1
|
Huang Z, Xu Z, Liu X, Chen G, Hu C, Chen M, Liu Y. Exploring the Role of the Processing Body in Plant Abiotic Stress Response. Curr Issues Mol Biol 2024; 46:9844-9855. [PMID: 39329937 PMCID: PMC11430669 DOI: 10.3390/cimb46090585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
The processing body (P-Body) is a membrane-less organelle with stress-resistant functions. Under stress conditions, cells preferentially translate mRNA that favors the stress response, resulting in a large number of transcripts unfavorable to the stress response in the cytoplasm. These non-translating mRNAs aggregate with specific proteins to form P-Bodies, where they are either stored or degraded. The protein composition of P-Bodies varies depending on cell type, developmental stage, and external environmental conditions. This review primarily elucidates the protein composition in plants and the assembly of P-Bodies, and focuses on the mechanisms by which various proteins within the P-Bodies of plants regulate mRNA decapping, degradation, translational repression, and storage at the post-transcriptional level in response to ethylene signaling and abiotic stresses such as drought, high salinity, or extreme temperatures. This overview provides insights into the role of the P-Body in plant abiotic stress responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Lv Y, Xie M, Zhou S, Wen B, Sui S, Li M, Ma J. CpCAF1 from Chimonanthus praecox Promotes Flowering and Low-Temperature Tolerance When Expressed in Arabidopsis thaliana. Int J Mol Sci 2023; 24:12945. [PMID: 37629126 PMCID: PMC10455127 DOI: 10.3390/ijms241612945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
CCR4-associated factor I (CAF1) is a deadenylase that plays a critical role in the initial step of mRNA degradation in most eukaryotic cells, and in plant growth and development. Knowledge of CAF1 proteins in woody plants remains limited. Wintersweet (Chimonanthus praecox) is a highly ornamental woody plant. In this study, CpCAF1 was isolated from wintersweet. CpCAF1 belongs to the DEDDh (Asp-Glu-Asp-Asp-His) subfamily of the DEDD (Asp-Glu-Asp-Asp) nuclease family. The amino acid sequence showed highest similarity to the homologous gene of Arabidopsis thaliana. In transgenic Arabidopsis overexpressing CpCAF1, the timing of bolting, formation of the first rosette, and other growth stages were earlier than those of the wild-type plants. Root, lateral branch, rosette leaf, and silique growth were positively correlated with CpCAF1 expression. FLOWERING LOCUS T (FT) and SUPPRESSOROF OVEREXPRESSION OF CO 1 (SOC1) gene expression was higher while EARLY FLOWERING3 (ELF3) and FLOWERING LOCUS C (FLC) gene expression of transgenic Arabidopsis was lower than the wild type grown for 4 weeks. Plant growth and flowering occurrences were earlier in transgenic Arabidopsis overexpressing CpCAF1 than in the wild-type plants. The abundance of the CpCAF1 transcript grew steadily, and significantly exceeded the initial level under 4 °C in wintersweet after initially decreasing. After low-temperature exposure, transgenic Arabidopsis had higher proline content and stronger superoxide dismutase activity than the wild type, and the malondialdehyde level in transgenic Arabidopsis was decreased significantly by 12 h and then increased in low temperature, whereas it was directly increased in the wild type. A higher potassium ion flux in the root was detected in transgenic plants than in the wild type with potassium deficiency. The CpCAF1 promoter was a constitutive promoter that contained multiple cis-acting regulatory elements. The DRE, LTR, and MYB elements, which play important roles in response to low temperature, were identified in the CpCAF1 promoter. These findings indicate that CpCAF1 is involved in flowering and low-temperature tolerance in wintersweet, and provide a basis for future genetic and breeding research on wintersweet.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Ma
- Chongqing Engineering Research Centre for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Y.L.); (M.X.); (S.Z.); (B.W.); (S.S.); (M.L.)
| |
Collapse
|
3
|
Sun L, Song R, Wang Y, Wang X, Peng J, Nevo E, Ren X, Sun D. New insights into the evolution of CAF1 family and utilization of TaCAF1Ia1 specificity to reveal the origin of the maternal progenitor for common wheat. J Adv Res 2022; 42:135-148. [PMID: 36513409 PMCID: PMC9788937 DOI: 10.1016/j.jare.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/19/2022] [Accepted: 04/08/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Until now, the most likely direct maternal progenitor (AABB) for common wheat (AABBDD) has yet to be identified. Here, we try to solve this particular problem with the specificity of a novel gene family in wheat and by using large population of rare germplasm resources. OBJECTIVES Dissect the novelty of TaCAF1Ia subfamily in wheat. Exploit the conservative and specific characteristics of TaCAF1Ia1 to reveal the origin of the maternal progenitor for common wheat. METHODS Phylogenetic and collinear analysis of TaCAF1 genes were performed to identify the evolutionary specificity of TaCAF1Ia subfamily. The large-scale expression patterns and interaction patterns analysis of CCR4-NOT complex were used to clarify the expressed and structural specificity of TaCAF1Ia subfamily in wheat. The population resequencing and phylogeny analysis of the TaCAF1Ia1 were utilized for the traceability analysis to understand gene-pool exchanges during the transferring and subsequent development from tetraploid to hexaploidy wheat. RESULTS TaCAF1Ia is a novel non-typical CAF1 subfamily without DEDD (Asp-Glu-Asp-Asp) domain, whose members were extensively duplicated in wheat genome. The replication events had started and constantly evolved from ancestor species. Specifically, it was found that a key member CAF1Ia1 was highly specialized and only existed in the subB genome and S genome. Unlike CAF1s reported in other plants, TaCAF1Ia genes may be new factors for anther development. These atypical TaCAF1s could also form CCR4-NOT complex in wheat but with new interaction sites. Utilizing the particular but conserved characteristics of the TaCAF1Ia1 gene, the comparative analysis of haplotypes composition for TaCAF1Ia1 were identified among wheat populations with different ploidy levels. Based on this, the dual-lineages origin model of maternal progenitor for common wheat and potential three-lineages domestication model for cultivated tetraploid wheat were proposed. CONCLUSION This study brings fresh insights for revealing the origin of wheat and the function of CAF1 in plants.
Collapse
Affiliation(s)
- Longqing Sun
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China,Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Ruilian Song
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yixiang Wang
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaofang Wang
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Junhua Peng
- Germplasm Enhancement Department, Huazhi Biotech Institute, Changsa, Hunan, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
| | - Xifeng Ren
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China,Corresponding authors.
| | - Dongfa Sun
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China,Corresponding authors.
| |
Collapse
|
4
|
Wang P, Li L, Wei H, Sun W, Zhou P, Zhu S, Li D, Zhuge Q. Genome-Wide and Comprehensive Analysis of the Multiple Stress-Related CAF1 (CCR4-Associated Factor 1) Family and Its Expression in Poplar. PLANTS 2021; 10:plants10050981. [PMID: 34068989 PMCID: PMC8155972 DOI: 10.3390/plants10050981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/06/2023]
Abstract
Poplar is one of the most widely used tree in afforestation projects. However, it is susceptible to abiotic and biotic stress. CCR4-associated factor 1 (CAF1) is a major member of CCR4-NOT, and it is mainly involved in transcriptional regulation and mRNA degradation in eukaryotes. However, there are no studies on the molecular phylogeny and expression of the CAF1 gene in poplar. In this study, a total of 19 PtCAF1 genes were identified in the Populus trichocarpa genome. Phylogenetic analysis of the PtCAF1 gene family was performed with two closely related species (Arabidopsis thaliana and Oryza sativa) to investigate the evolution of the PtCAF1 gene. The tissue expression of the PtCAF1 gene showed that 19 PtCAF1 genes were present in different tissues of poplar. Additionally, the analysis of the expression of the PtCAF1 gene showed that the CAF1 family was up-regulated to various degrees under biotic and abiotic stresses and participated in the poplar stress response. The results of our study provide a deeper understanding of the structure and function of the PtCAF1 gene and may contribute to our understanding of the molecular basis of stress tolerance in poplar.
Collapse
|
5
|
Fang JC, Tsai YC, Chou WL, Liu HY, Chang CC, Wu SJ, Lu CA. A CCR4-associated factor 1, OsCAF1B, confers tolerance of low-temperature stress to rice seedlings. PLANT MOLECULAR BIOLOGY 2021; 105:177-192. [PMID: 33025522 DOI: 10.1007/s11103-020-01079-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Rice is an important crop in the world. However, little is known about rice mRNA deadenylation, which is an important regulation step of gene expression at the post-transcriptional level. The CCR4-NOT1 complex contains two key components, CCR4 and CAF1, which are the main cytoplasmic deadenylases in eukaryotic cells. Expression of OsCAF1B was tightly coupled with low-temperature exposure. In the present study, we investigated the function of OsCAF1B in rice by characterizing the molecular and physiological responses to cold stress in OsCAF1B overexpression lines and dominant-negative mutant lines. Our results demonstrate that OsCAF1B plays an important role in growth and development of rice seedlings at low temperatures. Rice is a tropical and subtropical crop that is sensitive to low temperature, and activates a complex gene regulatory network in response to cold stress. Poly(A) tail shortening, also termed deadenylation, is the rate-limiting step of mRNA degradation in eukaryotic cells. CCR4-associated factor 1 (CAF1) proteins are important enzymes for catalysis of mRNA deadenylation in eukaryotes. In the present study, the role of a rice cold-induced CAF1, OsCAF1B, in adaptation of rice plants to low-temperature stress was investigated. Expression of OsCAF1B was closely linked with low-temperature exposure. The increased survival percentage and reduced electrolyte leakage exhibited by OsCAF1B overexpression transgenic lines subjected to cold stress indicate that OsCAF1B plays a positive role in rice growth under low ambient temperature. The enhancement of cold tolerance by OsCAF1B in transgenic rice seedlings involved OsCAF1B deadenylase gene expression, and was associated with elevated expression of late-response cold-related transcription factor genes. In addition, the expression level of OsCAF1B was higher in a cold-tolerant japonica rice cultivar than in a cold-sensitive indica rice cultivar. The results reveal a hitherto undiscovered function of OsCAF1B deadenylase gene expression, which is required for adaptation to cold stress in rice.
Collapse
Affiliation(s)
- Jhen-Cheng Fang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | - Yin-Chuan Tsai
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | - Wei-Lun Chou
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | - Hsin-Yi Liu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | - Chun-Chen Chang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | - Shaw-Jye Wu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC.
| |
Collapse
|
6
|
Diniz AL, da Silva DIR, Lembke CG, Costa MDBL, ten-Caten F, Li F, Vilela RD, Menossi M, Ware D, Endres L, Souza GM. Amino Acid and Carbohydrate Metabolism Are Coordinated to Maintain Energetic Balance during Drought in Sugarcane. Int J Mol Sci 2020; 21:ijms21239124. [PMID: 33266228 PMCID: PMC7729667 DOI: 10.3390/ijms21239124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 01/10/2023] Open
Abstract
The ability to expand crop plantations without irrigation is a major goal to increase agriculture sustainability. To achieve this end, we need to understand the mechanisms that govern plant growth responses under drought conditions. In this study, we combined physiological, transcriptomic, and genomic data to provide a comprehensive picture of drought and recovery responses in the leaves and roots of sugarcane. Transcriptomic profiling using oligoarrays and RNA-seq identified 2898 (out of 21,902) and 46,062 (out of 373,869) transcripts as differentially expressed, respectively. Co-expression analysis revealed modules enriched in photosynthesis, small molecule metabolism, alpha-amino acid metabolism, trehalose biosynthesis, serine family amino acid metabolism, and carbohydrate transport. Together, our findings reveal that carbohydrate metabolism is coordinated with the degradation of amino acids to provide carbon skeletons to the tricarboxylic acid cycle. This coordination may help to maintain energetic balance during drought stress adaptation, facilitating recovery after the stress is alleviated. Our results shed light on candidate regulatory elements and pave the way to biotechnology strategies towards the development of drought-tolerant sugarcane plants.
Collapse
Affiliation(s)
- Augusto Lima Diniz
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil; (A.L.D.); (D.I.R.d.S.); (C.G.L.); (M.D.-B.L.C.); (F.t.-C.)
| | - Danielle Izilda Rodrigues da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil; (A.L.D.); (D.I.R.d.S.); (C.G.L.); (M.D.-B.L.C.); (F.t.-C.)
- Center for Applied Plant Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Carolina Gimiliani Lembke
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil; (A.L.D.); (D.I.R.d.S.); (C.G.L.); (M.D.-B.L.C.); (F.t.-C.)
| | - Maximiller Dal-Bianco Lamas Costa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil; (A.L.D.); (D.I.R.d.S.); (C.G.L.); (M.D.-B.L.C.); (F.t.-C.)
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Felipe ten-Caten
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil; (A.L.D.); (D.I.R.d.S.); (C.G.L.); (M.D.-B.L.C.); (F.t.-C.)
| | - Forrest Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (F.L.); (D.W.)
| | - Romel Duarte Vilela
- Centro de Ciências Agrárias, Universidade Federal de Alagoas, Rio Largo, AL 57100-000, Brazil; (R.D.V.); (L.E.)
| | - Marcelo Menossi
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP 13083-862, Brazil;
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (F.L.); (D.W.)
- USDA ARS NAA Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Lauricio Endres
- Centro de Ciências Agrárias, Universidade Federal de Alagoas, Rio Largo, AL 57100-000, Brazil; (R.D.V.); (L.E.)
| | - Glaucia Mendes Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil; (A.L.D.); (D.I.R.d.S.); (C.G.L.); (M.D.-B.L.C.); (F.t.-C.)
- Correspondence:
| |
Collapse
|
7
|
Hong WJ, Jiang X, Ahn HR, Choi J, Kim SR, Jung KH. Systematic Analysis of Cold Stress Response and Diurnal Rhythm Using Transcriptome Data in Rice Reveals the Molecular Networks Related to Various Biological Processes. Int J Mol Sci 2020; 21:E6872. [PMID: 32961678 PMCID: PMC7554834 DOI: 10.3390/ijms21186872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022] Open
Abstract
Rice (Oryza sativa L.), a staple crop plant that is a major source of calories for approximately 50% of the human population, exhibits various physiological responses against temperature stress. These responses are known mechanisms of flexible adaptation through crosstalk with the intrinsic circadian clock. However, the molecular regulatory network underlining this crosstalk remains poorly understood. Therefore, we performed systematic transcriptome data analyses to identify the genes involved in both cold stress responses and diurnal rhythmic patterns. Here, we first identified cold-regulated genes and then identified diurnal rhythmic genes from those (119 cold-upregulated and 346 cold-downregulated genes). We defined cold-responsive diurnal rhythmic genes as CD genes. We further analyzed the functional features of these CD genes through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses and performed a literature search to identify functionally characterized CD genes. Subsequently, we found that light-harvesting complex proteins involved in photosynthesis strongly associate with the crosstalk. Furthermore, we constructed a protein-protein interaction network encompassing four hub genes and analyzed the roles of the Stay-Green (SGR) gene in regulating crosstalk with sgr mutants. We predict that these findings will provide new insights in understanding the environmental stress response of crop plants against climate change.
Collapse
Affiliation(s)
- Woo-Jong Hong
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (W.-J.H.); (X.J.); (H.R.A.)
| | - Xu Jiang
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (W.-J.H.); (X.J.); (H.R.A.)
| | - Hye Ryun Ahn
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (W.-J.H.); (X.J.); (H.R.A.)
| | - Juyoung Choi
- Department of Life Science, Sogang University, Seoul 04107, Korea;
| | - Seong-Ryong Kim
- Department of Life Science, Sogang University, Seoul 04107, Korea;
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (W.-J.H.); (X.J.); (H.R.A.)
| |
Collapse
|
8
|
Lo S, Cheng M, Hsing YC, Chen Y, Lee K, Hong Y, Hsiao Y, Hsiao A, Chen P, Wong L, Chen N, Reuzeau C, Ho TD, Yu S. Rice Big Grain 1 promotes cell division to enhance organ development, stress tolerance and grain yield. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1969-1983. [PMID: 32034845 PMCID: PMC7415788 DOI: 10.1111/pbi.13357] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 01/07/2020] [Accepted: 01/19/2020] [Indexed: 05/18/2023]
Abstract
Grain/seed yield and plant stress tolerance are two major traits that determine the yield potential of many crops. In cereals, grain size is one of the key factors affecting grain yield. Here, we identify and characterize a newly discovered gene Rice Big Grain 1 (RBG1) that regulates grain and organ development, as well as abiotic stress tolerance. Ectopic expression of RBG1 leads to significant increases in the size of not only grains but also other major organs such as roots, shoots and panicles. Increased grain size is primarily due to elevated cell numbers rather than cell enlargement. RBG1 is preferentially expressed in meristematic and proliferating tissues. Ectopic expression of RBG1 promotes cell division, and RBG1 co-localizes with microtubules known to be involved in cell division, which may account for the increase in organ size. Ectopic expression of RBG1 also increases auxin accumulation and sensitivity, which facilitates root development, particularly crown roots. Moreover, overexpression of RBG1 up-regulated a large number of heat-shock proteins, leading to enhanced tolerance to heat, osmotic and salt stresses, as well as rapid recovery from water-deficit stress. Ectopic expression of RBG1 regulated by a specific constitutive promoter, GOS2, enhanced harvest index and grain yield in rice. Taken together, we have discovered that RBG1 regulates two distinct and important traits in rice, namely grain yield and stress tolerance, via its effects on cell division, auxin and stress protein induction.
Collapse
Affiliation(s)
- Shuen‐Fang Lo
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
- Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Ming‐Lung Cheng
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan, ROC
| | | | - Yi‐Shih Chen
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
| | - Kuo‐Wei Lee
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
| | - Ya‐Fang Hong
- Institute of Plant and Microbial BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
| | - Yu Hsiao
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
| | - An‐Shan Hsiao
- Institute of Plant and Microbial BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
| | - Pei‐Jing Chen
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
- Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Lai‐In Wong
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
- Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Nan‐Chen Chen
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
- Institute of Plant and Microbial BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
| | | | - Tuan‐Hua David Ho
- Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan, ROC
- Institute of Plant and Microbial BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
- Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Su‐May Yu
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
- Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan, ROC
- Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan, ROC
| |
Collapse
|
9
|
Pereira PA, Boavida LC, Santos MR, Becker JD. AtNOT1 is required for gametophyte development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1289-1303. [PMID: 32369648 DOI: 10.1111/tpj.14801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
In flowering plants, pollen development is under a dynamic and well-orchestrated transcriptional control, characterized by an early phase with high transcript diversity and a late post-mitotic phase skewed to a cell-type-specific transcriptome. Such transcriptional changes require a balance between synthesis and degradation of mRNA transcripts, the latter being initiated by deadenylation. The CCR4-NOT complex is the main evolutionary conserved deadenylase complex in eukaryotes, and its function is essential during germline specification in animals. We hypothesized that the CCR4-NOT complex might play a central role in mRNA turnover during microgametogenesis in Arabidopsis. Disruption of NOT1 gene, which encodes the scaffold protein of the CCR4-NOT complex, showed abnormal seed set. Genetic analysis failed to recover homozygous progeny, and reciprocal crosses confirmed reduced transmission through the male and female gametophytes. Concordantly, not1 embryo sacs showed delayed development and defects in embryogenesis. not1 pollen grains exhibited abnormal male germ unit configurations and failed to germinate. Transcriptome analysis of pollen from not1/+ mutants revealed that lack of NOT1 leads to an extensive transcriptional deregulation during microgametogenesis. Therefore, our work establishes NOT1 as an important player during gametophyte development in Arabidopsis.
Collapse
Affiliation(s)
- Patrícia A Pereira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Leonor C Boavida
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Mário R Santos
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| |
Collapse
|
10
|
Fang JC, Liu HY, Tsai YC, Chou WL, Chang CC, Lu CA. A CCR4 Association Factor 1, OsCAF1B, Participates in the αAmy3 mRNA Poly(A) Tail Shortening and Plays a Role in Germination and Seedling Growth. PLANT & CELL PHYSIOLOGY 2020; 61:554-564. [PMID: 31782784 DOI: 10.1093/pcp/pcz221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Poly(A) tail (PAT) shortening, also termed deadenylation, is the rate-limiting step of mRNA degradation in eukaryotic cells. The carbon catabolite repressor 4-associated factor 1s (CAF1s) were shown to be one of the major enzymes for catalyzing mRNA deadenylation in yeast and mammalian cells. However, the functions of CAF1 proteins in plants are poorly understood. Herein, a sugar-upregulated CAF1 gene, OsCAF1B, is investigated in rice. Using gain-of-function and dominant-negative mutation analysis, we show that overexpression of OsCAF1B resulted in an accelerated α-amylase gene (αAmy3) mRNA degradation phenomenon, while ectopic expression of a form of OsCAF1B that had lost its deadenylase activity resulted in a delayed αAmy3 mRNA degradation phenomenon in transgenic rice cells. The change in αAmy3 mRNA degradation in transgenic rice is associated with the altered lengths of the αAmy3 mRNA PAT, indicating that OsCAF1B acts as a negative regulator of αAmy3 mRNA stability in rice. Additionally, we found that overexpression of OsCAF1B retards seed germination and seedling growth. These findings indicate that OsCAF1B participates in sugar-induced αAmy3 mRNA degradation and deadenylation and acts a negative factor for germination and seedling development.
Collapse
Affiliation(s)
- Jhen-Cheng Fang
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Hsin-Yi Liu
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Yin-Chuan Tsai
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Wei-Lun Chou
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Chun-Chen Chang
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| |
Collapse
|
11
|
Arae T, Morita K, Imahori R, Suzuki Y, Yasuda S, Sato T, Yamaguchi J, Chiba Y. Identification of Arabidopsis CCR4-NOT Complexes with Pumilio RNA-Binding Proteins, APUM5 and APUM2. PLANT & CELL PHYSIOLOGY 2019; 60:2015-2025. [PMID: 31093672 DOI: 10.1093/pcp/pcz089] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
CCR4/CAF1 are widely conserved deadenylases in eukaryotes. They form a large complex that includes NOT1 as a scaffold protein and various NOT proteins that are core components of multiple levels of gene expression control. The CCR4-NOT complex also contains several RNA-binding proteins as accessory proteins, which are required for target recognition by CCR4/CAF1 deadenylases. AtCCR4a/b, orthologs of human CCR4 in Arabidopsis, have various physiological effects. AtCCR4 isoforms are likely to have specific target mRNAs related to each physiological effect; however, AtCCR4 does not have RNA-binding capability. Therefore, identifying factors that interact with AtCCR4a/b is indispensable to understand its function as a regulator of gene expression, as well as the target mRNA recognition mechanism. Here, we identified putative components of the AtCCR4-NOT complex using co-immunoprecipitation in combination with mass spectrometry using FLAG-tagged AtCCR4b and subsequent verification with a yeast two-hybrid assay. Interestingly, four of 11 AtCAF1 isoforms interacted with both AtCCR4b and AtNOT1, whereas two isoforms interacted only with AtNOT1 in yeast two-hybrid assays. These results imply that Arabidopsis has multiple CCR4-NOT complexes with various combinations of deadenylases. We also revealed that the RNA-binding protein Arabidopsis Pumilio 5 and 2 interacted with AtCCR4a/b in the cytoplasm with a few foci.
Collapse
Affiliation(s)
- Toshihiro Arae
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Kotone Morita
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Riko Imahori
- School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Yuya Suzuki
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Shigetaka Yasuda
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Takeo Sato
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Junji Yamaguchi
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Yukako Chiba
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
- JST PRESTO, Kawaguchi, Japan
| |
Collapse
|
12
|
Shimo HM, Terassi C, Lima Silva CC, Zanella JDL, Mercaldi GF, Rocco SA, Benedetti CE. Role of the Citrus sinensis RNA deadenylase CsCAF1 in citrus canker resistance. MOLECULAR PLANT PATHOLOGY 2019; 20:1105-1118. [PMID: 31115151 PMCID: PMC6640180 DOI: 10.1111/mpp.12815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Poly(A) tail shortening is a critical step in messenger RNA (mRNA) decay and control of gene expression. The carbon catabolite repressor 4 (CCR4)-associated factor 1 (CAF1) component of the CCR4-NOT deadenylase complex plays an essential role in mRNA deadenylation in most eukaryotes. However, while CAF1 has been extensively investigated in yeast and animals, its role in plants remains largely unknown. Here, we show that the Citrus sinensis CAF1 (CsCAF1) is a magnesium-dependent deadenylase implicated in resistance against the citrus canker bacteria Xanthomonas citri. CsCAF1 interacted with proteins of the CCR4-NOT complex, including CsVIP2, a NOT2 homologue, translin-associated factor X (CsTRAX) and the poly(A)-binding proteins CsPABPN and CsPABPC. CsCAF1 also interacted with PthA4, the main X. citri effector required for citrus canker elicitation. We also present evidence suggesting that PthA4 inhibits CsCAF1 deadenylase activity in vitro and stabilizes the mRNA encoded by the citrus canker susceptibility gene CsLOB1, which is transcriptionally activated by PthA4 during canker formation. Moreover, we show that an inhibitor of CsCAF1 deadenylase activity significantly enhanced canker development, despite causing a reduction in PthA4-dependent CsLOB1 transcription. These results thus link CsCAF1 with canker development and PthA4-dependent transcription in citrus plants.
Collapse
Affiliation(s)
- Hugo Massayoshi Shimo
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and Materials (CNPEM)CEP 13083‐100CampinasSPBrazil
| | - Carolina Terassi
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and Materials (CNPEM)CEP 13083‐100CampinasSPBrazil
| | - Caio Cesar Lima Silva
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and Materials (CNPEM)CEP 13083‐100CampinasSPBrazil
| | - Jackeline de Lima Zanella
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and Materials (CNPEM)CEP 13083‐100CampinasSPBrazil
| | - Gustavo Fernando Mercaldi
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and Materials (CNPEM)CEP 13083‐100CampinasSPBrazil
| | - Silvana Aparecida Rocco
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and Materials (CNPEM)CEP 13083‐100CampinasSPBrazil
| | - Celso Eduardo Benedetti
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and Materials (CNPEM)CEP 13083‐100CampinasSPBrazil
| |
Collapse
|
13
|
Sieburth LE, Vincent JN. Beyond transcription factors: roles of mRNA decay in regulating gene expression in plants. F1000Res 2018; 7. [PMID: 30613385 PMCID: PMC6305221 DOI: 10.12688/f1000research.16203.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
Gene expression is typically quantified as RNA abundance, which is influenced by both synthesis (transcription) and decay. Cytoplasmic decay typically initiates by deadenylation, after which decay can occur through any of three cytoplasmic decay pathways. Recent advances reveal several mechanisms by which RNA decay is regulated to control RNA abundance. mRNA can be post-transcriptionally modified, either indirectly through secondary structure or through direct modifications to the transcript itself, sometimes resulting in subsequent changes in mRNA decay rates. mRNA abundances can also be modified by tapping into pathways normally used for RNA quality control. Regulated mRNA decay can also come about through post-translational modification of decapping complex subunits. Likewise, mRNAs can undergo changes in subcellular localization (for example, the deposition of specific mRNAs into processing bodies, or P-bodies, where stabilization and destabilization occur in a transcript- and context-dependent manner). Additionally, specialized functions of mRNA decay pathways were implicated in a genome-wide mRNA decay analysis in Arabidopsis. Advances made using plants are emphasized in this review, but relevant studies from other model systems that highlight RNA decay mechanisms that may also be conserved in plants are discussed.
Collapse
Affiliation(s)
- Leslie E Sieburth
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Jessica N Vincent
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
14
|
Aglawe SB, Barbadikar KM, Mangrauthia SK, Madhav MS. New breeding technique "genome editing" for crop improvement: applications, potentials and challenges. 3 Biotech 2018; 8:336. [PMID: 30073121 PMCID: PMC6056351 DOI: 10.1007/s13205-018-1355-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/14/2018] [Indexed: 12/26/2022] Open
Abstract
Crop improvement is a continuous process in agriculture which ensures ample supply of food, fodder and fiber to burgeoning world population. Despite tremendous success in plant breeding and transgenesis to improve the yield-related traits, there have been several limitations primarily with the specificity in genetic modifications and incompatibility of host species. Because of this, new breeding techniques (NBTs) are gaining worldwide attention for crop improvement programs. Among the NBTs, genome editing (GE) using site-directed nucleases (SDNs) is an important and potential technique that overcomes limitations associated with classical breeding and transgenesis. These SDNs specifically target a compatible region in the gene/genome. The meganucleases (MgN), zinc finger nucleases (ZFN), transcription activator-like effectors nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated endonuclease (Cas) are being successfully employed for GE. These can be used for desired or targeted modifications of the native endogenous gene(s) or targeted insertion of cis/trans elements in the genomes of recipient organisms. Applications of these techniques appear to be endless ever since their discovery and several modifications in original technologies have further brought precision and accuracy in these methods. In this review, we present an overview of GE using SDNs with an emphasis on CRISPR/Cas system, their advantages, limitations and also practical considerations while designing experiments have been discussed. The review also emphasizes on the possible applications of CRISPR for improving economic traits in crop plants.
Collapse
Affiliation(s)
- Supriya B. Aglawe
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - Kalyani M. Barbadikar
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - Satendra K. Mangrauthia
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - M. Sheshu Madhav
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| |
Collapse
|
15
|
Gianinetti A, Finocchiaro F, Bagnaresi P, Zechini A, Faccioli P, Cattivelli L, Valè G, Biselli C. Seed Dormancy Involves a Transcriptional Program That Supports Early Plastid Functionality during Imbibition. PLANTS 2018; 7:plants7020035. [PMID: 29671830 PMCID: PMC6026906 DOI: 10.3390/plants7020035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 01/18/2023]
Abstract
Red rice fully dormant seeds do not germinate even under favorable germination conditions. In several species, including rice, seed dormancy can be removed by dry-afterripening (warm storage); thus, dormant and non-dormant seeds can be compared for the same genotype. A weedy (red) rice genotype with strong dormancy was used for mRNA expression profiling, by RNA-Seq, of dormant and non-dormant dehulled caryopses (here addressed as seeds) at two temperatures (30 °C and 10 °C) and two durations of incubation in water (8 h and 8 days). Aim of the study was to highlight the differences in the transcriptome of dormant and non-dormant imbibed seeds. Transcript data suggested important differences between these seeds (at least, as inferred by expression-based metabolism reconstruction): dry-afterripening seems to impose a respiratory impairment onto non-dormant seeds, thus glycolysis is deduced to be preferentially directed to alcoholic fermentation in non-dormant seeds but to alanine production in dormant ones; phosphoenolpyruvate carboxykinase, pyruvate phosphate dikinase and alanine aminotransferase pathways appear to have an important gluconeogenetic role associated with the restoration of plastid functions in the dormant seed following imbibition; correspondingly, co-expression analysis pointed out a commitment to guarantee plastid functionality in dormant seeds. At 8 h of imbibition, as inferred by gene expression, dormant seeds appear to preferentially use carbon and nitrogen resources for biosynthetic processes in the plastid, including starch and proanthocyanidins accumulation. Chromatin modification appears to be a possible mechanism involved in the transition from dormancy to germination. Non-dormant seeds show higher expression of genes related to cell wall modification, suggesting they prepare for acrospire/radicle elongation.
Collapse
Affiliation(s)
- Alberto Gianinetti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Franca Finocchiaro
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Antonella Zechini
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Primetta Faccioli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giampiero Valè
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy.
| | - Chiara Biselli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| |
Collapse
|
16
|
Sáez C, Esteras C, Martínez C, Ferriol M, Dhillon NPS, López C, Picó B. Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. PLANT CELL REPORTS 2017; 36:1571-1584. [PMID: 28710536 DOI: 10.1007/s00299-017-2175-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/29/2017] [Indexed: 05/23/2023]
Abstract
Identification of three genomic regions and underlying candidate genes controlling the high level of resistance to ToLCNDV derived from a wild melon. SNP markers appropriated for MAS management of resistance. Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite begomovirus that severely affects melon crop (Cucumis melo) in the main production areas of Spain since 2012. In this work, we evaluated the degree of resistance of four accessions (two belonging to the subsp. agrestis var. momordica and two to the wild agrestis group) and their corresponding hybrids with a susceptible commercial melon belonging to the subsp. melo (Piel de Sapo, PS). The analysis using quantitative PCR (qPCR) allowed us to select one wild agrestis genotype (WM-7) with a high level of resistance and use it to construct segregating populations (F 2 and backcrosses). These populations were phenotyped for symptom severity and virus content using qPCR, and genotyped with different sets of SNP markers. Phenotyping and genotyping results in the F 2 and BC1s populations derived from the WM-7 × PS cross were used for QTL analysis. Three genomic regions controlling resistance to ToLCNDV were found, one major locus in chromosome 11 and two additional regions in chromosomes 12 and 2. The highest level of resistance (no or mild symptoms and very low viral titer) was obtained with the homozygous WM-7WM-7 genotype at the major QTL in chromosome 11, even with PSPS genotypes at the other two loci. The resistance derived from WM-7 is useful to develop new melon cultivars and the linked SNPs selected in this paper will be highly useful in marker-assisted breeding for ToLCNDV resistance in melon.
Collapse
Affiliation(s)
- Cristina Sáez
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Cristina Esteras
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Cecilia Martínez
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - María Ferriol
- Instituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Narinder P S Dhillon
- World Vegetable Center East and Southeast Asia/Oceania, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Carmelo López
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
17
|
Kim SW, Lee SK, Jeong HJ, An G, Jeon JS, Jung KH. Crosstalk between diurnal rhythm and water stress reveals an altered primary carbon flux into soluble sugars in drought-treated rice leaves. Sci Rep 2017; 7:8214. [PMID: 28811563 PMCID: PMC5557844 DOI: 10.1038/s41598-017-08473-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
Plants retain rhythmic physiological responses when adapting to environmental challenges. However, possible integrations between drought conditions and those responses have not received much focus, especially regarding crop plants, and the relationship between abiotic stress and the diurnal cycle is generally not considered. Therefore, we conducted a genome-wide analysis to identify genes showing both diurnal regulation and water-deficiency response in rice (Oryza sativa). Among the 712 drought-responsive genes primary identified, 56.6% are diurnally expressed while 47.6% of the 761 that are down-regulated by drought are also diurnal. Using the β-glucuronidase reporter system and qRT-PCR analyses, we validated expression patterns of two candidate genes, thereby supporting the reliability of our transcriptome data. MapMan analysis indicated that diurnal genes up-regulated by drought are closely associated with the starch-sucrose pathway while those that are down-regulated are involved in photosynthesis. We then confirmed that starch-sucrose contents and chlorophyll fluorescence are altered in a diurnal manner under drought stress, suggesting these metabolic diurnal alterations as a novel indicator to evaluate the drought response in rice leaves. We constructed a functional gene network associated with the starch-sucrose KEGG metabolic pathway for further functional studies, and also developed a regulatory pathway model that includes OsbZIP23 transcription factor.
Collapse
Affiliation(s)
- Seo-Woo Kim
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Sang-Kyu Lee
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Hee-Jeong Jeong
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Gynheung An
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea.
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea.
| |
Collapse
|
18
|
Zhang X, Guo H. mRNA decay in plants: both quantity and quality matter. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:138-144. [PMID: 28011423 DOI: 10.1016/j.pbi.2016.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/25/2016] [Accepted: 12/06/2016] [Indexed: 06/06/2023]
Abstract
In eukaryotes, degradation of messenger RNAs (mRNAs) is required for both mRNA quantity and quality control. Fine-tuning of the abundance of mRNAs that are to be translated can be achieved through a deadenylation-mediated RNA decay pathway involving progressive removal of poly(A) tails, decapping and exoribonuclease digestion. While the classical view assumes that mRNAs are degraded only after their exit from protein translation, recent studies have revealed mRNA decay can occur during translation in plants. Those mRNAs that have structural or functional defects can be filtered by translation-dependent RNA quality control pathways and rapidly degraded, so that translation fidelity is preserved. In addition, aberrant transcripts can also be efficiently eliminated through bidirectional RNA decay pathways. In the absence of those pathways, accumulation of those aberrant transcripts evokes the activation of RNA silencing, with detrimental consequences.
Collapse
Affiliation(s)
- Xinyan Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Hongwei Guo
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
19
|
Chou WL, Chung YL, Fang JC, Lu CA. Novel interaction between CCR4 and CAF1 in rice CCR4-NOT deadenylase complex. PLANT MOLECULAR BIOLOGY 2017; 93:79-96. [PMID: 27714489 DOI: 10.1007/s11103-016-0548-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
Rice is an important crop in the world. However, little is known about rice mRNA deadenylation, which is an important regulation step of gene expression at the post-transcriptional level. The CCR4-NOT1 complex contains two key components, CCR4 and CAF1, which are the main cytoplasmic deadenylases in eukaryotic cells. In yeast and humans, CCR4 can interact with CAF1 via its N-terminal LRR domain. However, no CCR4 protein containing N-terminal LRR motifs have been found in plants. In this manuscript, we demonstrate a novel pattern of interaction between OsCCR4 and OsCAF1 in the rice CCR4-NOT complex, and that OsCAF1 acts as a bridge between OsCCR4 and OsNOT1 in this complex. Our results revealed that the Mynd-like domain at the N-terminus of rice CCR4 proteins and the PXLXP motif at the rice CAF1 N-terminus play critical roles in OsCCR4-OsCAF1 interaction. Deadenylation, also called poly(A) tail shortening, is the first rate-limiting step in general cytoplasmic mRNA degradation in eukaryotic cells. Carbon catabolite repressor (CCR)4 and CCR4-associated factor (CAF)1 in the CCR4-NOT complex function in mRNA poly(A) tail shortening. CCR4s contain N-terminal leucine-rich repeat (LRR) motifs that interact with CAF1s in yeast, fruit fly and mammals. In silico analysis has not identified any plant CCR4 proteins that contain LRR motifs. Here, two rice CCR4 homologous genes, OsCCR4a and OsCCR4b, were identified. The isolated recombinant exonuclease-endonuclease-phosphatase domain of OsCCR4a and OsCCR4b exhibited 3'-5' exonuclease activity in vitro, and point mutation of a catalytic residue in this domain disrupted the deadenylase activity. Both OsCCR4a and OsCCR4b fluorescent fusion proteins were localized in the rice cytoplasm and nucleus, and both associated with processing bodies via their N-terminus. Binding analyses showed that OsCCR4a and OsCCR4b directly interacted with three rice CAF1 family members: OsCAF1A, OsCAF1G and OsCAF1H. The zf-MYND-like domain at the N terminus of rice CCR4 and the PXLXP motif of rice CAF1 play critical roles in OsCCR4-OsCAF1 interaction. OsCAF1 proteins, but not OsCCR4 proteins, can interact with the MIG4G domain of rice OsNOT1. Our studies thus reveal a hitherto undiscovered novel interaction pattern that connects OsCCR4 and OsCAF1 in the rice CCR4-NOT complex.
Collapse
Affiliation(s)
- Wei-Lun Chou
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Yue-Lin Chung
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Jhen-Cheng Fang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC.
| |
Collapse
|
20
|
Schläppi MR, Jackson AK, Eizenga GC, Wang A, Chu C, Shi Y, Shimoyama N, Boykin DL. Assessment of Five Chilling Tolerance Traits and GWAS Mapping in Rice Using the USDA Mini-Core Collection. FRONTIERS IN PLANT SCIENCE 2017; 8:957. [PMID: 28642772 PMCID: PMC5463297 DOI: 10.3389/fpls.2017.00957] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/22/2017] [Indexed: 05/21/2023]
Abstract
Rice (Oryza sativa L.) is often exposed to cool temperatures during spring planting in temperate climates. A better understanding of genetic pathways regulating chilling tolerance will enable breeders to develop varieties with improved tolerance during germination and young seedling stages. To dissect chilling tolerance, five assays were developed; one assay for the germination stage, one assay for the germination and seedling stage, and three for the seedling stage. Based on these assays, five chilling tolerance indices were calculated and assessed using 202 O. sativa accessions from the Rice Mini-Core (RMC) collection. Significant differences between RMC accessions made the five indices suitable for genome-wide association study (GWAS) based quantitative trait loci (QTL) mapping. For young seedling stage indices, japonica and indica subspecies clustered into chilling tolerant and chilling sensitive accessions, respectively, while both subspecies had similar low temperature germinability distributions. Indica subspecies were shown to have chilling acclimation potential. GWAS mapping uncovered 48 QTL at 39 chromosome regions distributed across all 12 rice chromosomes. Interestingly, there was no overlap between the germination and seedling stage QTL. Also, 18 QTL and 32 QTL were in regions discovered in previously reported bi-parental and GWAS based QTL mapping studies, respectively. Two novel low temperature seedling survivability (LTSS)-QTL, qLTSS3-4 and qLTSS4-1, were not in a previously reported QTL region. QTL with strong effect alleles identified in this study will be useful for marker assisted breeding efforts to improve chilling tolerance in rice cultivars and enhance gene discovery for chilling tolerance.
Collapse
Affiliation(s)
- Michael R. Schläppi
- Department of Biological Sciences, Marquette University, MilwaukeeWI, United States
- *Correspondence: Michael R. Schläppi,
| | - Aaron K. Jackson
- Dale Bumpers National Rice Research Center, United States Department of Agriculture – Agricultural Research Service, StuttgartAR, United States
| | - Georgia C. Eizenga
- Dale Bumpers National Rice Research Center, United States Department of Agriculture – Agricultural Research Service, StuttgartAR, United States
| | - Aiju Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Yao Shi
- Department of Biological Sciences, Marquette University, MilwaukeeWI, United States
| | - Naoki Shimoyama
- Department of Biological Sciences, Marquette University, MilwaukeeWI, United States
| | - Debbie L. Boykin
- United States Department of Agriculture – Agricultural Research Service, StonevilleMS, United States
| |
Collapse
|
21
|
Kumar M, Gho YS, Jung KH, Kim SR. Genome-Wide Identification and Analysis of Genes, Conserved between japonica and indica Rice Cultivars, that Respond to Low-Temperature Stress at the Vegetative Growth Stage. FRONTIERS IN PLANT SCIENCE 2017; 8:1120. [PMID: 28713404 PMCID: PMC5491850 DOI: 10.3389/fpls.2017.01120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/09/2017] [Indexed: 05/14/2023]
Abstract
Cold stress is very detrimental to crop production. However, only a few genes in rice have been identified with known functions related to cold tolerance. To meet this agronomic challenge more effectively, researchers must take global approaches to select useful candidate genes and find the major regulatory factors. We used five Gene expression omnibus series data series of Affymetrix array data, produced with cold stress-treated samples from the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/), and identified 502 cold-inducible genes common to both japonica and indica rice cultivars. From them, we confirmed that the expression of two randomly chosen genes was increased by cold stress in planta. In addition, overexpression of OsWRKY71 enhanced cold tolerance in 'Dongjin,' the tested japonica cultivar. Comparisons between japonica and indica rice, based on calculations of plant survival rates and chlorophyll fluorescence, confirmed that the japonica rice was more cold-tolerant. Gene Ontology enrichment analysis indicate that the 'L-phenylalanine catabolic process,' within the Biological Process category, was the most highly overrepresented under cold-stress conditions, implying its significance in that response in rice. MapMan analysis classified 'Major Metabolic' processes and 'Regulatory Gene Modules' as two other major determinants of the cold-stress response and suggested several key cis-regulatory elements. Based on these results, we proposed a model that includes a pathway for cold stress-responsive signaling. Results from our functional analysis of the main signal transduction and transcription regulation factors identified in that pathway will provide insight into novel regulatory metabolism(s), as well as a foundation by which we can develop crop plants with enhanced cold tolerance.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Life Sciences, Sogang UniversitySeoul, South Korea
| | - Yun-Shil Gho
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee UniversityYongin, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee UniversityYongin, South Korea
- *Correspondence: Seong-Ryong Kim, Ki-Hong Jung,
| | - Seong-Ryong Kim
- Department of Life Sciences, Sogang UniversitySeoul, South Korea
- *Correspondence: Seong-Ryong Kim, Ki-Hong Jung,
| |
Collapse
|
22
|
Goossens J, De Geyter N, Walton A, Eeckhout D, Mertens J, Pollier J, Fiallos-Jurado J, De Keyser A, De Clercq R, Van Leene J, Gevaert K, De Jaeger G, Goormachtig S, Goossens A. Isolation of protein complexes from the model legume Medicago truncatula by tandem affinity purification in hairy root cultures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:476-489. [PMID: 27377668 DOI: 10.1111/tpj.13258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/21/2016] [Accepted: 06/30/2016] [Indexed: 05/26/2023]
Abstract
Tandem affinity purification coupled to mass spectrometry (TAP-MS) is one of the most powerful techniques to isolate protein complexes and elucidate protein interaction networks. Here, we describe the development of a TAP-MS strategy for the model legume Medicago truncatula, which is widely studied for its ability to produce valuable natural products and to engage in endosymbiotic interactions. As biological material, transgenic hairy roots, generated through Agrobacterium rhizogenes-mediated transformation of M. truncatula seedlings, were used. As proof of concept, proteins involved in the cell cycle, transcript processing and jasmonate signalling were chosen as bait proteins, resulting in a list of putative interactors, many of which confirm the interologue concept of protein interactions, and which can contribute to biological information about the functioning of these bait proteins in planta. Subsequently, binary protein-protein interactions among baits and preys, and among preys were confirmed by a systematic yeast two-hybrid screen. Together, by establishing a M. truncatula TAP-MS platform, we extended the molecular toolbox of this model species.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Nathan De Geyter
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Alan Walton
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
- Department of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
| | - Dominique Eeckhout
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jan Mertens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jennifer Fiallos-Jurado
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Annick De Keyser
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Rebecca De Clercq
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jelle Van Leene
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Sofie Goormachtig
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| |
Collapse
|
23
|
Chen XJ, Zhang XH, Hu LD, Zhang JQ, Jiang Y, Yang Y, Yan YB. DsCaf1 is involved in environmental stress response of Dunaliella salina. Int J Biol Macromol 2015; 82:369-74. [PMID: 26454106 DOI: 10.1016/j.ijbiomac.2015.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
Regulation of mRNA fates can alter the gene-expression profile promptly and specifically. Deadenylation is a process of which the poly(A) tail is degraded by deadenylases. By regulating mRNA turnover, deadenylases are involved in various vital cellular processes including stress responses. However, it is unclear whether deadenylases play a role in the adaption/tolerance of extremophiles. In this research, we cloned the deadenylase caf1 from Dunaliella salina (dscaf1), a unicellular green alga with exceptional halotolerance. In silicon analysis indicated that compared with the mesophilic alga Chlamydomonas reinhardtii caf1, dscaf1 promoter contained more elements responsive to abiotic stresses. Dscaf1 had an extremely high expression level under hypersaline conditions. When the D. salina cells were subject to stress shock, a two-stage response was observed for dscaf1 expression. The mRNA level of dscaf1 had an immediate 2-4 fold increase and followed by an ∼10 fold increase after hyperosmotic, heat or UV treatment, while had an about 3 fold increase quickly followed by an abrupt decrease after hypoosmotic or cold shock. The dissimilarity in dscaf1 expression patterns suggested that DsCaf1 is a stress-responsive deadenylase with the ability to regulate fates of a specific group of mRNAs for a certain type of stress.
Collapse
Affiliation(s)
- Xiang-Jun Chen
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Key Laboratory of Bio-Resources and Eco-Environment of MOE, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Xin-Hang Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li-Dan Hu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jia-Quan Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Jiang
- Key Laboratory of Bio-Resources and Eco-Environment of MOE, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of MOE, College of Life Science, Sichuan University, Chengdu 610064, China.
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
24
|
Moliterni VMC, Paris R, Onofri C, Orrù L, Cattivelli L, Pacifico D, Avanzato C, Ferrarini A, Delledonne M, Mandolino G. Early transcriptional changes in Beta vulgaris in response to low temperature. PLANTA 2015; 242:187-201. [PMID: 25893871 DOI: 10.1007/s00425-015-2299-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/07/2015] [Indexed: 05/07/2023]
Abstract
Major metabolic pathways and genes affected by low-temperature treatment were identified and a thorough picture of the early transcriptional changes in sugar beet plantlets upon cold stress was given. Sugar beet (Beta vulgaris L.) is an important source of sugar and bioethanol production in temperate areas worldwide. In these areas, plantlet survival and sucrose yield of mature plants can be seriously limited by low temperatures, especially when plantlets are exposed to freezing temperatures (below 0 °C) at the early developmental stages. This frequently occurs when the crop is sown in early spring or even in autumn (autumn sowing) to escape drought at maturity and pathogen outbreaks. The knowledge of molecular responses induced in plantlets early upon exposure to low temperature is necessary to understand mechanisms that allow the plant to survive and to identify reactions that can influence other late-appearing traits. In this work, a wide study of sugar beet transcriptome modulation after a short exposure to a cold stress, mimicking what is experienced in vivo by young plantlets when temperature drops in the early spring nights, was carried out by high-throughput sequencing of leaves and root RNAs (RNA-Seq). A significant picture of the earliest events of temperature sensing was achieved for the first time for sugar beet: the retrieval of a great amount of transcription factors and the intensity of modulation of a large number of genes involved in several metabolic pathways suggest a fast and deep rearrangement of sugar beet plantlets metabolism as early response to cold stress, with both similarities and specificities between the two organs.
Collapse
Affiliation(s)
- Vita Maria Cristiana Moliterni
- Consiglio per la ricerca e la sperimentazione in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per la genomica vegetale, via San Protaso 302, 29017, Fiorenzuola d'Arda, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|