1
|
Hagagy N, AbdElgawad H. The potential of Actinoplanes spp. for alleviating the oxidative stress induced by thallium toxicity in wheat plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108853. [PMID: 38901231 DOI: 10.1016/j.plaphy.2024.108853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
To reduce heavy metal toxicity, like that induced by thallium (TI) in plants, growth-promoting bacteria (GPB) are a widely used to enhance plant tolerance to heavy metals toxicity. In our study, we characterized seven GPB and identified Actinoplanes spp., as the most active strain. This bioactive strain was then applied to alleviate TI phytotoxicity. TI contamination (20 mg/kg soil) induced TI bioaccumulation, reducing wheat growth (biomass accumulation) and photosynthesis rate, by about 55% and 90%, respectively. TI stress also induced oxidative damages as indicated by increased oxidative markers (H2O2 and lipid peroxidation (MDA)). Interestingly, Actinoplanes spp. significantly reduced growth inhibition and oxidative stress by 20% and 70%, respectively. As a defense mechanism to mitigate the TI toxicity, wheat plants showed improved antioxidant and detoxification defense including increased phenolic and tocopherols levels as well as peroxidase (POX), catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) enzymes activities. These defense mechanisms were further induced by Actinoplanes spp. Additionally, Actinoplanes spp. increased the production of heavy metal-binding ligands such as metallothionein, phytochelatins, total glutathione, and glutathione S-transferase activity by 100%, 90%, 120%, and 100%, respectively. This study, therefore, elucidated the physiological and biochemical bases underlying TI-stress mitigation impact of Actinoplanes spp. Overall, Actinoplanes spp. holds promise as a valuable approach for ameliorating TI toxicity in plants. KEYBOARD: Actinobacteria, Bioaccumulation, Detoxification, Membrane damage, Redox regulation.
Collapse
Affiliation(s)
- Nashwa Hagagy
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, 21959, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium
| |
Collapse
|
2
|
Huang J, Wang Z, Zhao C, Yang H, Niu L. Performance of four different microalgae-based technologies in antibiotics removal under multiple concentrations of antibiotics and strigolactone analogue GR24 administration. Sci Rep 2024; 14:16004. [PMID: 38992288 PMCID: PMC11239813 DOI: 10.1038/s41598-024-67156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
The formation of symbionts by using different combinations of endophytic bacteria, microalgae, and fungi to purify antibiotics-containing wastewater is an effective and promising biomaterial technology. As it enhances the mixed antibiotics removal performance of the bio-system, this technology is currently extensively studied. Using exogenous supplementation of various low concentrations of the phytohormone strigolactone analogue GR24, the removal of various antibiotics from simulated wastewater was examined. The performances of Chlorella vulgaris monoculture, activated sludge-C. vulgaris-Clonostachys rosea, Bacillus licheniformis-C. vulgaris-C. rosea, and endophytic bacteria (S395-2)-C. vulgaris-C. rosea co-culture systems were systematically compared. Their removal capacities for tetracycline, oxytetracycline, and chlortetracycline antibiotics from simulated wastewater were assessed. Chlorella vulgaris-endophytic bacteria-C. rosea co-cultures achieved the best performance under 0.25 mg L-1 antibiotics, which could be further enhanced by GR24 supplementation. This result demonstrates that the combination of endophytic bacteria with microalgae and fungi is superior to activated sludge-B. licheniformis-microalgae-fungi systems. Exogenous supplementation of GR24 is an effective strategy to improve the performance of antibiotics removal from wastewater.
Collapse
Affiliation(s)
- Jing Huang
- School of Mathematics and Statistics, Donghua University, Shanghai, 201620, People's Republic of China
| | - Zhengfang Wang
- Suzhou Institute of Trade & Commerce, Suzhou, 215009, People's Republic of China
| | - Chunzhi Zhao
- School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai, 201400, People's Republic of China
| | - Huayun Yang
- School of Engineering, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Lei Niu
- School of Mathematics and Statistics, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
3
|
Haider MW, Nafees M, Iqbal R, Ali S, Asad HU, Azeem F, Gaafar ARZ, Elshikh MS, Rizwana H, Elsalahy HH, Elshamly AMS, Mohammed KAS. Rejuvenating potato growth and yield in challenging semiarid and saline sandy Cholistan: harnessing PGPB-coated N and P application strategies. BMC PLANT BIOLOGY 2024; 24:386. [PMID: 38724922 PMCID: PMC11080262 DOI: 10.1186/s12870-024-05056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Potato serves as a major non-cereal food crop and income source for small-scale growers in Punjab, Pakistan. Unfortunately, improper fertilization practices have led to low crop yields, worsened by challenging environmental conditions and poor groundwater quality in the Cholistan region. To address this, we conducted an experiment to assess the impact of two fertilizer application approaches on potato cv. Barna using plant growth-promoting bacteria (PGPB) coated biofertilizers. The first approach, termed conventional fertilizer application (CFA), involved four split applications of PGPB-coated fertilizers at a rate of 100:75 kg acre-1 (N and P). The second, modified fertilizer application (MFA), employed nine split applications at a rate of 80:40 kg acre-1. RESULTS The MFA approach significantly improved various plant attributes compared to the CFA. This included increased plant height (28%), stem number (45%), leaf count (46%), leaf area index (36%), leaf thickness (three-folds), chlorophyll content (53%), quantum yield of photosystem II (45%), photosynthetically active radiations (56%), electrochromic shift (5.6%), proton flux (24.6%), proton conductivity (71%), linear electron flow (72%), photosynthetic rate (35%), water use efficiency (76%), and substomatal CO2 (two-folds), and lowered non-photochemical quenching (56%), non-regulatory energy dissipation (33%), transpiration rate (59%), and stomatal conductance (70%). Additionally, the MFA approach resulted in higher tuber production per plant (21%), average tuber weight (21.9%), tuber diameter (24.5%), total tuber yield (29.1%), marketable yield (22.7%), seed-grade yield (9%), specific gravity (9.6%), and soluble solids (7.1%). It also reduced undesirable factors like goli and downgrade yields by 57.6% and 98.8%, respectively. Furthermore, plants under the MFA approach exhibited enhanced nitrogen (27.8%) and phosphorus uptake (40.6%), with improved N (26.1%) and P uptake efficiency (43.7%) compared to the CFA approach. CONCLUSION The use of PGPB-coated N and P fertilizers with a higher number of splits at a lower rate significantly boosts potato production in the alkaline sandy soils of Cholistan.
Collapse
Affiliation(s)
- Muhammad Wasim Haider
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur Pakistan, Bahawalpur, 63100, Pakistan.
| | - Sajid Ali
- Department of Horticulture, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Habat Ullah Asad
- Centre for Agriculture and Bioscience International, Rawalpindi, 46300, Pakistan
| | - Farrukh Azeem
- Agri Development, Fauji Fresh n Freeze Ltd, Gulberg II, Lahore, 48000, Pakistan
| | - Abdel-Rhman Z Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Heba H Elsalahy
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany.
| | - Ayman M S Elshamly
- Water Studies and Research Complex, National Water Research Center, Cairo, 13411, Egypt
| | - Kassem A S Mohammed
- Natural Resources Department, Institute of African and Nile Basin Countries Research and Studies, Aswan University, Sahary, 81528, Egypt
| |
Collapse
|
4
|
Zhao C, Onyino J, Gao X. Current Advances in the Functional Diversity and Mechanisms Underlying Endophyte-Plant Interactions. Microorganisms 2024; 12:779. [PMID: 38674723 PMCID: PMC11052469 DOI: 10.3390/microorganisms12040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Plant phenotype is a complex entity largely controlled by the genotype and various environmental factors. Importantly, co-evolution has allowed plants to coexist with the biotic factors in their surroundings. Recently, plant endophytes as an external plant phenotype, forming part of the complex plethora of the plant microbial assemblage, have gained immense attention from plant scientists. Functionally, endophytes impact the plant in many ways, including increasing nutrient availability, enhancing the ability of plants to cope with both abiotic and biotic stress, and enhancing the accumulation of important plant secondary metabolites. The current state of research has been devoted to evaluating the phenotypic impacts of endophytes on host plants, including their direct influence on plant metabolite accumulation and stress response. However, there is a knowledge gap in how genetic factors influence the interaction of endophytes with host plants, pathogens, and other plant microbial communities, eventually controlling the extended microbial plant phenotype. This review will summarize how host genetic factors can impact the abundance and functional diversity of the endophytic microbial community, how endophytes influence host gene expression, and the host-endophyte-pathogen disease triangle. This information will provide novel insights into how breeders could specifically target the plant-endophyte extended phenotype for crop improvement.
Collapse
Affiliation(s)
- Caihong Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Johnmark Onyino
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiquan Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Aizaz M, Khan I, Lubna, Asaf S, Bilal S, Jan R, Khan AL, Kim KM, AL-Harrasi A. Enhanced Physiological and Biochemical Performance of Mung Bean and Maize under Saline and Heavy Metal Stress through Application of Endophytic Fungal Strain SL3 and Exogenous IAA. Cells 2023; 12:1960. [PMID: 37566039 PMCID: PMC10417269 DOI: 10.3390/cells12151960] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Modern irrigation practices and industrial pollution can contribute to the simultaneous occurrence of salinity and heavy metal contamination in large areas of the world, resulting in significant negative effects on crop productivity and sustainability. This study aimed to investigate the growth-promoting potentials of an important endophytic fungal strain SL3 and to compare its potential with exogenous IAA (indole-3-acetic acid) in the context of salt and heavy metal stress. The strain was assessed for plant growth-promoting traits such as the production of indole-3-acetic acid, gibberellins (GA), and siderophore. We selected two important crops, mung bean and maize, and examined various physiological and biochemical characteristics under 300 mM NaCl and 2.5 mM Pb stress conditions, with and without the application of IAA and SL3. This study's results demonstrated that both IAA and SL3 positively impacted the growth and development of plants under normal and stressed conditions. In NaCl and Pb-induced stress conditions, the growth of mung bean and maize plants was significantly reduced. However, the application of IAA and SL3 helped to alleviate stress, leading to a significant increase in shoot/root length and weight compared to IAA and SL3 non-treated plants. The results revealed that photosynthetic pigments, accumulation of catalase (CAT), phenolic contents, polyphenol oxidase, and flavanols are higher in the IAA and SL3-treated plants than in the non-inoculated plants. This study's findings revealed that applying the SL3 fungal strain positively influenced various physiological and biochemical processes in tested plant species under normal and stress conditions of NaCl and Pb. These findings also suggested that SL3 could be a potential replacement for widely used IAA to promote plant growth by improving photosynthetic efficiency, reducing oxidative stress, and enhancing metabolic activities in plants, including mung and maize. Moreover, this study highlights that SL3 has synergistic effects with IAA in enhancing resilience to salt and heavy stress and offers a promising avenue for future agricultural applications in salt and heavy metal-affected regions.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (M.A.); (I.K.); (L.); (S.A.)
| | - Ibrahim Khan
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (M.A.); (I.K.); (L.); (S.A.)
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (M.A.); (I.K.); (L.); (S.A.)
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (M.A.); (I.K.); (L.); (S.A.)
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (M.A.); (I.K.); (L.); (S.A.)
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA;
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Ahmed AL-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (M.A.); (I.K.); (L.); (S.A.)
| |
Collapse
|
6
|
Wu Q, Lin X, Li S, Liang Z, Wang H, Tang T. Endophytic Bacillus sp. AP10 harboured in Arabis paniculata mediates plant growth promotion and manganese detoxification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115170. [PMID: 37354566 DOI: 10.1016/j.ecoenv.2023.115170] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/27/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Phytoremediation of heavy metal-polluted soils assisted by plant-associated endophytes, is a suitable method for plant growth and manganese (Mn) removal in contaminated soils. This investigation was conducted to evaluate the Mn-resistant endophytic resources of the Mn hyperaccumulator Arabis paniculata and their functions in the phytoremediation of Mn2+ toxicity. This study isolated an endophytic bacterium with high Mn resistance and indole-3-acetic acid (IAA) production form A. paniculata and identified it as Bacillus sp. AP10 using 16 S rRNA gene sequencing analysis. The effects of Bacillus sp. AP10 on the alleviation of Mn2+ toxicity in Arabidopsis thaliana seedlings and the molecular mechanisms were further investigated using biochemical tests and RNA-seq analysis. Under Mn2+ stress, Bacillus sp. AP10 increased the biomass, chlorophyll content and the translocation factor (TF) values of Mn in the aerial parts, while decreased the malondialdehyde (MDA) content of A. thaliana seedlings compared with that of control plants. The differentially expressed genes (DEGs) and enrichment analysis showed that Bacillus sp. AP10 could significantly increase the expression of key genes involved in cell-wall loosening, which may improve plant growth under Mn stress. Superoxide dismutase (SOD)-encoding genes were detected as DEGs after AP10 treatment. Moreover, AP10 regulated the expression of genes responsible for phenylpropanoid pathway, which may promote antioxidant flavonoids accumulation for reactive oxygen species (ROS) scavenging to improve Mn tolerance. The activation of ATP-binding cassette (ABC) transporter gene expression especially ABCB1 after AP10 stimulation, explained the elevation of metal ion binding or transport related to enhanced Mn accumulation in plants. Futhermore, AP10 might alleviate Mn toxicity through enhancing abscisic acid (ABA) responsive gene expression and ABA biosynthesis. These findings provide new insights into the functions and regulatory mechanism of Bacillus sp. AP10 in promoting plant growth, and tolerance, improving Mn accumulation and alleviating Mn2+ toxicity in plants. The application of Bacillus sp. AP10 as potential phytoremediators may be a promising strategy in Mn2+ contaminated fields. AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Qingtao Wu
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xianjing Lin
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shaoqing Li
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhenting Liang
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haihua Wang
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Ting Tang
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
7
|
Wang X, Luo S, Chen Y, Zhang R, Lei L, Lin K, Qiu C, Xu H. Potential of Miscanthus floridulus associated with endophytic bacterium Bacillus cereus BL4 to remediate cadmium contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159384. [PMID: 36240921 DOI: 10.1016/j.scitotenv.2022.159384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Phytoremediation assisted by endophytic bacteria is promising to efficiently remediate cadmium (Cd) contaminated soil. Bacillus cereus BL4, isolated from Miscanthus floridulus growing around a pyrite mine, exhibited high Cd tolerance and plant growth-promoting traits and could improve Cd bioavailability in soil. As a result of the pot experiment, after inoculation with strain BL4, the fresh weight, height, and Cd accumulation of Miscanthus floridulus shoots increased by 19.08-32.26 %, 6.02-16.60 %, and 23.67 %-24.88 %, respectively, and roots increased by 49.38-56.41 %, 22.87-33.93 %, and 28.51 %-42.37 %, respectively. Under Cd stress, the chlorophyll content, photosynthetic rate, and root activity of Miscanthus floridulus increased, while the membrane permeability and malonaldehyde (MDA) content significantly decreased after the inoculation of BL4, which indicated the alleviation of the cytotoxicity of Cd. Accordingly, the glutathione (GSH) content increased, and the activities of antioxidant enzymes presented downward trends after BL4 inoculation. Cd bioavailability in soil increased after BL4 inoculation, accompanied by increases in the activities of soil enzymes (invertase, urease, alkaline phosphatase, dehydrogenase, FDA hydrolase, and catalase) as well as the richness and diversity of soil bacteria. Our findings revealed that strain BL4 might strengthen the phytoremediation of Cd by Miscanthus floridulus through its effects on plant physio-biochemistry and soil microecology, which provided a basis for the relative application to Cd-contaminated soil.
Collapse
Affiliation(s)
- Xitong Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Shihua Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yahui Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Renfeng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Ling Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Kangkai Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Chengshu Qiu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University, Department of Ecology and Environmental of Sichuan, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
8
|
Martin AR, Mariani RO, Dörr de Quadros P, Fulthorpe RR. The influence of biofertilizers on leaf economics spectrum traits in a herbaceous crop. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7552-7563. [PMID: 36103721 DOI: 10.1093/jxb/erac373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Microbial inoculations or 'biofertilizers' represent novel contributions to sustainable agriculture. While belowground mechanisms surrounding how biofertilizers enhance crop production are well described, their role in aboveground trait expression remains less well explored. We quantified infraspecific variation in leaf economics spectrum (LES) traits in response to 10 biofertilizer treatments in basil (Ocimum basiclicum) cultivated under hydroponic conditions. Multiple physiological (i.e. maximum photosynthesis rates (A), dark respiration (R), and leaf-level light compensation points) and morphological (i.e. leaf mass per area (LMA) and leaf thickness) traits varied significantly across microbial treatments. Following treatments, basil plants differentiated from one another along an infraspecific LES, with certain plants expressing more resource-acquiring LES trait values (i.e. high A, R, leaf N, and low LMA), versus others that expressed the opposite suite of resource-conserving LES trait values. Infraspecific trait covariation largely matched LES patterns observed among plants globally. Bivariate and multivariate trait analyses further revealed that certain treatments-namely those including closely related Bacillus and Brevibacillus species strains-increased leaf resource capture traits such as A and leaf N. Biofertilizers influence plant performance through a role in moderating infraspecific leaf trait variation, thereby suggesting aboveground leaf traits may be used to diagnose optimal biofertilizer formulations in basil and other crops.
Collapse
Affiliation(s)
- Adam R Martin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Rachel O Mariani
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Patricia Dörr de Quadros
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Roberta R Fulthorpe
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Sun S, Feng Y, Huang G, Zhao X, Song F. Rhizophagus irregularis enhances tolerance to cadmium stress by altering host plant hemp (Cannabis sativa L.) photosynthetic properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120309. [PMID: 36181931 DOI: 10.1016/j.envpol.2022.120309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/15/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are widespread and specialized soil symbiotic fungi, and the establishment of their symbiotic system is of great importance for adversity adaptation. To reveal the growth and photosynthetic characteristics of AMF-crop symbionts in response to heavy metal stress, this experiment investigated the effects of Rhizophagus irregularis (Ri) inoculation on the growth, photosynthetic gas exchange parameters, and chlorophyll fluorescence characteristics of hemp (Cannabis sativa L.) at a Cd concentration of 80 mg/kg. The results showed that (1) under Cd stress, the biomass of each plant structure in the Ri treatment was significantly higher than that in the noninoculation treatment (P < 0.05); (2) under Cd stress, the transpiration rate, stomatal conductance, net photosynthetic rate, PSII efficiency, apparent electron transport rate and photochemical quenching coefficient of the Ri inoculation group reached a maximum, with increases ranging from 1% to 28%; (3) inoculation of Ri significantly reduced Cd enrichment in leaves, which in turn significantly increased the transpiration rate, stomatal conductance, electron transfer rate, net photosynthetic rate and photosynthetic intensity, protecting PSII (P < 0.05); and (4) by measuring the light response curves of different treatments, the light saturation points of hemp inoculated with the Ri treatment reached 1448.4 μmol/m2/s, and the optical compensation point reached 24.0 μmol/m2/s under Cd stress. The Ri-hemp symbiont demonstrated high adaptability to weak light and high utilization efficiency of strong light under Cd stress. Our study showed that Ri-hemp symbiosis improves adaptation to Cd stress and promotes plant growth by regulating the photosynthetic gas exchange parameters and chlorophyll fluorescence parameters of plants. The Ri-hemp symbiosis is a promising technology for improving the productivity of Cd-contaminated soil.
Collapse
Affiliation(s)
- Simiao Sun
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining, 272400, China
| | - Yuhan Feng
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining, 272400, China
| | - Guodong Huang
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining, 272400, China
| | - Xu Zhao
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining, 272400, China
| | - Fuqiang Song
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining, 272400, China.
| |
Collapse
|
10
|
JASSIM NS, ATI MA. Efficacy of Bacillus subtilis (Ehrenberg1835) Cohn1872, in suppressing Fusarium oxysporum Schlecht. emend. Snyder & Hansen, the causal agent of root rot of date palm offshoots (Phoenix dactylifera L.) in Iraq. ACTA AGRICULTURAE SLOVENICA 2022; 118. [DOI: 10.14720/aas.2022.118.3.2643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Date palm root rot disease is one of the most important diseases of date palms and offshoots. It is caused by many soil-borne pathogenic fungi. Pathogenicity assays of the isolated fungi showed that the major causative agents of root rot disease in date palm plantlets were Fusarium oxysporum Schlecht. emend. Snyder & Hansen, F. proliferatum (Matsush.) Nirenberg ex Gerlach & Nirenberg S1, F. proliferatum S2, Gibberella fujikuroi (Sawada) Wollenw., and Rhizoctonia solani J.G. Kühn. The most virulent fungus was F. oxysporum with a severity index of 82.16 % of root rot, while R. solani was the least harmful with a disease severity rate of 12.42 %. In laboratory tests, Bacillus subtilis reduced the radial mycelial growth of F. oxysporum on PDA medium by 86.6 %. The application of B. subtilis in combination with F. oxysporum substantially inhibited the severity of root rot disease relative to plantlets treated with only F. oxysporum. In addition, B. subtilis application in the presence or absence of F. oxysporum improved the plant physiology of plantlets, including total chlorophyll, total carotenoid, antioxidant enzyme levels (catalase and peroxidase), and total proline content.
Collapse
|
11
|
Jabborova D, Davranov K, Jabbarov Z, Bhowmik SN, Ercisli S, Danish S, Singh S, Desouky SE, Elazzazy AM, Nasif O, Datta R. Dual Inoculation of Plant Growth-Promoting Bacillus endophyticus and Funneliformis mosseae Improves Plant Growth and Soil Properties in Ginger. ACS OMEGA 2022; 7:34779-34788. [PMID: 36211029 PMCID: PMC9535732 DOI: 10.1021/acsomega.2c02353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Co-inoculation with beneficial microbes has been suggested as a useful practice for the enhancement of plant growth, nutrient uptake, and soil nutrients. For the first time in Uzbekistan the role of plant-growth-promoting Bacillus endophyticus IGPEB 33 and arbuscular mycorrhizal fungi (AMF) on plant growth, the physiological properties of ginger (Zingiber officinale), and soil enzymatic activities was studied. Moreover, the coinoculation of B. endophyticus IGPEB 33 and AMF treatment significantly increased the plant height by 81%, leaf number by 70%, leaf length by 82%, and leaf width by 40% compared to the control. B. endophyticus IGPEB 33 individually increased plant height significantly by 51%, leaf number by 56%, leaf length by 67%, and leaf width by 27% as compared to the control treatment. Compared to the control, B. endophyticus IGPEB 33 and AMF individually significantly increased chlorophyll a by 81-58%, chlorophyll b by 68-37%, total chlorophyll by 74-53%, and carotenoid content by 67-55%. However, combination of B. endophyticus IGPEB 33 and AMF significantly increased chlorophyll a by 86%, chlorophyll b by 72%, total chlorophyll by 82%, and carotenoid content by 83% compared to the control. Additionally, plant-growth-promoting B. endophyticus IGPEB 33 and AMF inoculation improved soil nutrients and soil enzyme activities compared to the all treatments. Co-inoculation with plant-growth-promoting B. endophyticus and AMF could be an alternative for the production of ginger that is more beneficial to soil nutrient deficiencies. We suggest that a combination of plant-growth-promoting B. endophyticus and AMF inoculation could be a more sustainable and eco-friendly approach in a nutrient-deficient soil.
Collapse
Affiliation(s)
- Dilfuza Jabborova
- Institute
of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Kibray 111208, Uzbekistan
- Faculty
of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Kakhramon Davranov
- Institute
of Microbiology of the Academy of Sciences of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Zafarjon Jabbarov
- Faculty
of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Subrata Nath Bhowmik
- Division
of Microbiology, ICAR-Indian Agricultural
Research Institute, Pusa,
New Delhi 110012, India
| | - Sezai Ercisli
- Department
of Horticulture, Agricultural Faculty, Ataturk
University, Erzurum 252240, Turkey
| | - Subhan Danish
- Department
of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Sachidanand Singh
- Department
of Biotechnology, Smt. S. S. Patel Nootan
Science & Commerce College, Sankalchand Patel University, Visnagar 384315, Gujarat, India
| | - Said E. Desouky
- Department
of Botany and Microbiology, Faculty of Science,
Al-azhar University, 11884 Nasr, Cairo, Egypt
| | - Ahmed M. Elazzazy
- Department
of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Omaima Nasif
- King Saud
University, Department of Physiology, College of Medicine and King
Khalid University Hospital, King Saud University, Medical City, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Rahul Datta
- Department
of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| |
Collapse
|
12
|
Wei H, He W, Li Z, Ge L, Zhang J, Liu T. Salt-tolerant endophytic bacterium Enterobacter ludwigii B30 enhance bermudagrass growth under salt stress by modulating plant physiology and changing rhizosphere and root bacterial community. FRONTIERS IN PLANT SCIENCE 2022; 13:959427. [PMID: 35982708 PMCID: PMC9380843 DOI: 10.3389/fpls.2022.959427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Osmotic and ionic induced salt stress suppresses plant growth. In a previous study, Enterobacter ludwigii B30, isolated from Paspalum vaginatum, improved seed germination, root length, and seedling length of bermudagrass (Cynodon dactylon) under salt stress. In this study, E. ludwigii B30 application improved fresh weight and dry weight, carotenoid and chlorophyll levels, catalase and superoxide dismutase activities, indole acetic acid content and K+ concentration. Without E. ludwigii B30 treatment, bermudagrass under salt stress decreased malondialdehyde and proline content, Y(NO) and Y(NPQ), Na+ concentration, 1-aminocyclopropane-1-carboxylate, and abscisic acid content. After E. ludwigii B30 inoculation, bacterial community richness and diversity in the rhizosphere increased compared with the rhizosphere adjacent to roots under salt stress. Turf quality and carotenoid content were positively correlated with the incidence of the phyla Chloroflexi and Fibrobacteres in rhizosphere soil, and indole acetic acid (IAA) level was positively correlated with the phyla Actinobacteria and Chloroflexi in the roots. Our results suggest that E. ludwigii B30 can improve the ability of bermudagrass to accumulate biomass, adjust osmosis, improve photosynthetic efficiency and selectively absorb ions for reducing salt stress-induced injury, while changing the bacterial community structure of the rhizosphere and bermudagrass roots. They also provide a foundation for understanding how the bermudagrass rhizosphere and root microorganisms respond to endophyte inoculation.
Collapse
Affiliation(s)
- Hongjian Wei
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, China
| | - Wenyuan He
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ziji Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, China
| | - Liangfa Ge
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, China
| | - Juming Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, China
| | - Tianzeng Liu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Kačániová M, Terentjeva M, Kowalczewski PŁ, Babošová M, Porhajašová JI, Hikal WM, Fedoriak M. Bacteriota and Antibiotic Resistance in Spiders. INSECTS 2022; 13:insects13080680. [PMID: 36005303 PMCID: PMC9409187 DOI: 10.3390/insects13080680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary The microbiomes of insects are known for having a great impact on their physiological properties for survival, such as nutrition, behavior, and health. In nature, spiders are one of the main insect predators, and their microbiomes have remained unclear yet. It is important to explore the microbiomes of spiders with the positive effect in the wild to gain an insight into the host–bacterial relationship. The insects have been the primary focus of microbiome studies from all arthropods. Although the research focused on the microbiome of spiders is still scarce, there is a possibility that spiders host diverse assemblages of bacteria, and some of them alter their physiology and behavior. According to our findings, there is a need for holistic microbiome studies across many organisms, which would increase our knowledge of the diversity and evolution of symbiotic relationships. Antimicrobial resistance is one of the most serious global public health threats in this century. Therefore, the knowledge and some information about insects and their ability to act as reservoirs of antibiotic-resistant microorganisms should be determined in order to ensure that they are not transferred to humans. It is important to monitor the microbiome of spiders found in human houses and the transmission of resistant microorganisms, which can be dangerous in relation to human health. Abstract Arthropods are reported to serve as vectors of transmission of pathogenic microorganisms to humans, animals, and the environment. The aims of our study were (i) to identify the external bacteriota of spiders inhabiting a chicken farm and slaughterhouse and (ii) to detect antimicrobial resistance of the isolates. In total, 102 spiders of 14 species were collected from a chicken farm, slaughterhouse, and buildings located in west Slovakia in 2017. Samples were diluted in peptone buffered water, and Tryptone Soya Agar (TSA), Triple Sugar Agar (TSI), Blood Agar (BA), and Anaerobic Agar (AA) were used for inoculation. A total of 28 genera and 56 microbial species were isolated from the samples. The most abundant species were Bacillus pumilus (28 isolates) and B. thuringensis (28 isolates). The least isolated species were Rhodotorula mucilaginosa (one isolate), Kocuria rhizophila (two isolates), Paenibacillus polymyxa (two isolates), and Staphylococcus equorum (two isolates). There were differences in microbial composition between the samples originating from the slaughterhouse, chicken farm, and buildings. The majority of the bacterial isolates resistant to antibiotics were isolated from the chicken farm. The isolation of potentially pathogenic bacteria such as Salmonella, Escherichia, and Salmonella spp., which possess multiple drug resistance, is of public health concern.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
- Correspondence:
| | - Margarita Terentjeva
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia;
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland;
| | - Mária Babošová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.B.); (J.I.P.)
| | - Jana Ivanič Porhajašová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.B.); (J.I.P.)
| | - Wafaa M. Hikal
- Department of Biology, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
- Environmental Parasitology Laboratory, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre (NRC), 33 El–Behouth St., Dokki, Giza 12622, Egypt
| | - Mariia Fedoriak
- Department of Ecology and Biomonitoring, Institute of Biology, Chemistry and Bioresources, Yuriy Fedkovych Chernivtsi National University, 2 Kotsyubynskyi Street, 58012 Chernivtsi, Ukraine;
| |
Collapse
|
14
|
Oviedo-Pereira DG, López-Meyer M, Evangelista-Lozano S, Sarmiento-López LG, Sepúlveda-Jiménez G, Rodríguez-Monroy M. Enhanced specialized metabolite, trichome density, and biosynthetic gene expression in Stevia rebaudiana (Bertoni) Bertoni plants inoculated with endophytic bacteria Enterobacter hormaechei. PeerJ 2022; 10:e13675. [PMID: 35782100 PMCID: PMC9248782 DOI: 10.7717/peerj.13675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/13/2022] [Indexed: 01/17/2023] Open
Abstract
Stevia rebaudiana (Bertoni) Bertoni is a plant of economic interest in the food and pharmaceutical industries due its steviol glycosides (SG), which are rich in metabolites that are 300 times sweeter than sucrose. In addition, S. rebaudiana plants contain phenolic compounds and flavonoids with antioxidant activity. Endophytic bacteria promote the growth and development and modulate the metabolism of the host plant. However, little is known regarding the role of endophytic bacteria in the growth; synthesis of SG, flavonoids and phenolic compounds; and the relationship between trichome development and specialized metabolites in S. rebaudiana, which was the subject of this study. The 12 bacteria tested did not increase the growth of S. rebaudiana plants; however, the content of SG increased with inoculation with the bacteria Enterobacter hormaechei H2A3 and E. hormaechei H5A2. The SG content in leaves paralleled an increase in the density of glandular, short, and large trichome. The image analysis of S. rebaudiana leaves showed the presence of SG, phenolic compounds, and flavonoids principally in glandular and short trichomes. The increase in the transcript levels of the KO, KAH, UGT74G1, and UGT76G1 genes was related to the SG concentration in plants of S. rebaudiana inoculated with E. hormaechei H2A3 and E. hormaechei H5A2. In conclusion, inoculation with the stimulating endophytes E. hormaechei H2A3 and E. hormaechei H5A2 increased SG synthesis, flavonoid content and flavonoid accumulation in the trichomes of S. rebaudiana plants.
Collapse
Affiliation(s)
- Dumas G. Oviedo-Pereira
- Biotecnología, Instituto Politécnico Nacional Centro de Desarrollo de Productos Bióticos, Yautepec, Morelos, México
| | - Melina López-Meyer
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional. Centro Interdisciplinario de Investigación Para el Desarrollo Integral Regional (CIIDIR), Guasave, Sinaloa, México
| | - Silvia Evangelista-Lozano
- Biotecnología, Instituto Politécnico Nacional Centro de Desarrollo de Productos Bióticos, Yautepec, Morelos, México
| | - Luis G. Sarmiento-López
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional. Centro Interdisciplinario de Investigación Para el Desarrollo Integral Regional (CIIDIR), Guasave, Sinaloa, México
| | - Gabriela Sepúlveda-Jiménez
- Biotecnología, Instituto Politécnico Nacional Centro de Desarrollo de Productos Bióticos, Yautepec, Morelos, México
| | - Mario Rodríguez-Monroy
- Biotecnología, Instituto Politécnico Nacional Centro de Desarrollo de Productos Bióticos, Yautepec, Morelos, México
| |
Collapse
|
15
|
Yu Y, Chen Z, Xie H, Feng X, Wang Y, Xu P. Overhauling the Effect of Surface Sterilization on Analysis of Endophytes in Tea Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:849658. [PMID: 35592578 PMCID: PMC9111953 DOI: 10.3389/fpls.2022.849658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
Increasing evidence shows that plant Endophytes play a crucial role in the fitness and productivity of hosts. Surface sterilization is an indispensable process before high-throughput sequencing (HTS) and tissue separation of plant endophytes, but its potential impact on the composition and diversity of endophytes has rarely been investigated. In the present work, the influence of sodium hypochlorite (NaClO) on the diversity of endophytic bacteria and fungi in leaves and stems of tea plants was investigated. We found that the diversity of bacterial endophytes was significantly affected by the concentration of NaClO as well as the pretreatment time. Pretreatment with 0.5% NaClO for 8 min and 2.0% NaClO for 3 min were suitable for the tea plant leaves and stems, respectively, but the effects of NaClO on the diversity of fungal endophytes were limited according to the results from HTS. Regardless of NaClO sterilization, most of the endophytes in tissues, such as the dominant taxa, could not be Isolated by using the regular culture-dependent approaches. Collectively, our results demonstrated that the pretreatment with NaClO should be modified to precisely understand the diversity of endophytes from different tissues of tea plants and also indicate that more attention should be paid to establish specific culture-dependent protocols for the isolation of plant endophytes.
Collapse
Affiliation(s)
- Yueer Yu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Zimeng Chen
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Hengtong Xie
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Feng
- Agricultural Experiment Station, Zhejiang University, Hangzhou, China
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
16
|
Almuhayawi MS, Abdel-Mawgoud M, Al Jaouni SK, Almuhayawi SM, Alruhaili MH, Selim S, AbdElgawad H. Bacterial Endophytes as a Promising Approach to Enhance the Growth and Accumulation of Bioactive Metabolites of Three Species of Chenopodium Sprouts. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122745. [PMID: 34961218 PMCID: PMC8704246 DOI: 10.3390/plants10122745] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 05/29/2023]
Abstract
Sprouts are regarded as an untapped source of bioactive components that display various biological properties. Endophytic bacterium inoculation can enhance plant chemical composition and improve its nutritional quality. Herein, six endophytes (Endo 1 to Endo 6) were isolated from Chenopodium plants and morphologically and biochemically identified. Then, the most active isolate Endo 2 (strain JSA11) was employed to enhance the growth and nutritive value of the sprouts of three Chenopodium species, i.e., C. ambrosoides, C. ficifolium, and C. botrys. Endo 2 (strain JSA11) induced photosynthesis and the mineral uptake, which can explain the high biomass accumulation. Endo 2 (strain JSA11) improved the nutritive values of the treated sprouts through bioactive metabolite (antioxidants, vitamins, unsaturated fatty acid, and essential amino acids) accumulation. These increases were correlated with increased amino acid levels and phenolic metabolism. Consequently, the antioxidant activity of the Endo 2 (strain JSA11)-treated Chenopodium sprouts was enhanced. Moreover, Endo 2 (strain JSA11) increased the antibacterial activity against several pathogenic bacteria and the anti-inflammatory activities as evidenced by the reduced activity of cyclooxygenase and lipoxygenase. Overall, the Endo 2 (strain JSA11) treatment is a successful technique to enhance the bioactive contents and biological properties of Chenopodium sprouts.
Collapse
Affiliation(s)
- Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohamed Abdel-Mawgoud
- Department of Medicinal and Aromatic Plants, Desert Research Centre, Cairo 11753, Egypt
| | - Soad K. Al Jaouni
- Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Saad M. Almuhayawi
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammed H. Alruhaili
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| |
Collapse
|
17
|
Cardoso AF, Alves EC, da Costa SDA, de Moraes AJG, da Silva Júnior DD, Lins PMP, da Silva GB. Bacillus cereus Improves Performance of Brazilian Green Dwarf Coconut Palms Seedlings With Reduced Chemical Fertilization. FRONTIERS IN PLANT SCIENCE 2021; 12:649487. [PMID: 34721445 PMCID: PMC8553962 DOI: 10.3389/fpls.2021.649487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
Coconut production in the Amazon requires the knowledge and development of sustainable technologies to alleviate the detrimental effects of inorganic chemical fertilizers and intensive farming practices. In this study, we investigated the effects of plant growth-promoting rhizobacteria (PGPR) isolated from coconut seedlings on nutrient use efficiency (NUE) and physiological mechanisms related to biomass accumulation of seedlings grown with reduced inorganic fertilizer levels. Of the 96 PGPR isolates tested on rice plants, the isolate Bacillus cereus (UFRABC40) was selected, as it resulted in the most significant gain in growth variables. In a commercial coconut tree nursery, we subjected seedlings to two treatments, both with seven replications: control 100% NPK chemical fertilizer (CF) and B. cereus + 50% NPK CF. The results indicated that the inoculation increased phytohormone levels [190% indole acetic acid (IAA), 31% gibberellic acid GA3, and 17% gibberellic acid GA4] and leaf gas exchange [48% by assimilation of CO2 (A), 35% stomatal conductance to water vapor (gs), 33% transpiration, and 57% instantaneous carboxylation efficiency] in leaves. Furthermore, growth parameters (shoot, root, and total dry weight, height, and diameter) and macro- and micronutrient levels (95% N, 44% P, 92% K, 103 Ca, 46% Fe, 84% B) were improved. Our results show the potential ability of strain Bacillus cereus UFRABC40 to promote the growth performance of coconut seedlings under decreased application of inorganic fertilizers. The application of microbial-based products in coconut seedling production systems improves plants' physiological performance and the efficiency of nutrient use.
Collapse
Affiliation(s)
- Aline Figueiredo Cardoso
- Plant Protection Laboratory, Institute of Agrarian Sciences, Federal Rural University of Amazon (UFRA), Belém, Brazil
| | - Ediane Conceição Alves
- Plant Protection Laboratory, Institute of Agrarian Sciences, Federal Rural University of Amazon (UFRA), Belém, Brazil
| | - Sidney D. Araújo da Costa
- Plant Protection Laboratory, Institute of Agrarian Sciences, Federal Rural University of Amazon (UFRA), Belém, Brazil
| | | | | | | | - Gisele Barata da Silva
- Plant Protection Laboratory, Institute of Agrarian Sciences, Federal Rural University of Amazon (UFRA), Belém, Brazil
| |
Collapse
|
18
|
Okazaki K, Tsurumaru H, Hashimoto M, Takahashi H, Okubo T, Ohwada T, Minamisawa K, Ikeda S. Community Analysis-based Screening of Plant Growth-promoting Bacteria for Sugar Beet. Microbes Environ 2021; 36. [PMID: 33907063 PMCID: PMC8209457 DOI: 10.1264/jsme2.me20137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clone libraries of bacterial 16S rRNA genes (a total of 1,980 clones) were constructed from the leaf blades, petioles, taproots, and lateral roots of sugar beet (Beta vulgaris L.) grown under different fertilization conditions. A principal coordinate analysis revealed that the structures of bacterial communities in above- and underground tissues were largely separated by PC1 (44.5%). The bacterial communities of above-ground tissues (leaf blades and petioles) were more tightly clustered regardless of differences in the tissue types and fertilization conditions than those of below-ground tissues (taproots and lateral roots). The bacterial communities of below-ground tissues were largely separated by PC2 (26.0%). To survey plant growth-promoting bacteria (PGPBs), isolate collections (a total of 665 isolates) were constructed from the lateral roots. As candidate PGPBs, 44 isolates were selected via clustering analyses with the combined 16S rRNA gene sequence data of clone libraries and isolate collections. The results of inoculation tests using sugar beet seedlings showed that eight isolates exhibited growth-promoting effects on the seedlings. Among them, seven isolates belonging to seven genera (Asticcacaulis, Mesorhizobium, Nocardioides, Sphingobium, Sphingomonas, Sphingopyxis, and Polaromonas) were newly identified as PGPBs for sugar beet at the genus level, and two isolates belonging to two genera (Asticcacaulis and Polaromonas) were revealed to exert growth-promoting effects on the plant at the genus level for the first time. These results suggest that a community analysis-based selection strategy will facilitate the isolation of novel PGPBs and extend the potential for the development of novel biofertilizers.
Collapse
Affiliation(s)
- Kazuyuki Okazaki
- Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization
| | | | | | - Hiroyuki Takahashi
- Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization
| | | | - Takuji Ohwada
- Department of Agricultural and Life Sciences, Obihiro University of Agriculture and Veterinary Medicine
| | | | - Seishi Ikeda
- Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization
| |
Collapse
|
19
|
Wu W, Chen W, Liu S, Wu J, Zhu Y, Qin L, Zhu B. Beneficial Relationships Between Endophytic Bacteria and Medicinal Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:646146. [PMID: 33968103 PMCID: PMC8100581 DOI: 10.3389/fpls.2021.646146] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 05/03/2023]
Abstract
Plants benefit extensively from endophytic bacteria, which live in host plant tissues exerting no harmful effects. Bacterial endophytes promote the growth of host plants and enhance their resistance toward various pathogens and environmental stresses. They can also regulate the synthesis of secondary metabolites with significant medicinal properties and produce various biological effects. This review summarizes recent studies on the relationships between bacterial endophytes and medicinal plants. Endophytic bacteria have numerous applications in agriculture, medicine, and other industries: improving plant growth, promoting resistance toward both biotic and abiotic stresses, and producing metabolites with medicinal potential. Their distribution and population structure are affected by their host plant's genetic characteristics and health and by the ecology of the surrounding environment. Understanding bacterial endophytes can help us use them more effectively and apply them to medicinal plants to improve yield and quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Luping Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
20
|
Chemical Proprieties of Biopolymers (Chitin/Chitosan) and Their Synergic Effects with Endophytic Bacillus Species: Unlimited Applications in Agriculture. Molecules 2021; 26:molecules26041117. [PMID: 33672446 PMCID: PMC7923285 DOI: 10.3390/molecules26041117] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022] Open
Abstract
Over the past decade, reckless usage of synthetic pesticides and fertilizers in agriculture has made the environment and human health progressively vulnerable. This setting leads to the pursuit of other environmentally friendly interventions. Amongst the suggested solutions, the use of chitin and chitosan came about, whether alone or in combination with endophytic bacterial strains. In the framework of this research, we reported an assortment of studies on the physico-chemical properties and potential applications in the agricultural field of two biopolymers extracted from shrimp shells (chitin and chitosan), in addition to their uses as biofertilizers and biostimulators in combination with bacterial strains of the genus Bacillus sp. (having biochemical and enzymatic properties).
Collapse
|
21
|
Effect of Bacillus spp. and Brevibacillus sp. on the Photosynthesis and Redox Status of Solanum lycopersicum. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7020024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Plant-growth-promoting bacteria (PGPB) are gaining attention as a sustainable alternative to current agrochemicals. This study evaluated the impact of three Bacillus spp. (5PB1, 1PB1, FV46) and one Brevibacillus sp. (C9F) on the important crop tomato (Solanum lycopersicum) using the model cv. ‘MicroTom’. The effects of these isolates were assessed on (a) seedlings’ growth and vigor, and (b) adult potted plants. In potted plants, several photosynthetic parameters (chlorophylls (a and b), carotenoids and anthocyanins contents, transpiration rate, stomatal conductance, net CO2 photosynthetic rate, and intercellular CO2 concentration, and on chlorophyll fluorescence yields of light- and dark-adapted leaves)), as well as soluble sugars and starch contents, were quantified. Additionally, the effects on redox status were evaluated. While the growth of seedlings was, overall, not influenced by the strains, some effects were observed on adult plants. The Bacillus safensis FV46 stimulated the content of pigments, compared to C9F. Bacillus zhangzhouensis 5PB1 increased starch levels and was positively correlated with some parameters of the photophosphorylation and the gas exchange phases. Interestingly, Bacillus megaterium 1PB1 decreased superoxide (O2−) content, and B. safensis FV46 promoted non-enzymatic antioxidant defenses, increasing total phenol content levels. These results, conducted on a model cultivar, support the theory that these isolates differently act on tomato plant physiology, and that their activity depends on the age of the plant, and may differently influence photosynthesis. It would now be interesting to analyze the influence of these bacteria using commercial cultivars.
Collapse
|
22
|
Vandana UK, Rajkumari J, Singha LP, Satish L, Alavilli H, Sudheer PD, Chauhan S, Ratnala R, Satturu V, Mazumder PB, Pandey P. The Endophytic Microbiome as a Hotspot of Synergistic Interactions, with Prospects of Plant Growth Promotion. BIOLOGY 2021; 10:101. [PMID: 33535706 PMCID: PMC7912845 DOI: 10.3390/biology10020101] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
The plant root is the primary site of interaction between plants and associated microorganisms and constitutes the main components of plant microbiomes that impact crop production. The endophytic bacteria in the root zone have an important role in plant growth promotion. Diverse microbial communities inhabit plant root tissues, and they directly or indirectly promote plant growth by inhibiting the growth of plant pathogens, producing various secondary metabolites. Mechanisms of plant growth promotion and response of root endophytic microorganisms for their survival and colonization in the host plants are the result of complex plant-microbe interactions. Endophytic microorganisms also assist the host to sustain different biotic and abiotic stresses. Better insights are emerging for the endophyte, such as host plant interactions due to advancements in 'omic' technologies, which facilitate the exploration of genes that are responsible for plant tissue colonization. Consequently, this is informative to envisage putative functions and metabolic processes crucial for endophytic adaptations. Detection of cell signaling molecules between host plants and identification of compounds synthesized by root endophytes are effective means for their utilization in the agriculture sector as biofertilizers. In addition, it is interesting that the endophytic microorganism colonization impacts the relative abundance of indigenous microbial communities and suppresses the deleterious microorganisms in plant tissues. Natural products released by endophytes act as biocontrol agents and inhibit pathogen growth. The symbiosis of endophytic bacteria and arbuscular mycorrhizal fungi (AMF) affects plant symbiotic signaling pathways and root colonization patterns and phytohormone synthesis. In this review, the potential of the root endophytic community, colonization, and role in the improvement of plant growth has been explained in the light of intricate plant-microbe interactions.
Collapse
Affiliation(s)
- Udaya Kumar Vandana
- Department of Biotechnology, Assam University Silchar, Assam 788011, India; (U.K.V.); (P.B.M.)
| | - Jina Rajkumari
- Department of Microbiology, Assam University Silchar, Assam 788011, India; (J.R.); (L.P.S.)
| | - L. Paikhomba Singha
- Department of Microbiology, Assam University Silchar, Assam 788011, India; (J.R.); (L.P.S.)
| | - Lakkakula Satish
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Hemasundar Alavilli
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea Molecular Medicine and Nutrition Research Institute, Korea University, Seoul 02841, Korea;
| | - Pamidimarri D.V.N. Sudheer
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur 493225, India; (P.D.V.N.S.); (S.C.)
| | - Sushma Chauhan
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur 493225, India; (P.D.V.N.S.); (S.C.)
| | - Rambabu Ratnala
- TATA Institute for Genetics and Society, Bangalore 560065, India;
| | - Vanisri Satturu
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad 500030, India;
| | - Pranab Behari Mazumder
- Department of Biotechnology, Assam University Silchar, Assam 788011, India; (U.K.V.); (P.B.M.)
| | - Piyush Pandey
- Department of Microbiology, Assam University Silchar, Assam 788011, India; (J.R.); (L.P.S.)
| |
Collapse
|
23
|
Dey R, Raghuwanshi R. Comprehensive assessment of growth parameters for screening endophytic bacterial strains in Solanum lycopersicum (Tomato). Heliyon 2020; 6:e05325. [PMID: 33134591 PMCID: PMC7586120 DOI: 10.1016/j.heliyon.2020.e05325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/21/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022] Open
Abstract
Conventional agricultural practices demand application of pesticides for better yield, yet their uncontrolled use for longer duration exhibit deleterious effects on the soil health and subsequent plant productivity. These circumstances have displayed alarming effects on food security in the modern world. Therefore, biological solutions to the crisis can be practiced in consideration to their environmental benefits. Bacterial endophytes are ubiquitous in the phytosystem and beneficial for the plant growth and productivity. The present study aimed to obtain endophytic bacterial strains that can be developed as effective plant growth promoters. For this purpose twelve strains of bacterial endophytes were isolated from different plant sources and their putative plant growth promoting attributes were analyzed by morphological and biochemical studies. Subsequently these isolates were inoculated in the Solanum lycopersicum (Tomato) and the factors like germination percentage, seedling length, biomass production, and leaf variables were analyzed. However, the vigour index was considered as the prime parameter for determining plant growth. In essence, RR2 and RR4 strains were observed as effective growth promoter, hence in future they can be utilized as effective biofertilizers.
Collapse
Affiliation(s)
- Riddha Dey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Richa Raghuwanshi
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
24
|
Rajabi-Khamseh S, Danesh-Shahraki A, Rafieiolhossaini M. Stress tolerance in flax plants inoculated with Bacillus and Azotobacter species under deficit irrigation. PHYSIOLOGIA PLANTARUM 2020; 170:269-279. [PMID: 32542685 DOI: 10.1111/ppl.13154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Drought stress affects not only crop growth but also its morpho-physiological and biochemical traits to reduce crop productivity. The study reported in this article was designed and implemented to determine the effects of deficit irrigation and bacterial inoculation on flax plants. For this purpose, seeds were inoculated with Bacillus amyloliquefaciens (B1 ), Bacillus sp. Strain1 (B2 ), and Azotobacter chroococcum (A) as plant growth promoting rhizobacteria (PGPR). The individual inoculated plants were then grown under field conditions in 2015, while individually and in combination in pots in 2016. The irrigation regimes in either experiments included 50, 75 and 100% crop water requirement. Bacterial cultures were observed to produce ammonia (except B2 ), indole acetic acid and siderophores. Results showed that the PGPRs significantly mitigated the effects of water deficit. Compared with the control plants, the bacterially-inoculated plants had an enhanced relative water content, plant height, water-soluble carbohydrate and proline contents and antioxidant enzyme activities, but a decreased malondialdehyde content. B1 exhibited greater effects on most of the traits investigated under the field conditions rather than those with moderate and severe drought stress, while application of the triple bacteria in pots had greater effects on relative water content, carbohydrate and proline contents as well as malondialdehyde. The significant differences in abiotic stress indicators in PGPR-treated plants suggest that these bacteria could be used as biofertilizers to assist plant growth and to reduce the adverse effects of deficit irrigation.
Collapse
Affiliation(s)
- Sanaz Rajabi-Khamseh
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | | | | |
Collapse
|
25
|
Khan N, Bano A, Curá JA. Role of Beneficial Microorganisms and Salicylic Acid in Improving Rainfed Agriculture and Future Food Safety. Microorganisms 2020; 8:E1018. [PMID: 32659895 PMCID: PMC7409342 DOI: 10.3390/microorganisms8071018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Moisture stress in rainfed areas has significant adverse impacts on plant growth and yield. Plant growth promoting rhizobacteria (PGPR) plays an important role in the revegetation and rehabilitation of rainfed areas by modulating plant growth and metabolism and improving the fertility status of the rhizosphere soils. The current study explored the positive role of PGPR and salicylic acid (SA) on the health of the rhizosphere soil and plants grown under rainfed conditions. Maize seeds of two different varieties, i.e., SWL-2002 (drought tolerant) and CZP-2001 (drought sensitive), were soaked for 4 h prior to sowing in 24-h old culture of Planomicrobium chinense strain P1 (accession no. MF616408) and Bacillus cereus strain P2 (accession no. MF616406). The foliar spray of SA (150 mg/L) was applied on 28-days old seedlings. The combined treatment of the consortium of PGPR and SA not only alleviated the adverse effects of low moisture stress of soil in rainfed area but also resulted in significant accumulation of leaf chlorophyll content (40% and 24%), chlorophyll fluorescence (52% and 34%) and carotenoids (57% and 36%) in the shoot of both the varieties. The PGPR inoculation significantly reduced lipid peroxidation (33% and 23%) and decreased the proline content and antioxidant enzymes activities (32% and 38%) as compared to plants grown in rainfed soil. Significant increases (>52%) were noted in the contents of Ca, Mg, K Cu, Co, Fe and Zn in the shoots of plants and rhizosphere of maize inoculated with the PGPR consortium. The soil organic matter, total nitrogen and C/N ratio were increased (42%), concomitant with the decrease in the bulk density of the rhizosphere. The PGPR consortium, SA and their combined treatment significantly enhanced the IAA (73%) and GA (70%) contents but decreased (55%) the ABA content of shoot. The rhizosphere of plants treated with PGPR, SA and consortium showed a maximum accumulation (>50%) of IAA, GA and ABA contents, the sensitive variety had much higher ABA content than the tolerant variety. It is inferred from the results that rhizosphere soil of treated plants enriched with nutrients content, organic matter and greater concentration of growth promoting phytohormones, as well as stress hormone ABA, which has better potential for seed germination and establishment of seedlings for succeeding crops.
Collapse
Affiliation(s)
- Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Asghari Bano
- Department of Biosciences, University of Wah, Wah Cantt 47040, Pakistan;
| | - José Alfredo Curá
- Facultad de Agronomía, Departamento de Biología Aplicada y Alimentos, Universidad de Buenos Aires, Avenida San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina;
| |
Collapse
|
26
|
de Castro GLS, Rêgo MCF, Silvestre WVD, Batista TFV, da Silva GB. Açaí palm seedling growth promotion by rhizobacteria inoculation. Braz J Microbiol 2019; 51:205-216. [PMID: 31792759 DOI: 10.1007/s42770-019-00159-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 09/14/2019] [Indexed: 11/27/2022] Open
Abstract
Lower growth rate of the açaí palm seedlings limits the crops' commercial expansion. The goal was evaluating the biometry, biomass accumulation, nutrient contents, chlorophyll-a fluorescence, and gas exchange in açaí seedlings inoculated with rhizobacteria. The treatments were individual inoculations of the seven rhizobacteria isolates and one control (without inoculation) on the roots. Biometry and biomass data were submitted to cluster analysis to separate the isolates into groups according to the similarity degree, and groups' means were compared through the SNK test. Three groups were formed; group 1 was composed of the control; group 2 of the UFRA-35, UFRA-38, UFRA-58, UFRA-61, UFRA-92, and BRM-32111 isolates; and group 3 was composed of the BRM-32113 isolate. Group 2 and 3 isolates promoted an increase in growth, biomass accumulation, higher levels of nutrients and chlorophyll, and improvements in the gas exchange and chlorophyll-a fluorescence in comparison with the control. The results evidenced that the rhizobacteria accelerate the growth, increase the photosynthetic efficiency, and induce the leaf nutrient accumulation in açaí palm seedlings. The rhizobacteria inoculation can contribute to the sustainable management of the açaí palm seedling production in nurseries.
Collapse
Affiliation(s)
- Gledson Luiz Salgado de Castro
- Institute of Agricultural Sciences, Plant Protection Laboratory (LPP), Federal Rural University of Amazonia (UFRA), Belém, PA, 66077-830, Brazil
| | - Marcela Cristiane Ferreira Rêgo
- Institute of Agricultural Sciences, Plant Protection Laboratory (LPP), Federal Rural University of Amazonia (UFRA), Belém, PA, 66077-830, Brazil
| | | | - Telma Fátima Vieira Batista
- Institute of Agricultural Sciences, Plant Protection Laboratory (LPP), Federal Rural University of Amazonia (UFRA), Belém, PA, 66077-830, Brazil
| | - Gisele Barata da Silva
- Institute of Agricultural Sciences, Plant Protection Laboratory (LPP), Federal Rural University of Amazonia (UFRA), Belém, PA, 66077-830, Brazil.
| |
Collapse
|
27
|
Mikiciuk G, Sas-Paszt L, Mikiciuk M, Derkowska E, Trzciński P, Głuszek S, Lisek A, Wera-Bryl S, Rudnicka J. Mycorrhizal frequency, physiological parameters, and yield of strawberry plants inoculated with endomycorrhizal fungi and rhizosphere bacteria. MYCORRHIZA 2019; 29:489-501. [PMID: 31264099 DOI: 10.1007/s00572-019-00905-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Due to the impoverishment of agricultural and horticultural soils and replant diseases, there is a need to use bioproducts and beneficial microorganisms in order to improve the quality of soils and growth substrates. For this reason, research was undertaken to assess the impact of arbuscular mycorrhizal fungi and rhizosphere bacteria on changes in soil microbiology, the degree of colonization of plant roots by mycorrhizal fungi, selected physiological parameters, and fruit quality and yield of the strawberry cultivar "Rumba." The plants were inoculated with the mycorrhizal preparation Mykoflor (Rhizophagus irregularis, Funneliformis mosseae, Claroideoglomus etunicatum), MYC 800 (Rhizophagus intraradices), and the bacterial preparation Rhizocell C (Bacillus amyloliquefaciens IT45). The applied preparations increased the total number of bacteria and fungi in the soil and mycorrhizal frequency in the roots of the strawberry plants. They increased the chlorophyll "a" and total chlorophyll concentrations in the leaves as well as the rate of transpiration and CO2 concentration in the intercellular spaces in the leaves. The plants treated with Rhizocell C and MYC 800 exhibited a higher CO2 assimilation rate than control plants. The biopreparations increased chlorophyll fluorescence parameters such as maximum fluorescence (FM) and the maximum potential photochemical reaction efficiency in PS II (FV/FM). The influence of the species of rhizosphere bacteria and mycorrhizal fungi used in the experiment on the physiological traits of strawberry plants contributed, especially in the second year of the study, to increase the yield and mean weight of strawberry fruit.
Collapse
Affiliation(s)
- G Mikiciuk
- Department of Horticulture, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434, Szczecin, Poland.
| | - L Sas-Paszt
- Department of Microbiology, Research Institute of Horticulture, Pomologiczna 18, 96-100, Skierniewice, Poland
| | - M Mikiciuk
- Department of Plant Physiology and Biochemistry, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434, Szczecin, Poland
| | - E Derkowska
- Department of Microbiology, Research Institute of Horticulture, Pomologiczna 18, 96-100, Skierniewice, Poland
| | - P Trzciński
- Department of Microbiology, Research Institute of Horticulture, Pomologiczna 18, 96-100, Skierniewice, Poland
| | - S Głuszek
- Department of Microbiology, Research Institute of Horticulture, Pomologiczna 18, 96-100, Skierniewice, Poland
| | - A Lisek
- Department of Microbiology, Research Institute of Horticulture, Pomologiczna 18, 96-100, Skierniewice, Poland
| | - S Wera-Bryl
- Department of Horticulture, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434, Szczecin, Poland
| | - J Rudnicka
- Department of Horticulture, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434, Szczecin, Poland
| |
Collapse
|
28
|
Morais MC, Mucha Â, Ferreira H, Gonçalves B, Bacelar E, Marques G. Comparative study of plant growth-promoting bacteria on the physiology, growth and fruit quality of strawberry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5341-5349. [PMID: 31058322 DOI: 10.1002/jsfa.9773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The strawberry (Fragaria × ananassa Duch.) is, among small fruits, the most cultivated and commercialized in Portugal. Recent studies have evidenced the positive effect of plant growth-promoting bacteria (PGPB) inoculation on strawberry production and, at the same time, provided an alternative strategy to reduce the use of fertilizers. In this study the effects of root inoculation with three PGPB strains (Pedobacter sp. CC1, Bacillus safensis B106 and Bacillus subtilis B167A) on the physiology, growth, fruit production and quality of strawberry cv. Camarosa are presented. RESULTS PGPB inoculation significantly accelerated crop maturation, with inoculated plants fruiting about 2 weeks earlier than non-inoculated plants. Inoculated plants with Pedobacter sp. CC1 and Bacillus safensis B106 influenced the gas exchange parameters of strawberry plants. The contents of total phenolics and flavonoids in strawberry leaves were found to be greater with Pedobacter sp. CC1, when compared with non-inoculated plants. Furthermore, plants inoculated with the same bacterial strain showed enhancement in the dimensions of fruits, especially fruit length, and shape as well as in the total soluble solids content (°Brix). CONCLUSIONS The results showed that the PGPB Pedobacter sp. CC1 improved performance of strawberry plants, suggesting that it could be a potential biofertilizer for strawberry plant nutrition. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maria C Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Ângela Mucha
- University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Helena Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Eunice Bacelar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Guilhermina Marques
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
29
|
Tekielska D, Peňázová E, Kovács T, Křižan B, Čechová J, Eichmeier A. Bacterial Contamination of Plant in vitro Cultures in Commercial Production Detected by High-Throughput Amplicon Sequencing. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2019. [DOI: 10.11118/actaun201967041005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Hu G, Zhang L, Yun Y, Peng Y. Taking insight into the gut microbiota of three spider species: No characteristic symbiont was found corresponding to the special feeding style of spiders. Ecol Evol 2019; 9:8146-8156. [PMID: 31380078 PMCID: PMC6662400 DOI: 10.1002/ece3.5382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022] Open
Abstract
Microorganisms in insect guts have been recognized as having a great impact on their hosts' nutrition, health, and behavior. Spiders are important natural enemies of pests, and the composition of the gut microbiota of spiders remains unclear. Will the bacterial taxa in spiders be same as the bacterial taxa in insects, and what are the potential functions of the gut bacteria in spiders? To gain insight into the composition of the gut bacteria in spiders and their potential function, we collected three spider species, Pardosa laura, Pardosa astrigera, and Nurscia albofasciata, in the field, and high-throughput sequencing of the 16S rRNA V3 and V4 regions was used to investigate the diversity of gut microbiota across the three spider species. A total of 23 phyla and 150 families were identified in these three spider species. The dominant bacterial phylum across all samples was Proteobacteria. Burkholderia, Ralstonia, Ochrobactrum, Providencia, Acinetobacter, Proteus, and Rhodoplanes were the dominant genera in the guts of the three spider species. The relative abundances of Wolbachia and Rickettsiella detected in N. albofasciata were significantly higher than those in the other two spider species. The relative abundance of Thermus, Amycolatopsis, Lactococcus, Acinetobacter Microbacterium, and Koribacter detected in spider gut was different among the three spider species. Biomolecular interaction networks indicated that the microbiota in the guts had complex interactions. The results of this study also suggested that at the genus level, some of the gut bacteria taxa in the three spider species were the same as the bacteria in insect guts.
Collapse
Affiliation(s)
- Guowen Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, School of Life SciencesHubei UniversityWuhanChina
| | - Lihua Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, School of Life SciencesHubei UniversityWuhanChina
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, School of Life SciencesHubei UniversityWuhanChina
- Centre for Behavioral Ecology & Evolution, School of Life SciencesHubei UniversityWuhanChina
| | - Yu Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, School of Life SciencesHubei UniversityWuhanChina
- Centre for Behavioral Ecology & Evolution, School of Life SciencesHubei UniversityWuhanChina
| |
Collapse
|
31
|
Girsowicz R, Moroenyane I, Steinberger Y. Bacterial seed endophyte community of annual plants modulated by plant photosynthetic pathways. Microbiol Res 2019; 223-225:58-62. [PMID: 31178052 DOI: 10.1016/j.micres.2019.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/08/2019] [Accepted: 03/02/2019] [Indexed: 02/01/2023]
Abstract
Climate change is predicted to have adverse impacts on terrestrial ecosystems and uncertainties exist on how these systems will respond. Terrestrial plant ecosystems can be divided by how they fix atmospheric carbon- C3, C4 and CAM photosynthesis pathways. However, as for now, no clear answers could be given regarding the future global repartition of the C3, C4 and CAM plants. As seeds are the reproductive and dispersal unit of the plants and endophytes play a central role in their preservation; here it is suggested that a better knowledge regarding the seeds endophytic community is needed when studying the future repartition of C3, C4 and CAM plant seeds. Bacterial endophyte communities inhabiting seeds belonging to C3, C4 and CAM annual plants were analysed by culture-dependent methods and 16S rRNA gene sequencing. Results indicated there were differences in the relative abundance of bacterial phyla within and across all photosynthetic pathways. Indicating some level of niche partitioning, and each of the three photosynthetic pathways could be characterized by a specific endophytic composition of Firmicutes, corresponding to the adaptation capacity of each group. We successfully identified resistant species of endophytes in the Firmicutes phylum of C4 and CAM plant seeds. Those bacteria are known for being involved in thermal regulation and plant protection through enzymes and antibiotic synthesis and match the strong adaptation capacity of C4 and CAM plants. Overall, this study suggests that there is a plant-mediated selection of the seed microbiome and these symbionts could potentially confer additional benefits to the seed.
Collapse
Affiliation(s)
- Ruben Girsowicz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Itumeleng Moroenyane
- Institut National Recherche Scientifique, Centre-Institut Armand Frappier, 531 boulevard des Prairies, Laval, Québec, H7V1B7, Canada.
| | - Yosef Steinberger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
32
|
Wang Q, Ye J, Wu Y, Luo S, Chen B, Ma L, Pan F, Feng Y, Yang X. Promotion of the root development and Zn uptake of Sedum alfredii was achieved by an endophytic bacterium Sasm05. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:97-104. [PMID: 30684757 DOI: 10.1016/j.ecoenv.2019.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/08/2018] [Accepted: 01/04/2019] [Indexed: 05/22/2023]
Abstract
Endophyte-assisted phytoremediation has gained increasing attention. However, the interacting mechanisms of endophytes and metal hyperaccumulators are still not clear. An endophytic bacterium Pseudomonas fluorescens Sasm05 inoculation promoted Sedum alfredii Hance rooting and root development, in which the specific root length (SRL) and average number of root tips (ART) increased to 2.09- and 3.35-fold, respectively. Sasm05 inoculation promoted plant growth, increased the chlorophyll content, and elevated Zn uptake of plant at excess Zn supply. At 200 μM Zn treatment level, Sasm05 inoculation increased plant biomass and the chlorophyll content by more than 40%, and root Zn content by 40%. Furthermore, Sasm05 inoculation upregulated the expression of the Zn transporter SaIRT1 to 3.43-fold in the roots, while another transporter SaNramp1 expression was increased to 38.66-fold in the roots and 7.53-fold in the shoots. Time course study showed the best effects of Sasm05 on plant biomass and the chlorophyll content were detected at 30 d, while for Zn content at 3 d. These results firstly provided molecular evidences of endophytic bacteria in facilitating host plant Zn uptake, which will absolutely benefit the understanding of interacting mechanisms between hyperaccumulators and their endophytes.
Collapse
Affiliation(s)
- Qiong Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiayuan Ye
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingjie Wu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sha Luo
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bao Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Project Business Department, Jinjiang building, No. 111, Hushu south Road, Hangzhou city, Zhejiang province 310005, China
| | - Luyao Ma
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fengshan Pan
- Hailiang Group Co., Ltd., Hangzhou 310058, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoe Yang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Wu K, Li J, Luo J, Liu Y, Song Y, Liu N, Rafiq MT, Li T. Effects of elevated CO 2 and endophytic bacterium on photosynthetic characteristics and cadmium accumulation in Sedum alfredii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:357-366. [PMID: 29940447 DOI: 10.1016/j.scitotenv.2018.06.131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Elevated CO2 and use of endophytic microorganisms have been considered as efficient and novel ways to improve phytoextraction efficiency. However, the interactive effects of elevated CO2 and endophytes on hyperaccumulator is poorly understood. In this study, a hydroponics experiment was conducted to investigate the combined effect of elevated CO2 (eCO2) and inoculation with endophyte SaMR12 (ES) on the photosynthetic characteristics and cadmium (Cd) accumulation in hyperaccumulator Sedum alfredii. The results showed that eCO2 × ES interaction promoted the growth of S. alfredii, shoot and root biomass net increment were increased by 264.7 and 392.3%, respectively, as compared with plants grown in ambient CO2 (aCO2). The interaction of eCO2 and ES significantly (P < 0.05) increased chlorophyll content (53.2%), Pn (111.6%), Pnmax (59.8%), AQY (65.1%), and Lsp (28.8%), but reduced Gs, Tr, Rd, and Lcp. Increased photosynthetic efficiency was associated with higher activities of rubisco, Ca2+-ATPase, and Mg2+-ATPase, and linked with over-expression of two photosystem related genes (SaPsbS and SaLhcb2). PS II activities were significantly (P < 0.05) enhanced with Fv/Fm and Φ(II) increased by 12.3 and 13.0%, respectively, compared with plants grown in aCO2. In addition, the net uptake of Cd in the shoot and root tissue of S. alfredii grown in eCO2 × ES treatment was increased by 260.7 and 434.9%, respectively, due to increased expression of SaHMA2 and SaCAX2 Cd transporter genes. Our results suggest that eCO2 × ES can promote the growth of S. alfredii due to increased photosynthetic efficiency, and improve Cd accumulation and showed considerable potential of improving the phytoextraction ability of Cd by S. alfredii.
Collapse
Affiliation(s)
- Keren Wu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuankun Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuchao Song
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nanlin Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Tariq Rafiq
- Department of Environmental Science International Islamic University Islamabad, Pakistan
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
Muturi EJ, Lagos-Kutz D, Dunlap C, Ramirez JL, Rooney AP, Hartman GL, Fields CJ, Rendon G, Kim CH. Mosquito microbiota cluster by host sampling location. Parasit Vectors 2018; 11:468. [PMID: 30107817 PMCID: PMC6092830 DOI: 10.1186/s13071-018-3036-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
Background Microbial communities that inhabit the mosquito body play an import role in host biology and may have potential for mosquito control. However, the forces that shape these microbial communities are poorly understood. Methods To gain a better understanding of how host location influences the composition and diversity of mosquito microbiota, we performed a survey of microbial communities in mosquito samples collected from six USA states using HiSeq sequencing of the 16S rRNA gene. Results A total of 284 bacterial operational taxonomic units (OTUs) belonging to 14 phyla were detected in nine mosquito species, with Proteobacteria, Firmicutes and Actinobacteria accounting for 95% of total sequences. OTU richness varied markedly within and between mosquito species. The microbial composition and diversity was heavily influenced by the site of mosquito collection, suggesting that host location plays an important role in shaping the mosquito microbiota. Conclusions Variation in microbial composition and diversity between mosquitoes from different locations may have important implications on vector competence and transmission dynamics of mosquito-borne pathogens. Future studies should investigate the environmental factors responsible for these variations and the role of key bacteria characterized in this study on mosquito biology and their potential application in symbiotic control of mosquito-borne diseases. Electronic supplementary material The online version of this article (10.1186/s13071-018-3036-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ephantus J Muturi
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University St., Peoria, IL, 61604, USA.
| | - Doris Lagos-Kutz
- National Soybean Research Center, Agricultural Research Service,U.S. Department of Agriculture, 1101 W. Peabody Dr., Urbana, IL, 61801, USA
| | - Christopher Dunlap
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University St., Peoria, IL, 61604, USA
| | - Jose L Ramirez
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University St., Peoria, IL, 61604, USA
| | - Alejandro P Rooney
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University St., Peoria, IL, 61604, USA
| | - Glen L Hartman
- National Soybean Research Center, Agricultural Research Service,U.S. Department of Agriculture, 1101 W. Peabody Dr., Urbana, IL, 61801, USA
| | - Christopher J Fields
- High Performance Biological Computing (HPCBio), Roy J Carver Biotechnology Center, University of Illinois at Urbana-Champaign, 1206 West Gregory Dr., Urbana, IL, 61801, USA
| | - Gloria Rendon
- High Performance Biological Computing (HPCBio), Roy J Carver Biotechnology Center, University of Illinois at Urbana-Champaign, 1206 West Gregory Dr., Urbana, IL, 61801, USA
| | - Chang-Hyun Kim
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, 1816 S. Oak St., Champaign, IL, 61820, USA
| |
Collapse
|
35
|
Wu K, Luo J, Li J, An Q, Yang X, Liang Y, Li T. Endophytic bacterium Buttiauxella sp. SaSR13 improves plant growth and cadmium accumulation of hyperaccumulator Sedum alfredii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21844-21854. [PMID: 29796886 DOI: 10.1007/s11356-018-2322-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Inoculation with endophytic bacterium has been considered as a prospective application to improve the efficiency of phytoextraction. In this study, the effect of Buttiauxella sp. SaSR13 (SaSR13), a novel endophytic bacterium isolated from the root of hyperaccumulator Sedum alfredii, on plant growth and cadmium (Cd) accumulation in S. alfredii was investigated. Laser scanning confocal microscopic (LSCM) images showed that SaSR13 was mainly colonized in the root elongation and mature zones. The inoculation with SaSR13 to Cd-treated plants significantly enhanced plant growth (by 39 and 42% for shoot and root biomass, respectively), chlorophyll contents (by 38%), and Cd concentration in the shoot and root (by 32 and 22%, respectively). SaSR13 stimulated the development of roots (increased root length, surface area, and root tips number) due to an increase in the indole-3-acid (IAA) concentrations and a decrease in the concentrations of superoxide anion (O2.-) in plants grown under Cd stress. Furthermore, inoculation with SaSR13 enhanced the release of root exudates, especially malic acid and oxalic acid, which might have facilitated the uptake of Cd by S. alfredii. It is suggested that inoculation with endophytic bacterium SaSR13 is a promising bioaugmentation method to enhance the Cd phytoextraction efficiency by S. alfredii.
Collapse
Affiliation(s)
- Keren Wu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qianli An
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
36
|
Alcántara-Martínez N, Figueroa-Martínez F, Rivera-Cabrera F, Gutiérrez-Sánchez G, Volke-Sepúlveda T. An endophytic strain of Methylobacterium sp. increases arsenate tolerance in Acacia farnesiana (L.) Willd: A proteomic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:762-774. [PMID: 29306824 DOI: 10.1016/j.scitotenv.2017.12.314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Nemi Alcántara-Martínez
- Biotechnology Department, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa 09340, Ciudad de México, Mexico.
| | - Francisco Figueroa-Martínez
- Biotechnology Department, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa 09340, Ciudad de México, Mexico.
| | - Fernando Rivera-Cabrera
- Department of Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa 09340, Ciudad de México, Mexico.
| | - Gerardo Gutiérrez-Sánchez
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30605, USA.
| | - Tania Volke-Sepúlveda
- Biotechnology Department, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa 09340, Ciudad de México, Mexico.
| |
Collapse
|
37
|
Zhou N, Zhao S, Tian CY. Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. FEMS Microbiol Lett 2018; 364:3786352. [PMID: 28460054 DOI: 10.1093/femsle/fnx091] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/27/2017] [Indexed: 11/12/2022] Open
Abstract
Utilization of rhizobacteria that have associated with plant roots in harsh environments could be a feasible strategy to deal with limits to agricultural production caused by soil salinity. Halophytes occur naturally in high-salt environments, and their roots may be associated with promising microbial candidates for promoting growth and salt tolerance in crops. This study aimed to isolate efficient halotolerant plant-growth-promoting rhizobacterial strains from halophytes and evaluate their activity and effects on sugar beet (Beta vulgaris L.) growth under salinity stress. A total of 23 isolates were initially screened for their ability to secrete 1-aminocyclopropane-1-carboxylate deaminase (ACD) as well as other plant-growth-promoting characteristics and subsequently identified by sequencing the 16S rRNA gene. Three isolates, identified as Micrococcus yunnanensis, Planococcus rifietoensis and Variovorax paradoxus, enhanced salt stress tolerance remarkably in sugar beet, resulting in greater seed germination and plant biomass, higher photosynthetic capacity and lower stress-induced ethylene production at different NaCl concentrations (50-125 mM). These results demonstrate that salinity-adapted, ACD-producing bacteria isolated from halophytes could promote sugar beet growth under saline stress conditions.
Collapse
Affiliation(s)
- Na Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Zhao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Chang-Yan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
38
|
Paradiso R, Arena C, De Micco V, Giordano M, Aronne G, De Pascale S. Changes in Leaf Anatomical Traits Enhanced Photosynthetic Activity of Soybean Grown in Hydroponics with Plant Growth-Promoting Microorganisms. FRONTIERS IN PLANT SCIENCE 2017; 8:674. [PMID: 28529515 PMCID: PMC5418343 DOI: 10.3389/fpls.2017.00674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/12/2017] [Indexed: 05/11/2023]
Abstract
The use of hydroponic systems for cultivation in controlled climatic conditions and the selection of suitable genotypes for the specific environment help improving crop growth and yield. We hypothesized that plant performance in hydroponics could be further maximized by exploiting the action of plant growth-promoting organisms (PGPMs). However, the effects of PGPMs on plant physiology have been scarcely investigated in hydroponics. Within a series of experiments aimed to identify the best protocol for hydroponic cultivation of soybean [Glycine max (L.) Merr.], we evaluated the effects of a PGPMs mix, containing bacteria, yeasts, mycorrhiza and trichoderma beneficial species on leaf anatomy, photosynthetic activity and plant growth of soybean cv. 'Pr91m10' in closed nutrient film technique (NFT). Plants were grown in a growth chamber under semi-aseptic conditions and inoculated at seed, seedling and plant stages, and compared to non-inoculated (control) plants. Light and epi-fluorescence microscopy analyses showed that leaves of inoculated plants had higher density of smaller stomata (297 vs. 247 n/mm2), thicker palisade parenchyma (95.0 vs. 85.8 μm), and larger intercellular spaces in the mesophyll (57.5% vs. 52.2%), compared to non-inoculated plants. The modifications in leaf functional anatomical traits affected gas exchanges; in fact starting from the reproductive phase, the rate of leaf net photosynthesis (NP) was higher in inoculated compared to control plants (8.69 vs. 6.13 μmol CO2 m-2 s-1 at the beginning of flowering). These data are consistent with the better maximal PSII photochemical efficiency observed in inoculated plants (0.807 vs. 0.784 in control); conversely no difference in leaf chlorophyll content was found. The PGPM-induced changes in leaf structure and photosynthesis lead to an improvement of plant growth (+29.9% in plant leaf area) and seed yield (+36.9%) compared to control. Our results confirm that PGPMs may confer benefits in photosynthetic traits of soybean plants even in hydroponics (i.e., NFT), with positive effects on growth and seed production, prefiguring potential application of beneficial microorganisms in plant cultivation in hydroponics.
Collapse
Affiliation(s)
- Roberta Paradiso
- Agricultural and Food Sciences, University of Naples Federico IINaples, Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico IINaples, Italy
| | - Veronica De Micco
- Agricultural and Food Sciences, University of Naples Federico IINaples, Italy
| | - Maria Giordano
- Agricultural and Food Sciences, University of Naples Federico IINaples, Italy
| | - Giovanna Aronne
- Agricultural and Food Sciences, University of Naples Federico IINaples, Italy
| | - Stefania De Pascale
- Agricultural and Food Sciences, University of Naples Federico IINaples, Italy
| |
Collapse
|
39
|
McKernan K, Spangler J, Helbert Y, Lynch RC, Devitt-Lee A, Zhang L, Orphe W, Warner J, Foss T, Hudalla CJ, Silva M, Smith DR. Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests. F1000Res 2016; 5:2471. [PMID: 27853518 PMCID: PMC5089129 DOI: 10.12688/f1000research.9662.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2016] [Indexed: 12/26/2022] Open
Abstract
Background: The presence of bacteria and fungi in medicinal or recreational
Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM) testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR) approach marketed by Medicinal Genomics Corporation. Methods: A set of 15 medicinal
Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results: Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including
Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and
Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of
Aspergillus species to grow well on either platform. Substantial growth of
Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial) fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions: These findings have important implications for the
Cannabis and food safety testing industries.
Collapse
Affiliation(s)
| | | | | | - Ryan C Lynch
- Medicinal Genomics Corporation, Woburn, MA, 01801, USA
| | | | - Lei Zhang
- Medicinal Genomics Corporation, Woburn, MA, 01801, USA
| | - Wendell Orphe
- Medicinal Genomics Corporation, Woburn, MA, 01801, USA
| | - Jason Warner
- Medicinal Genomics Corporation, Woburn, MA, 01801, USA
| | - Theodore Foss
- Medicinal Genomics Corporation, Woburn, MA, 01801, USA
| | | | | | | |
Collapse
|
40
|
Tsurumaru H, Okubo T, Okazaki K, Hashimoto M, Kakizaki K, Hanzawa E, Takahashi H, Asanome N, Tanaka F, Sekiyama Y, Ikeda S, Minamisawa K. Metagenomic analysis of the bacterial community associated with the taproot of sugar beet. Microbes Environ 2015; 30:63-9. [PMID: 25740621 PMCID: PMC4356465 DOI: 10.1264/jsme2.me14109] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We analyzed a metagenome of the bacterial community associated with the taproot of sugar beet (Beta vulgaris L.) in order to investigate the genes involved in plant growth-promoting traits (PGPTs), namely 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indole acetic acid (IAA), N2 fixation, phosphate solubilization, pyrroloquinoline quinone, siderophores, and plant disease suppression as well as methanol, sucrose, and betaine utilization. The most frequently detected gene among the PGPT categories encoded β-1,3-glucanase (18 per 10(5) reads), which plays a role in the suppression of plant diseases. Genes involved in phosphate solubilization (e.g., for quinoprotein glucose dehydrogenase), methanol utilization (e.g., for methanol dehydrogenase), siderophore production (e.g. isochorismate pyruvate lyase), and ACC deaminase were also abundant. These results suggested that such PGPTs are crucially involved in supporting the growth of sugar beet. In contrast, genes for IAA production (iaaM and ipdC) were less abundant (~1 per 10(5) reads). N2 fixation genes (nifHDK) were not detected; bacterial N2 -fixing activity was not observed in the (15)N2 -feeding experiment. An analysis of nitrogen metabolism suggested that the sugar beet microbiome mainly utilized ammonium and nitroalkane as nitrogen sources. Thus, N2 fixation and IAA production did not appear to contribute to sugar beet growth. Taxonomic assignment of this metagenome revealed the high abundance of Mesorhizobium, Bradyrhizobium, and Streptomyces, suggesting that these genera have ecologically important roles in the taproot of sugar beet. Bradyrhizobium-assigned reads in particular were found in almost all categories of dominant PGPTs with high abundance. The present study revealed the characteristic functional genes in the taproot-associated microbiome of sugar beet, and suggest the opportunity to select sugar beet growth-promoting bacteria.
Collapse
|
41
|
Handtke S, Volland S, Methling K, Albrecht D, Becher D, Nehls J, Bongaerts J, Maurer KH, Lalk M, Liesegang H, Voigt B, Daniel R, Hecker M. Cell physiology of the biotechnological relevant bacterium Bacillus pumilus-an omics-based approach. J Biotechnol 2014; 192 Pt A:204-14. [PMID: 25281541 DOI: 10.1016/j.jbiotec.2014.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/15/2014] [Accepted: 08/22/2014] [Indexed: 12/18/2022]
Abstract
Members of the species Bacillus pumilus get more and more in focus of the biotechnological industry as potential new production strains. Based on exoproteome analysis, B. pumilus strain Jo2, possessing a high secretion capability, was chosen for an omics-based investigation. The proteome and metabolome of B. pumilus cells growing either in minimal or complex medium was analyzed. In total, 1542 proteins were identified in growing B. pumilus cells, among them 1182 cytosolic proteins, 297 membrane and lipoproteins and 63 secreted proteins. This accounts for about 43% of the 3616 proteins encoded in the B. pumilus Jo2 genome sequence. By using GC-MS, IP-LC/MS and H NMR methods numerous metabolites were analyzed and assigned to reconstructed metabolic pathways. In the genome sequence a functional secretion system including the components of the Sec- and Tat-secretion machinery was found. Analysis of the exoproteome revealed secretion of about 70 proteins with predicted secretion signals. In addition, selected production-relevant genome features such as restriction modification systems and NRPS clusters of B. pumilus Jo2 are discussed.
Collapse
Affiliation(s)
- Stefan Handtke
- Institute for Microbiology, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Sonja Volland
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany.
| | - Karen Methling
- Institute of Biochemistry, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Dirk Albrecht
- Institute for Microbiology, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Jenny Nehls
- Institute of Biochemistry, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Johannes Bongaerts
- Department of Chemistry and Biotechnology, Aachen University of Applied Sciences, Heinrich-Mußmannstr. 1, 52428 Jülich, Germany.
| | | | - Michael Lalk
- Institute of Biochemistry, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Heiko Liesegang
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany.
| | - Birgit Voigt
- Institute for Microbiology, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany.
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt University, Greifswald, Germany.
| |
Collapse
|
42
|
The endophytic bacterium, Sphingomonas SaMR12, improves the potential for zinc phytoremediation by its host, Sedum alfredii. PLoS One 2014; 9:e106826. [PMID: 25198772 PMCID: PMC4157784 DOI: 10.1371/journal.pone.0106826] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 07/30/2014] [Indexed: 11/19/2022] Open
Abstract
The endophytic bacterium, Sphingomonas SaMR12, isolated from Sedum alfredii Hance, appears to increase plant biomass and zinc-extraction from contaminated soil; however, the mechanism by which this occurs is not clear. Here, the ability of SaMR12 to promote zinc extraction and its effects on root morphology and exudation were examined in hydroponics. Zinc treatment increased shoot biomass by 30 to 45%, and by a further 10 to 19% when combined with SaMR12 inoculation. Zinc treatment also increased zinc accumulation modestly and this too was enhanced with SaMR12. Both biomass and zinc levels increased in a dose-dependent manner with significant effects seen at 50 µM zinc and apparent saturation at 500 µM. Zinc and the endophyte also increased levels of auxin but not at 50 µM and zinc increased levels of superoxide and hydrogen peroxide but mainly at 500 µM. As for root morphology, SaMR12 increased root branching, the number of root tips, and surface area. Zinc and SaMR12 also increased the exudation of oxalic acid. For most assays the effects of the endophyte and zinc were additive, with the notable exception of SaMR12 strongly reducing the production of reactive oxygen species at 500 µM zinc. Taken together, these results suggest that the promotion of growth and zinc uptake by exposure to zinc and to SaMR12 are independent of reactive oxygen and do not involve increases in auxin.
Collapse
|
43
|
Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Appl Microbiol Biotechnol 2014; 98:6375-85. [PMID: 24752839 DOI: 10.1007/s00253-014-5720-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
Abstract
Plants harbors complex and variable microbial communities. Endophytic bacteria play an important function and potential role more effectively in developing sustainable systems of crop production. To examine how endophytic bacteria in sugar beet (Beta vulgaris L.) vary across both host growth period and location, PCR-based Illumina was applied to revealed the diversity and stability of endophytic bacteria in sugar beet on the north slope of Tianshan mountain, China. A total of 60.84 M effective sequences of 16S rRNA gene V3 region were obtained from sugar beet samples. These sequences revealed huge amount of operational taxonomic units (OTUs) in sugar beet, that is, 19-121 OTUs in a beet sample, at 3 % cutoff level and sequencing depth of 30,000 sequences. We identified 13 classes from the resulting 449,585 sequences. Alphaproteobacteria were the dominant class in all sugar beets, followed by Acidobacteria, Gemmatimonadetes and Actinobacteria. A marked difference in the diversity of endophytic bacteria in sugar beet for different growth periods was evident. The greatest number of OTUs was detected during rossette formation (109 OTUs) and tuber growth (146 OTUs). Endophytic bacteria diversity was reduced during seedling growth (66 OTUs) and sucrose accumulation (95 OTUs). Forty-three OTUs were common to all four periods. There were more tags of Alphaproteobacteria and Gammaproteobacteria in Shihezi than in Changji. The dynamics of endophytic bacteria communities were influenced by plant genotype and plant growth stage. To the best of our knowledge, this study is the first application of PCR-based Illumina pyrosequencing to characterize and compare multiple sugar beet samples.
Collapse
|
44
|
Minard G, Mavingui P, Moro CV. Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit Vectors 2013; 6:146. [PMID: 23688194 PMCID: PMC3667145 DOI: 10.1186/1756-3305-6-146] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/08/2013] [Indexed: 11/15/2022] Open
Abstract
Mosquitoes (Diptera: Culicidae) have been shown to host diverse bacterial communities that vary depending on the sex of the mosquito, the developmental stage, and ecological factors. Some studies have suggested a potential role of microbiota in the nutritional, developmental and reproductive biology of mosquitoes. Here, we present a review of the diversity and functions of mosquito-associated bacteria across multiple variation factors, emphasizing recent findings. Mosquito microbiota is considered in the context of possible extended phenotypes conferred on the insect hosts that allow niche diversification and rapid adaptive evolution in other insects. These kinds of observations have prompted the recent development of new mosquito control methods based on the use of symbiotically-modified mosquitoes to interfere with pathogen transmission or reduce the host life span and reproduction. New opportunities for exploiting bacterial function for vector control are highlighted.
Collapse
Affiliation(s)
- Guillaume Minard
- UMR CNRS 5557, USC INRA 1364, VetAgro Sup, Ecologie Microbienne, FR41 BioEnvironment and Health, Université de Lyon 1, Villeurbanne F-69622, France
| | | | | |
Collapse
|
45
|
Mitter B, Brader G, Afzal M, Compant S, Naveed M, Trognitz F, Sessitsch A. Advances in Elucidating Beneficial Interactions Between Plants, Soil, and Bacteria. ADVANCES IN AGRONOMY 2013:381-445. [PMID: 0 DOI: 10.1016/b978-0-12-407685-3.00007-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|
46
|
Carvalhais LC, Muzzi F, Tan CH, Hsien-Choo J, Schenk PM. Plant growth in Arabidopsis is assisted by compost soil-derived microbial communities. FRONTIERS IN PLANT SCIENCE 2013; 4:235. [PMID: 23847639 PMCID: PMC3701873 DOI: 10.3389/fpls.2013.00235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/14/2013] [Indexed: 05/03/2023]
Abstract
Plants in natural and agricultural environments are continuously exposed to a plethora of diverse microorganisms resulting in microbial colonization of roots and the rhizosphere. This process is believed to be accompanied by an intricate network of ongoing simultaneous interactions. In this study, we examined Arabidopsis thaliana roots and shoots in the presence or absence of whole microbial communities extracted from compost soil. The results show a clear growth promoting effect on Arabidopsis shoots in the presence of soil microbes compared to plants grown in microbe-free soil under otherwise identical conditions. Element analyses showed that iron uptake was facilitated by these mixed microbial communities which also led to transcriptional downregulation of genes required for iron transport. In addition, soil microbial communities suppressed the expression of marker genes involved in nitrogen uptake, oxidative stress/redox signaling, and salicylic acid (SA)-mediated plant defense while upregulating jasmonate (JA) signaling, cell wall organization/biosynthesis and photosynthesis. Multi-species analyses such as simultaneous transcriptional profiling of plants and their interacting microorganisms (metatranscriptomics) coupled to metagenomics may further increase our understanding of the intricate networks underlying plant-microbe interactions.
Collapse
Affiliation(s)
| | | | | | | | - Peer M. Schenk
- *Correspondence: Peer M. Schenk, Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, John Hines Building 62, Mansfield Place, Brisbane, QLD 4072, Australia e-mail:
| |
Collapse
|
47
|
Bacillus subtilis and Enterobacter cloacae endophytes from healthy Theobroma cacao L. trees can systemically colonize seedlings and promote growth. Appl Microbiol Biotechnol 2012; 97:2639-51. [PMID: 23212670 DOI: 10.1007/s00253-012-4574-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022]
Abstract
Clonal genotypes resistant to fungal diseases are an important component of the cocoa production system in southeastern Bahia state (Brazil), so that technologies for faster production of stronger and healthier plantlets are highly desirable. In this study, the effects of inoculated bacterial endophytes isolated from healthy adult cacao plants on seedlings, and aspects related to inoculation methods, colonization patterns, and photosynthesis were investigated. Sequencing of 16S rRNA, hsp-60, and rpo-B genes placed the wild-type isolates within the species Enterobacter cloacae (isolates 341 and 344) and Bacillus subtilis (isolate 629). Spontaneous rifampicin-resistant (rif(R)) variants for 344 were also produced and tested. Endophytic application was either by immersion of surface sterilized seeds in bacterial suspensions or direct inoculation into soil, 20 days after planting non-inoculated seeds into pots. Results from in vitro recovery of inoculated isolates showed that the wild-type endophytes and rif(R) variants systemically colonized the entire cacao seedlings in 15-20 days, regardless of the inoculation method. Some endophytic treatments showed significant increases in seedlings' height, number of leaves, and dry matter. Inoculation methods affected the combined application of endophytes, which maintained the growth-promotion effects, but not in the same manner as in single applications. Interestingly, the 344-3.2 rif(R) variant showed improved performance in relation to both the wild type and another related variant. Photosynthetic rates and stomatal conductance increased significantly for some endophytic treatments, being partially associated with effects on growth and affected by the inoculation method. The results suggest that E. cloacae and B. subtilis endophytes from healthy adult plants (not transmitted by seeds) were able to promote vegetative growth on cacao seedlings. The development of products for large-scale use in seedlings/plantlets production systems was discussed.
Collapse
|
48
|
Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 2011; 93:1745-53. [DOI: 10.1007/s00253-011-3483-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/27/2011] [Accepted: 07/13/2011] [Indexed: 11/26/2022]
|