6-phosphate were abolished in the Δ101 mutant. We propose that proteolysis of AthPEPCK1 in germinating seedlings operates as a mechanism to adapt the sensitivity to allosteric regulation during the sink-to-source transition.
Collapse
Affiliation(s)
- Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Matías D Hartman
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
8
|
Han R, Wei Y, Xie Y, Liu L, Jiang C, Yu Y. Quantitative phosphoproteomic analysis provides insights into the aluminum-responsiveness of Tamba black soybean. PLoS One 2020; 15:e0237845. [PMID: 32813721 PMCID: PMC7437914 DOI: 10.1371/journal.pone.0237845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023] Open
Abstract
Aluminum (Al3+) toxicity is one of the most important limitations to agricultural production worldwide. The overall response of plants to Al3+ stress has been documented, but the contribution of protein phosphorylation to Al3+ detoxicity and tolerance in plants is unclear. Using a combination of tandem mass tag (TMT) labeling, immobilized metal affinity chromatography (IMAC) enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS), Al3+-induced phosphoproteomic changes in roots of Tamba black soybean (TBS) were investigated in this study. The Data collected in this study are available via ProteomeXchange with the identifier PXD019807. After the Al3+ treatment, 189 proteins harboring 278 phosphosites were significantly changed (fold change > 1.2 or < 0.83, p < 0.05), with 88 upregulated, 96 downregulated and 5 up-/downregulated. Enrichment and protein interaction analyses revealed that differentially phosphorylated proteins (DPPs) under the Al3+ treatment were mainly related to G-protein-mediated signaling, transcription and translation, transporters and carbohydrate metabolism. Particularly, DPPs associated with root growth inhibition or citric acid synthesis were identified. The results of this study provide novel insights into the molecular mechanisms of TBS post-translational modifications in response to Al3+ stress.
Collapse
Affiliation(s)
- Rongrong Han
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Yunmin Wei
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Yonghong Xie
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Lusheng Liu
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Caode Jiang
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Yongxiong Yu
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
9
|
Jobe TO, Rahimzadeh Karvansara P, Zenzen I, Kopriva S. Ensuring Nutritious Food Under Elevated CO 2 Conditions: A Case for Improved C 4 Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:1267. [PMID: 33013946 PMCID: PMC7461923 DOI: 10.3389/fpls.2020.01267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/19/2020] [Accepted: 08/03/2020] [Indexed: 05/04/2023]
Abstract
Global climate change is a challenge for efforts to ensure food security for future generations. It will affect crop yields through changes in temperature and precipitation, as well as the nutritional quality of crops. Increased atmospheric CO2 leads to a penalty in the content of proteins and micronutrients in most staple crops, with the possible exception of C4 crops. It is essential to understand the control of nutrient homeostasis to mitigate this penalty. However, despite the importance of mineral nutrition for plant performance, comparably less is known about the regulation of nutrient uptake and homeostasis in C4 plants than in C3 plants and mineral nutrition has not been a strong focus of the C4 research. Here we review what is known about C4 specific features of nitrogen and sulfur assimilation as well as of homeostasis of other essential elements. We identify the major knowledge gaps and urgent questions for future research. We argue that adaptations in mineral nutrition were an integral part of the evolution of C4 photosynthesis and should be considered in the attempts to engineer C4 photosynthetic mechanisms into C3 crops.
Collapse
Affiliation(s)
- Timothy O Jobe
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Parisa Rahimzadeh Karvansara
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Ivan Zenzen
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Biochemical characterization of phosphoenolpyruvate carboxykinases from Arabidopsis thaliana. Biochem J 2020; 476:2939-2952. [PMID: 31548269 DOI: 10.1042/bcj20190523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/01/2023]
Abstract
ATP-dependent phosphoenolpyruvate carboxykinases (PEPCKs, EC 4.1.1.49) from C4 and CAM plants have been widely studied due to their crucial role in photosynthetic CO2 fixation. However, our knowledge on the structural, kinetic and regulatory properties of the enzymes from C3 species is still limited. In this work, we report the recombinant production and biochemical characterization of two PEPCKs identified in Arabidopsis thaliana: AthPEPCK1 and AthPEPCK2. We found that both enzymes exhibited high affinity for oxaloacetate and ATP, reinforcing their role as decarboxylases. We employed a high-throughput screening for putative allosteric regulators using differential scanning fluorometry and confirmed their effect on enzyme activity by performing enzyme kinetics. AthPEPCK1 and AthPEPCK2 are allosterically modulated by key intermediates of plant metabolism, namely succinate, fumarate, citrate and α-ketoglutarate. Interestingly, malate activated and glucose 6-phosphate inhibited AthPEPCK1 but had no effect on AthPEPCK2. Overall, our results demonstrate that the enzymes involved in the critical metabolic node constituted by phosphoenolpyruvate are targets of fine allosteric regulation.
Collapse
|
11
|
Liu Z, Lv J, Liu Y, Wang J, Zhang Z, Chen W, Song J, Yang B, Tan F, Zou X, Ou L. Comprehensive Phosphoproteomic Analysis of Pepper Fruit Development Provides Insight into Plant Signaling Transduction. Int J Mol Sci 2020; 21:ijms21061962. [PMID: 32183026 PMCID: PMC7139842 DOI: 10.3390/ijms21061962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/29/2022] Open
Abstract
Limited knowledge is available for phosphorylation modifications in pepper (Capsicum annuum L.), especially in pepper fruit development. In this study, we conducted the first comprehensive phosphoproteomic analysis of pepper fruit at four development stage by Tandem Mass Tag proteomic approaches. A total of 2639 unique phosphopeptides spanning 1566 proteins with 4150 nonredundant sites of phosphorylation were identified, among which 2327 peptides in 1413 proteins were accurately quantified at four different stages. Mature Green (MG) to breaker stage showed the largest number of differentially expressed phosphoproteins and the number of downregulated phosphoproteins was significantly higher than that of upregulated after MG stage. Twenty seven phosphorylation motifs, including 22 pSer motifs and five pThr motifs and 85 kinase including 28 serine/threonine kinases, 14 receptor protein kinases, six mitogen-activated protein kinases, seven calcium-dependent protein kinases, two casein kinases, and some other kinases were quantified. Then the dynamic changes of phosphorylated proteins in ethylene and abscisic acid signaling transduction pathways during fruit development were analyzed. Our results provide a cascade of phosphoproteins and a regulatory network of phosphorylation signals, which help to further understand the mechanism of phosphorylation in pepper fruit development.
Collapse
Affiliation(s)
- Zhoubin Liu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Z.L.)
| | - Junheng Lv
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (J.L.); (Y.L.); (J.W.); (J.S.)
| | - Yuhua Liu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (J.L.); (Y.L.); (J.W.); (J.S.)
| | - Jing Wang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (J.L.); (Y.L.); (J.W.); (J.S.)
| | - Zhuqing Zhang
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China; (Z.Z.); (W.C.)
| | - Wenchao Chen
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China; (Z.Z.); (W.C.)
| | - Jingshuang Song
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (J.L.); (Y.L.); (J.W.); (J.S.)
| | - Bozhi Yang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Z.L.)
| | - Fangjun Tan
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China; (Z.Z.); (W.C.)
| | - Xuexiao Zou
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Z.L.)
- Correspondence: (X.Z.); (L.O.); Tel.: +86-0731-84692619 (L.O.)
| | - Lijun Ou
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Z.L.)
- Correspondence: (X.Z.); (L.O.); Tel.: +86-0731-84692619 (L.O.)
| |
Collapse
|
12
|
Hloušková P, Černý M, Kořínková N, Luklová M, Minguet EG, Brzobohatý B, Galuszka P, Bergougnoux V. Affinity chromatography revealed 14-3-3 interactome of tomato (Solanum lycopersicum L.) during blue light-induced de-etiolation. J Proteomics 2018; 193:44-61. [PMID: 30583044 DOI: 10.1016/j.jprot.2018.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2018] [Revised: 12/09/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
Abstract
De-etiolation is the first developmental process under light control allowing the heterotrophic seedling to become autotrophic. The phytohormones cytokinins (CKs) largely contribute to this process. Reversible phosphorylation is a key event of cell signaling, allowing proteins to become active or generating a binding site for specific protein interaction. 14-3-3 proteins regulate a variety of plant responses. The expression, hormonal regulation, and proteomic network under the control of 14-3-3s were addressed in tomato (Solanum lycopersicum L.) during blue light-induced photomorphogenesis. Two isoforms were specifically investigated due to their high expression during tomato de-etiolation. The multidisciplinary approach demonstrated that TFT9 expression, but not TFT6, was regulated by CKs and identified cis-regulating elements required for this response. Our study revealed >130 potential TFT6/9 interactors. Their functional annotation predicted that TFTs might regulate the activity of proteins involved notably in cell wall strengthening or primary metabolism. Several potential interactors were also predicted to be CK-responsive. For the first time, the 14-3-3 interactome linked to de-etiolation was investigated and evidenced that 14-3-3s might be involved in CK signaling pathway, cell expansion inhibition and steady-state growth rate establishment, and reprograming from heterotrophy to autotrophy. BIOLOGICAL SIGNIFICANCE: Tomato (Solanum lycopersicum L.) is one of the most important vegetables consumed all around the world and represents probably the most preferred garden crop. Regulation of hypocotyl growth by light plays an important role in the early development of a seedling, and consequently the homogeneity of the culture. The present study focuses on the importance of tomato 14-3-3/TFT proteins in this process. We provide here the first report of 14-3-3 interactome in the regulation of light-induced de-etiolation and subsequent photomorphogenesis. Our data provide new insights into light-induced de-etiolation and open new horizons for dissecting the post-transcriptional regulations.
Collapse
Affiliation(s)
- Petra Hloušková
- Department of Molecular Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University in Olomouc, Šlechtitelu 27, 783 71 Olomouc, Czechia
| | - Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czechia
| | - Nikola Kořínková
- Department of Molecular Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University in Olomouc, Šlechtitelu 27, 783 71 Olomouc, Czechia
| | - Markéta Luklová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czechia
| | - Eugenio Gómez Minguet
- Instituto de Biología Molecular y Celular de Plantas (UPV-Consejo Superior de Investigaciones Científicas), Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czechia
| | - Petr Galuszka
- Department of Molecular Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University in Olomouc, Šlechtitelu 27, 783 71 Olomouc, Czechia
| | - Véronique Bergougnoux
- Department of Molecular Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University in Olomouc, Šlechtitelu 27, 783 71 Olomouc, Czechia.
| |
Collapse
|
13
|
Shen Z, Dong XM, Gao ZF, Chao Q, Wang BC. Phylogenic and phosphorylation regulation difference of phosphoenolpyruvate carboxykinase of C3 and C4 plants. JOURNAL OF PLANT PHYSIOLOGY 2017; 213:16-22. [PMID: 28285130 DOI: 10.1016/j.jplph.2017.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/19/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 05/07/2023]
Abstract
In C4 plants, phosphoenolpyruvate carboxykinase (PEPCK) plays a key role in the C4 cycle. PEPCK is also involved in gluconeogenesis and is conserved in both lower and higher organisms, including in animals and plants. A phylogenic tree constructed from PEPCK sequences from bacteria to higher plants indicates that the C4 Poaceae PEPCKs are conserved and have diverged from the PEPCKs of C3 plants. The maximum enzymatic activities of wild-type and phosphorylation mimic PEPCK proteins indicate that there is a significant difference between C3 and C4 plant PEPCKs. The conserved PEPCK phosphorylation sites are regulated differently in C3 and C4 plants. These results suggest that the functions of PEPCK have been conserved, but that sequences have diverged and regulation of PEPCK is important in C4 plants, but not in herbaceous and, in particular, woody C3 plants.
Collapse
Affiliation(s)
- Zhuo Shen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiu-Mei Dong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhi-Fang Gao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
14
|
Walker RP, Paoletti A, Leegood RC, Famiani F. Phosphorylation of phosphoenolpyruvate carboxykinase (PEPCK) and phosphoenolpyruvate carboxylase (PEPC) in the flesh of fruits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:323-327. [PMID: 27497301 DOI: 10.1016/j.plaphy.2016.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/20/2016] [Revised: 07/03/2016] [Accepted: 07/19/2016] [Indexed: 05/22/2023]
Abstract
This study determined whether phosphoenolpyruvate carboxykinase (PEPCK) and phosphoenolpyruvate carboxylase (PEPC) are phosphorylated in the flesh of a range of fruits. This was done by incubating fruit flesh with 32P[P] (where 32P[P] = 32PO43-), then PEPCK and PEPC were immunoprecipitated from extracts using specific antisera. The incorporation of 32P[P] into these enzymes was then determined by autoradiography of SDS-PAGE gels. Both enzymes were subject to phosphorylation in vivo in the flesh of grape, tomato, cherry and plum. PEPCK was also subject to phosphorylation in vivo in developing grape seeds. Proteolytic cleavage of PEPCK showed that it was phosphorylated at a site(s) located on its N-terminal extension. Potentially phosphorylation of these enzymes could contribute to the coordinate regulation of their activities in the flesh of fruits and in developing seeds.
Collapse
Affiliation(s)
- Robert P Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Italy.
| | - Andrea Paoletti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Italy
| | - Richard C Leegood
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2 TN, UK
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Italy.
| |
Collapse
|
15
|
Luís IM, Alexandre BM, Oliveira MM, Abreu IA. Selection of an Appropriate Protein Extraction Method to Study the Phosphoproteome of Maize Photosynthetic Tissue. PLoS One 2016; 11:e0164387. [PMID: 27727304 PMCID: PMC5058499 DOI: 10.1371/journal.pone.0164387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022] Open
Abstract
Often plant tissues are recalcitrant and, due to that, methods relying on protein precipitation, such as TCA/acetone precipitation and phenol extraction, are usually the methods of choice for protein extraction in plant proteomic studies. However, the addition of precipitation steps to protein extraction methods may negatively impact protein recovery, due to problems associated with protein re-solubilization. Moreover, we show that when working with non-recalcitrant plant tissues, such as young maize leaves, protein extraction methods with precipitation steps compromise the maintenance of some labile post-translational modifications (PTMs), such as phosphorylation. Therefore, a critical issue when studying PTMs in plant proteins is to ensure that the protein extraction method is the most appropriate, both at qualitative and quantitative levels. In this work, we compared five methods for protein extraction of the C4-photosynthesis related proteins, in the tip of fully expanded third-leaves. These included: TCA/Acetone Precipitation; Phenol Extraction; TCA/Acetone Precipitation followed by Phenol Extraction; direct extraction in Lysis Buffer (a urea-based buffer); and direct extraction in Lysis Buffer followed by Cleanup with a commercial kit. Protein extraction in Lysis Buffer performed better in comparison to the other methods. It gave one of the highest protein yields, good coverage of the extracted proteome and phosphoproteome, high reproducibility, and little protein degradation. This was also the easiest and fastest method, warranting minimal sample handling. We also show that this method is adequate for the successful extraction of key enzymes of the C4-photosynthetic metabolism, such as PEPC, PPDK, PEPCK, and NADP-ME. This was confirmed by MALDI-TOF/TOF MS analysis of excised spots of 2DE analyses of the extracted protein pools. Staining for phosphorylated proteins in 2DE revealed the presence of several phosphorylated isoforms of PEPC, PPDK, and PEPCK.
Collapse
Affiliation(s)
- Inês M. Luís
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Oeiras, Portugal
| | | | - M. Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Oeiras, Portugal
| | - Isabel A. Abreu
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Oeiras, Portugal
- Instituto Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal
| |
Collapse
|
16
|
Ning DL, Liu KH, Liu CC, Liu JW, Qian CR, Yu Y, Wang YF, Wang YC, Wang BC. Large-scale comparative phosphoprotein analysis of maize seedling leaves during greening. PLANTA 2016; 243:501-517. [PMID: 26497871 DOI: 10.1007/s00425-015-2420-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/18/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
MAIN CONCLUSION : Large-scale comparative phosphoprotein analysis in maize seedlings reveals a complicated molecular regulation mechanism at the phosphoproteomic level during de-etiolation. In the present study we report a phosphoproteomic study conducted on Zea mays etiolated leaves harvested at three time points during greening (etiolated seedlings and seedlings exposed to light for 6 or 12 h). We identified a total of 2483 phosphopeptides containing 2389 unambiguous phosphosites from 1339 proteins. The abundance of nearly 692 phosphorylated peptides containing 783 phosphosites was reproducible and profiled with high confidence among treatments. Comparisons with other large-scale phosphoproteomic studies revealed that 473 of the phosphosites are novel to this study. Of the 783 phosphosites identified, 171, 79, and 138 were identified in 0, 6, and 12 h samples, respectively, which suggest that regulation of phosphorylation plays important roles during maize seedling de-etiolation. Our experimental methods included enrichment of phosphoproteins, allowing the identification of a great number of low abundance proteins, such as transcription factors, protein kinases, and photoreceptors. Most of the identified phosphoproteins were involved in gene transcription, post-transcriptional regulation, or signal transduction, and only a few were involved in photosynthesis and carbon metabolism. It is noteworthy that tyrosine phosphorylation and calcium signaling pathways might play important roles during maize seedling de-etiolation. Taken together, we have elucidated a new level of complexity in light-induced reversible protein phosphorylation during maize seedling de-etiolation.
Collapse
|