1
|
Méndez A, Sanmartín P, Balboa S, Trueba-Santiso A. Environmental Proteomics Elucidates Phototrophic Biofilm Responses to Ornamental Lighting on Stone-built Heritage. MICROBIAL ECOLOGY 2024; 87:147. [PMID: 39572453 PMCID: PMC11582164 DOI: 10.1007/s00248-024-02465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Recent studies are showing that some lights suitable for illuminating the urban fabric (i.e. that do not include the red, green and blue sets of primary colours) may halt biological colonisation on monuments, mainly that caused by phototrophic subaerial biofilms (SABs), which may exacerbate the biodeterioration of substrates. However, the light-triggered mechanisms that cause changes in the growth of the phototrophs remain unknown. Environmental proteomics could be used to provide information about the changes in the SAB metabolism under stress inflicted by nocturnal lighting. Here, laboratory-produced SABs, composed of Chlorophyta, Streptophyta and Cyanobacteriota, were subjected to three types of lighting used for monuments: cool white, warm white and amber + green (potentially with a biostatic effect). A control without light (i.e. darkness) was also included for comparison. The nocturnal lighting impaired the capacity of the SABs to decompose superoxide radicals and thus protect themselves from oxidative stress. Cool white and warm white light both strongly affected the proteomes of the SABs and reduced the total peptide content, with the extent of the reduction depending on the genera of the organisms involved. Analysis of the photo-damaging effect of amber + green light on the biofilm metabolism revealed a negative impact on photosystems I and II and production of photosystem antenna protein-like, as well as a triggering effect on protein metabolism (synthesis, folding and degradation). This research provides, for the first-time, a description of the proteomic changes induced by lighting on SABs colonising illuminated monuments in urban areas.
Collapse
Affiliation(s)
- Anxo Méndez
- CRETUS, Gemap (GI-1243), Departamento de Edafoloxía E Química Agrícola, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Patricia Sanmartín
- CRETUS, Gemap (GI-1243), Departamento de Edafoloxía E Química Agrícola, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Sabela Balboa
- CRETUS, Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alba Trueba-Santiso
- CRETUS, Department of Chemical Engineering, University of Santiago de Compostela, Campus Vida, Galicia, 15782, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Rawindran H, Khoo KS, Satpati GG, Maity S, Chandran K, Lim JW, Tong WY, Setiabudi HD, Yunus NM. Composition of carbohydrate, protein and lipid derived from microalgae using thermally pretreated solid waste. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39559900 DOI: 10.1002/jsfa.14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Microalgae are widely recognized for their capacity to generate value-added products in a variety of sectors, including the pharmaceutical and food industries, bioenergy industries and wastewater industries. The quality of a microalga is significantly influenced by its proliferation. Along with growth, the biochemical profile may also vary based on the nutrient that is supplemented. The majority of the supplemented nutrients utilized are not in a functional state, as they are typically extracted in liquid form or pretreated prior to use. Parallel to numerous commonly applied pretreatment processes, including chemical, mechanical and biological, thermal pretreatment appears to receive less attention. Hence it is crucial to comprehend the potential for thermal pretreatment as well as its mechanism in militating the solid waste to release additional nutrients in order to enhance the biochemical profile of microalgae. The current review takes a closer look at the impact of various thermal pretreatments on solid waste on influencing microalgal performance in terms of their overall biochemical profiles such as carbohydrates, proteins and lipids. This approach is likely to enhance the circular economy by utilizing waste products and effectively closing the loop on waste. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hemamalini Rawindran
- Department of Chemistry, Faculty of Science, Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Kuan Shiong Khoo
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Gour Gopal Satpati
- Department of Botany, Bangabasi Evening College, University of Calcutta, Kolkata, India
| | - Sudatta Maity
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Krittika Chandran
- School of Bioscience, Faculty of Pharmacy and Biomedical Sciences, Mahsa University, Jenjarom, Malaysia
| | - Jun Wei Lim
- HICoE - Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy and Resources, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Woei-Yenn Tong
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Malaysia
| | - Herma Dina Setiabudi
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, Gambang, Malaysia
- Centre for Research in Advanced Fluid and Processes, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, Gambang, Malaysia
| | - Normawati M Yunus
- Centre of Research in Ionic Liquids (CORIL), Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| |
Collapse
|
3
|
Kumar M, Tibocha-Bonilla JD, Füssy Z, Lieng C, Schwenck SM, Levesque AV, Al-Bassam MM, Passi A, Neal M, Zuniga C, Kaiyom F, Espinoza JL, Lim H, Polson SW, Allen LZ, Zengler K. Mixotrophic growth of a ubiquitous marine diatom. SCIENCE ADVANCES 2024; 10:eado2623. [PMID: 39018398 PMCID: PMC466952 DOI: 10.1126/sciadv.ado2623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/12/2024] [Indexed: 07/19/2024]
Abstract
Diatoms are major players in the global carbon cycle, and their metabolism is affected by ocean conditions. Understanding the impact of changing inorganic nutrients in the oceans on diatoms is crucial, given the changes in global carbon dioxide levels. Here, we present a genome-scale metabolic model (iMK1961) for Cylindrotheca closterium, an in silico resource to understand uncharacterized metabolic functions in this ubiquitous diatom. iMK1961 represents the largest diatom metabolic model to date, comprising 1961 open reading frames and 6718 reactions. With iMK1961, we identified the metabolic response signature to cope with drastic changes in growth conditions. Comparing model predictions with Tara Oceans transcriptomics data unraveled C. closterium's metabolism in situ. Unexpectedly, the diatom only grows photoautotrophically in 21% of the sunlit ocean samples, while the majority of the samples indicate a mixotrophic (71%) or, in some cases, even a heterotrophic (8%) lifestyle in the light. Our findings highlight C. closterium's metabolic flexibility and its potential role in global carbon cycling.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Juan D. Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Zoltán Füssy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Chloe Lieng
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sarah M. Schwenck
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alice V. Levesque
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mahmoud M. Al-Bassam
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Anurag Passi
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Maxwell Neal
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Cristal Zuniga
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Farrah Kaiyom
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Josh L. Espinoza
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Way, La Jolla, CA 92037, USA
| | - Hyungyu Lim
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Shawn W. Polson
- Department of Computer and Information Sciences, University of Delaware, 18 Amstel Ave., Newark, DE 19716, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Lisa Zeigler Allen
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Way, La Jolla, CA 92037, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Program in Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Huang H, Li M, Guo Q, Zhang R, Zhang Y, Luo K, Chen Y. Influence of Drought Stress on the Rhizosphere Bacterial Community Structure of Cassava ( Manihot esculenta Crantz). Int J Mol Sci 2024; 25:7326. [PMID: 39000433 PMCID: PMC11242396 DOI: 10.3390/ijms25137326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Drought presents a significant abiotic stress that threatens crop productivity worldwide. Rhizosphere bacteria play pivotal roles in modulating plant growth and resilience to environmental stresses. Despite this, the extent to which rhizosphere bacteria are instrumental in plant responses to drought, and whether distinct cassava (Manihot esculenta Crantz) varieties harbor specific rhizosphere bacterial assemblages, remains unclear. In this study, we measured the growth and physiological characteristics, as well as the physical and chemical properties of the rhizosphere soil of drought-tolerant (SC124) and drought-sensitive (SC8) cassava varieties under conditions of both well-watered and drought stress. Employing 16S rDNA high-throughput sequencing, we analyzed the composition and dynamics of the rhizosphere bacterial community. Under drought stress, biomass, plant height, stem diameter, quantum efficiency of photosystem II (Fv/Fm), and soluble sugar of cassava decreased for both SC8 and SC124. The two varieties' rhizosphere bacterial communities' overall taxonomic structure was highly similar, but there were slight differences in relative abundance. SC124 mainly relied on Gamma-proteobacteria and Acidobacteriae in response to drought stress, and the abundance of this class was positively correlated with soil acid phosphatase. SC8 mainly relied on Actinobacteria in response to drought stress, and the abundance of this class was positively correlated with soil urease and soil saccharase. Overall, this study confirmed the key role of drought-induced rhizosphere bacteria in improving the adaptation of cassava to drought stress and clarified that this process is significantly related to variety.
Collapse
Affiliation(s)
- Huling Huang
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Mingchao Li
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qiying Guo
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Rui Zhang
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yindong Zhang
- Key Laboratory of Plant Disease and Pest Control of Hainan Province, Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Haikou 571100, China;
| | - Kai Luo
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yinhua Chen
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Nayana K, Babu VS, Vidya D, Sudhakar MP, Arunkumar K. Growth and productivity of Haematococcus pluvialis and Coelastrella saipanensis by photosystem modulation for understanding the heterotrophic nutritional strategy for bioremediation application. ENVIRONMENTAL RESEARCH 2024; 245:118077. [PMID: 38159661 DOI: 10.1016/j.envres.2023.118077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
In this study, Haematococcus pluvialis and Coelastrella saipanensis were evaluated for heterotrophic nutrition potential in dairy waste medium by blocking the PSII using DCMU. The study was done by four sets of experiments. In the first set, in the different concentrations DCMU-treatments, 20μL showed pronounced effect in H. pluvialis and C. saipanensis as 89 % and 83% decrease in cells (>30 and > 250 cells/mL) compared to control (536 ± 12.35 × 104 and 1167 ± 15.35 × 104 cells/mL, respectively). Damage to the PS II by DCMU interrupted the growth, which in turn produced a significant drop in the number of cells. In the second round of experiment, growth of algae in various dairy waste concentrations suggest that dairy wastewater (DWW) provides enough nutrients to produce 35.71 % and 64.74 % more cells in H. pluvialis and C. saipanensis, respectively compared to the control. In the third set, high DCMU concentration was added to microalgae cultures in DWW to assess the heterotrophic nutrition potential. Growth in cell number 34.4 ± 19 and 617.46 ± 60.44 cells/mL was recorded in H. pluvialis and C. saipanensis when grown control medium whereas addition of DCMU reduced the cell number to 1.53 ± 0.75 and 55.13 ± 0.75 cells/mL on 15th day, respectively. This shows cells in cultures treated with DCMU reveal that algae can sustain their metabolic activity by utilizing the nutrients of dairy waste inhibiting photosystem. Fourth round of experiments found that microalgae could resume their growth and productivity by adapting to heterotrophic nutritional behaviour when DCMU given in mild dose at different time interval. This study conclude as C. saipanensis grows more readily by absorbing dairy waste nutrients than H. pluvialis. Therefore, C. saipanensis is an excellent choice for wastewater treatment through sustainable environmentally benign process after scale-up investigation. These results provide useful information to advance to molecular study for measuring microalgae's capability for bioremediation application.
Collapse
Affiliation(s)
- K Nayana
- Microalgae Group, Phycoscience Lab, Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, 671 320, Kasaragod, Kerala, India.
| | - Vaishnav S Babu
- Microalgae Group, Phycoscience Lab, Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, 671 320, Kasaragod, Kerala, India.
| | - D Vidya
- Microalgae Group, Phycoscience Lab, Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, 671 320, Kasaragod, Kerala, India.
| | - M P Sudhakar
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Pallikaranai, Chennai, 600100, Tamil Nadu, India; Marine Biopolymers & Advanced Bioactive Materials Research Lab, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (Saveetha University), Chennai, 600 077, Tamil Nadu, India.
| | - Kulanthaiyesu Arunkumar
- Microalgae Group, Phycoscience Lab, Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, 671 320, Kasaragod, Kerala, India.
| |
Collapse
|
6
|
Li D, Chen X, Wang Y, Huang W, Wang Y, Zhao X, Song X, Cao X. Panoptic elucidation of algicidal mechanism of Raoultella sp. S1 against the Microcystis aeruginosa by TMT quantitative proteomics. CHEMOSPHERE 2024; 352:141287. [PMID: 38272139 DOI: 10.1016/j.chemosphere.2024.141287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/24/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Harmful algal blooms (HABs) due to eutrophication are becoming a serious ecological disaster worldwide, threatening human health and the optimal balance of aquatic ecosystems. The traditional approaches to eradicate HABs yield several drawbacks in practical application, while microbial algicidal technology is garnering mounting recognition due to its high efficiency, eco-friendliness, and low cost. In our previous study, we isolated a bacterium strain Raoultella sp. S1 from eutrophic water with high efficiency of algicidal properties. This study further investigated the flocculation and inactivation efficiency of S1 on Microcystis aeruginosa at different eutrophic stages by customizing the algal cell densities. The supernatant extract of S1 strain exhibited remarkable flocculation and inactivation effects against low (1 × 106 cell/mL)and medium (2.7 × 106 cell/mL)concentrations of algal cells, but unexceptional for higher densities. The results further revealed that algal cells at low and medium counts manifested a more apparent antioxidant defense response, while the photosynthetic efficiency and relative electron transport rate were considerably reduced within 24 h. TEM observations confirmed the disruption of thylakoid membranes and cell structure of algal cells by algicidal substances. Moreover, TMT proteomics revealed alterations in protein metabolic pathways of algal cells during the flocculation and lysis stages at the molecular biological level. This signified that the disruption of the photosynthetic system is the core algicidal mechanism of S1 supernatant. In contrast, the photosynthetic metabolic pathways in the HABs were significantly upregulated, increasing the energy supply for the NADPH dehydrogenation process and the upregulation of ATPases in oxidative phosphorylation. Insufficient energy provided by NADPH resulted in a dwindled electron transport rate, stagnation of carbon fixation in dark reactions, and blockage of light energy conversion into chemical energy. Nonetheless, carbohydrate metabolism (gluconeogenesis and glycolysis) proteins were down-regulated and hampered DNA replication and repair. This study aided in unveiling the bacterial management of eutrophication by Raoultella sp. S1 and further arrayed the proteomic mechanism of algal apoptosis.
Collapse
Affiliation(s)
- Dongpeng Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xi Chen
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yifei Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Huang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuhui Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxiang Zhao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xin Cao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
7
|
Mao X, Zhou X, Fan X, Jin W, Xi J, Tu R, Naushad M, Li X, Liu H, Wang Q. Proteomic analysis reveals mechanisms of mixed wastewater with different N/P ratios affecting the growth and biochemical characteristics of Chlorella pyrenoidosa. BIORESOURCE TECHNOLOGY 2023; 381:129141. [PMID: 37169198 DOI: 10.1016/j.biortech.2023.129141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Effects of different nutrient ratios on the biochemical compositions of microalgae and the changes were rarely studied at the molecular level. In this study, the impacts of various nitrogen to phosphorus (N/P) ratios on growing of C. pyrenoidosa, as well as biochemical compositions and the metabolic regulation mechanism in mixed sewage, were investigated. The results suggested that 18 was optimal N/P ratio, while the dry weight (1.0 g/L), chlorophyll-a (Chla) (3.63 mg/L), and lipid production (0.28 g/L) were all the highest comparing with other groups. In contrast, the protein production (0.37 g/L) was the least. The nature of the regulatory mechanisms inthe metabolic pathways of these biochemical compositions was revealed by proteomic results, and there were 62 different expression proteins (DEPs) taken part in fatty acid and lipid biosynthesis metabolism (FA), amino acid biosynthesis metabolism (AA), photosynthesis (PHO), carbon fixation in photosynthetic organisms (CFP), and central carbon metabolism (CCM).
Collapse
Affiliation(s)
- Xinrui Mao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| | - Xiumin Fan
- Shenzhen ecological and environmental intelligent management and control center, Shenzhen, 518034, China
| | - Wenbiao Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Jingjing Xi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Renjie Tu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
8
|
Microalgae-mediated wastewater treatment for biofuels production: A comprehensive review. Microbiol Res 2022; 265:127187. [DOI: 10.1016/j.micres.2022.127187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 01/20/2023]
|
9
|
Brar A, Kumar M, Soni T, Vivekanand V, Pareek N. Insights into the genetic and metabolic engineering approaches to enhance the competence of microalgae as biofuel resource: A review. BIORESOURCE TECHNOLOGY 2021; 339:125597. [PMID: 34315089 DOI: 10.1016/j.biortech.2021.125597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Conventional fuel resources are overburden with speedy global energy demand which ensued the urgent need of alternate energy resources. Biofuel generation efficiency of microalgae is notable due to their comparatively rapid biomass production rate and high oil content. But, the employment of microalgae as biofuel resource is in infancy due to low productivity and high production cost. The issues can be addressed by employing engineered microalgal strains that would be able to efficiently generate enhanced levels of biomass with augmented lipid and/or carbohydrate content for proficient biofuel production. Genetic alterations and metabolic engineering of microalgal species might be helpful in developing high stress-tolerant strains with improved properties for biofuel generation. Various omics approaches appeared significant to upgrade the microalgal lipid production. Intervention of genetic and metabolic engineering approaches would facilitate the development of microalgae as a competent biofuel resource and inflate the economic commercialization of biofuels.
Collapse
Affiliation(s)
- Amandeep Brar
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Manish Kumar
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Twinkle Soni
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - V Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, Rajasthan 302017, India
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
10
|
Xiang Q, Wei X, Yang Z, Xie T, Zhang Y, Li D, Pan X, Liu X, Zhang X, Yao C. Acclimation to a broad range of nitrate strength on a euryhaline marine microalga Tetraselmis subcordiformis for photosynthetic nitrate removal and high-quality biomass production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146687. [PMID: 33812104 DOI: 10.1016/j.scitotenv.2021.146687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Industrial wastewaters usually possess a wide range of nitrate strength. Microalgae-based nitrate-rich wastewater treatment could realize nitrate recovery along with CO2 sequestration for sustainable biomass production, but the low tolerance of the microalgal strains to high-strength nitrate restricted the treatment process. The present study comprehensively evaluated a euryhaline marine microalga Tetraselmis subcordiformis for photosynthetic nitrate removal and biomass production in synthetic wastewater with a broad range of nitrate strength (0.24-7.0 g NO3--N/L). This alga could acclimate to high nitrate strength up to 3.5 g NO3--N/L (HN) without compromising biomass production. Nitrate could be completely removed within four days when low nitrate (0.24 g NO3--N/L, LN) was loaded. The maximum nitrate removal rate of 331 mg N/L/day and specific nitrate removal rate of 360 mg N/day/g cell was obtained under medium nitrate condition (1.8 g NO3--N/L, MN). High-nitrate stress under 7.0 g NO3--N/L (SHN) caused an increased light energy dissipation while decreased the density of photosystem II active reaction center, which partially protect the cells from photodamage and contributed to their acclimation to SHN. The algae also enhanced amino acid/fatty acid proportions essential for maintaining intracellular redox states to cope with the stress caused by LN or SHN. HN and SHN was in favor of protein accumulation and maintenance with enhanced proportion of essential amino acids, which entitled the algal biomass to be of high quality for animal feed applied in livestock graziery and aquaculture. LN facilitated productive starch and lipid accumulation with good quality for biofuels production. The nitrate removal rate and biomass productivity exceeded most of the microalgae reported in literature under similar conditions, which highlighted Tetraselmis subcordiformis as a potent strain for flexible nitrate-rich wastewater remediation coupled with fast CO2 bio-mitigation and high-quality biomass production for sustainable algal biorefinery.
Collapse
Affiliation(s)
- Qi Xiang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaolong Wei
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zezhou Yang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Tonghui Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Defu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xuerong Pan
- Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu, Sichuan 610213, China
| | - Xiaolong Liu
- Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu, Sichuan 610213, China
| | - Xiang Zhang
- Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu, Sichuan 610213, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
11
|
Nutritional Profiling and Preliminary Bioactivity Screening of Five Micro-Algae Strains Cultivated in Northwest Europe. Foods 2021; 10:foods10071516. [PMID: 34359386 PMCID: PMC8307025 DOI: 10.3390/foods10071516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/31/2022] Open
Abstract
This study aimed to map the nutritional profile and bioactivities of five microalgae that can be grown in Northwest Europe or areas with similar cultivation conditions. Next to the biochemical composition, the in vitro digestibility of carbohydrates, proteins, and lipids was studied for Chlamydomonas nivalis, Porphyridium purpureum, Chlorella vulgaris, Nannochloropsis gaditana, and Scenedesmus species biomass. These microalgae were also assessed for their ability to inhibit the angiotensin-1-converting enzyme (ACE-1, EC 3.4.15.1), which is known to play a role in the control of blood pressure in mammals. Large differences in organic matter solubility after digestion suggested that a cell disruption step is needed to unlock the majority of the nutrients from N. gaditana and Scenedesmus species biomass. Significant amounts of free glucose (16.4–25.5 g glucose/100 g dry algae) were detected after the digestion of C. nivalis, P. purpureum, and disrupted Scenedesmus. The fatty acid profiles showed major variations, with particularly high Ω-3 fatty acid levels found in N. gaditana (5.5 ± 0.5 g/100 g dry algae), while lipid digestibility ranged from 33.3 ± 6.5% (disrupted N. gaditana) to 67.1 ± 11.2% (P. purpureum). C. vulgaris and disrupted N. gaditana had the highest protein content (45–46% of dry matter), a nitrogen solubility after digestion of 65–71%, and the degree of protein hydrolysis was determined as 31% and 26%, respectively. Microalgae inhibited ACE-1 by 73.4–87.1% at physiologically relevant concentrations compared to a commercial control. These data can assist algae growers and processors in selecting the most suitable algae species for food or feed applications.
Collapse
|
12
|
Zhang H, Zhao L, Chen Y, Zhu M, Xu Q, Wu M, Han D, Hu Q. Trophic Transition Enhanced Biomass and Lipid Production of the Unicellular Green Alga Scenedesmus acuminatus. Front Bioeng Biotechnol 2021; 9:638726. [PMID: 34095093 PMCID: PMC8176925 DOI: 10.3389/fbioe.2021.638726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/08/2021] [Indexed: 11/18/2022] Open
Abstract
Microalgal heterotrophic cultivation is an emerging technology that can enable producing high cell-density algal cell cultures, which can be coupled with photoautotrophic cultivation for valuable chemicals such as lipids manufacturing. However, how the heterotrophically grown algal cells respond to the lipid-inducing conditions has not been fully elucidated so far. In this study, when the heterotrophically grown Scenedesmus acuminatus cells were subjected to the high light (HL) and nitrogen-limited (NL) conditions, both the biomass and lipid productivity were enhanced as compared to that of the photoautotrophically grown counterparts. The chlorophyll a fluorometry analysis showed that the Fv/Fm and Y(II) of the heterotrophically grown cells subjected to the HL and NL conditions was recovered to the maximum value of 0.75 and 0.43, respectively, much higher than those of the photoautotrophically grown cells under the same stress conditions. Transcriptomic analysis revealed that heterotrophically grown cells fully expressed the genes coding for the photosystems proteins, including the key photoprotective proteins D1, PsbS, light-harvesting-complex (LHC) I and LHC II. Meanwhile, downregulation of the carotenoid biosynthesis and upregulation of the glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle and oxidative phosphorylation pathways were observed when the heterotrophically grown cells were subjected to the HL and N-limited conditions for lipid production. It was deduced that regulation of these pathways not only enhanced the light utilization but also provided the reducing power and ATP by which the biomass accumulation was significantly elevated. Besides, upregulation of the acetyl-CoA carboxylase/biotin carboxylase, digalactosyl diacylglycerol synthase and diacylglycerol acyltransferase 2 encoding genes may be attributable to the enhanced lipid production. Understanding the cellular responses during the trophic transition process could guide improvement of the strength of trophic transition enhancing microalgal biomass and lipid production.
Collapse
Affiliation(s)
- Hu Zhang
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Zhao
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yi Chen
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mianmian Zhu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Quan Xu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mingcan Wu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Institute for Advanced Study, Shenzhen University, Shenzhen, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
13
|
Xian L, Long Y, Yang M, Chen Z, Wu J, Liu X, Wang L. iTRAQ-based quantitative glutelin proteomic analysis reveals differentially expressed proteins in the physiological metabolism process during endosperm development and their impacts on yield and quality in autotetraploid rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110859. [PMID: 33775365 DOI: 10.1016/j.plantsci.2021.110859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Autotetraploid rice, which is developed through chromosome set doubling using diploid rice, produces high-quality kernels that are rich in storage proteins. However, little information is available about the content of different proteins in autotetraploid rice and their proteomic analysis. The dynamic changes in four storage proteins, namely, albumin, globulin, prolamin, and glutelin, were analyzed in the endosperm of autotetraploid rice (AJNT-4x) and in that of its diploid counterpart (AJNT-2x) for comparison. The contents of the four proteins were all higher during endosperm development in AJNT-4x than in AJNT-2x, but their change and composition were almost the same in the two materials. Then, iTRAQ was employed to analyze the glutelin profiles of AJNT-4x and AJNT-2x at 10 DAF, 15 DAF, and 20 DAF. A total of 1326 proteins were identified in AJNT-4x and AJNT-2x using high-throughput LC-MS/MS. Among the 1326 identified proteins, there were 362 DEPs in AJNT-4x compared with AJNT-2x and 372 DEPs between different developmental stages in AJNT-4x. Eight important upregulated proteins were identified by qRT-PCR, including B8AM24, B8ARJ0, B8AQM6, A2ZCE6, and P37833. Among them, B8AM24 and B8ARJ0 were related to the lysine biosynthesis process. GO enrichment analysis revealed that the critical functions of DEPs exhibited little overlap between the 10, 15, and 20 DAF groups. Endosperm glutelin accumulation was regulated mainly by different DEPs during the early stage, and 15 DAF was a critical regulating point for glutelin accumulation. KEGG pathway analysis showed that ribosomal proteins were significantly higher in AJNT-4x than in AJNT-2x at 10 DAF, and protein processing, biosynthesis, and metabolism of amino acids were higher and more active in AJNT-4x at 15 DAF, while the peroxisome was richer in AJNT-4x at 20 DAF. The PPI network showed that ribosomal proteins gradually decreased with increasing endosperm development. These results provide new insights into dynamic glutelin expression differences during endosperm development in autotetraploid rice, which will aid in the development of rice cultivars with increased yield and improved grain nutritional quality.
Collapse
Affiliation(s)
- Lin Xian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanxi Long
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Meng Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Lan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Araújo M, Prada J, Mariz-Ponte N, Santos C, Pereira JA, Pinto DCGA, Silva AMS, Dias MC. Antioxidant Adjustments of Olive Trees ( Olea Europaea) under Field Stress Conditions. PLANTS 2021; 10:plants10040684. [PMID: 33916326 PMCID: PMC8066335 DOI: 10.3390/plants10040684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 02/04/2023]
Abstract
Extreme climate events are increasingly frequent, and the 2017 summer was particularly critical in the Mediterranean region. Olive is one of the most important species of this region, and these climatic events represent a threat to this culture. However, it remains unclear how olive trees adjust the antioxidant enzymatic system and modulate the metabolite profile under field stress conditions. Leaves from two distinct adjacent areas of an olive orchard, one dry and the other hydrated, were harvested. Tree water status, oxidative stress, antioxidant enzymes, and phenolic and lipophilic metabolite profiles were analyzed. The environmental conditions of the 2017 summer caused a water deficit in olive trees of the dry area, and this low leaf water availability was correlated with the reduction of long-chain alkanes and fatty acids. Hydrogen peroxide (H2O2) and superoxide radical (O2•–) levels increased in the trees collected from the dry area, but lipid peroxidation did not augment. The antioxidant response was predominantly marked by guaiacol peroxidase (GPOX) activity that regulates the H2O2 harmful effect and by the action of flavonoids (luteolin-7-O-glucuronide) that may act as reactive oxygen species scavengers. Secoiridoids adjustments may also contribute to stress regulation. This work highlights for the first time the protective role of some metabolite in olive trees under field drought conditions.
Collapse
Affiliation(s)
- Márcia Araújo
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
- Integrated Biology and Biotechnology Laboratory, LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; (J.P.); (N.M.-P.); (C.S.)
- Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - João Prada
- Integrated Biology and Biotechnology Laboratory, LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; (J.P.); (N.M.-P.); (C.S.)
| | - Nuno Mariz-Ponte
- Integrated Biology and Biotechnology Laboratory, LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; (J.P.); (N.M.-P.); (C.S.)
| | - Conceição Santos
- Integrated Biology and Biotechnology Laboratory, LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; (J.P.); (N.M.-P.); (C.S.)
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
| | - Maria Celeste Dias
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
- Correspondence: ; Tel.: +351-239-240-752
| |
Collapse
|
15
|
Zhang JY, Cun Z, Chen JW. Photosynthetic performance and photosynthesis-related gene expression coordinated in a shade-tolerant species Panax notoginseng under nitrogen regimes. BMC PLANT BIOLOGY 2020; 20:273. [PMID: 32593292 PMCID: PMC7321538 DOI: 10.1186/s12870-020-02434-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Nitrogen (N) is an essential component of photosynthetic apparatus. However, the mechanism that photosynthetic capacity is suppressed by N is not completely understood. Photosynthetic capacity and photosynthesis-related genes were comparatively analyzed in a shade-tolerant species Panax notoginseng grown under the levels of low N (LN), moderate N (MN) and high N (HN). RESULTS Photosynthetic assimilation was significantly suppressed in the LN- and HN-grown plants. Compared with the MN-grown plants, the HN-grown plants showed thicker anatomic structure and larger chloroplast accompanied with decreased ratio of mesophyll conductance (gm) to Rubisco content (gm/Rubisco) and lower Rubisco activity. Meanwhile, LN-grown plants displayed smaller chloroplast and accordingly lower internal conductance (gi). LN- and HN-grown individuals allocated less N to light-harvesting system (NL) and carboxylation system (NC), respectively. N surplus negatively affected the expression of genes in Car biosynthesis (GGPS, DXR, PSY, IPI and DXS). The LN individuals outperformed others with respect to non-photochemical quenching. The expression of genes (FBA, PGK, RAF2, GAPC, CAB, PsbA and PsbH) encoding enzymes of Calvin cycle and structural protein of light reaction were obviously repressed in the LN individuals, accompanying with a reduction in Rubisco content and activity. Correspondingly, the expression of genes encoding RAF2, RPI4, CAB and PetE were repressed in the HN-grown plants. CONCLUSIONS LN-induced depression of photosynthetic capacity might be caused by the deceleration on Calvin cycle and light reaction of photosynthesis, and HN-induced depression of ones might derive from an increase in the form of inactivated Rubisco.
Collapse
Affiliation(s)
- Jin-Yan Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medical Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhu Cun
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medical Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory of Medical Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
16
|
You W, Wei L, Gong Y, Hajjami ME, Xu J, Poetsch A. Integration of proteome and transcriptome refines key molecular processes underlying oil production in Nannochloropsis oceanica. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:109. [PMID: 32565907 PMCID: PMC7302151 DOI: 10.1186/s13068-020-01748-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/08/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Under nitrogen deficiency situation, Nannochloropsis spp. accumulate large amounts of lipids in the form of triacylglycerides (TAG). Mechanisms of this process from the perspective of transcriptome and metabolome have been obtained previously, yet proteome analysis is still sparse which hinders the analysis of dynamic adaption to nitrogen deficiency. Here, proteomes for 3 h, 6 h, 12 h, 24 h, 48 h and 10th day of nitrogen deplete (N-) and replete (N+) conditions were obtained and integrated with previous transcriptome data for N. oceanica. RESULTS Physiological adaptations to N- not apparent from transcriptome data were unveiled: (a) abundance of proteins related to photosynthesis only slightly decreased in the first 48 h, indicating that photosynthesis is still working efficiently, and protein amounts adjust gradually with reduction in chloroplast size. (b) Most proteins related to the TCA cycle were strongly upregulated after 48 h under N-, suggesting that respiration is enhanced after 48 h and that TCA cycle efflux supports the carbon required for lipid synthesis. (c) Proteins related to lipid accumulation via the Kennedy pathway increased their abundance at 48 h, synchronous with the previously reported diversification of fatty acids after 48 h. CONCLUSIONS This study adds a proteome perspective on the major pathways for TAG accumulation in Nannochloropsis spp. Temporal changes of proteome exhibited distinct adaptation phases that are usually delayed relative to transcriptomic responses. Notably, proteome data revealed that photosynthesis and carbon fixation are still ongoing even after 48 h of N-. Moreover, sometimes completely opposite trends in proteome and transcriptome demonstrate the relevance of underexplored post-transcriptional regulation for N- adaptation.
Collapse
Affiliation(s)
- Wuxin You
- Single-Cell Center CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Li Wei
- Single-Cell Center CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- University of Chinese Academy of Science, Beijing, China
| | - Yanhai Gong
- Single-Cell Center CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- University of Chinese Academy of Science, Beijing, China
| | - Mohamed El Hajjami
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jian Xu
- Single-Cell Center CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- University of Chinese Academy of Science, Beijing, China
| | - Ansgar Poetsch
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
17
|
Growth, biochemical composition and photosynthetic performance of Scenedesmus acuminatus under different initial sulfur supplies. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|