1
|
Dou X, Li M, Ge Y, Yin G, Wang X, Xue S, Jia B, Zi L, Wan H, Xi Y, Chi Z, Kong F. Photoproduction of Aviation Fuel β-Caryophyllene From the Eukaryotic Green Microalga Chlamydomonas reinhardtii. Biotechnol Bioeng 2024. [PMID: 39648338 DOI: 10.1002/bit.28898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024]
Abstract
β-caryophyllene is a plant-derived sesquiterpene and is regarded as a promising ingredient for aviation fuels. Microalgae can convert CO2 into energy-rich bioproducts through photosynthesis, making them potential platforms for the sustainable production of sesquiterpenes. However, heterologous sesquiterpene engineering in microalgae is still in its infancy, and β-caryophyllene production in eukaryotic photosynthetic microorganisms has not been reported. In this study, we succeeded in producing β-caryophyllene in the model eukaryotic microalga Chlamydomonas reinhardtii by heterologously expressing a β-caryophyllene synthase (QHS). Furthermore, overexpressing the key enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway in the QHS-expressing strain (QHS-DXS-HDR-18) resulted in a 17-fold higher β-caryophyllene production compared to the single expression of QHS (QHS-28). Additionally, when isopentenyl diphosphate isomerase (CrIDI) was overexpressed, the β-caryophyllene production was up to 480.6 μg/L in QHS-DXS-HDR-CrIDI-16 and increased by 1.8-fold compared to the parental strain QHS-DXS-HDR-18. Under photoautotrophic and photomixotrophic conditions in photobioreactors, the β-caryophyllene production in QHS-DXS-HDR-CrIDI-16 reached 854.7 and 1016.8 μg/L, respectively. Noticeably, all the β-caryophyllene-producing strains generated in this study did not exhibit adverse effects on cell growth and photosynthesis activity compared to the untransformed strain. This study demonstrates the first successful attempt to produce β-caryophyllene in the eukaryotic microalga C. reinhardtii and develops a novel strategy for increasing sesquiterpene production in eukaryotic photosynthetic microorganisms.
Collapse
Affiliation(s)
- Xiaotan Dou
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Mengjie Li
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yunlong Ge
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Gerui Yin
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Xinyu Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Song Xue
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Baolin Jia
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Lihan Zi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Huihui Wan
- Instrumental Analysis Center, Dalian University of Technology, Dalian, Liaoning, China
| | - Yimei Xi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Zhanyou Chi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Fantao Kong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
2
|
Melis A, Hidalgo Martinez DA, Betterle N. Perspectives of cyanobacterial cell factories. PHOTOSYNTHESIS RESEARCH 2024; 162:459-471. [PMID: 37966575 PMCID: PMC11615099 DOI: 10.1007/s11120-023-01056-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023]
Abstract
Cyanobacteria are prokaryotic photosynthetic microorganisms that can generate, in addition to biomass, useful chemicals and proteins/enzymes, essentially from sunlight, carbon dioxide, and water. Selected aspects of cyanobacterial production (isoprenoids and high-value proteins) and scale-up methods suitable for product generation and downstream processing are addressed in this review. The work focuses on the challenge and promise of specialty chemicals and proteins production, with isoprenoid products and biopharma proteins as study cases, and the challenges encountered in the expression of recombinant proteins/enzymes, which underline the essence of synthetic biology with these microorganisms. Progress and the current state-of-the-art in these targeted topics are emphasized.
Collapse
Affiliation(s)
- Anastasios Melis
- Department of Plant and Microbial Biology, University of California, MC-3102, Berkeley, CA, 94720-3102, USA.
| | - Diego Alberto Hidalgo Martinez
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Nico Betterle
- SoLELab, Department of Biotechnology, University of Verona, 37134, Verona, Italy
| |
Collapse
|
3
|
Song Z, Li W, He Q, Xie X, Wang X, Guo J. Natural products - Dawn of keloid treatment. Fitoterapia 2024; 175:105918. [PMID: 38554887 DOI: 10.1016/j.fitote.2024.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Keloids are prevalent pathological scars, often leading to cosmetic deformities and hindering joint mobility.They cause discomfort, including burning and itching, while gradually expanding and potentially posing a risk of cancer.Developing effective drugs and treatments for keloids has been a persistent challenge in the medical field. Natural products are an important source of innovative drugs and a breakthrough for many knotty disease.Herein, keywords of "natural, plant, compound, extract" were combined with "keloid" and searched in PubMed and Google Scholar, respectively. A total of 32 natural products as well as 9 extracts possessing the potential for treating keloids were ultimately identified.Current research in this field faces a significant challenge due to the lack of suitable animal models, resulting in a predominant reliance on in vitro studies.In vivo and clinical studies are notably scarce as a result.Moreover, there is a notable deficiency in research focusing on the role of nutrients in keloid formation and treatment.The appropriate dosage form (oral, topical, injectable) is crucial for the development of natural product drugs. Finally, the conclusion was hereby made that natural products, when used as adjuncts to other treatments, hold significant potential in the management of keloids.By summarizing the natural products and elucidating their mechanisms in keloid treatment, the present study aims to stimulate further discoveries and research in drug development for effectively addressing this challenging condition.
Collapse
Affiliation(s)
- Zongzhou Song
- Department of Dermatological, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610036, China
| | - Wenquan Li
- Department of Dermatological, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610036, China
| | - Qingying He
- Department of Dermatological, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610036, China
| | - Xin Xie
- Department of Dermatological, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610036, China
| | - Xurui Wang
- Department of Dermatological, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610036, China
| | - Jing Guo
- Department of Dermatological, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610036, China.
| |
Collapse
|
4
|
Zhou J, Xu S, Li H, Xi H, Cheng W, Yang C. A Ribulose-5-phosphate Shunt from the Calvin-Benson Cycle to Methylerythritol Phosphate Pathway for Enhancing Photosynthetic Terpenoid Production. ACS Synth Biol 2024; 13:876-887. [PMID: 38362836 DOI: 10.1021/acssynbio.3c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cyanobacteria are attractive hosts for photosynthetic terpenoid production, using CO2 as the sole carbon source. Although the methylerythritol phosphate (MEP) pathway is superior to the mevalonate pathway for cyanobacterial terpenoid synthesis, the first reaction of the MEP pathway, which is catalyzed by 1-deoxy-d-xylulose-5-phosphate (DXP) synthase, involves complex regulation and carbon loss. Here, we constructed a direct route linking ribulose-5-phosphate (Ru5P) in the Calvin-Benson (CB) cycle with DXP in the MEP pathway in a cyanobacterium to increase the terpenoid yield from CO2 and bypass the DXS-targeted regulations. By employing the adaptive laboratory evolution, we identified new RibB variants including RibB 90-92del with a high activity of synthesizing DXP from Ru5P. These RibB variants were introduced into Synechococcus elongatus, resulting in the significantly increased photosynthetic production of isopentenol. The 13C tracer experiments demonstrated a direct carbon flow from Ru5P in the CB cycle to the MEP pathway; thus, this direct route was denoted as the Ru5P shunt. The strain harboring the Ru5P shunt produced 105.2 mg L-1 of isopentenol with an average rate of 17.5 mg L-1 d-1 under continuous light conditions, which is higher than those ever reported for five-carbon alcohol production by photoautotrophic microorganisms. Utilization of the Ru5P shunt in cyanobacterial cells also improved the pinene production, which demonstrates that this shunt can be used to enhance the photosynthetic production of diverse terpenoids.
Collapse
Affiliation(s)
- Jie Zhou
- CAS-Key Laboratory of Synthetic Biology, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suxian Xu
- CAS-Key Laboratory of Synthetic Biology, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Li
- CAS-Key Laboratory of Synthetic Biology, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huachao Xi
- CAS-Key Laboratory of Synthetic Biology, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Cheng
- CAS-Key Laboratory of Synthetic Biology, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
Du Z, Bhat WW, Poliner E, Johnson S, Bertucci C, Farre E, Hamberger B. Engineering Nannochloropsis oceanica for the production of diterpenoid compounds. MLIFE 2023; 2:428-437. [PMID: 38818264 PMCID: PMC10989085 DOI: 10.1002/mlf2.12097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/24/2023] [Accepted: 10/04/2023] [Indexed: 06/01/2024]
Abstract
Photosynthetic microalgae like Nannochloropsis hold enormous potential as sustainable, light-driven biofactories for the production of high-value natural products such as terpenoids. Nannochloropsis oceanica is distinguished as a particularly robust host with extensive genomic and transgenic resources available. Its capacity to grow in wastewater, brackish, and sea waters, coupled with advances in microalgal metabolic engineering, genome editing, and synthetic biology, provides an excellent opportunity. In the present work, we demonstrate how N. oceanica can be engineered to produce the diterpene casbene-an important intermediate in the biosynthesis of pharmacologically relevant macrocyclic diterpenoids. Casbene accumulated after stably expressing and targeting the casbene synthase from Daphne genkwa (DgTPS1) to the algal chloroplast. The engineered strains yielded production titers of up to 0.12 mg g-1 total dry cell weight (DCW) casbene. Heterologous overexpression and chloroplast targeting of two upstream rate-limiting enzymes in the 2-C-methyl- d-erythritol 4-phosphate pathway, Coleus forskohlii 1-deoxy- d-xylulose-5-phosphate synthase and geranylgeranyl diphosphate synthase genes, further enhanced the yield of casbene to a titer up to 1.80 mg g-1 DCW. The results presented here form a basis for further development and production of complex plant diterpenoids in microalgae.
Collapse
Affiliation(s)
- Zhi‐Yan Du
- Department of Molecular Biosciences and BioengineeringUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Wajid W. Bhat
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Eric Poliner
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Sean Johnson
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
- Present address:
New England Biolabs Inc.240 County RoadIpswich01938MAUSA
| | - Conor Bertucci
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Eva Farre
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Bjoern Hamberger
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
6
|
Yahya RZ, Wellman GB, Overmans S, Lauersen KJ. Engineered production of isoprene from the model green microalga Chlamydomonas reinhardtii. Metab Eng Commun 2023; 16:e00221. [PMID: 37006831 PMCID: PMC10063407 DOI: 10.1016/j.mec.2023.e00221] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Isoprene is a clear, colorless, volatile 5-carbon hydrocarbon that is one monomer of all cellular isoprenoids and a platform chemical with multiple applications in industry. Many plants have evolved isoprene synthases (IspSs) with the capacity to liberate isoprene from dimethylallyl diphosphate (DMADP) as part of cellular thermotolerance mechanisms. Isoprene is hydrophobic and volatile, rapidly leaves plant tissues and is one of the main carbon emission sources from vegetation globally. The universality of isoprenoid metabolism allows volatile isoprene production from microbes expressing heterologous IspSs. Here, we compared heterologous overexpression from the nuclear genome and localization into the plastid of four plant terpene synthases (TPs) in the green microalga Chlamydomonas reinhardtii. Using sealed vial mixotrophic cultivation, direct quantification of isoprene production was achieved from the headspace of living cultures, with the highest isoprene production observed in algae expressing the Ipomoea batatas IspS. Perturbations of the downstream carotenoid pathway through keto carotenoid biosynthesis enhanced isoprene titers, which could be further enhanced by increasing flux towards DMADP through heterologous co-expression of a yeast isopentenyl-DP delta isomerase. Multiplexed controlled-environment testing revealed that cultivation temperature, rather than illumination intensity, was the main factor affecting isoprene yield from the engineered alga. This is the first report of heterologous isoprene production from a eukaryotic alga and sets a foundation for further exploration of carbon conversion to this commodity chemical.
Collapse
|
7
|
Manina AS, Forlani F. Biotechnologies in Perfume Manufacturing: Metabolic Engineering of Terpenoid Biosynthesis. Int J Mol Sci 2023; 24:ijms24097874. [PMID: 37175581 PMCID: PMC10178209 DOI: 10.3390/ijms24097874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The fragrance industry is increasingly turning to biotechnology to produce sustainable and high-quality fragrance ingredients. Microbial-based approaches have been found to be particularly promising, as they offer a more practical, economical and sustainable alternative to plant-based biotechnological methods for producing terpene derivatives of perfumery interest. Among the evaluated works, the heterologous expression of both terpene synthase and mevalonate pathway into Escherichia coli has shown the highest yields. Biotechnology solutions have the potential to help address the growing demand for sustainable and high-quality fragrance ingredients in an economically viable and responsible manner. These approaches can help compensate for supply issues of rare or impermanent raw materials, while also meeting the increasing demand for sustainable ingredients and processes. Although scaling up biotransformation processes can present challenges, they also offer advantages in terms of safety and energy savings. Exploring microbial cell factories for the production of natural fragrance compounds is a promising solution to both supply difficulties and the demand for sustainable ingredients and processes in the fragrance industry.
Collapse
Affiliation(s)
- Alessia Shelby Manina
- Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, 20133 Milan, Italy
| | - Fabio Forlani
- Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, 20133 Milan, Italy
| |
Collapse
|
8
|
Jeong BR, Jang J, Jin E. Genome engineering via gene editing technologies in microalgae. BIORESOURCE TECHNOLOGY 2023; 373:128701. [PMID: 36746216 DOI: 10.1016/j.biortech.2023.128701] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
CRISPR-Cas has revolutionized genetic modification with its comparative simplicity and accuracy, and it can be used even at the genomic level. Microalgae are excellent feedstocks for biofuels and nutraceuticals because they contain high levels of fatty acids, carotenoids, and other metabolites; however, genome engineering for microalgae is not yet as developed as for other model organisms. Microalgal engineering at the genetic and metabolic levels is relatively well established, and a few genomic resources are available. Their genomic information was used for a "safe harbor" site for stable transgene expression in microalgae. This review proposes further genome engineering schemes including the construction of sgRNA libraries, pan-genomic and epigenomic resources, and mini-genomes, which can together be developed into synthetic biology for carbon-based engineering in microalgae. Acetyl-CoA is at the center of carbon metabolic pathways and is further reviewed for the production of molecules including terpenoids in microalgae.
Collapse
Affiliation(s)
- Byeong-Ryool Jeong
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Junhwan Jang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
9
|
Trends in bread waste utilisation. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Metabolic Engineering of the Isopentenol Utilization Pathway Enhanced the Production of Terpenoids in Chlamydomonas reinhardtii. Mar Drugs 2022; 20:md20090577. [PMID: 36135766 PMCID: PMC9505001 DOI: 10.3390/md20090577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic green microalgae show considerable promise for the sustainable light-driven biosynthesis of high-value fine chemicals, especially terpenoids because of their fast and inexpensive phototrophic growth. Here, the novel isopentenol utilization pathway (IUP) was introduced into Chlamydomonas reinhardtii to enhance the hemiterpene (isopentenyl pyrophosphate, IPP) titers. Then, diphosphate isomerase (IDI) and limonene synthase (MsLS) were further inserted for limonene production. Transgenic algae showed 8.6-fold increase in IPP compared with the wild type, and 23-fold increase in limonene production compared with a single MsLS expressing strain. Following the culture optimization, the highest limonene production reached 117 µg/L, when the strain was cultured in a opt2 medium supplemented with 10 mM isoprenol under a light: dark regimen. This demonstrates that transgenic algae expressing the IUP represent an ideal chassis for the high-value terpenoid production. The IUP will facilitate further the metabolic and enzyme engineering to enhance the terpenoid titers by significantly reducing the number of enzyme steps required for an optimal biosynthesis.
Collapse
|
11
|
Gabed N, Verret F, Peticca A, Kryvoruchko I, Gastineau R, Bosson O, Séveno J, Davidovich O, Davidovich N, Witkowski A, Kristoffersen JB, Benali A, Ioannou E, Koutsaviti A, Roussis V, Gâteau H, Phimmaha S, Leignel V, Badawi M, Khiar F, Francezon N, Fodil M, Pasetto P, Mouget JL. What Was Old Is New Again: The Pennate Diatom Haslea ostrearia (Gaillon) Simonsen in the Multi-Omic Age. Mar Drugs 2022; 20:md20040234. [PMID: 35447907 PMCID: PMC9033121 DOI: 10.3390/md20040234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
The marine pennate diatom Haslea ostrearia has long been known for its characteristic blue pigment marennine, which is responsible for the greening of invertebrate gills, a natural phenomenon of great importance for the oyster industry. For two centuries, this taxon was considered unique; however, the recent description of a new blue Haslea species revealed unsuspected biodiversity. Marennine-like pigments are natural blue dyes that display various biological activities—e.g., antibacterial, antioxidant and antiproliferative—with a great potential for applications in the food, feed, cosmetic and health industries. Regarding fundamental prospects, researchers use model organisms as standards to study cellular and physiological processes in other organisms, and there is a growing and crucial need for more, new and unconventional model organisms to better correspond to the diversity of the tree of life. The present work, thus, advocates for establishing H. ostrearia as a new model organism by presenting its pros and cons—i.e., the interesting aspects of this peculiar diatom (representative of benthic-epiphytic phytoplankton, with original behavior and chemodiversity, controlled sexual reproduction, fundamental and applied-oriented importance, reference genome, and transcriptome will soon be available); it will also present the difficulties encountered before this becomes a reality as it is for other diatom models (the genetics of the species in its infancy, the transformation feasibility to be explored, the routine methods needed to cryopreserve strains of interest).
Collapse
Affiliation(s)
- Noujoud Gabed
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR), Gournes Pediados, 71003 Heraklion, Greece; (N.G.); (J.B.K.); (A.B.)
- Oran High School of Biological Sciences (ESSBO), Cellular and Molecular Biology Department, Oran 31000, Algeria
- Laboratoire d’Aquaculture et Bioremediation AquaBior, Université d’Oran 1, Oran 31000, Algeria
| | - Frédéric Verret
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR), Gournes Pediados, 71003 Heraklion, Greece; (N.G.); (J.B.K.); (A.B.)
- Correspondence: ; Tel.: +30-2810-337-852
| | - Aurélie Peticca
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Igor Kryvoruchko
- Department of Biology, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates;
| | - Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, 70-383 Szczecin, Poland; (R.G.); (N.D.); (A.W.)
| | - Orlane Bosson
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Julie Séveno
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Olga Davidovich
- Karadag Scientific Station, Natural Reserve of the Russian Academy of Sciences, Kurortnoe, 98188 Feodosiya, Russia;
| | - Nikolai Davidovich
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, 70-383 Szczecin, Poland; (R.G.); (N.D.); (A.W.)
- Karadag Scientific Station, Natural Reserve of the Russian Academy of Sciences, Kurortnoe, 98188 Feodosiya, Russia;
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, 70-383 Szczecin, Poland; (R.G.); (N.D.); (A.W.)
| | - Jon Bent Kristoffersen
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR), Gournes Pediados, 71003 Heraklion, Greece; (N.G.); (J.B.K.); (A.B.)
| | - Amel Benali
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR), Gournes Pediados, 71003 Heraklion, Greece; (N.G.); (J.B.K.); (A.B.)
- Laboratoire d’Aquaculture et Bioremediation AquaBior, Université d’Oran 1, Oran 31000, Algeria
- Laboratoire de Génétique Moléculaire et Cellulaire, Université des Sciences et de la Technologie d’Oran Mohamed BOUDIAF-USTO-MB, BP 1505, El M’naouer, Oran 31000, Algeria
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.I.); (A.K.); (V.R.)
| | - Aikaterini Koutsaviti
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.I.); (A.K.); (V.R.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.I.); (A.K.); (V.R.)
| | - Hélène Gâteau
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Suliya Phimmaha
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Vincent Leignel
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Myriam Badawi
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Feriel Khiar
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Nellie Francezon
- Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 2085 Le Mans, France; (N.F.); (P.P.)
| | - Mostefa Fodil
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Pamela Pasetto
- Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 2085 Le Mans, France; (N.F.); (P.P.)
| | - Jean-Luc Mouget
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| |
Collapse
|
12
|
Rinaldi MA, Ferraz CA, Scrutton NS. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli. Nat Prod Rep 2022; 39:90-118. [PMID: 34231643 PMCID: PMC8791446 DOI: 10.1039/d1np00025j] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Terpenoids are a diverse group of chemicals used in a wide range of industries. Microbial terpenoid production has the potential to displace traditional manufacturing of these compounds with renewable processes, but further titre improvements are needed to reach cost competitiveness. This review discusses strategies to increase terpenoid titres in Escherichia coli with a focus on alternative metabolic pathways. Alternative pathways can lead to improved titres by providing higher orthogonality to native metabolism that redirects carbon flux, by avoiding toxic intermediates, by bypassing highly-regulated or bottleneck steps, or by being shorter and thus more efficient and easier to manipulate. The canonical 2-C-methyl-D-erythritol 4-phosphate (MEP) and mevalonate (MVA) pathways are engineered to increase titres, sometimes using homologs from different species to address bottlenecks. Further, alternative terpenoid pathways, including additional entry points into the MEP and MVA pathways, archaeal MVA pathways, and new artificial pathways provide new tools to increase titres. Prenyl diphosphate synthases elongate terpenoid chains, and alternative homologs create orthogonal pathways and increase product diversity. Alternative sources of terpenoid synthases and modifying enzymes can also be better suited for E. coli expression. Mining the growing number of bacterial genomes for new bacterial terpenoid synthases and modifying enzymes identifies enzymes that outperform eukaryotic ones and expand microbial terpenoid production diversity. Terpenoid removal from cells is also crucial in production, and so terpenoid recovery and approaches to handle end-product toxicity increase titres. Combined, these strategies are contributing to current efforts to increase microbial terpenoid production towards commercial feasibility.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Clara A Ferraz
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
13
|
Yang R, Zhu L, Li T, Zhu LY, Ye Z, Zhang D. Photosynthetic Conversion of CO 2 Into Pinene Using Engineered Synechococcus sp. PCC 7002. Front Bioeng Biotechnol 2022; 9:779437. [PMID: 34976975 PMCID: PMC8718756 DOI: 10.3389/fbioe.2021.779437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic engineering of cyanobacteria has received much attention as a sustainable strategy to convert CO2 to various longer carbon chain fuels. Pinene has become increasingly attractive since pinene dimers contain high volumetric energy and have been proposed to act as potential aircraft fuels. However, cyanobacteria cannot directly convert geranyl pyrophosphate into pinene due to the lack of endogenous pinene synthase. Herein, we integrated the gene encoding Abies grandis pinene synthase into the model cyanobacterium Synechococcus sp. PCC 7002 through homologous recombination. The genetically modified cyanobacteria achieved a pinene titer of 1.525 ± 0.l45 mg L-1 in the lab-scale tube photobioreactor with CO2 aeration. Specifically, the results showed a mixture of α- and β-pinene (∼33:67 ratio). The ratio of β-pinene in the product was significantly increased compared with that previously reported in the engineered Escherichia coli. Furthermore, we investigated the photoautotrophic growth performances of Synechococcus overlaid with different concentrations of dodecane. The work demonstrates that the engineered Synechococcus is a suitable potential platform for β-pinene production.
Collapse
Affiliation(s)
- Ruigang Yang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Tao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Lv-Yun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Zi Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Dongyi Zhang
- Hunan Key Laboratory of Economic Crops, Genetic Improvement, and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
| |
Collapse
|
14
|
Heath RS, Ruscoe RE, Turner NJ. The beauty of biocatalysis: sustainable synthesis of ingredients in cosmetics. Nat Prod Rep 2021; 39:335-388. [PMID: 34879125 DOI: 10.1039/d1np00027f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2015 up to July 2021The market for cosmetics is consumer driven and the desire for green, sustainable and natural ingredients is increasing. The use of isolated enzymes and whole-cell organisms to synthesise these products is congruent with these values, especially when combined with the use of renewable, recyclable or waste feedstocks. The literature of biocatalysis for the synthesis of ingredients in cosmetics in the past five years is herein reviewed.
Collapse
Affiliation(s)
- Rachel S Heath
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Rebecca E Ruscoe
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nicholas J Turner
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
15
|
Xu M, Jiang Y, Chen S, Chen F, Chen F. Herbivory-Induced Emission of Volatile Terpenes in Chrysanthemum morifolium Functions as an Indirect Defense against Spodoptera litura Larvae by Attracting Natural Enemies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9743-9753. [PMID: 34465092 DOI: 10.1021/acs.jafc.1c02637] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Indirect defense is an important strategy employed by sessile plants to defend against herbivorous insects by recruiting the natural enemies of herbivores mediated by herbivore-induced plant volatiles (HIPVs). We aimed to determine whether indirect defense occurs in Compositae with Chrysanthemum morifolium as the model and elucidate the mechanisms underlying the biosynthesis of HIPVs. Using two-choice olfactometer bioassays, we showed that C. morifolium plants following infestation by larvae of the tobacco cutworm (Spodoptera litura, TCW) were significantly more attractive to two natural enemies of TCW larvae than control plants, indicating that indirect defense is an active defense strategy of C. morifolium. The chemical cue responsible for indirect defense in C. morifolium was identified as a complex blend of volatiles predominated by sesquiterpenes and monoterpenes. A total of 11 candidate terpene synthase (TPS) genes were identified by comparing the transcriptomes of healthy and TCW-infested plants. Gene expression analysis confirmed that up-regulated CmjTPS genes are consistent with the elevated emission of terpenes after herbivory treatment. Our study showed that the herbivore-induced emission of JA-dependent volatile terpenes attracted both predatory and parasitic enemies of herbivores. Generally, our findings indicate that indirect defense might be an important defense mechanism against insects in C. morifolium.
Collapse
Affiliation(s)
- Meilin Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
16
|
Zhang H, Chen P, Russel M, Tang J, Jin P, Daroch M. Debottlenecking Thermophilic Cyanobacteria Cultivation and Harvesting through the Application of Inner-Light Photobioreactor and Chitosan. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081540. [PMID: 34451585 PMCID: PMC8400073 DOI: 10.3390/plants10081540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Thermophilic cyanobacteria are a low-carbon environmental resource with high potential thanks to their innate temperature tolerance and thermostable pigment, phycocyanin, which enhances light utilisation efficiency and generates a high-value product. However, large-scale cultivation and harvesting have always been bottlenecks in unicellular cyanobacteria cultivation due to their micrometric size. In this study, a 40-litre inner-light photobioreactor (PBR) was designed for scaled-up cultivation of Thermosynechococcus elongatus E542. By analysing light transmission and attenuation in the PBR and describing it via mathematical models, the supply of light energy to the reactor was optimised. It was found that the hyperbolic model describes the light attenuation characteristics of the cyanobacterial culture more accurately than the Lambert-Beer model. The internal illumination mode was applied for strain cultivation and showed a two-fold better growth rate and four-fold higher biomass concentration than the same strain grown in an externally illuminated photobioreactor. Finally, the downstream harvesting process was explored. A mixture of chitosan solutions was used as a flocculant to facilitate biomass collection. The effect of the following parameters on biomass harvesting was analysed: solution concentration, flocculation time and flocculant concentration. The analysis revealed that a 4 mg L-1 chitosan solution is optimal for harvesting the strain. The proposed solutions can improve large-scale cyanobacterial biomass cultivation and processing.
Collapse
Affiliation(s)
- Hairuo Zhang
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China; (H.Z.); (P.C.); (P.J.)
| | - Pengyu Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China; (H.Z.); (P.C.); (P.J.)
| | - Mohammad Russel
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China;
| | - Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu 610052, China;
| | - Peng Jin
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China; (H.Z.); (P.C.); (P.J.)
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China; (H.Z.); (P.C.); (P.J.)
| |
Collapse
|
17
|
Strategies for enhancing terpenoids accumulation in microalgae. Appl Microbiol Biotechnol 2021; 105:4919-4930. [PMID: 34125275 DOI: 10.1007/s00253-021-11368-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Terpenoids represent one of the largest class of chemicals in nature, which play important roles in food and pharmaceutical fields due to diverse biological and pharmacological activities. Microorganisms are recognized as a promising source of terpenoids due to its short growth cycle and sustainability. Importantly, microalgae can fix inorganic carbon through photosynthesis for the growth of themselves and the biosynthesis of various terpenoids. Moreover, microalgae possess effective biosynthesis pathways of terpenoids, both the eukaryotic mevalonic acid (MVA) pathway and the prokaryotic methyl-D-erythritol 4-phosphate (MEP) pathway. In recent years, various genetic engineering strategies have been applied to increase target terpenoid yields, including overexpression of the rate-limited enzymes and inhibition of the competing pathways. However, since gene-editing tools are only built in some model microalgae, fermentation strategies that are easier to be operated have been widely successful in promoting the production of terpenoids, such as changing culture conditions and addition of chemical additives. In addition, an economical and effective downstream process is also an important consideration for the industrial production of terpenoids, and the solvent extraction and the supercritical fluid extraction method are the most commonly used strategies, especially in the industrial production of β-carotene and astaxanthin from microalgae. In this review, recent advancements and novel strategies used for terpenoid production are concluded and discussed, and new insights to move the field forward are proposed. KEY POINTS: • The MEP pathway is more stoichiometrically efficient than the MVA pathway. • Advanced genetic engineering and fermentation strategies can increase terpene yield. • SFE has a higher recovery of carotenoids than solvent extraction.
Collapse
|
18
|
Liang Z, Zhi H, Fang Z, Zhang P. Genetic engineering of yeast, filamentous fungi and bacteria for terpene production and applications in food industry. Food Res Int 2021; 147:110487. [PMID: 34399483 DOI: 10.1016/j.foodres.2021.110487] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 01/05/2023]
Abstract
Terpenes are a major class of natural aromatic compounds in grapes and wines to offer the characteristic flavor and aroma, serving as important quality traits of wine products. Saccharomyces cerevisiae represents an excellent cell factory platform for large-scale bio-based terpene production. This review describes the biosynthetic pathways of terpenes in different organisms. The metabolic engineering of S. cerevisiae for promoting terpene biosynthesis and the alternative microbial engineering platforms including filamentous fungi and Escherichia coli are also elaborated. Additionally, the potential applications of the terpene products from engineered microorganisms in food and beverage industries are also discussed. This review provides comprehensive information for an innovative supply way of terpene via microbial cell factory, which could facilitate the development and application of this technique at the industrial scale.
Collapse
Affiliation(s)
- Zijian Liang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hang Zhi
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
19
|
Chen Y, Hu B, Xing J, Li C. Endophytes: the novel sources for plant terpenoid biosynthesis. Appl Microbiol Biotechnol 2021; 105:4501-4513. [PMID: 34047817 PMCID: PMC8161352 DOI: 10.1007/s00253-021-11350-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022]
Abstract
Terpenoids are natural compounds predominantly present in plants. They have many pharmaceutical and/or nutritional functions, and have been widely applied in medical, food, and cosmetics industries. Recently, terpenoids have been used in the clinical treatment of COVID-19 due to the good antiviral activities. The increasing demand for terpenoids in international markets poses a serious threat to many plant species. For environmentally sustainable development, microbial cell factories have been utilized as the promising platform to produce terpenoids. Nevertheless, the bioproduction of most terpenoids cannot meet commercial requirements due to the low cost-benefit ratio until now. The biosynthetic potential of endophytes has gained attention in recent decades owing to the continual discovery of endophytes capable of synthesizing plant bioactive compounds. Accordingly, endophytes could be alternative sources of terpenoid-producing strains or terpenoid synthetic genes. In this review, we summarized the research progress describing the main and supporting roles of endophytes in terpenoid biosynthesis and biotransformation, and discussed the current problems and challenges which may prevent the further exploitation. This review will improve our understanding of endophyte resources for terpenoid production in industry in the future. The four main research interests on endophytes for terpenoid production. A: Isolation of terpenoid-producing endophytes; B: The heterologous expression of endophyte-derived terpenoid synthetic genes; C: Endophytes promoting their hosts' terpenoid production. The blue dashed arrows indicate signal transduction; D: Biotransformation of terpenoids by endophytes or their enzymes. Key points• The mechanisms employed by endophytes in terpenoid synthesis in vivo and in vitro.• Endophytes have the commercial potentials in terpenoid bioproduction and biotransformation.• Synthetic biology and multiomics will improve terpenoid bioproduction in engineered cell factories.
Collapse
Affiliation(s)
- Yachao Chen
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Bing Hu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chun Li
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
20
|
Hunter SM, Blanco E, Borrion A. Expanding the anaerobic digestion map: A review of intermediates in the digestion of food waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144265. [PMID: 33422959 DOI: 10.1016/j.scitotenv.2020.144265] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion is a promising technology as a renewable source of energy products, but these products have low economic value and process control is challenging. Identifying intermediates formed throughout the process could enhance understanding and offer opportunities for improved monitoring, control, and valorisation. In this review, intermediates present in the anaerobic digestion process are identified and discussed, including the following: volatile fatty acids, carboxylic acid, amino acids, furans, terpenes and phytochemicals. The key limitations associated with exploiting these intermediates are also addressed including challenging mixed cultures of microbiology, complex feedstocks, and difficult extraction and separation techniques.
Collapse
Affiliation(s)
- Sarah M Hunter
- Department of Civil, Environmental and Geomatic Engineering, University College London, UK
| | - Edgar Blanco
- Anaero Technology Limited, Cowley Road, Cambridge, UK
| | - Aiduan Borrion
- Department of Civil, Environmental and Geomatic Engineering, University College London, UK.
| |
Collapse
|
21
|
Metabolic Engineering and Synthetic Biology of Cyanobacteria for Carbon Capture and Utilization. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0447-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Matsudaira A, Hoshino Y, Uesaka K, Takatani N, Omata T, Usuda Y. Production of glutamate and stereospecific flavors, (S)-linalool and (+)-valencene, by Synechocystis sp. PCC6803. J Biosci Bioeng 2020; 130:464-470. [PMID: 32713813 DOI: 10.1016/j.jbiosc.2020.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 12/24/2022]
Abstract
Cyanobacteria can grow photoautotrophically, producing a range of substances by absorbing sunlight and utilizing carbon dioxide, and can potentially be used as industrial microbes that have minimal sugar requirements. To evaluate this potential, we explored the possibility of l-glutamate production using the Synechocystis sp. PCC6803. The ybjL gene encoding the putative l-glutamate exporter from Escherichia coli was introduced, and l-glutamate production reached 2.3 g/L in 143 h (34°C, 100 μmol m-2 s-1). Then, we attempted to produce two flavor substances, (S)-linalool, a monoterpene alcohol, and the sesquiterpene (+)-valencene. The Synechocystis sp. PCC6803 strain in which the linalool synthase gene (LINS) from Actinidia arguta (AaLINS) was expressed under control of the tac promoter (GT0846K-Ptac-AaLINS) produced 11.4 mg/L (S)-linalool in 160 h (30°C, 50 μmol m-2 s-1). The strain in which AaLINS2 and the mutated farnesyl diphosphate synthase gene ispA∗ (S80F) from E. coli (GT0846K-PpsbA2-AaLINS-ispA∗) were expressed from the PpsbA2 promoter accumulated 11.6 mg/L (S)-linalool in 160 h. Genome analysis revealed that both strains had mutations in slr1270, suggesting that loss of Slr1270 function was necessary for high linalool accumulation. For sesquiterpene production, the valencene synthase gene from Callitropsis nootkatensis and the fernesyl diphosphate synthase (ispA) gene from E. coli were introduced, and the resultant strain produced 9.6 mg/L of (+)-valencene in 166 h (30°C, 50 μmol m-2 s-1). This study highlights the production efficiency of engineered cyanobacteria, providing insight into potential industrial applications.
Collapse
Affiliation(s)
- Akiko Matsudaira
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co. Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Yasushi Hoshino
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co. Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Kazuma Uesaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Nobuyuki Takatani
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tatsuo Omata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoshihiro Usuda
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co. Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan.
| |
Collapse
|
23
|
Kainer D, Padovan A, Degenhardt J, Krause S, Mondal P, Foley WJ, Külheim C. High marker density GWAS provides novel insights into the genomic architecture of terpene oil yield in Eucalyptus. THE NEW PHYTOLOGIST 2019; 223:1489-1504. [PMID: 31066055 DOI: 10.1111/nph.15887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/26/2019] [Indexed: 05/09/2023]
Abstract
Terpenoid-based essential oils are economically important commodities, yet beyond their biosynthetic pathways, little is known about the genetic architecture of terpene oil yield from plants. Transport, storage, evaporative loss, transcriptional regulation and precursor competition may be important contributors to this complex trait. Here, we associate 2.39 million single nucleotide polymorphisms derived from shallow whole-genome sequencing of 468 Eucalyptus polybractea individuals with 12 traits related to the overall terpene yield, eight direct measures of terpene concentration and four biomass-related traits. Our results show that in addition to terpene biosynthesis, development of secretory cavities, where terpenes are both synthesized and stored, and transport of terpenes were important components of terpene yield. For sesquiterpene concentrations, the availability of precursors in the cytosol was important. Candidate terpene synthase genes for the production of 1,8-cineole and α-pinene, and β-pinene (which comprised > 80% of the total terpenes) were functionally characterized as a 1,8-cineole synthase and a β/α-pinene synthase. Our results provide novel insights into the genomic architecture of terpene yield and we provide candidate genes for breeding or engineering of crops for biofuels or the production of industrially valuable terpenes.
Collapse
Affiliation(s)
- David Kainer
- Center for BioEnergy Innovation, Bioscience Division, Oak Ridge National Laboratories, Oak Ridge, TN, 37831, USA
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
| | - Amanda Padovan
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
- CSIRO, Clunies Ross Street, Canberra, ACT, 2601, Australia
| | - Joerg Degenhardt
- Institut für Pharmazie, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Sandra Krause
- Institut für Pharmazie, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Prodyut Mondal
- Institut für Pharmazie, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - William J Foley
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
| | - Carsten Külheim
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
- School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
24
|
Athanasakoglou A, Kampranis SC. Diatom isoprenoids: Advances and biotechnological potential. Biotechnol Adv 2019; 37:107417. [PMID: 31326522 DOI: 10.1016/j.biotechadv.2019.107417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/09/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022]
Abstract
Diatoms are among the most productive and ecologically important groups of microalgae in contemporary oceans. Due to their distinctive metabolic and physiological features, they offer exciting opportunities for a broad range of commercial and industrial applications. One such feature is their ability to synthesize a wide diversity of isoprenoid compounds. However, limited understanding of how these molecules are synthesized have until recently hindered their exploitation. Following comprehensive genomic and transcriptomic analysis of various diatom species, the biosynthetic mechanisms and regulation of the different branches of the pathway are now beginning to be elucidated. In this review, we provide a summary of the recent advances in understanding diatom isoprenoid synthesis and discuss the exploitation potential of diatoms as chassis for high-value isoprenoid synthesis.
Collapse
Affiliation(s)
- Anastasia Athanasakoglou
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Sotirios C Kampranis
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
25
|
Methyl jasmonate treatment affects the regulation of the 2-C-methyl-D-erythritol 4-phosphate pathway and early steps of the triterpenoid biosynthesis in Chlamydomonas reinhardtii. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Xie SS, Qiu XY, Zhu LY, Zhu CS, Liu CY, Wu XM, Zhu L, Zhang DY. Assembly of TALE-based DNA scaffold for the enhancement of exogenous multi-enzymatic pathway. J Biotechnol 2019; 296:69-74. [DOI: 10.1016/j.jbiotec.2019.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
|
27
|
Athanasakoglou A, Grypioti E, Michailidou S, Ignea C, Makris AM, Kalantidis K, Massé G, Argiriou A, Verret F, Kampranis SC. Isoprenoid biosynthesis in the diatom Haslea ostrearia. THE NEW PHYTOLOGIST 2019; 222:230-243. [PMID: 30394540 DOI: 10.1111/nph.15586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
Diatoms are eukaryotic, unicellular algae that are responsible for c. 20% of the Earth's primary production. Their dominance and success in contemporary oceans have prompted investigations on their distinctive metabolism and physiology. One metabolic pathway that remains largely unexplored in diatoms is isoprenoid biosynthesis, which is responsible for the production of numerous molecules with unique features. We selected the diatom species Haslea ostrearia because of its characteristic isoprenoid content and carried out a comprehensive transcriptomic analysis and functional characterization of the genes identified. We functionally characterized one farnesyl diphosphate synthase, two geranylgeranyl diphosphate synthases, one short-chain polyprenyl synthase, one bifunctional isopentenyl diphosphate isomerase - squalene synthase, and one phytoene synthase. We inferred the phylogenetic origin of these genes and used a combination of functional analysis and subcellular localization predictions to propose their physiological roles. Our results provide insight into isoprenoid biosynthesis in H. ostrearia and propose a model of the central steps of the pathway. This model will facilitate the study of metabolic pathways of important isoprenoids in diatoms, including carotenoids, sterols and highly branched isoprenoids.
Collapse
Affiliation(s)
- Anastasia Athanasakoglou
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Emilia Grypioti
- Department of Biology, University of Crete, PO Box 2208, Heraklion, 71003, Greece
| | - Sofia Michailidou
- Institute of Applied Biosciences - Centre for Research and Technology Hellas (INAB-CERTH), 6th km. Charilaou - Thermi Road, PO Box 60361, Thermi, Thessaloniki, 57001, Greece
| | - Codruta Ignea
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Antonios M Makris
- Institute of Applied Biosciences - Centre for Research and Technology Hellas (INAB-CERTH), 6th km. Charilaou - Thermi Road, PO Box 60361, Thermi, Thessaloniki, 57001, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, PO Box 2208, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology - Foundation of Research and Technology Hellas (IMBB-FORTH), Nikolaou Plastira 100, Heraklion, Crete, GR-70013, Greece
| | - Guillaume Massé
- UMI 3376 TAKUVIK, Centre national de la recherche scientifique (CNRS), Paris, France
- Département de Biologie, Université Laval, Québec, QC, Canada
| | - Anagnostis Argiriou
- Institute of Applied Biosciences - Centre for Research and Technology Hellas (INAB-CERTH), 6th km. Charilaou - Thermi Road, PO Box 60361, Thermi, Thessaloniki, 57001, Greece
| | - Frederic Verret
- Department of Biology, University of Crete, PO Box 2208, Heraklion, 71003, Greece
| | - Sotirios C Kampranis
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| |
Collapse
|
28
|
Lauersen KJ. Eukaryotic microalgae as hosts for light-driven heterologous isoprenoid production. PLANTA 2019; 249:155-180. [PMID: 30467629 DOI: 10.1007/s00425-018-3048-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/14/2018] [Indexed: 05/21/2023]
Abstract
Eukaryotic microalgae hold incredible metabolic potential for the sustainable production of heterologous isoprenoid products. Recent advances in algal engineering have enabled the demonstration of prominent examples of heterologous isoprenoid production. Isoprenoids, also known as terpenes or terpenoids, are the largest class of natural chemicals, with a vast diversity of structures and biological roles. Some have high-value in human-use applications, although may be found in their native contexts in low abundance or be difficult to extract and purify. Heterologous production of isoprenoid compounds in heterotrophic microbial hosts such as bacteria or yeasts has been an active area of research for some time and is now a mature technology. Eukaryotic microalgae represent sustainable alternatives to these hosts for biotechnological production processes as their cultivation can be driven by light and freely available CO2 as a carbon source. Their photosynthetic lifestyles require metabolic architectures structured towards the generation of associated isoprenoids (carotenoids, phytol) which participate in photon capture, energy dissipation, and electron transfer. Eukaryotic microalgae should, therefore, contain inherently high capacities for the generation of heterologous isoprenoid products. Although engineering strategies in eukaryotic microalgae have lagged behind the more genetically tractable bacteria and yeasts, recent advances in algal engineering concepts have demonstrated prominent examples of light-driven heterologous isoprenoid production from these photosynthetic hosts. This work seeks to provide practical insights into the choice of eukaryotic microalgae as biotechnological chassis. Recent reports of advances in algal engineering for heterologous isoprenoid production are highlighted as encouraging examples that promote their expanded use as sustainable green-cell factories. Current state of the art, limitations, and future challenges are also discussed.
Collapse
Affiliation(s)
- Kyle J Lauersen
- Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615, Bielefeld, Germany.
| |
Collapse
|
29
|
D'Adamo S, Schiano di Visconte G, Lowe G, Szaub‐Newton J, Beacham T, Landels A, Allen MJ, Spicer A, Matthijs M. Engineering the unicellular alga Phaeodactylum tricornutum for high-value plant triterpenoid production. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:75-87. [PMID: 29754445 PMCID: PMC6330534 DOI: 10.1111/pbi.12948] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/23/2018] [Accepted: 05/02/2018] [Indexed: 05/23/2023]
Abstract
Plant triterpenoids constitute a diverse class of organic compounds that play a major role in development, plant defence and environmental interaction. Several triterpenes have demonstrated potential as pharmaceuticals. One example is betulin, which has shown promise as a pharmaceutical precursor for the treatment of certain cancers and HIV. Major challenges for triterpenoid commercialization include their low production levels and their cost-effective purification from the complex mixtures present in their natural hosts. Therefore, attempts to produce these compounds in industrially relevant microbial systems such as bacteria and yeasts have attracted great interest. Here, we report the production of the triterpenes betulin and its precursor lupeol in the photosynthetic diatom Phaeodactylum tricornutum, a unicellular eukaryotic alga. This was achieved by introducing three plant enzymes in the microalga: a Lotus japonicus oxidosqualene cyclase and a Medicago truncatula cytochrome P450 along with its native reductase. The introduction of the L. japonicus oxidosqualene cyclase perturbed the mRNA expression levels of the native mevalonate and sterol biosynthesis pathway. The best performing strains were selected and grown in a 550-L pilot-scale photobioreactor facility. To our knowledge, this is the most extensive pathway engineering undertaken in a diatom and the first time that a sapogenin has been artificially produced in a microalga, demonstrating the feasibility of the photo-bio-production of more complex high-value, metabolites in microalgae.
Collapse
Affiliation(s)
- Sarah D'Adamo
- Eden LaboratoryAlgenuityStewartbyUK
- Wageningen Universiteit en ResearchcentrumBioprocess EngineeringWageningenThe Netherlands
| | | | | | | | | | - Andrew Landels
- PML: Plymouth Marine LaboratoryPlymouthUK
- Rothamsted ResearchHarpendenUK
| | - Michael J. Allen
- PML: Plymouth Marine LaboratoryPlymouthUK
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterExeterUK
| | | | | |
Collapse
|
30
|
Polzin J, Rorrer GL. Selective production of the acyclic monoterpene β-myrcene by microplantlet suspension cultures of the macrophytic marine red alga Ochtodes secundiramea under nutrient perfusion cultivation with bromide-free medium. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Vermaas JV, Bentley GJ, Beckham GT, Crowley MF. Membrane Permeability of Terpenoids Explored with Molecular Simulation. J Phys Chem B 2018; 122:10349-10361. [DOI: 10.1021/acs.jpcb.8b08688] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Josh V. Vermaas
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Gayle J. Bentley
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Gregg T. Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Michael F. Crowley
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
32
|
Vavitsas K, Fabris M, Vickers CE. Terpenoid Metabolic Engineering in Photosynthetic Microorganisms. Genes (Basel) 2018; 9:E520. [PMID: 30360565 PMCID: PMC6266707 DOI: 10.3390/genes9110520] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022] Open
Abstract
Terpenoids are a group of natural products that have a variety of roles, both essential and non-essential, in metabolism and in biotic and abiotic interactions, as well as commercial applications such as pharmaceuticals, food additives, and chemical feedstocks. Economic viability for commercial applications is commonly not achievable by using natural source organisms or chemical synthesis. Engineered bio-production in suitable heterologous hosts is often required to achieve commercial viability. However, our poor understanding of regulatory mechanisms and other biochemical processes makes obtaining efficient conversion yields from feedstocks challenging. Moreover, production from carbon dioxide via photosynthesis would significantly increase the environmental and potentially the economic credentials of these processes by disintermediating biomass feedstocks. In this paper, we briefly review terpenoid metabolism, outline some recent advances in terpenoid metabolic engineering, and discuss why photosynthetic unicellular organisms-such as algae and cyanobacteria-might be preferred production platforms for the expression of some of the more challenging terpenoid pathways.
Collapse
Affiliation(s)
- Konstantinos Vavitsas
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia.
| | - Michele Fabris
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia.
| | - Claudia E Vickers
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia.
| |
Collapse
|
33
|
Lauersen KJ, Wichmann J, Baier T, Kampranis SC, Pateraki I, Møller BL, Kruse O. Phototrophic production of heterologous diterpenoids and a hydroxy-functionalized derivative from Chlamydomonas reinhardtii. Metab Eng 2018; 49:116-127. [DOI: 10.1016/j.ymben.2018.07.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
|
34
|
Englund E, Shabestary K, Hudson EP, Lindberg P. Systematic overexpression study to find target enzymes enhancing production of terpenes in Synechocystis PCC 6803, using isoprene as a model compound. Metab Eng 2018; 49:164-177. [PMID: 30025762 DOI: 10.1016/j.ymben.2018.07.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/28/2018] [Accepted: 07/08/2018] [Indexed: 11/25/2022]
Abstract
Of the two natural metabolic pathways for making terpenoids, biotechnological utilization of the mevalonate (MVA) pathway has enabled commercial production of valuable compounds, while the more recently discovered but stoichiometrically more efficient methylerythritol phosphate (MEP) pathway is underdeveloped. We conducted a study on the overexpression of each enzyme in the MEP pathway in the unicellular cyanobacterium Synechocystis sp. PCC 6803, to identify potential targets for increasing flux towards terpenoid production, using isoprene as a reporter molecule. Results showed that the enzymes Ipi, Dxs and IspD had the biggest impact on isoprene production. By combining and creating operons out of those genes, isoprene production was increased 2-fold compared to the base strain. A genome-scale model was used to identify targets upstream of the MEP pathway that could redirect flux towards terpenoids. A total of ten reactions from the Calvin-Benson-Bassham cycle, lower glycolysis and co-factor synthesis pathways were probed for their effect on isoprene synthesis by co-expressing them with the MEP enzymes, resulting in a 60% increase in production from the best strain. Lastly, we studied two isoprene synthases with the highest reported catalytic rates. Only by expressing them together with Dxs and Ipi could we get stable strains that produced 2.8 mg/g isoprene per dry cell weight, a 40-fold improvement compared to the initial strain.
Collapse
Affiliation(s)
- Elias Englund
- Department of Chemistry - Ångström, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden; School of Biotechnology, KTH - Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Kiyan Shabestary
- School of Biotechnology, KTH - Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Elton P Hudson
- School of Biotechnology, KTH - Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Pia Lindberg
- Department of Chemistry - Ångström, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
35
|
Biotechnology of cyanobacterial isoprene production. Appl Microbiol Biotechnol 2018; 102:6451-6458. [DOI: 10.1007/s00253-018-9093-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/12/2018] [Indexed: 12/20/2022]
|
36
|
Schempp FM, Drummond L, Buchhaupt M, Schrader J. Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2247-2258. [PMID: 28418659 DOI: 10.1021/acs.jafc.7b00473] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Terpenoid flavor and fragrance compounds are of high interest to the aroma industry. Microbial production offers an alternative sustainable access to the desired terpenoids independent of natural sources. Genetically engineered microorganisms can be used to synthesize terpenoids from cheap and renewable resources. Due to its modular architecture, terpenoid biosynthesis is especially well suited for the microbial cell factory concept: a platform host engineered for a high flux toward the central C5 prenyl diphosphate precursors enables the production of a broad range of target terpenoids just by varying the pathway modules converting the C5 intermediates to the product of interest. In this review typical terpenoid flavor and fragrance compounds marketed or under development by biotech and aroma companies are given, and the specificities of the aroma market are discussed. The main part of this work focuses on key strategies and recent advances to engineer microbes to become efficient terpenoid producers.
Collapse
Affiliation(s)
- Florence M Schempp
- DECHEMA-Forschungsinstitut, Industrial Biotechnology , Theodor-Heuss-Allee 25 , 60486 Frankfurt am Main , Germany
| | - Laura Drummond
- DECHEMA-Forschungsinstitut, Industrial Biotechnology , Theodor-Heuss-Allee 25 , 60486 Frankfurt am Main , Germany
| | - Markus Buchhaupt
- DECHEMA-Forschungsinstitut, Industrial Biotechnology , Theodor-Heuss-Allee 25 , 60486 Frankfurt am Main , Germany
| | - Jens Schrader
- DECHEMA-Forschungsinstitut, Industrial Biotechnology , Theodor-Heuss-Allee 25 , 60486 Frankfurt am Main , Germany
| |
Collapse
|
37
|
Wei Y, Mohsin A, Hong Q, Guo M, Fang H. Enhanced production of biosynthesized lycopene via heterogenous MVA pathway based on chromosomal multiple position integration strategy plus plasmid systems in Escherichia coli. BIORESOURCE TECHNOLOGY 2018; 250:382-389. [PMID: 29195149 DOI: 10.1016/j.biortech.2017.11.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 05/27/2023]
Abstract
The multiple plasmid system, mostly relied, for heterogeneous gene expression, results in genetic instability and low mean productivity. To address this, an integration method was employed for investigating expression of heterogenous pathway in E. coli cells; where mevalonate upper pathway was found efficiently expressed. Subsequently, to improve lycopene production, chromosomal multiple position integration strategy was used to strengthen mevalonate upper pathway. Meanwhile, the plasmid system was employed for mevalonate lower pathway and lycopene pathway expression to finally generate the mutant D711 strain. Comparatively, highest level of 68.5 mg/L lycopene was produced by D711 outperforming its maximum average productivity of 2.85 mg/L/h with over 2-folds enhancement. In addition, lycopene level was almost 224 mg/L after optimization of induction time, which was 3.3-fold higher than standard control condition. Finally, expression Performance Parameter was developed for scoring mutants and evaluating these two strategies, indicating chromosomal multiple position integration strategy as more efficient approach.
Collapse
Affiliation(s)
- Yanlong Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qi Hong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Hongqing Fang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Institute of Health Sciences, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui 230601, PR China; Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Beijing 100071, PR China
| |
Collapse
|
38
|
Tailored carbon partitioning for phototrophic production of (E)-α-bisabolene from the green microalga Chlamydomonas reinhardtii. Metab Eng 2018; 45:211-222. [DOI: 10.1016/j.ymben.2017.12.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/27/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
|
39
|
Ferriols VMEN, Yaginuma-Suzuki R, Fukunaga K, Kadono T, Adachi M, Matsunaga S, Okada S. An exception among diatoms: unique organization of genes involved in isoprenoid biosynthesis in Rhizosolenia setigera CCMP 1694. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:822-833. [PMID: 28921701 DOI: 10.1111/tpj.13719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/27/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
The marine diatom Rhizosolenia setigera is unique among this group of microalgae given that it is only one of a handful of diatom species that can produce highly branched isoprenoid (HBI) hydrocarbons. In our efforts to determine distinguishing molecular characteristics in R. setigera CCMP 1694 that could help elucidate the underlying mechanisms for its ability to biosynthesize HBIs, we discovered the occurrence of independent genes encoding for two isopentenyl diphosphate isomerases (RsIDI1 and RsIDI2) and one squalene synthase (RsSQS), enzymes that catalyze non-consecutive steps in isoprenoid biosynthesis. These genes are peculiarly fused in all other genome-sequenced diatoms to date, making their organization in R. setigera CCMP 1694 a clear distinguishing molecular feature. Phylogenetic and sequence analysis of RsIDI1, RsIDI2, and RsSQS revealed that such an arrangement of individually transcribed genes involved in isoprenoid biosynthesis could have arisen through a secondary gene fission event. We further demonstrate that inhibition of squalene synthase (SQS) shifts the flux of exogenous isoprenoid precursors towards HBI biosynthesis suggesting the competition for isoprenoid substrates in the form of farnesyl diphosphate between the sterol and HBI biosynthetic pathways in this diatom.
Collapse
Affiliation(s)
- Victor Marco Emmanuel N Ferriols
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Aquaculture, University of the Philippines Visayas, Iloilo, Philippines
| | - Ryoko Yaginuma-Suzuki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | - Masao Adachi
- Faculty of Agriculture, Kochi University, Kochi, Japan
| | - Shigeki Matsunaga
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeru Okada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
40
|
Affiliation(s)
- Maulidan Firdaus
- Department of Chemistry; Sebelas Maret University; Jl. Ir. Sutami 36A Surakarta 57126 Indonesia
| |
Collapse
|
41
|
Vavitsas K, Rue EØ, Stefánsdóttir LK, Gnanasekaran T, Blennow A, Crocoll C, Gudmundsson S, Jensen PE. Responses of Synechocystis sp. PCC 6803 to heterologous biosynthetic pathways. Microb Cell Fact 2017; 16:140. [PMID: 28806958 PMCID: PMC5556357 DOI: 10.1186/s12934-017-0757-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/09/2017] [Indexed: 11/10/2022] Open
Abstract
Background There are an increasing number of studies regarding genetic manipulation of cyanobacteria to produce commercially interesting compounds. The majority of these works study the expression and optimization of a selected heterologous pathway, largely ignoring the wholeness and complexity of cellular metabolism. Regulation and response mechanisms are largely unknown, and even the metabolic pathways themselves are not fully elucidated. This poses a clear limitation in exploiting the rich biosynthetic potential of cyanobacteria. Results In this work, we focused on the production of two different compounds, the cyanogenic glucoside dhurrin and the diterpenoid 13R-manoyl oxide in Synechocystis PCC 6803. We used genome-scale metabolic modelling to study fluxes in individual reactions and pathways, and we determined the concentrations of key metabolites, such as amino acids, carotenoids, and chlorophylls. This allowed us to identify metabolic crosstalk between the native and the introduced metabolic pathways. Most results and simulations highlight the metabolic robustness of cyanobacteria, suggesting that the host organism tends to keep metabolic fluxes and metabolite concentrations steady, counteracting the effects of the heterologous pathway. However, the amino acid concentrations of the dhurrin-producing strain show an unexpected profile, where the perturbation levels were high in seemingly unrelated metabolites. Conclusions There is a wealth of information that can be derived by combining targeted metabolite identification and computer modelling as a frame of understanding. Here we present an example of how strain engineering approaches can be coupled to ‘traditional’ metabolic engineering with systems biology, resulting in novel and more efficient manipulation strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0757-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Konstantinos Vavitsas
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Emil Østergaard Rue
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | | | - Thiyagarajan Gnanasekaran
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.,ISBP-INSA de Toulouse, Avenue de Rangueil, 31077, Toulouse, France
| | - Andreas Blennow
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Christoph Crocoll
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Steinn Gudmundsson
- Center for Systems Biology, University of Iceland, Sturlugata 8, 101, Reykjavik, Iceland
| | - Poul Erik Jensen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
42
|
Mewalal R, Rai DK, Kainer D, Chen F, Külheim C, Peter GF, Tuskan GA. Plant-Derived Terpenes: A Feedstock for Specialty Biofuels. Trends Biotechnol 2017; 35:227-240. [DOI: 10.1016/j.tibtech.2016.08.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 01/15/2023]
|
43
|
Xie M, Wang W, Zhang W, Chen L, Lu X. Versatility of hydrocarbon production in cyanobacteria. Appl Microbiol Biotechnol 2016; 101:905-919. [DOI: 10.1007/s00253-016-8064-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/07/2016] [Accepted: 12/10/2016] [Indexed: 10/20/2022]
|
44
|
Biosynthesis of therapeutic natural products using synthetic biology. Adv Drug Deliv Rev 2016; 105:96-106. [PMID: 27094795 DOI: 10.1016/j.addr.2016.04.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/24/2016] [Accepted: 04/10/2016] [Indexed: 02/08/2023]
Abstract
Natural products are a group of bioactive structurally diverse chemicals produced by microorganisms and plants. These molecules and their derivatives have contributed to over a third of the therapeutic drugs produced in the last century. However, over the last few decades traditional drug discovery pipelines from natural products have become far less productive and far more expensive. One recent development with promise to combat this trend is the application of synthetic biology to therapeutic natural product biosynthesis. Synthetic biology is a young discipline with roots in systems biology, genetic engineering, and metabolic engineering. In this review, we discuss the use of synthetic biology to engineer improved yields of existing therapeutic natural products. We further describe the use of synthetic biology to combine and express natural product biosynthetic genes in unprecedented ways, and how this holds promise for opening up completely new avenues for drug discovery and production.
Collapse
|
45
|
Johnson TJ, Gibbons JL, Gu L, Zhou R, Gibbons WR. Molecular genetic improvements of cyanobacteria to enhance the industrial potential of the microbe: A review. Biotechnol Prog 2016; 32:1357-1371. [DOI: 10.1002/btpr.2358] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/30/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Tylor J. Johnson
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
- Dept. of MicrobiologyThe University of TennesseeKnoxville TN37996
| | - Jaimie L. Gibbons
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| | - Liping Gu
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| | - Ruanbao Zhou
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| | - William R. Gibbons
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| |
Collapse
|
46
|
Tashiro M, Kiyota H, Kawai-Noma S, Saito K, Ikeuchi M, Iijima Y, Umeno D. Bacterial Production of Pinene by a Laboratory-Evolved Pinene-Synthase. ACS Synth Biol 2016; 5:1011-20. [PMID: 27247193 DOI: 10.1021/acssynbio.6b00140] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Successful feeding of the substrate geranylpyrophosphate (GPP) to monoterpene synthase is critical to the efficient microbial production of monoterpenes. Overexpression of GPP synthases, metabolic channeling from GPP synthase to terpene synthases, and down-tuning of endogenous competitors have been successfully used to increase the production of monoterpene. Nevertheless, the production of monoterpenes has remained considerably lower than that of hemi-/sesqui-terpenoids. We tested whether it is effective to improve the cellular activity of monoterpene synthases. To this end, we developed a high-throughput screening system to monitor for elevated GPP consumption. Through a single round of mutagenesis and screening, we isolated a pinene synthase variant that outperformed the wild-type (parent) enzyme in multiple contexts in Escherichia coli and cyanobacteria. The purified variant exhibited drastically altered metal dependency, enabling to keep the activity in the cytosol that is manganese-deficient. Coexpression of this variant with mevalonate pathway enzymes, isopentenylpyrophosphate isomerase, and GPP synthase yielded 140 mg/L pinene in a flask culture.
Collapse
Affiliation(s)
- Miki Tashiro
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-Cyo, Inage-ku, Chiba 263-8522, Japan
| | - Hiroshi Kiyota
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeko Kawai-Noma
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-Cyo, Inage-ku, Chiba 263-8522, Japan
| | - Kyoichi Saito
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-Cyo, Inage-ku, Chiba 263-8522, Japan
| | - Masahiko Ikeuchi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life
Sciences (Biology), Graduate School of Arts and Science, University of Tokyo, 3-8-1 Meguro-ku, Tokyo 153-8902, Japan
| | - Yoko Iijima
- Department of Nutrition
and Life Science, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Daisuke Umeno
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-Cyo, Inage-ku, Chiba 263-8522, Japan
- Precursory Research
for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
47
|
Arendt P, Pollier J, Callewaert N, Goossens A. Synthetic biology for production of natural and new-to-nature terpenoids in photosynthetic organisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:16-37. [PMID: 26867713 DOI: 10.1111/tpj.13138] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 05/04/2023]
Abstract
With tens of thousands of characterized members, terpenoids constitute the largest class of natural compounds that are synthesized by all living organisms. Several terpenoids play primary roles in the maintenance of cell membrane fluidity, as pigments or as phytohormones, but most of them function as specialized metabolites that are involved in plant resistance to herbivores or plant-environment interactions. Terpenoids are an essential component of human nutrition, and many are economically important pharmaceuticals, aromatics and potential next-generation biofuels. Because of the often low abundance in their natural source, as well as the demand for novel terpenoid structures with new or improved bioactivities, terpenoid biosynthesis has become a prime target for metabolic engineering and synthetic biology projects. In this review we focus on the creation of new-to-nature or tailor-made plant-derived terpenoids in photosynthetic organisms, in particular by means of combinatorial biosynthesis and the activation of silent metabolism. We reflect on the characteristics of different potential photosynthetic host organisms and recent advances in synthetic biology and discuss their utility for the (heterologous) production of (novel) terpenoids.
Collapse
Affiliation(s)
- Philipp Arendt
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, B-9000, Ghent, Belgium
- VIB Medical Biotechnology Center, B-9000, Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Nico Callewaert
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, B-9000, Ghent, Belgium
- VIB Medical Biotechnology Center, B-9000, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| |
Collapse
|
48
|
Pade N, Erdmann S, Enke H, Dethloff F, Dühring U, Georg J, Wambutt J, Kopka J, Hess WR, Zimmermann R, Kramer D, Hagemann M. Insights into isoprene production using the cyanobacterium Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:89. [PMID: 27096007 PMCID: PMC4836186 DOI: 10.1186/s13068-016-0503-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/01/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cyanobacteria are phototrophic prokaryotes that convert inorganic carbon as CO2 into organic compounds at the expense of light energy. They need only inorganic nutrients and can be cultivated to high densities using non-arable land and seawater. This has made cyanobacteria attractive organisms for the production of biofuels and chemical feedstock. Synechocystis sp. PCC 6803 is one of the most widely used cyanobacterial model strains. Based on its available genome sequence and genetic tools, Synechocystis has been genetically modified to produce different biotechnological products. Efficient isoprene production is an attractive goal because this compound is widely used as chemical feedstock. RESULTS Here, we report on our attempts to generate isoprene-producing strains of Synechocystis using a plasmid-based strategy. As previously reported, a codon-optimized plant isoprene synthase (IspS) was expressed under the control of different Synechocystis promoters that ensure strong constitutive or light-regulated ispS expression. The expression of the ispS gene was quantified by qPCR and Western blotting, while the amount of isoprene was quantified using GC-MS. In addition to isoprene measurements in the headspace of closed culture vessels, single photon ionization time-of-flight mass spectrometry (SPI-MS) was applied, which allowed online measurements of isoprene production in open-cultivation systems under various conditions. Under standard conditions, a good correlation existed between ispS expression and isoprene production rate. The cultivation of isoprene production strains under NaCl-supplemented conditions decreased isoprene production despite enhanced ispS mRNA levels. The characterization of the metabolome of isoprene-producing strains indicated that isoprene production might be limited by insufficient precursor levels. Transcriptomic analysis revealed the upregulation of mRNA and regulatory RNAs characteristic of acclimation to metabolic stress. CONCLUSIONS Our best production strains produced twofold higher isoprene amounts in the presence of low NaCl concentrations than previously reported strains. These results will guide future attempts to establish isoprene production in cyanobacterial hosts.
Collapse
Affiliation(s)
- Nadin Pade
- />Plant Physiology Department, Institute of Biological Science, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Sabrina Erdmann
- />Analytic Chemistry Department, University of Rostock, Dr.-Lorenz-Weg 1, 18059 Rostock, Germany
| | - Heike Enke
- />Algenol Biofuels Germany GmbH, Magnusstr. 11, 12489 Berlin, Germany
| | - Frederik Dethloff
- />Department of Molecular Physiology, Applied Metabolome Analysis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ulf Dühring
- />Algenol Biofuels Germany GmbH, Magnusstr. 11, 12489 Berlin, Germany
| | - Jens Georg
- />Genetics & Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Juliane Wambutt
- />Algenol Biofuels Germany GmbH, Magnusstr. 11, 12489 Berlin, Germany
| | - Joachim Kopka
- />Department of Molecular Physiology, Applied Metabolome Analysis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Wolfgang R. Hess
- />Genetics & Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Ralf Zimmermann
- />Analytic Chemistry Department, University of Rostock, Dr.-Lorenz-Weg 1, 18059 Rostock, Germany
| | - Dan Kramer
- />Algenol Biofuels Germany GmbH, Magnusstr. 11, 12489 Berlin, Germany
| | - Martin Hagemann
- />Plant Physiology Department, Institute of Biological Science, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| |
Collapse
|
49
|
Abstract
Carotenoids are a class of isoprenoids synthesized by all photosynthetic organisms as well as by some non-photosynthetic bacteria and fungi with broad applications in food, feed and cosmetics, and also in the nutraceutical and pharmaceutical industries. Microalgae represent an important source of high-value products, which include carotenoids, among others. Carotenoids play key roles in light harvesting and energy transfer during photosynthesis and in the protection of the photosynthetic apparatus against photooxidative damage. Carotenoids are generally divided into carotenes and xanthophyls, but accumulation in microalgae can also be classified as primary (essential for survival) and secondary (by exposure to specific stimuli).In this chapter, we outline the high value carotenoids produced by commercially important microalgae, their production pathways, the improved production rates that can be achieved by genetic engineering as well as their biotechnological applications.
Collapse
Affiliation(s)
- Vitalia Henríquez
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso-Campus Curauma, Av. Universidad 330, Valparaíso, Chile.
| | - Carolina Escobar
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso-Campus Curauma, Av. Universidad 330, Valparaíso, Chile
| | - Janeth Galarza
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso-Campus Curauma, Av. Universidad 330, Valparaíso, Chile
| | - Javier Gimpel
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso-Campus Curauma, Av. Universidad 330, Valparaíso, Chile
| |
Collapse
|
50
|
KIRA N, YOSHIMATSU T, FUKUNAGA K, OKADA S, ADACHI M, KADONO T. Expression Profile of Genes Involved in Isoprenoid Biosynthesis in the Marine Diatom Phaeodactylum tricornutum. ACTA ACUST UNITED AC 2016. [DOI: 10.2525/ecb.54.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Nozomu KIRA
- The United Graduate School of Agricultural Sciences, Ehime University
| | - Takamichi YOSHIMATSU
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture, Kochi University
| | - Kazunari FUKUNAGA
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture, Kochi University
| | - Shigeru OKADA
- Department of Aquatic Biosciences, The University of Tokyo
| | - Masao ADACHI
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture, Kochi University
| | - Takashi KADONO
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture, Kochi University
| |
Collapse
|