1
|
Sherpa T, Dey N. Development of robust constitutive synthetic promoter using genetic resources of plant pararetroviruses. FRONTIERS IN PLANT SCIENCE 2025; 15:1515921. [PMID: 39911660 PMCID: PMC11794816 DOI: 10.3389/fpls.2024.1515921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/18/2024] [Indexed: 02/07/2025]
Abstract
With the advancement of plant synthetic biology, complex genetic engineering circuits are being developed, which require more diverse genetic regulatory elements (promoters) to operate. Constitutive promoters are widely used for such gene engineering projects, but the list of strong, constitutive plant promoters with strength surpassing the widely used promoter, the CaMV35S, is limited. In this work, we attempted to increase the constitutive promoter library by developing efficient synthetic promoters suitable for high-level gene expression. To do that, we selected three strong pararetroviral-based promoters from Mirabilis mosaic virus (MMV), Figwort mosaic virus (FMV), and Horseradish latent virus (HRLV) and rationally designed and combined their promoter elements. We then tested the newly developed promoters in Nicotiana benthamiana and found a highly active tri-hybrid promoter, MuasFuasH17 (MFH17). We further used these promoter elements in generating random mutant promoters by DNA shuffling techniques in an attempt to change/improve the MFH17 promoter. We further evaluated the activity of the MFH17 promoter in Oryza sativa seedlings and studied the effect of as-1 elements present in it. Finally, we tested the efficacy and tissue specificity of the MFH17 promoter in planta by developing transgenic Nicotiana tabacum and Arabidopsis thaliana plants and found it highly constitutive and efficient in driving the gene throughout the plant tissues. Overall, we conclude that this tripartite synthetic promoter MFH17 is a strong, highly constitutive, and dual-species (dicot and monocot) expressing promoter, which can be a valuable addition to the constitutive plant promoter library for plant synthetic biology.
Collapse
Affiliation(s)
- Tsheten Sherpa
- Division of Plant Biotechnology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Nrisingha Dey
- Division of Plant Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
2
|
Khan A, Pudhuvai B, Shrestha A, Mishra AK, Shah MP, Koul B, Dey N. CRISPR-mediated iron and folate biofortification in crops: advances and perspectives. Biotechnol Genet Eng Rev 2024; 40:4138-4168. [PMID: 37092872 DOI: 10.1080/02648725.2023.2205202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Micronutrient deficiency conditions, such as anemia, are the most prevalent global health problem due to inadequate iron and folate in dietary sources. Biofortification advancements can propel the rapid amelioration of nutritionally beneficial components in crops that are required to combat the adverse effects of micronutrient deficiencies on human health. To date, several strategies have been proposed to increase micronutrients in plants to improve food quality, but very few approaches have intrigued `clustered regularly interspaced short palindromic repeats' (CRISPR) modules for the enhancement of iron and folate concentration in the edible parts of plants. In this review, we discuss two important approaches to simultaneously enhance the bioavailability of iron and folate concentrations in rice endosperms by utilizing advanced CRISPR-Cas9-based technology. This includes the 'tuning of cis-elements' and 'enhancer re-shuffling' in the regulatory components of genes that play a vital role in iron and folate biosynthesis/transportation pathways. In particular, base-editing and enhancer re-installation in native promoters of selected genes can lead to enhanced accumulation of iron and folate levels in the rice endosperm. The re-distribution of micronutrients in specific plant organs can be made possible using the above-mentioned contemporary approaches. Overall, the present review discusses the possible approaches for synchronized iron and folate biofortification through modification in regulatory gene circuits employing CRISPR-Cas9 technology.
Collapse
Affiliation(s)
- Ahamed Khan
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Baveesh Pudhuvai
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Ankita Shrestha
- Division of Microbial and Plant Biotechnology, Department of Biotechnology, Government of India, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Ajay Kumar Mishra
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maulin P Shah
- Division of Applied and Environmental Microbiology, Enviro Technology Ltd, Ankleshwar, Gujarat, India
| | - Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Nrisingha Dey
- Division of Microbial and Plant Biotechnology, Department of Biotechnology, Government of India, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Kumari K, Sherpa T, Dey N. Analysis of plant pararetrovirus promoter sequence(s) for developing a useful synthetic promoter with enhanced activity in rice, pearl millet, and tobacco plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1426479. [PMID: 39166238 PMCID: PMC11333926 DOI: 10.3389/fpls.2024.1426479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/04/2024] [Indexed: 08/22/2024]
Abstract
Promoters are one of the most important components for many gene-based research as they can fine-tune precise gene expression. Many unique plant promoters have been characterized, but strong promoters with dual expression in both monocot and dicot systems are still lacking. In this study, we attempted to make such a promoter by combining specific domains from monocot-infecting pararetroviral-based promoters sugarcane bacilliform virus (SCBV) and banana streak virus (BSV) to a strong dicot-infecting pararetroviral-based promoter mirabilis mosaic virus (MMV). The generated chimeric promoters, MS, SM, MB, and BM, were tested in monocot and dicot systems and further validated in transgenic tobacco plants. We found that the developed chimeric promoters were species-specific (monocot or dicot), which depended on their respective core promoter (CP) region. Furthermore, with this knowledge, deletion-hybrid promoters were developed and evaluated, which led to the development of a unique dual-expressing promoter, MSD3, with high gene expression efficiency (GUS and GFP reporter genes) in rice, pearl millet, and tobacco plants. We conclude that the MSD3 promoter can be an important genetic tool and will be valuable in plant biology research and application.
Collapse
Affiliation(s)
- Khushbu Kumari
- Division of Plant Biotechnology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Tsheten Sherpa
- Division of Plant Biotechnology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Nrisingha Dey
- Division of Plant Biotechnology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Sun SR, Wu XB, Chen JS, Huang MT, Fu HY, Wang QN, Rott P, Gao SJ. Identification of a sugarcane bacilliform virus promoter that is activated by drought stress in plants. Commun Biol 2024; 7:368. [PMID: 38532083 PMCID: PMC10965894 DOI: 10.1038/s42003-024-06075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
Sugarcane (Saccharum spp.) is an important sugar and biofuel crop in the world. It is frequently subjected to drought stress, thus causing considerable economic losses. Transgenic technology is an effective breeding approach to improve sugarcane tolerance to drought using drought-inducible promoter(s) to activate drought-resistance gene(s). In this study, six different promoters were cloned from sugarcane bacilliform virus (SCBV) genotypes exhibiting high genetic diversity. In β-glucuronidase (GUS) assays, expression of one of these promoters (PSCBV-YZ2060) is similar to the one driven by the CaMV 35S promoter and >90% higher compared to the other cloned promoters and Ubi1. Three SCBV promoters (PSCBV-YZ2060, PSCBV-TX, and PSCBV-CHN2) function as drought-induced promoters in transgenic Arabidopsis plants. In Arabidopsis, GUS activity driven by promoter PSCBV-YZ2060 is also upregulated by abscisic acid (ABA) and is 2.2-5.5-fold higher when compared to the same activity of two plant native promoters (PScRD29A from sugarcane and PAtRD29A from Arabidopsis). Mutation analysis revealed that a putative promoter region 1 (PPR1) and two ABA response elements (ABREs) are required in promoter PSCBV-YZ2060 to confer drought stress response and ABA induction. Yeast one-hybrid and electrophoretic mobility shift assays uncovered that transcription factors ScbZIP72 from sugarcane and AREB1 from Arabidopsis bind with two ABREs of promoter PSCBV-YZ2060. After ABA treatment or drought stress, the expression levels of endogenous ScbZIP72 and heterologous GUS are significantly increased in PSCBV-YZ2060:GUS transgenic sugarcane plants. Consequently, promoter PSCBV-YZ2060 is a possible alternative promoter for genetic engineering of drought-resistant transgenic crops such as sugarcane.
Collapse
Affiliation(s)
- Sheng-Ren Sun
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, Guangdong, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, Hainan, China
| | - Xiao-Bin Wu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361000, Fujian, China
| | - Jian-Sheng Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Mei-Ting Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qin-Nan Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, Guangdong, China
| | - Philippe Rott
- CIRAD, UMR PHIM, 34398, Montpellier, France.
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France.
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
5
|
Khan A, Nasim N, Pudhuvai B, Koul B, Upadhyay SK, Sethi L, Dey N. Plant Synthetic Promoters: Advancement and Prospective. AGRICULTURE 2023; 13:298. [DOI: 10.3390/agriculture13020298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Native/endogenous promoters have several fundamental limitations in terms of their size, Cis-elements distribution/patterning, and mode of induction, which is ultimately reflected in their insufficient transcriptional activity. Several customized synthetic promoters were designed and tested in plants during the past decade to circumvent such constraints. Such synthetic promoters have a built-in capacity to drive the expression of the foreign genes at their maximum amplitude in plant orthologous systems. The basic structure and function of the promoter has been discussed in this review, with emphasis on the role of the Cis-element in regulating gene expression. In addition to this, the necessity of synthetic promoters in the arena of plant biology has been highlighted. This review also provides explicit information on the two major approaches for developing plant-based synthetic promoters: the conventional approach (by utilizing the basic knowledge of promoter structure and Cis-trans interaction) and the advancement in gene editing technology. The success of plant genetic manipulation relies on the promoter efficiency and the expression level of the transgene. Therefore, advancements in the field of synthetic promoters has enormous potential in genetic engineering-mediated crop improvement.
Collapse
Affiliation(s)
- Ahamed Khan
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 370 05 České Budějovice, Czech Republic
| | - Noohi Nasim
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar 751023, Odisha, India
| | - Baveesh Pudhuvai
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic
| | - Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India
| | | | - Lini Sethi
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar 751023, Odisha, India
| | - Nrisingha Dey
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar 751023, Odisha, India
| |
Collapse
|
6
|
Sherpa T, Jha DK, Kumari K, Chanwala J, Dey N. Synthetic sub-genomic transcript promoter from Horseradish Latent Virus (HRLV). PLANTA 2023; 257:40. [PMID: 36653682 DOI: 10.1007/s00425-023-04066-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
We characterized an efficient chimeric sub-genomic transcript promoter from Horseradish Latent Virus, FHS4, active in both dicot and monocot plants, and it could be a potential tool for plant biotechnology. Plant pararetroviruses are a rich source of novel plant promoters widely used for biotechnological applications. Here, we comprehensively characterized a unique sub-genomic transcript (Sgt) promoter of Horseradish Latent Virus (HRLV) and identified a fragment (HS4; - 340 to + 10; 351 bp) that showed the highest expression of reporter genes in both transient and transgenic assays as evidenced by biochemical, histochemical GUS reporter assay and transcript analysis of uidA gene by qRT-PCR. Phylogenetic analysis showed that the HSgt promoter was closely related to the sub-genomic promoter of the Cauliflower Mosaic Virus (CaMV19S). We found that the as-1 element and W-box played an important role in the transcriptional activity of the HS4 promoter. Furthermore, the HS4 promoter was also induced by salicylic acid. Alongside, we enhanced the activity of the HS4 promoter by coupling the enhancer region from Figwort Mosaic Virus (FMV) promoter to the upstream region of it. This hybrid promoter FHS4 was around 1.1 times stronger than the most commonly used promoter, 35S (Cauliflower Mosaic Virus full-length transcript promoter), and was efficient in driving reporter genes in both dicot and monocot plants. Subsequently, transgenic tobacco plants expressing an anti-microbial peptide BrLTP2.1 (Brassica rapa lipid transport protein 2.1), under the control of the FHS4 promoter, were developed. The in vitro anti-fungal assay revealed that the plant-derived BrLTP2.1 protein driven by an FHS4 promoter manifested increased resistance against an important plant fungal pathogen, Alternaria alternata. Finally, we concluded that the FHS4 promoter can be used as an alternative to the 35S promoter and has a high potential to become an efficient tool in plant biotechnology.
Collapse
Affiliation(s)
- Tsheten Sherpa
- Division of Plant Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Deepak Kumar Jha
- Division of Plant Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Khushbu Kumari
- Division of Plant Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Jeky Chanwala
- Division of Plant Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Nrisingha Dey
- Division of Plant Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
7
|
Sethi L, Sherpa T, Kumari K, Dey N. Further Characterization of MUAS35SCP and FUAS35SCP Recombinant Promoters and Their Implication in Translational Research. Mol Biotechnol 2022; 64:1356-1366. [PMID: 35641838 DOI: 10.1007/s12033-022-00513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/11/2022] [Indexed: 11/24/2022]
Abstract
Recombinant promoters are of high value in translational research. Earlier, we developed two recombinant promoters, namely MUAS35SCP and FUAS35SCP, and their transcriptional activities were found to be stronger than that of the most widely used CaMV35S promoter in dicot plants. Presently, we are reporting constitutive expression of both GUS and GFP reporters under the control of these promoters in several monocots, including rice, wheat, and pearl millet. We observed that these promoters could express the reporter genes constitutively, and their expression abilities were almost equal to that of the CaMV35S2 promoter. Plant-derived enriched PaDef (Persea americana var. drymifolia defensin) and NsDef2 (Nigella sativa L. defensin 2) antimicrobial peptides expressed under the control of these promoters arrest the growth of devastating phytopathogens like Pseudomonas syringae, Rhodococcus fascians, and Alternaria alternata. We observed that plant-derived NsDef2 and PaDef under control of these promoters showed approximately 80-90% inhibitory activity against Pseudomonas syringae. Hence, these promoters were constitutive and universal, as they can drive the expression of transgenes in both dicot and monocot plants. Alongside, these promoters could become a valuable tool for raising genetically modified plants with in-built resistance toward phytopathogens.
Collapse
Affiliation(s)
- Lini Sethi
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Tsheten Sherpa
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Khushbu Kumari
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
8
|
Rana S, Aggarwal PR, Shukla V, Giri U, Verma S, Muthamilarasan M. Genome Editing and Designer Crops for the Future. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2408:37-69. [PMID: 35325415 DOI: 10.1007/978-1-0716-1875-2_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Domestication spanning over thousands of years led to the evolution of crops that are being cultivated in recent times. Later, selective breeding methods were practiced by human to produce improved cultivars/germplasm. Classical breeding was further transformed into molecular- and genomics-assisted breeding strategies, however, these approaches are labor-intensive and time-consuming. The advent of omics technologies has facilitated the identification of genes and genetic determinants that regulate particular traits allowing the direct manipulation of target genes and genomic regions to achieve desirable phenotype. Recently, genome editing technologies such as meganucleases (MN), zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR (clustered regularly interspaced short palindromic repeats)/CRISPR-Associated protein 9 (Cas9) have gained popularity for precise editing of genes to develop crop varieties with superior agronomic, physiological, climate-resilient, and nutritional traits. Owing to the efficiency and precision, genome editing approaches have been widely used to design the crops that can survive the challenges posed by changing climate, and also cater the food and nutritional requirements for ever-growing population. Here, we briefly review different genome editing technologies deployed for crop improvement, and the fundamental differences between GE technology and transgene-based approach. We also summarize the recent advances in genome editing and how this radical expansion can complement the previously established technologies along with breeding for creating designer crops.
Collapse
Affiliation(s)
- Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Varsa Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Urmi Giri
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Shubham Verma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
9
|
YAP ISGylation increases its stability and promotes its positive regulation on PPP by stimulating 6PGL transcription. Cell Death Dis 2022; 8:59. [PMID: 35149670 PMCID: PMC8837792 DOI: 10.1038/s41420-022-00842-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022]
Abstract
Yes-associated protein (YAP) activation is crucial for tumor formation and development, and its stability is regulated by ubiquitination. ISGylation is a type of ubiquitination like post-translational modification, whereas whether YAP is ISGylated and how ISGylation influences YAP ubiquitination-related function remains uncovered. In addition, YAP can activate glucose metabolism by activating the hexosamine biosynthesis pathway (HBP) and glycolysis, and generate a large number of intermediates to promote tumor proliferation. However, whether YAP stimulates the pentose phosphate pathway (PPP), another tumor-promoting glucose metabolism pathway, and the relationship between this stimulation and ISGylation needs further investigation. Here, we found that YAP was ISGylated and this ISGylation inhibited YAP ubiquitination, proteasome degradation, interaction with-beta-transducin repeat containing E3 ubiquitin-protein ligase (βTrCP) to promote YAP stability. However, ISGylation-induced pro-YAP effects were abolished by YAP K497R (K, lysine; R, arginine) mutation, suggesting K497 could be the major YAP ISGylation site. In addition, YAP ISGylation promoted cell viability, cell-derived xenograft (CDX) and patient-derived xenograft (PDX) tumor formation. YAP ISGylation also increased downstream genes transcription, including one of the key enzymes of PPP, 6-phosphogluconolactonase (6PGL). Mechanistically, YAP promoted 6PGL transcription by simultaneously recruiting SMAD family member 2 (SMAD2) and TEA domain transcription factor 4 (TEAD4) binding to the 6PGL promoter to activate PPP. In clinical lung adenocarcinoma (LUAD) specimens, we found that YAP ISGylation degree was positively associated with 6PGL mRNA level, especially in high glucose LUAD tissues compared to low glucose LUAD tissues. Collectively, this study suggested that YAP ISGylation is critical for maintaining its stability and further activation of PPP. Targeting ISGylated YAP might be a new choice for hyperglycemia cancer treatment.
Collapse
|
10
|
Khadanga B, Chanwala J, Sandeep IS, Dey N. Synthetic Promoters from Strawberry Vein Banding Virus (SVBV) and Dahlia Mosaic Virus (DaMV). Mol Biotechnol 2021; 63:792-806. [PMID: 34037929 DOI: 10.1007/s12033-021-00344-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/19/2021] [Indexed: 11/27/2022]
Abstract
We have constructed two intra-molecularly shuffled promoters, namely S100 and D100. The S100 recombinant promoter (621 bp) was generated by ligation of 250 bp long upstream activation sequence (UAS) of Strawberry vein banding virus (SV10UAS; - 352 to - 102 relative to TSS) with its 371 bp long TATA containing core promoter domain (SV10CP; - 352 to + 19). Likewise, 726 bp long D100 promoter was constructed by fusion of 170 bp long UAS of Dahlia mosaic virus (DaMV14UAS; - 203 to - 33) with its 556 bp long core promoter domain (DaMV4CP; - 474 to + 82). S100 and D100 promoters showed 1.8 and 2.2 times stronger activities than that of the CaMV35S promoter. The activity of the promoters is comparable to that of the CaMV35S2 promoter. Transcript analysis employing qRT-PCR and histochemical assays supported the above findings. Abscisic acid and salicylic acid induce the activity of the D100 promoter. Leaf protein obtained from Nicotiana tabacum plant expressing NSD2 gene (Nigella sativa L. defensin 2) driven by the D100 promoter showed antifungal activity against Alternaria alternata and Phoma exigua var. exigua and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus. Strong S100 and D100 promoters have potential to become efficient candidates for plant metabolic engineering and molecular pharming.
Collapse
Affiliation(s)
- Badrinath Khadanga
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Jeky Chanwala
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - I Sriram Sandeep
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
11
|
Gupta D, Dey N, Leelavathi S, Ranjan R. Development of efficient synthetic promoters derived from pararetrovirus suitable for translational research. PLANTA 2021; 253:42. [PMID: 33475866 DOI: 10.1007/s00425-021-03565-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION In this study, useful hybrid promoters were developed for efficient ectopic gene expression in monocot and dicot plants, and they hold strong prominence in both transgenic research and biotech industries. This study deals with developing novel synthetic promoters derived from Rice Tungro Bacilliform Virus (RTBV) and Mirabilis Mosaic Virus (MMV). Despite numerous availability, there is a severe scarcity of promoters universally suitable for monocot and dicot plants. Here, eight chimeric promoter constructs were synthesized as gBlocks gene fragments through domain swapping and hybridization by incorporating important domains of previously characterized RTBV and MMV promoters. The developed promoter constructs were assessed for transient GUS expression in tobacco protoplast (Xanthi Brad) and agro-infiltrated tobacco, petunia, rice and pearl millet. Protoplast expression analysis showed that two promoter constructs, namely pUPMA-RP1-MP1GUS and pUPMA-RP4-MP1GUS exhibited 3.56 and 2.5 times higher activities than that of the CaMV35S promoter. We had observed the similar type of expression patterns of these promoters in agroinfiltration-based transient studies. RP1-MP1 and RP4-MP1 promoters exhibited 1.87- and 1.68-fold increase expression in transgenic tobacco plants; while, a 1.95-fold increase was found in RP1-MP1 transgenic rice plants when compared their activities with CaMV35S promoter. Furthermore, on evaluating these promoter constructs for their expression in the bacterial system, pUPMA-RP1-MP1GFP was found to have the highest GFP expression. Moreover, the promoter construct was also evaluated for its capacity to express the HMP3 gene. Biobeads of encapsulated bacterial cells expressing HMP3 gene under control of the pUPMA-RP4-MP1 promoter were found to reduce 72.9% copper and 29.2% zinc concentration from wastewater. Our results had demonstrated that the developed promoter constructs could be used for translational research in dicot, monocot plants and bacterial systems for efficient gene expression.
Collapse
Affiliation(s)
- Dipinte Gupta
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed University), Dayalbagh, Agra, 282005, India
| | - Nrisingha Dey
- Institute of Life Science, Nalco Square, Bhubaneshwar, Odisha, 751023, India
| | - Sadhu Leelavathi
- Plant Biology: Plant Transformation Research Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Rajiv Ranjan
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed University), Dayalbagh, Agra, 282005, India.
| |
Collapse
|
12
|
Khan A, Shrestha A, Dey N. Biochemical and Molecular Characterization of Novel Pararetroviral Promoters in Plants. Methods Mol Biol 2019; 1991:223-236. [PMID: 31041776 DOI: 10.1007/978-1-4939-9458-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Special attention needs to be given to defining and studying the regulatory apparatus of different pararetroviral promoters under various physiological conditions because they have significant sequence heterogeneity and unique distributions of stress-responsive cis-elements. Transcriptional regulation studies of a pararetroviral promoter involve both gene expression analyses and investigation of its structural/regulatory framework. The expression of reporter genes such as β-Glucuronidase (GUS) or Luciferase (LUC) transcriptionally fused to a promoter usually determines the strength or function of a target promoter. In parallel, DNA-protein interaction studies are employed to assess the functional relevance of predicted transcription factor binding sites in target pararetroviral promoter sequences. In this chapter, we will describe protocols used to determine the transgene integration and expression in transgenic plant systems. Alongside, we will also discuss the fusion reporter assays that can determine the promoter activity and DNA-protein interaction studies that aid in the evaluation of its transcriptional regulation.
Collapse
Affiliation(s)
- Ahamed Khan
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Government of India, Bhubaneswar, Odisha, India
| | - Ankita Shrestha
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Government of India, Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Government of India, Bhubaneswar, Odisha, India.
| |
Collapse
|
13
|
Shrestha A, Khan A, Dey N. Identification of Novel Pararetroviral Promoters for Designing Efficient Plant Gene Expression Systems. Methods Mol Biol 2019; 1991:207-222. [PMID: 31041775 DOI: 10.1007/978-1-4939-9458-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Plant-infecting viruses, particularly the Pararetroviruses, have been used for many years as versatile genetic resources to design efficient plant expression vectors. The Pararetroviruses (members of the Caulimoviridae) typically contain two transcriptional promoters (the sub-genomic transcript promoter and the full-length transcript promoter) and 6-7 overlapping open reading frames (ORFs) with a genome size of 7-9 kB. Their promoter elements have been extensively exploited during the last two decades to construct effective gene expression systems. At the same time, the caulimoviral promoters have also been genetically manipulated with different molecular approaches to develop synthetic "chimeras" exhibiting precise functionality. Native and "tailor-made" synthetic promoters of Pararetroviruses are particularly attractive for formulating unique gene expression cassettes that perform extremely well in gene-stacking and gene-pyramiding in plant cells. In this chapter, we will mainly discuss important protocols associated with identifying novel/unique pararetroviral promoters that have optimal lengths with appropriate activities for developing efficient plant gene expression systems.
Collapse
Affiliation(s)
- Ankita Shrestha
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Government of India, Bhubaneswar, Odisha, India
| | - Ahamed Khan
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Government of India, Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Government of India, Bhubaneswar, Odisha, India.
| |
Collapse
|