1
|
Behrendt I, Becker K, Steingass CB, Schweiggert R, Michel G, Friedrich E, Grote D, Martin Z, Dötzer HP, Fasshauer M, Speckmann M, Kuntz S. Acylated Anthocyanins From Black Carrots and Their Related Phenolic Acids Diminish Priming and Activation of the NLRP3 Inflammasome in THP-1 Monocytes. Mol Nutr Food Res 2024:e2400356. [PMID: 39425563 DOI: 10.1002/mnfr.202400356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/05/2024] [Indexed: 10/21/2024]
Abstract
SCOPE Excessive activation of the nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome contributes to chronic inflammation. Thus, targeting NLRP3 inflammasome activation by anthocyanins may prevent inflammatory diseases. Therefore, the present study determines the influence of a black carrot extract (BCE) with high amounts of acylated anthocyanins and their related phenolic acids on the NLRP3 inflammasome. METHODS AND RESULTS THP-1 monocytes are pretreated with a BCE, cyanidin-3-glucoside (C3G), or hydroxycinnamic acids. NLRP3 inflammasome assembly is initiated by priming THP-1 monocytes with lipopolysaccharide and/or activating the NLRP3 inflammasome with nigericin. Flow cytometry is used to assess apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) speck formation, as well as ASC and NLRP3 protein expression. Caspase-1 activity is measured using a bioluminescent assay, and cytokine concentrations are determined by enzyme-linked immunosorbent assays (ELISA). C3G and phenolic acids diminish ASC and NLRP3 protein expression. In addition, C3G and phenolic acids attenuate ASC speck formation. Furthermore, the BCE and C3G decline caspase-1 activity. Consistently, IL-1β and IL-18 secretion are reduced upon NLRP3 inflammasome activation. CONCLUSION The present study shows that a BCE with high amounts of acylated anthocyanins and their related phenolic acids diminish priming and activation of the NLRP3 inflammasome in THP-1 monocytes.
Collapse
Affiliation(s)
- Inken Behrendt
- Institute of Nutritional Science, Department of Nutritional Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Katharina Becker
- Chair of Analysis and Technology of Plant-based Foods - Focus on Beverages, Department of Beverage Research, Geisenheim University, Geisenheim, Germany
| | - Christof Björn Steingass
- Chair of Analysis and Technology of Plant-based Foods - Focus on Beverages, Department of Beverage Research, Geisenheim University, Geisenheim, Germany
| | - Ralf Schweiggert
- Chair of Analysis and Technology of Plant-based Foods - Focus on Beverages, Department of Beverage Research, Geisenheim University, Geisenheim, Germany
| | - Gabriela Michel
- Institute for Clinical Immunology, Transfusion Medicine and Hemostaseology, Department of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Flow Cytometry Core Facility, Department of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Elvira Friedrich
- Institute of Nutritional Science, Department of Nutritional Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Daniela Grote
- Institute of Nutritional Science, Department of Nutritional Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Zoe Martin
- Institute of Nutritional Science, Department of Nutritional Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Hanna Pauline Dötzer
- Institute of Nutritional Science, Department of Nutritional Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Mathias Fasshauer
- Institute of Nutritional Science, Department of Nutritional Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Martin Speckmann
- Institute for Clinical Immunology, Transfusion Medicine and Hemostaseology, Department of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Flow Cytometry Core Facility, Department of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabine Kuntz
- Institute of Nutritional Science, Department of Nutritional Science, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
2
|
Lone S, Narayan S, Hussain K, Malik M, Yadav SK, Khan FA, Safa A, Ahmad A, Masoodi KZ. Investigating the antioxidant and anticancer potential of Daucus spp. extracts against human prostate cancer cell line C4-2, and lung cancer cell line A549. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118855. [PMID: 39332616 DOI: 10.1016/j.jep.2024.118855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/20/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
The study evaluated 297 carrot germplasm lines, focusing on 52 cultivars to explore their therapeutic potential and address challenges related to the accessibility and affordability of nutraceuticals and health promoting foods. The investigation explores the application of DNA barcoding using the ITS region for precise species identification, highlighting genetic diversity among the examined cultivars. Through ITS sequence-based analysis and phylogenetic examination, six diverse Daucus spp. genotypes were differentiated and classified into distinct groups, indicating the presence of vast genetic variation. Evaluation of antioxidant activities using the DPPH radical scavenging assay revealed varying degrees of scavenging ability among genotypes with SKAU-C-15, SKAU-C-17, and SKAU-C-16 exhibiting the highest activity, suggesting their potential for antioxidant-rich products. Thin Layer Chromatography (TLC) bioautography confirmed the presence of bioactive compounds in carrot extracts responsible for their antioxidant properties. In cell culture studies, specific carrot genotype extracts demonstrated potential anti-proliferative and anti-invasive effects on recurrent prostate cancer cell line - C4-2 (SKAU-C-30, SKAU-C-10, and SKAU-C-42) and non-small cell lung cancer cell line - A549 (SKAU-C-18 and SKAU-C-11) cancer cells, as indicated by MTT assay, wound healing assay, and Colony Forming Unit assay. These findings suggest the promising therapeutic potential of carrot genotypes for developing anti-cancer functional foods, nutraceuticals and health supplements.Therefore, the study contributes to the nutrition security, paving the way for advancements in functional foods and health applications, particularly in cancer treatment and prevention.
Collapse
Affiliation(s)
- Sameena Lone
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, J&K, India; Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, J&K, India
| | - Sumati Narayan
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, J&K, India
| | - Khursheed Hussain
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, J&K, India
| | - Muzaffar Malik
- Division of Soil Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, J&K, India
| | - Satish Kumar Yadav
- National Bureau of Plant Genetic Resources (NBPGR), Pusa, 110012, New Delhi, India
| | - Farooq Ahmad Khan
- Division of Basic Sciences and Humanities, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, J&K, India
| | - Aliya Safa
- Unani Medical College Institute of Asian Medical Sciences, Srinagar, J&K, India
| | - Ajaz Ahmad
- Departments of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid Z Masoodi
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, J&K, India.
| |
Collapse
|
3
|
Ordóñez-Díaz JL, Velasco-Ruiz I, Velasco-Tejero C, Pereira-Caro G, Moreno-Rojas JM. Seasonal and Morphology Effects on Bioactive Compounds, Antioxidant Capacity, and Sugars Profile of Black Carrot ( Daucus carota ssp. sativus var. atrorubens Alef.). Foods 2024; 13:1575. [PMID: 38790875 PMCID: PMC11121725 DOI: 10.3390/foods13101575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) is widely recognized for its bioactive compounds and antioxidant properties. The black carrot of Cuevas Bajas (Málaga) is a local variety characterized by a black/purple core, which differs from other black carrot varieties. Therefore, this autochthonous variety was characterized according to the root size and the harvesting season by means of a study of its antioxidant capacity analyzed by three methods, its total carotenoids content, and its sugars and phenolic compounds profile by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-MS). A total of 20 polyphenolic compounds were quantified in 144 samples analyzed. The anthocyanidins group was observed to be the most abundant, followed by the hydroxycinnamic acids group. Moreover, pelargonidin 3-sambubioside was observed in black carrot for the first time. The medium-sized carrots presented the highest content of phenolic compounds, largely due to their significantly higher anthocyanidins content. Comparatively, the small carrots showed a higher content of simple sugars than the large ones. Regarding the influence of season, significantly higher quantities of glucose and fructose were observed in the late-season carrots, while sucrose was the main sugar in early-season samples. No significant differences were observed in the total carotenoid content of black carrot.
Collapse
Affiliation(s)
- José Luis Ordóñez-Díaz
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (J.L.O.-D.); (G.P.-C.)
| | - Isabel Velasco-Ruiz
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (J.L.O.-D.); (G.P.-C.)
- Departamento de Bromatología y Tecnología de los Alimentos, Campus Rabanales, Ed. Darwin-Anexo Universidad de Córdoba, 14071 Córdoba, Spain
| | - Cristina Velasco-Tejero
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (J.L.O.-D.); (G.P.-C.)
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (J.L.O.-D.); (G.P.-C.)
| | - José Manuel Moreno-Rojas
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (J.L.O.-D.); (G.P.-C.)
| |
Collapse
|
4
|
Thakur P, Anika, Suhag R, Dhiman A, Kumar S. Insights into the current status of bioactive value, postharvest processing opportunities and value addition of black carrot. Food Sci Biotechnol 2024; 33:721-747. [PMID: 38371691 PMCID: PMC10866833 DOI: 10.1007/s10068-023-01436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 02/20/2024] Open
Abstract
Black carrots are a type of carrot that is naturally dark purple or black in color. They are a good source of antioxidants, vitamins, and minerals, and have been shown to have several health benefits, including reducing the risk of cancer, heart disease, and diabetes. This review article discusses the bioactive compounds present in black carrot, including anthocyanins, phenolic acids, carotenoids, and organic acids and sugars. It also compares the bioactive compounds and antioxidant capacity of black carrot with other carrot varieties. Furthermore, it discusses various postharvest processing methods, both conventional and novel, such as encapsulation, drying, and microbial decontamination, highlighting their effects on preserving and stabilizing the bioactive compounds. The review also emphasizes the incorporation of black carrot into different food products, including dairy items, beverages, and baked goods, and their impact on nutritional enhancement. The article provides knowledge on utilizing black carrot for improved nutritional and functional outcomes.
Collapse
Affiliation(s)
- Priyanka Thakur
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh India
| | - Anika
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh India
| | - Rajat Suhag
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Atul Dhiman
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh India
| | - Satish Kumar
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh India
| |
Collapse
|
5
|
Pandey P, Grover K, Dhillon TS, Chawla N, Kaur A. Development and quality evaluation of polyphenols enriched black carrot (Daucus carota L.) powder incorporated bread. Heliyon 2024; 10:e25109. [PMID: 38322869 PMCID: PMC10844063 DOI: 10.1016/j.heliyon.2024.e25109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 12/05/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024] Open
Abstract
Black carrot is a prominent source of polyphenols and the cheapest source of anthocyanins in India. In this study, an attempt has been made to examine the feasibility of black carrot powder as an ingredient in bread. Black carrot bread was prepared by incorporating different concentrations of black carrot powder (BCP) at 2.5, 5.0, 7.5 and 10 %. The developed bread samples were analyzed for physical and textural quality, proximate composition, bioactive compounds, antioxidant properties, sensory characteristics, mineral content and storage quality. The results revealed that loaf volume and specific volume decreased (1995-1254 mL, 5.25-3.28 mL/g) with the incorporation of BCP into bread. Textural analysis revealed that the addition of BCP led to increased hardness in the bread (0.110-12 0.151 N), whereas the resilience (43.64-35.10 %), cohesion and springiness (89.930-13 82.146 %) decreased significantly. The content of bioactive compounds such as total phenols, anthocyanins (29.63-112.68 mg/100 g) and flavonoids increased to exceptionally high levels in BCP-incorporated bread and showed high antioxidant activity. Incorporation of BCP up to 7.5 % showed the most acceptable sensory analysis score (7.85) with a significant increase in dietary fiber (40 %) and total mineral content (50 %), which revealed that black carrot powder could be used up to 7.5 % as an ingredient into bread with high acceptability. The present study revealed significant enhancement in bioactive compounds and mineral content of bread after the incorporation of black carrot powder, which supports its immense potential in preventing hunger and oxidative stress-induced disorders in developing countries.
Collapse
Affiliation(s)
- Pragya Pandey
- Department of Food and Nutrition, Acharya Narendra Deva University of Agriculture and Technology, Ayodhya, 224229, India
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana, 141004, India
| | - Kiran Grover
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana, 141004, India
| | - Tarsem Singh Dhillon
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Neena Chawla
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Amarjeet Kaur
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
6
|
Mandrich L, Esposito AV, Costa S, Caputo E. Chemical Composition, Functional and Anticancer Properties of Carrot. Molecules 2023; 28:7161. [PMID: 37894640 PMCID: PMC10608851 DOI: 10.3390/molecules28207161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Plants are a valuable source of drugs for cancer treatment. Daucus carota has been investigated for its health properties. In particular, Daucus carota L. subsp. Sativus, the common edible carrot root, has been found to be rich in bioactive compounds such as carotenoids and dietary fiber and contains many other functional components with significant health-promoting features, while Daucus carota L. subsp. Carrot (Apiacae), also known as wild carrot, has been usually used for gastric ulcer therapy, diabetes, and muscle pain in Lebanon. Here, we review the chemical composition of Daucus carota L. and the functional properties of both edible and wild carrot subspecies. Then, we focus on compounds with anticancer characteristics identified in both Daucus carota subspecies, and we discuss their potential use in the development of novel anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Luigi Mandrich
- Research Institute on Terrestrial Ecosystems-IRET-CNR, Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Antonia Valeria Esposito
- Institute of Genetics and Biophysics-IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.E.); (S.C.)
| | - Silvio Costa
- Institute of Genetics and Biophysics-IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.E.); (S.C.)
| | - Emilia Caputo
- Institute of Genetics and Biophysics-IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.E.); (S.C.)
| |
Collapse
|
7
|
Yi X, Li J, Liao D, Peng G, Zheng X, Xu H, Zhang T, Ai J. Carrot and carotene and multiple health outcomes: an umbrella review of the evidence. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2251-2261. [PMID: 36600678 DOI: 10.1002/jsfa.12425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In recent years, the benefits of carrots and carotene in different areas of health have been examined. The purpose of this umbrella review was to identify the associations between carrots and carotene and multiple health outcomes. The review considered evidence from meta-analyses of interventional and observational studies of carrots and carotene and any health outcome. We comprehensively searched Web of Science, PubMed, and Embase. For each association, we estimated the summary effect size using random and fixed effects models and the 95% confidence interval. A total of 1329 studies were searched, and 30 meta-analyses with 26 health outcomes were identified that met the eligibility criteria. Carrot intake was associated with a lower risk of multiple cancer outcomes including breast cancer, lung cancer, pancreatic cancer, gastric cancer, urothelial cancer, and prostate cancer. Carotene intake was associated with a lower risk of fracture, age-related cataract, sunburn, Alzheimer's disease, breast cancer, lung cancer, pancreatic cancer, gastric cancer, esophageal cancer, prostate cancer, and head and neck cancer (HNC). Serum carotene was inversely associated with all-cause mortality, breast cancer, and lung cancer. Our study revealed that carrot or carotene intake could reduce the risk of various negative health outcomes. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianyanling Yi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Dazhou Liao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaonan Zheng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Tianyi Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Patel P, Patel V, Modi A, Kumar S, Shukla YM. Phyto-factories of anti-cancer compounds: a tissue culture perspective. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00203-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
Background
Cancer is one of the most critical but ubiquitous causes of death grappled from past decades. Widely used chemotherapy with cytotoxic activity blocks/ kills the cancer cell. The compounds targeted for anticancerous activity are either derived synthetically or naturally (through plants or microbial origin). Current day, versatile role of plants in medicinal field has been attributed to the secondary metabolites it produces, known for their anticancer activity. Therefore, discovery, identification and commercial production of such novel anticancer drugs is escalated and are centerpiece for pharmaceuticals.
Main body
A biotechnological approach, principally tissue culture, leads the candidacy to be an alternative method for production of anticancer compounds. A wide range of bioactive agents like alkaloids, steroids, phenolics, saponins, flavonoids, and terpenoids are in huge demand commercially. Plant tissue culture applications are constructively more advantageous over conventional methods in terms of their continuous, controlled, aseptic production, large scale and de novo synthesis opportunity. Various bioreactors are used for mass cultivation of bioactive compound at commercial level. For example: stirred tank reactors are used for production of shikonin from Lithospermum erythrorhizon, vincristine from Catharanthus roseus, podophyllotoxin from Podophyllum etc. Strategies like callus culture, suspension culture and hairy root culture are opted for mass cultivation of these bioactives.
Conclusions
This review summarizes plant tissue culture as a promising strategy proven to be a colossal breakthrough in reliable and continuous production of existing and novel anticancer compounds and help in combating the increasing future demands.
Collapse
|
9
|
Mottaghipisheh J, Doustimotlagh AH, Irajie C, Tanideh N, Barzegar A, Iraji A. The Promising Therapeutic and Preventive Properties of Anthocyanidins/Anthocyanins on Prostate Cancer. Cells 2022; 11:1070. [PMID: 35406634 PMCID: PMC8997497 DOI: 10.3390/cells11071070] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/12/2022] Open
Abstract
As water-soluble flavonoid derivatives, anthocyanidins and anthocyanins are the plants pigments mostly rich in berries, pomegranate, grapes, and dark color fruits. Many bioactivity properties of these advantageous phytochemicals have been reported; among them, their significant abilities in the suppression of tumor cells are of the promising therapeutic features, which have recently attracted great attention. The prostate malignancy, is considered the 2nd fatal and the most distributed cancer type in men worldwide. The present study was designated to gather the preclinical and clinical studies evaluating potencies of anthocyanidins/anthocyanins for the treatment and prevention of this cancer type for the first time. In general, findings confirm that the anthocyanins (especifically cyanidin-3-O-glucoside) indicated higher activity against prostatic neoplasms compared to their correlated anthocyanidins (e.g., delphinidin); in which potent anti-inflammatory, apoptosis, and anti-proliferative activities were analyzed. Complementary anti-prostate cancer assessment of diverse naturally occurred anthocyanidins/anthocyanins and their synthetically optimized derivatives through preclinical experiments and eventually confirmed by clinical trials can promisingly lead to discover natural-based chemotherapeutic drug options.
Collapse
Affiliation(s)
- Javad Mottaghipisheh
- Center for Molecular Biosciences (CMBI), Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Amir Hossein Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj 75918-67319, Iran;
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj 75918-67319, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Alireza Barzegar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
- Liosa Pharmed Parseh Company, Shiraz 71997-47118, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| |
Collapse
|
10
|
Delving into the Nutraceutical Benefits of Purple Carrot against Metabolic Syndrome and Cancer: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063170] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabolic syndrome (MetS) constitutes a group of risk factors that may increase the risk of cancer and other health problems. Nowadays, researchers are focusing on food compounds that could prevent many chronic diseases. Thus, people are shifting from dietary supplements towards healthy nutritional approaches. As a nutritious and natural food source, purple carrot (Daucus carota spp. Sativus var. atrorubens Alef.) roots could have an important role in the prevention of MetS as well as cancer. This review provides deep insight into the role of purple carrot’s main bioactive compounds and their effectiveness against MetS and cancer. Phenolic compounds, such as anthocyanin, present in purple carrot roots may be especially productive in avoiding or delaying the onset of cardiovascular disease (CVDs), obesity, diabetes, and cancer. Anthocyanins and other phenolics are successful in reducing metabolic changes and inflammation by inhibiting inflammatory effects. Many researchers have made efforts to employ this vegetable in the prevention and treatment of MetS and cancer. However, more advanced studies are required for the identification of its detailed role, effectiveness, suitable intake, and the effect of its bioactive compounds against these diseases.
Collapse
|
11
|
Zaim M, Kara I, Muduroglu A. Black carrot anthocyanins exhibit neuroprotective effects against MPP+ induced cell death and cytotoxicity via inhibition of oxidative stress mediated apoptosis. Cytotechnology 2021; 73:827-840. [PMID: 34776632 DOI: 10.1007/s10616-021-00500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/04/2021] [Indexed: 11/30/2022] Open
Abstract
Parkinson's disease (PD) is a common chronic neurodegenerative disease induced by the death of dopaminergic neurons. Anthocyanins are naturally found antioxidants and well-known for their preventive effects in neurodegenerative disorders. Black carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.) are a rich source of anthocyanins predominantly including acylated cyanidin-based derivatives making them more stable. However, there have been no reports analysing the neuroprotective role of black carrot anthocyanins (BCA) on PD. In order to investigate the potential neuroprotective effect of BCA, human SH-SY5Y cells were treated with MPP+ (1-methyl-4-phenylpyridinium) to induce PD associated cell death and cytotoxicity. Anthocyanins were extracted from black carrots and the composition was determined by HPLC-DAD. SH-SY5Y cells were co-incubated with BCA (2.5, 5, 10, 25, 50, 100 µg/ml) and 0.5 mM MPP+ to determine the neuroprotective effect of BCA against MPP+ induced cell death and cytotoxicity. Results indicate that BCA concentrations did not have any adverse effect on cell viability. BCA revealed its cytoprotective effect, especially at higher concentrations (50, 100 µg/ml) by increasing metabolic activity and decreasing membrane damage. BCA exhibited antioxidant activity via scavenging MPP+ induced reactive oxygen species (ROS) and protecting dopaminergic neurons from ROS mediated apoptosis. These results suggest a neuroprotective effect of BCA due to its high antioxidant and antiapoptotic activity, along with the absence of cytotoxicity. The elevated stability of BCA together with potential neuroprotective effects may shed light to future studies in order to elucidate the mechanism and further neuro-therapeutic potential of BCA which is promising as a neuroprotective agent. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-021-00500-4.
Collapse
Affiliation(s)
- Merve Zaim
- SANKARA Brain and Biotechnology Research Center, Entertech Technocity, Avcilar, Istanbul Turkey
| | - Ihsan Kara
- SANKARA Brain and Biotechnology Research Center, Entertech Technocity, Avcilar, Istanbul Turkey
| | - Aynur Muduroglu
- Department of Physical Therapy and Rehabilitation, Nisantasi University, Maslak, Istanbul Turkey
| |
Collapse
|
12
|
Gok I. Functional Potential of Several Turkish Fermented Traditional Foods: Biotic Properties, Bioactive Compounds, and Health Benefits. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1962340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ilkay Gok
- Faculty of Applied Sciences, Gastronomy Department, Istanbul Okan University, Tuzla, Istanbul, Turkey
| |
Collapse
|
13
|
Pattnaik M, Pandey P, Martin GJO, Mishra HN, Ashokkumar M. Innovative Technologies for Extraction and Microencapsulation of Bioactives from Plant-Based Food Waste and their Applications in Functional Food Development. Foods 2021; 10:279. [PMID: 33573135 PMCID: PMC7911848 DOI: 10.3390/foods10020279] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The by-products generated from the processing of fruits and vegetables (F&V) largely are underutilized and discarded as organic waste. These organic wastes that include seeds, pulp, skin, rinds, etc., are potential sources of bioactive compounds that have health imparting benefits. The recovery of bioactive compounds from agro-waste by recycling them to generate functional food products is of increasing interest. However, the sensitivity of these compounds to external factors restricts their utility and bioavailability. In this regard, the current review analyses various emerging technologies for the extraction of bioactives from organic wastes. The review mainly aims to discuss the basic principle of extraction for extraction techniques viz. supercritical fluid extraction, subcritical water extraction, ultrasonic-assisted extraction, microwave-assisted extraction, and pulsed electric field extraction. It provides insights into the strengths of microencapsulation techniques adopted for protecting sensitive compounds. Additionally, it outlines the possible functional food products that could be developed by utilizing components of agricultural by-products. The valorization of wastes can be an effective driver for accomplishing food security goals.
Collapse
Affiliation(s)
- Monalisha Pattnaik
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
| | - Pooja Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Gregory J. O. Martin
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
| | | |
Collapse
|
14
|
6-Methoxymellein Isolated from Carrot ( Daucus carota L.) Targets Breast Cancer Stem Cells by Regulating NF-κB Signaling. Molecules 2020; 25:molecules25194374. [PMID: 32977636 PMCID: PMC7583823 DOI: 10.3390/molecules25194374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
The presence of breast cancer stem cells (BCSCs) induces the aggressive progression and recurrence of breast cancer. These cells are drug resistant, have the capacity to self-renew and differentiate and are involved in recurrence and metastasis, suggesting that targeting BCSCs may improve treatment efficacy. In this report, methanol extracts of carrot root were purified by means of silica gel, Sephadex LH-20, and preparative high-performance liquid chromatography to isolate a compound targeting mammosphere formation. We isolated the compound 6-methoxymellein, which inhibits the proliferation and migration of breast cancer cells, reduces mammosphere growth, decreases the proportion of CD44+/CD24− cells in breast cancer cells and decreases the expression of stemness-associated proteins c-Myc, Sox-2 and Oct4. 6-Methoxymellein reduces the nuclear localization of nuclear factor-κB (NF-κB) subunit p65 and p50. Subsequently, 6-methoxymellein decreases the mRNA transcription and secretion of IL-6 and IL-8. Our data suggest that 6-methoxymellein may be an anticancer agent that inhibits BCSCs via NF-κB/IL-6 and IL-8 regulation.
Collapse
|
15
|
Is carrot consumption associated with a decreased risk of lung cancer? A meta-analysis of observational studies. Br J Nutr 2020; 122:488-498. [PMID: 31552816 DOI: 10.1017/s0007114519001107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Findings of epidemiological studies regarding the association between carrot consumption and lung cancer risk remain inconsistent. The present study aimed to summarise the current epidemiological evidence concerning carrot intake and lung cancer risk with a meta-analysis. We conducted a meta-analysis of case-control and prospective cohort studies, and searched PubMed and Embase databases from their inception to April 2018 without restriction by language. We also reviewed reference lists from included articles. Prospective cohort or case-control studies reporting OR or relative risk with the corresponding 95 % CI of the risk lung cancer for the highest compared with the lowest category of carrot intake. A total of eighteen eligible studies (seventeen case-control studies and one prospective cohort study) were included, involving 202 969 individuals and 5517 patients with lung cancer. The pooled OR of eighteen studies for lung cancer was 0·58 (95 % CI 0·45, 0·74) by comparing the highest category with the lowest category of carrot consumption. Based on subgroup analyses for the types of lung cancer, we pooled that squamous cell carcinoma (OR 0·52, 95 % CI 0·19, 1·45), small-cell carcinoma (OR 0·43, 95 % CI 0·12, 1·59), adenocarcinoma (OR 0·34, 95 % CI 0·15, 0·79), large-cell carcinoma (OR 0·40, 95 % CI 0·10, 1·57), squamous and small-cell carcinoma (OR 0·85, 95 % CI 0·45, 1·62), adenocarcinoma and large-cell carcinoma (OR 0·20, 95 % CI 0·02, 1·70) and mixed types (OR 0·61, 95 % CI 0·46, 0·81). Exclusion of any single study did not materially alter the pooled OR. Integrated epidemiological evidence from observational studies supported the hypothesis that carrot consumption may decrease the risk of lung cancer, especially for adenocarcinoma.
Collapse
|
16
|
Sucheta, Misra N, Yadav SK. Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: Kinetics, characterization and process economics. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105592] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Investigation of removal of anthocyanin in turnip juice wastewater by using different adsorbents. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
18
|
Sevimli-Gur C, Yesil-Celiktas O. Cytotoxicity screening of supercritical fluid extracted seaweeds and phenylpropanoids. Mol Biol Rep 2019; 46:3691-3699. [PMID: 31004301 DOI: 10.1007/s11033-019-04812-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
Abstract
Detached leaves of Posidonia oceanica and Zostera marina creating nuisance at the shores were extracted by means of supercritical CO2 enriched with a co-solvent, compared with that of soxhlet extraction. The extracts and their active compounds which are phenylpropanoids (chicoric, p-coumaric, rosmarinic, benzoic, ferulic and caffeic acids) were screened for cytotoxicity in cancer cell lines including human breast adenocarcinoma (MCF-7, MDA-MB-231, SK-BR-3), human colon adenocarcinoma (HT-29), human cervix adenocarcinoma (HeLa), human prostate adenocarcinoma (PC-3), Mus musculus neuroblastoma (Neuro 2A) cell lines and African green monkey kidney (VERO) as healthy cell line. Supercritical CO2 extracts proved to be more active than soxhlet counterparts. Particularly, Zostera marina extract obtained by supercritical CO2 at 250 bar, 80 °C, 20% co-solvent and a total flow rate of 15 g/min revealed the best IC50 values of 25, 20, 8 μg/ml in neuroblastoma, colon and cervix cancer cell lines. Among the major compounds tested, p-coumaric acid exhibited the highest cytotoxic against colon and cervix cell lines by with IC50 values of 25, 11 μg/ml. As for the effects on healthy cells, the extract was not cytotoxic indicating a selective cytotoxicity. Obtained supercritical CO2 extracts can be utilized as a supplement for preventive purposes.
Collapse
Affiliation(s)
- Canan Sevimli-Gur
- Department of Biology, Biotechnology Discipline, Science and Art Faculty, Kocaeli University, 41380, Izmit, Kocaeli, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
19
|
Fidan-Yardimci M, Akay S, Sharifi F, Sevimli-Gur C, Ongen G, Yesil-Celiktas O. A novel niosome formulation for encapsulation of anthocyanins and modelling intestinal transport. Food Chem 2019; 293:57-65. [PMID: 31151649 DOI: 10.1016/j.foodchem.2019.04.086] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/31/2019] [Accepted: 04/24/2019] [Indexed: 01/01/2023]
Abstract
The bioavailability of drugs can be improved by regulating the structural properties, particularly lipoid systems, such as niosomes, can increase cellular uptake. Herein, we optimized double emulsion and niosomal formulations for encapsulating anthocyanin-rich black carrot extract. Nanoparticles obtained by selected formulation were characterized in terms of morphology, particle size, drug encapsulation efficiency, in vitro release and cytotoxicity. The optimum conditions for niosomal formulation were elicited as 30 mg of cholesterol, 150 mg of Tween 20 and feeding time of 1 min at a stirring rate of 900 rpm yielding the lowest average particle size of 130 nm. In vitro release data showed the majority of the encapsulated anthocyanins were released at the end of 10 h. A mathematical model was developed to estimate the absorption of anthocyanins released from niosomes and cytotoxicity was assessed against neuroblastoma. Overall, these findings suggest that niosomal vesicles might be suitable delivery systems for anthocyanins.
Collapse
Affiliation(s)
- Melike Fidan-Yardimci
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - Seref Akay
- Department of Genetics & Bioengineering, Faculty of Engineering, Gumushane University, 29100 Gumushane, Turkey
| | - Fatemeh Sharifi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA; Mechanical Engineering Department, Faculty of Engineering, Sharif University of Technology, Tehran, Iran
| | - Canan Sevimli-Gur
- Department of Biology, Biotechnology Discipline, Science and Art Faculty, Kocaeli University, 41380 Izmit, Kocaeli, Turkey
| | - Gaye Ongen
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey; Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA.
| |
Collapse
|
20
|
Wang Y, Sun J, Wang N, Xu H, Qu C, Jiang S, Fang H, Su M, Zhang Z, Chen X. MdMYBL2 helps regulate cytokinin-induced anthocyanin biosynthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana) callus. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:187-196. [PMID: 32172760 DOI: 10.1071/fp17216] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/20/2018] [Indexed: 06/10/2023]
Abstract
Anthocyanin biosynthesis is induced by cytokinins, and is regulated by MYB transcription factors. However, the underlying molecular mechanisms have not been fully characterised. In the present study, red-fleshed apple callus were induced from the leaves of an R6/R6 homozygous line, which was the hybrid offspring of Malus sieversii f. niedzwetzkyana and 'Fuji'. We analysed the callus anthocyanin contents in response to different cytokinin concentrations. We observed that cytokinin treatments upregulated the expression of anthocyanin structural genes MdDFR and MdUFGT and transcription factor genes MdMYB10 and MdbHLH3. Additionally, the expression of MdMYBL2, which encodes the bHLH and EAR motifs, was inhibited by cytokinin treatments. The MdMYBL2-overexpressing callus had lower anthocyanin contents than the wild-type controls. We noted that the expression levels of anthocyanin biosynthesis structural genes MdDFR and MdUFGT and transcription factor genes MdMYB10 and MdbHLH3 were strongly suppressed in the transgenic callus. Subsequent yeast two-hybrid, bimolecular fluorescence complementation, and pull-down assays indicated that MdMYBL2 interacts with MdbHLH3, which may influence the expression of anthocyanin biosynthesis-related genes. Our findings may provide new insights into how MYB transcription factors influence the cytokinin-regulated anthocyanin biosynthesis in red-fleshed apples.
Collapse
Affiliation(s)
- Yicheng Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Jingjing Sun
- College of Forestry, Shandong Agricultural University, Tai-An, Shandong, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Haifeng Xu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Changzhi Qu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Shenghui Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Hongcheng Fang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Mengyu Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
21
|
ÖRS G, GÜLÇE İZ S. Cytoprotective effect of a functional antipollutant blend through reducing B[a] P-induced intracellular oxidative stress and UVA exposure. Turk J Biol 2018; 42:453-462. [PMID: 30930629 PMCID: PMC6438121 DOI: 10.3906/biy-1802-43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is a ubiquitous environmental pollutant that reacts with skin and induces intracellular oxidative stress through reactive oxygen species (ROS) accumulation. The antipollution properties of natural extracts, especially including antioxidants, for inhibiting ROS in cells are gaining importance, in addition to the anticancer effects attributed to them. In this study, a commercial functional antipollutant blend of plant extracts consisting of ellagic acid standardized Punica granatum peel extract, Sambucus nigra fruit extract, Prunus cerasus seed extract, and hydrolyzed wheat protein with high antioxidant properties and UV damage-protective properties attributed to each one was investigated. The cytoprotective effect of this functional antipollutant blend was determined by ROS assay through reducing the level of intracellular ROS induced by B[a]P as an oxidative stress factor in human neonatal keratinocytes and fibroblast cells. In addition, the cytoprotective effect of the functional antipollutant blend after UVA exposure was also determined. It is shown that the oxidative damage induced by B[a]P and UVA, which are the most abundant factors of chemical and physical pollution, would be prevented by the functional antipollutant blend. Thus, it can be concluded that this antipollutant functional blend may offer a promising ingredient for the cosmetic industry's skincare products.
Collapse
Affiliation(s)
- Gizem ÖRS
- Department of Bioengineering, Faculty of Engineering, Ege University
,
Bornova, İzmir
,
Turkey
| | - Sultan GÜLÇE İZ
- Bioengineering Graduate Program, Institute of Natural and Applied Sciences, Ege University
,
Bornova, İzmir
,
Turkey
- Biomedical Technologies Graduate Program, Institute of Natural and Applied Sciences, Ege University
,
Bornova, İzmir
,
Turkey
- Department of Bioengineering, Faculty of Engineering, Ege University
,
Bornova, İzmir
,
Turkey
| |
Collapse
|
22
|
Impacts of hormonal elicitors and photoperiod regimes on elicitation of bioactive secondary volatiles in cell cultures of Ajuga bracteosa. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:242-250. [DOI: 10.1016/j.jphotobiol.2018.04.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 11/22/2022]
|
23
|
Soares GR, de Moura CFG, Silva MJD, Vilegas W, Santamarina AB, Pisani LP, Estadella D, Ribeiro DA. Protective effects of purple carrot extract (Daucus carota) against rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide. Med Oncol 2018; 35:54. [DOI: 10.1007/s12032-018-1114-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/07/2018] [Indexed: 01/02/2023]
|
24
|
Black carrot ( Daucus carota L.), dietary and health promoting perspectives of its polyphenols: A review. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.05.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Agcam E, Akyıldız A, Balasubramaniam VM. Optimization of anthocyanins extraction from black carrot pomace with thermosonication. Food Chem 2017; 237:461-470. [PMID: 28764021 DOI: 10.1016/j.foodchem.2017.05.098] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/13/2022]
Abstract
A study was conducted to identify optimal ultrasound processing conditions (ultrasound energy density and temperature) to maximize the extraction of anthocyanin colorants from black carrot pomace. The treatment maximized the yield of five different anthocyanin compounds from black carrot pomace with cyanidin-3-xyloside-galactoside-glucoside-ferrulic acid (C3XGGF, 60.85-74.22mg/L) as the most abundant anthocyanin compound, followed by cyanidin-3-xyloside-galactoside (C3XG, 49.56-70.12mg/L). The response surface models predicted that if extraction conditions were conducted at 183.1J/g energy density and 50°C, the yield of various anthocyanin compounds would be maximized from the black carrot pomace. Response surface models were developed correlating anthocyanin yield with ultrasonication treatment parameters. The study showed the synergy of combining ultrasonication and temperature for the extraction of anthocyanin pigments from black carrot pomace. Results of the study also further demonstrate the potential of ultrasonication technology as a tool for the extraction of valuable components waste products from fruits and vegetables juice industry.
Collapse
Affiliation(s)
- E Agcam
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, Adana, Turkey.
| | - A Akyıldız
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - V M Balasubramaniam
- Department of Food Science and Technology, Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
26
|
Kamiloglu S, Ozkan G, Isik H, Horoz O, Van Camp J, Capanoglu E. Black carrot pomace as a source of polyphenols for enhancing the nutritional value of cake: An in vitro digestion study with a standardized static model. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Yesil-Celiktas O, Pala C, Cetin-Uyanikgil EO, Sevimli-Gur C. Synthesis of silica-PAMAM dendrimer nanoparticles as promising carriers in Neuro blastoma cells. Anal Biochem 2017; 519:1-7. [DOI: 10.1016/j.ab.2016.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/24/2016] [Accepted: 12/06/2016] [Indexed: 01/28/2023]
|
28
|
Olejnik A, Rychlik J, Kidoń M, Czapski J, Kowalska K, Juzwa W, Olkowicz M, Dembczyński R, Moyer MP. Antioxidant effects of gastrointestinal digested purple carrot extract on the human cells of colonic mucosa. Food Chem 2016. [DOI: 10.1016/j.foodchem.2015.06.080] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Investigating anthocyanin contents and in vitro tumor suppression properties of blueberry extracts prepared by various processes. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2577-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|