1
|
Almeida HHS, Fernandes IP, Amaral JS, Rodrigues AE, Barreiro MF. Unlocking the Potential of Hydrosols: Transforming Essential Oil Byproducts into Valuable Resources. Molecules 2024; 29:4660. [PMID: 39407589 PMCID: PMC11477756 DOI: 10.3390/molecules29194660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
The global demand for sustainable and non-toxic alternatives across various industries is driving the exploration of naturally derived solutions. Hydrosols, also known as hydrolates, represent a promising yet underutilised byproduct of the extraction process of essential oils (EOs). These aqueous solutions contain a complex mixture of EO traces and water-soluble compounds and exhibit significant biological activity. To fully use these new solutions, it is necessary to understand how factors, such as distillation time and plant-to-water ratio, affect their chemical composition and biological activity. Such insights are crucial for the standardisation and quality control of hydrosols. Hydrosols have demonstrated noteworthy properties as natural antimicrobials, capable of preventing biofilm formation, and as antioxidants, mitigating oxidative stress. These characteristics position hydrosols as versatile ingredients for various applications, including biopesticides, preservatives, food additives, anti-browning agents, pharmaceutical antibiotics, cosmetic bioactives, and even anti-tumour agents in medical treatments. Understanding the underlying mechanisms of these activities is also essential for advancing their use. In this context, this review compiles and analyses the current literature on hydrosols' chemical and biological properties, highlighting their potential applications and envisioning future research directions. These developments are consistent with a circular bio-based economy, where an industrial byproduct derived from biological sources is repurposed for new applications.
Collapse
Affiliation(s)
- Heloísa H. S. Almeida
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal; (H.H.S.A.); (I.P.F.)
- Laboratório Associado para a Sustentabilidade em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Isabel P. Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal; (H.H.S.A.); (I.P.F.)
- Laboratório Associado para a Sustentabilidade em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Joana S. Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal; (H.H.S.A.); (I.P.F.)
- Laboratório Associado para a Sustentabilidade em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria-Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal; (H.H.S.A.); (I.P.F.)
- Laboratório Associado para a Sustentabilidade em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| |
Collapse
|
2
|
Dashtian K, Kamalabadi M, Ghoorchian A, Ganjali MR, Rahimi-Nasrabadi M. Integrated supercritical fluid extraction of essential oils. J Chromatogr A 2024; 1733:465240. [PMID: 39154494 DOI: 10.1016/j.chroma.2024.465240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Supercritical fluid extraction (SFE) stands out as an incredibly efficient, environmentally conscious, and fast method for obtaining essential oils (EOs) from plants. These EOs are abundant in aromatic compounds that play a crucial role in various industries such as food, fragrances, cosmetics, perfumery, pharmaceuticals, and healthcare. While there is a wealth of existing literature on using supercritical fluids for extracting plant essential oils, there's still much to explore in terms of combining different techniques to enhance the SFE process. This comprehensive review presents a sophisticated framework that merges SFE with EO extraction methods. This inclusive categorization encompasses a range of methods, including the integration of pressurized liquid processes, ultrasound assistance, steam distillation integration, microfluidic techniques, enzyme integration, adsorbent facilitation, supercritical antisolvent treatments, molecular distillation, microwave assistance, milling process and mechanical pressing integration. Throughout this in-depth exploration, we not only elucidate these combined techniques but also engage in a thoughtful discussion about the challenges they entail and the array of opportunities they offer within the realm of SFE for EOs. By dissecting these complexities, our objective is to tackle the current challenges associated with enhancing SFE for commercial purposes. This endeavor will not only streamline the production of premium-grade essential oils with improved safety measures but also pave the way for novel applications in various fields.
Collapse
Affiliation(s)
- Kheibar Dashtian
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mahdie Kamalabadi
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arash Ghoorchian
- Department of Chemistry, Research Center for Development of Advanced Technologies, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Liñán-Atero R, Aghababaei F, García SR, Hasiri Z, Ziogkas D, Moreno A, Hadidi M. Clove Essential Oil: Chemical Profile, Biological Activities, Encapsulation Strategies, and Food Applications. Antioxidants (Basel) 2024; 13:488. [PMID: 38671935 PMCID: PMC11047511 DOI: 10.3390/antiox13040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Plants have proven to be important sources for discovering new compounds that are useful in the treatment of various diseases due to their phytoconstituents. Clove (Syzygium aromaticum L.), an aromatic plant widely cultivated around the world, has been traditionally used for food preservation and medicinal purposes. In particular, clove essential oil (CEO) has attracted attention for containing various bioactive compounds, such as phenolics (eugenol and eugenol acetate), terpenes (β-caryophyllene and α-humulene), and hydrocarbons. These constituents have found applications in cosmetics, food, and medicine industries due to their bioactivity. Pharmacologically, CEO has been tested against a variety of parasites and pathogenic microorganisms, demonstrating antibacterial and antifungal properties. Additionally, many studies have also demonstrated the analgesic, antioxidant, anticancer, antiseptic, and anti-inflammatory effects of this essential oil. However, CEO could degrade for different reasons, impacting its quality and bioactivity. To address this challenge, encapsulation is viewed as a promising strategy that could prolong the shelf life of CEO, improving its physicochemical stability and application in various areas. This review examines the phytochemical composition and biological activities of CEO and its constituents, as well as extraction methods to obtain it. Moreover, encapsulation strategies for CEO and numerous applications in different food fields are also highlighted.
Collapse
Affiliation(s)
- Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | | | - Samuel Rodríguez García
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Zahra Hasiri
- College of Veterinary Medicine, Islamic Azad University of Shahrekord, Shahrekord 88137-33395, Iran;
| | - Dimitrios Ziogkas
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Almeida HHS, Crugeira PJL, Amaral JS, Rodrigues AE, Barreiro MF. Disclosing the potential of Cupressus leylandii A.B. Jacks & Dallim, Eucalyptus globulus Labill., Aloysia citrodora Paláu, and Melissa officinalis L. hydrosols as eco-friendly antimicrobial agents. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:1. [PMID: 38163838 PMCID: PMC10758378 DOI: 10.1007/s13659-023-00417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Antimicrobial resistance is a major global health concern, threatening the effective prevention and treatment of infections caused by microorganisms. These factors boosted the study of safe and green alternatives, with hydrosols, the by-products of essential oils extraction, emerging as promising natural antimicrobial agents. In this context, four hydrosols obtained from Cupressus leylandii A.B. Jacks & Dallim, Eucalyptus globulus Labill., Aloysia citrodora Paláu and Melissa officinalis L. were studied. Their chemical composition comprises neral, geranial, 1,8-cineole, terpinen-4-ol, and oplopanonyl acetate, compounds with recognised antimicrobial activity. Concerning antimicrobial activity, significant differences were found using different hydrosol concentrations (10-20% v/v) in comparison to a control (without hydrosol), showing the potential of the tested hydrosols to inhibit the microbial growth of Escherichia coli, Staphylococcus aureus, and Candida albicans. A. citrodora hydrosol was the most effective one, inhibiting 90% of E. coli growth and 80% of C. albicans growth, for both hydrosol concentrations (p < 0.0001). With hydrosol concentration increase, it was possible to observe an improved antimicrobial activity with significant reductions (p < 0.0001). The findings of this work indicate the viability of reusing and valuing the hydrosols, encouraging the development of green applications for different fields (e.g., food, agriculture, pharmaceuticals, and cosmetics).
Collapse
Affiliation(s)
- Heloísa H S Almeida
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Pedro J L Crugeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
| | - Joana S Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
| | - Alírio E Rodrigues
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Maria-Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal.
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal.
| |
Collapse
|
5
|
Yan C, Li N, Zhang Y, Wei Y. Enrichment of cinnamaldehyde from Cinnamomum cassia by electroosmotic coupled particle-assisted solvent flotation. J Chromatogr A 2023; 1710:464411. [PMID: 37778100 DOI: 10.1016/j.chroma.2023.464411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Cinnamaldehyde has been widely applied in various fields due to its special flavor and various pharmacological activities, such as antioxidant, anti-inflammatory and antibacterial properties. The strategy of quick and efficient enrichment for cinnamaldehyde is imperative. In this study, an electroosmotic coupled particle-assisted solvent flotation (ECPASF) system was designed for the cinnamaldehyde enrichment from cinnamon. The response surface method was used to optimize extraction parameters. Under optimal operating conditions, its yield was 9.33 ± 0.11 mg/g. Such high yield of cinnamaldehyde using the ECPASF might be because electroosmosis effectively alters the permeability of plant cells, which facilitates the release of cinnamaldehyde. In addition, both the crude extract of cinnamon and pure cinnamaldehyde showed good antioxidant activity. The results demonstrated that the ECPASF system is a sustainable and effective method for the extraction of cinnamaldehyde from cinnamon. It also has the prospect of being extended to the extraction of other natural products.
Collapse
Affiliation(s)
- Chen Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3(rd) Ring North East Road, Chaoyang District, Beijing 100029, PR China
| | - Na Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3(rd) Ring North East Road, Chaoyang District, Beijing 100029, PR China
| | - Yuchi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3(rd) Ring North East Road, Chaoyang District, Beijing 100029, PR China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3(rd) Ring North East Road, Chaoyang District, Beijing 100029, PR China.
| |
Collapse
|
6
|
Gu W, Wei Y, Fu X, Gu R, Chen J, Jian J, Huang L, Yuan C, Guan W, Hao X. HS-SPME/GC×GC-TOFMS-Based Flavoromics and Antimicrobial Properties of the Aroma Components of Zanthoxylum motuoense. Foods 2023; 12:foods12112225. [PMID: 37297467 DOI: 10.3390/foods12112225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Zanthoxylum motuoense Huang, native to Tibet, China, is a newly discovered Chinese prickly ash, which, recently, has increasingly attracted the attention of researchers. In order to understand its volatile oil compositions and flavor characteristics, and to explore the flavor difference between Z. motuoense and the common Chinese prickly ash sold in the market, we analyzed the essential oils of Z. motuoense pericarp (MEO) using HS-SPME/GC×GC-TOFMS coupled with multivariate data and flavoromics analyses. The common commercial Chinese prickly ash in Asia, Zanthoxylum bungeanum (BEO), was used as a reference. A total of 212 aroma compounds from the 2 species were identified, among which alcohols, terpenoids, esters, aldehydes, and ketones were the major compounds. The predominant components detected from MEO were citronellal, (+)-citronellal, and β-phellandrene. Six components-citronellal, (E,Z)-3,6-nonadien-1-ol, allyl methallyl ether, isopulegol, 3,7-dimethyl-6-octen-1-ol acetate, and 3,7-dimethyl-(R)-6-octen-1-ol-could be used as the potential biomarkers of MEO. The flavoromics analysis showed that MEO and BEO were significantly different in aroma note types. Furthermore, the content differences of several numb taste components in two kinds of prickly ash were quantitatively analyzed using RP-HPLC. The antimicrobial activities of MEO and BEO against four bacterial strains and nine plant pathogenic fungi were determined in vitro. The results indicated that MEO had significantly higher inhibitory activities against most microbial strains than BEO. This study has revealed the fundamental data in respect of the volatile compound properties and antimicrobial activity of Z. motuoense, offering basic information on valuable natural sources that can be utilized in the condiment, perfume, and antimicrobial sectors.
Collapse
Affiliation(s)
- Wei Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yinghuan Wei
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Xianjie Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Ronghui Gu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Junlei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Junyou Jian
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Liejun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Wenling Guan
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650204, China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
7
|
Huang X, Li H, Ruan Y, Li Z, Yang H, Xie G, Yang Y, Du Q, Ji K, Yang M. An integrated approach utilizing raman spectroscopy and chemometrics for authentication and detection of adulteration of agarwood essential oils. Front Chem 2022; 10:1036082. [PMID: 36618867 PMCID: PMC9810987 DOI: 10.3389/fchem.2022.1036082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Agarwood is a precious aromatic plant which has good pharmacological effects such as antidepressant and sedation. It also has good ornamental and collection value. However, due to it is long and complex production process, the output of agarwood essential oils (AEOs) is scarce, so the price is expensive, the quality is uneven, and the adulteration events is endless. From the commercial and pharmaceutical point of view, the authenticity and quality of the commercial products labeled as AEOs is very important. This paper tested the applicability of Raman spectroscopy combined with chemometrics in classification and authenticity identification of AEOs. In this study, Raman spectroscopy and principal component analysis (PCA) combined with partial least square discriminant analysis (PLS-DA) were used to comprehensively evaluate AEOs from different geographical origins and/or extracted by different methods which showed different characteristic bands. The characteristic component of AEOs, chromone derivatives, and two commonly used adulterants were also detected. These characteristic bands provide spectrum information of AEO samples and reference materials, which can be used as Raman spectral markers for the qualitative identification of AEOs. This study can provide a novel, fast and convenient method for identification of AEOs.
Collapse
Affiliation(s)
- Xiaoying Huang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Huiting Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China,*Correspondence: Huiting Li, ; Yinlan Ruan,
| | - Yinlan Ruan
- School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin, China,*Correspondence: Huiting Li, ; Yinlan Ruan,
| | - Zhen Li
- School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin, China
| | - Huda Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Guixin Xie
- School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin, China
| | - Yi Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qing Du
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China,Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang, China
| | - Kaidi Ji
- School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
8
|
Raj DS, Dhamodharan D, Thanigaivel S, Vickram AS, Byun HS. Nanoemulsion as an Effective Inhibitor of Biofilm-forming Bacterial Associated Drug Resistance: An Insight into COVID Based Nosocomial Infections. BIOTECHNOL BIOPROC E 2022; 27:543-555. [PMID: 36092682 PMCID: PMC9449957 DOI: 10.1007/s12257-022-0055-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Antibiotic overuse has resulted in the microevolution of drug-tolerant bacteria. Understandably it has become one of the most significant obstacles of the current century for scientists and researchers to overcome. Bacteria have a tendency to form biofilm as a survival mechanism. Biofilm producing microorganism become far more resistant to antimicrobial agents and their tolerance to drugs also increases. Prevention of biofilm development and curbing the virulency factors of these multi drug resistant or tolerant bacterial pathogens is a newly recognised tactic for overcoming the challenges associated with such bacterial infections and has become a niche to be addressed. In order to inhibit virulence and biofilm from planktonic bacteria such as, Pseudomonas aeruginosa, Acinetobacter baumannii, and others, stable nanoemulsions (NEs) of essential oils (EOs) and their bioactive compounds prove to be an interesting solution. These NEs demonstrated significantly greater anti-biofilm and anti-virulence activity than commercial antibiotics. The EO reduces disease-causing gene expression, which is required for pathogenicity, biofilm formation and attachment to the surfaces. Essential NE and NE-loaded hydrogel surface coatings demonstrates superior antibiofilm activity which can be employed in healthcare-related equipments like glass, plastic, and metal chairs, hospital beds, ventilators, catheters, and tools used in intensive care units. Thus, anti-virulence and anti-biofilm forming strategies based on NEs-loaded hydrogel may be used as coatings to combat biofilm-mediated infection on solid surfaces.
Collapse
Affiliation(s)
- Deena Santhana Raj
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Thandalam, Chennai, Tamil Nadu 602105 India
| | - Duraisami Dhamodharan
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, 59626 Korea
| | - S. Thanigaivel
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Thandalam, Chennai, Tamil Nadu 602105 India
| | - A. S. Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Thandalam, Chennai, Tamil Nadu 602105 India
| | - Hun-Soo Byun
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, 59626 Korea
| |
Collapse
|
9
|
Razzouk S, Mazri MA, Jeldi L, Mnasri B, Ouahmane L, Alfeddy MN. Chemical Composition and Antimicrobial Activity of Essential Oils from Three Mediterranean Plants against Eighteen Pathogenic Bacteria and Fungi. Pharmaceutics 2022; 14:pharmaceutics14081608. [PMID: 36015234 PMCID: PMC9414133 DOI: 10.3390/pharmaceutics14081608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/04/2022] [Accepted: 06/11/2022] [Indexed: 12/07/2022] Open
Abstract
The chemical composition and antimicrobial activity of essential oils (EOs) obtained from three medicinal plants of the Moroccan flora were evaluated. The chemical composition of EOs of Thymus leptobotrys, Laurus nobilis and Syzygium aromaticum was determined using a gas chromatograph coupled with mass spectrometry. Carvacrol (75.05%) was the main constituent of T. leptobotrys EOs, while 1,8-cineole (31.48%) and eugenol (82.16%) were the predominant components of L. nobilis and S. aromaticum EOs, respectively. The antimicrobial activity of the EOs was evaluated qualitatively and quantitatively against 18 microbial strains pathogenic to humans by using the disc diffusion method, and by measuring the minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC). The EOs of T. leptobotrys were the most active against the strains tested, with inhibitory zone values ranging from 7.00 to 45.00 mm, and MIC and MMC values ranging from 0.312 to 80.00 mg/mL. In many cases, these EOs exhibited higher antibacterial and antifungal activities than the chemical compounds ciprofloxacin and fluconazole, respectively. This high antimicrobial activity can be ascribed to their richness in carvacrol. The EOs of T. leptobotrys, L. nobilis, and S. aromaticum could be considered a promising alternative to replace chemical antimicrobials, and a readily available natural source of bioactive compounds.
Collapse
Affiliation(s)
- Soukaina Razzouk
- Plant Protection Research Unit, Regional Center of Agricultural Research of Marrakech, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco; (S.R.); (L.J.)
- Laboratory of Microbial Biotechnology, Agro-Sciences and Environment (BioMAgE), Cadi Ayyad University, Marrakesh 40000, Morocco;
| | - Mouaad Amine Mazri
- Agro-Biotechnology Research Unit, Regional Center of Agricultural Research of Marrakech, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco;
| | - Lamya Jeldi
- Plant Protection Research Unit, Regional Center of Agricultural Research of Marrakech, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco; (S.R.); (L.J.)
- Laboratory of Microbial Biotechnology, Agro-Sciences and Environment (BioMAgE), Cadi Ayyad University, Marrakesh 40000, Morocco;
| | - Bacem Mnasri
- Center of Biotechnology of Borj-Cédria, Hammam-Lif 2050, Tunisia;
| | - Lahcen Ouahmane
- Laboratory of Microbial Biotechnology, Agro-Sciences and Environment (BioMAgE), Cadi Ayyad University, Marrakesh 40000, Morocco;
| | - Mohamed Najib Alfeddy
- Plant Protection Research Unit, Regional Center of Agricultural Research of Marrakech, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco; (S.R.); (L.J.)
- Correspondence:
| |
Collapse
|
10
|
Paparella A, Nawade B, Shaltiel-Harpaz L, Ibdah M. A Review of the Botany, Volatile Composition, Biochemical and Molecular Aspects, and Traditional Uses of Laurus nobilis. PLANTS 2022; 11:plants11091209. [PMID: 35567209 PMCID: PMC9100900 DOI: 10.3390/plants11091209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022]
Abstract
Laurus nobilis L. is an aromatic medicinal plant widely cultivated in many world regions. L. nobilis has been increasingly acknowledged over the years as it provides an essential contribution to the food and pharmaceutical industries and cultural integrity. The commercial value of this species derives from its essential oil, whose application might be extended to various industries. The chemical composition of the essential oil depends on environmental conditions, location, and season during which the plants are collected, drying methods, extraction, and analytical conditions. The characterization and chemotyping of L. nobilis essential oil are extremely important because the changes in composition can affect biological activities. Several aspects of the plant’s secondary metabolism, particularly volatile production in L. nobilis, are still unknown. However, understanding the molecular basis of flavor and aroma production is not an easy task to accomplish. Nevertheless, the time-limited efforts for conservation and the unavailability of knowledge about genetic diversity are probably the major reasons for the lack of breeding programs in L. nobilis. The present review gathers the scientific evidence on the research carried out on Laurus nobilis L., considering its cultivation, volatile composition, biochemical and molecular aspects, and antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Balzarini, 1, 64100 Teramo, Italy;
| | - Bhagwat Nawade
- Newe Yaar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel;
| | - Liora Shaltiel-Harpaz
- Migal Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Environmental Sciences Department, Tel Hai College, Upper Galilee 12210, Israel
| | - Mwafaq Ibdah
- Newe Yaar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel;
- Correspondence: ; Tel.: +972-4-953-9537; Fax: +972-4-983-6936
| |
Collapse
|
11
|
Marc (Vlaic) RA, Mureșan V, Mureșan AE, Mureșan CC, Tanislav AE, Pușcaș A, Marţiș (Petruţ) GS, Ungur RA. Spicy and Aromatic Plants for Meat and Meat Analogues Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070960. [PMID: 35406940 PMCID: PMC9002745 DOI: 10.3390/plants11070960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 05/15/2023]
Abstract
Aromatic and spicy plants are an important factor that contributes not only to improving the taste of meat, meat products, and meat analogues, but also to increasing the nutritional value of the products to which they are added. The aim of this paper is to present the latest information on the bioactive antioxidant and antimicrobial properties of the most commonly used herbs and spices (parsley, dill, basil, oregano, sage, coriander, rosemary, marjoram, tarragon, bay, thyme, and mint) used in the meat and meat analogues industry, or proposed to be used for meat analogues.
Collapse
Affiliation(s)
- Romina Alina Marc (Vlaic)
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
| | - Vlad Mureșan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
- Correspondence: (V.M.); (A.E.M.)
| | - Andruţa E. Mureșan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
- Correspondence: (V.M.); (A.E.M.)
| | - Crina Carmen Mureșan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
| | - Anda E. Tanislav
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
| | - Andreea Pușcaș
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
| | - Georgiana Smaranda Marţiș (Petruţ)
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
| | - Rodica Ana Ungur
- Department of Rehabilitation Iuliu-Haţieganu, Faculty of General Medicine, University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
12
|
Tian B, Liu J, Liu Y, Wan JB. Integrating diverse plant bioactive ingredients with cyclodextrins to fabricate functional films for food application: a critical review. Crit Rev Food Sci Nutr 2022; 63:7311-7340. [PMID: 35253547 DOI: 10.1080/10408398.2022.2045560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The popularity of plant bioactive ingredients has become increasingly apparent in the food industry. However, these plant bioactive ingredients have many deficiencies, including low water solubility, poor stability, and unacceptable odor. Cyclodextrins (CDs), as cyclic molecules, have been extensively studied as superb vehicles of plant bioactive ingredients. These CD inclusion compounds could be added into various film matrices to fabricate bioactive food packaging materials. Therefore, in the present review, we summarized the extraction methods of plant bioactive ingredients, the addition of these CD inclusion compounds into thin-film materials, and their applications in food packaging. Furthermore, the release model and mechanism of active film materials based on various plant bioactive ingredients with CDs were highlighted. Finally, the current challenges and new opportunities based on these film materials have been discussed.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yumei Liu
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
13
|
Pan W, Chen GG, Zhang ZY, Cao XQ, Shen SL, Pang XH, Zhu Y. Benzoindoxazine derivatives containing carbazole for detection of CN - and its application in plant seed extracts and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120644. [PMID: 34844855 DOI: 10.1016/j.saa.2021.120644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/28/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Cyanide (CN-) is a highly toxic compound that exists in many substances and is harmful to the environment and human health. Therefore, it is of great significance to develop excellent CN- ion probes, especially solvent-induced on-off fluorescent probes. Based on the condensation reaction of indolo[2,1-b][1,3]oxazine molecules with aldehydes, probes (E)-13a-(2-(9-ethyl-9H-carbazol-3-yl)vinyl)-14,14-dimethyl-10-nitro-13a,14-dihydro-8H-benzo[e]benzo[5,6][1,3]oxazino[3,2-a]indole (NCO) and (E)-13a-(2-(9-benzyl-9H-carbazol-3-yl)vinyl)-14,14-dimethyl-10-nitro-13a,14-dihydro-8H-benzo[e]benzo[5,6][1,3]oxazino[3,2-a]indole (NBO) were synthesized to detect CN-. Compared with other cyanogen ion probes, NCO and NBO have special carbazole ring structures and large conjugate systems. When CN- is added to the probe-detection solution, color changes that are visible to the naked eye can occur. The UV-vis spectrum test using differential spectroscopy shows that the probe (i) has excellent solvent-induced switching characteristics and stability (CH3OH-H2O) and (ii) high selectivity, anti-interference ability, and sensitivity for the detection of CN-. The fluorescence limit of detections (LODs) are 1.05 µM for NCO and 1.34 µM for NBO. The UV LODs are 0.83 µM for NCO and 0.87 µM for NBO. Fluorescence spectroscopy shows that the probe has remarkable fluorescence properties. Fluorescence titration experiments, liver cancer cell (Hep G2) imaging, and cytotoxicity experiments all show that the probes have high biocompatibility, low toxicity, high cell permeability, and high sensitivity for the detection of CN- in cells. In addition, NCO and NBO have been successfully used for the detection of cyanogenic glycosides in the seeds of ginkgo, crabapple, apple, and cherry. Test strips were fabricated to detect CN-. After adding CN-, the color of the test strip changed significantly-from brown to light yellow; thus, the test strips have a high application value in the fields of drug quality control, drug safety testing, and pharmacological research.
Collapse
Affiliation(s)
- Wei Pan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, PR China
| | - Guo-Guo Chen
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, PR China
| | - Zhen-You Zhang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, PR China
| | - Xiao-Qun Cao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, PR China
| | - Shi-Li Shen
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, PR China
| | - Xian-Hong Pang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, PR China.
| | - Yan Zhu
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, PR China.
| |
Collapse
|
14
|
Bay Laurel (Laurus nobilis L.) Essential Oil as a Food Preservative Source: Chemistry, Quality Control, Activity Assessment and Applications to Olive Industry Products. Foods 2022; 11:foods11050752. [PMID: 35267385 PMCID: PMC8909149 DOI: 10.3390/foods11050752] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Essential oils (EOs) find application as flavoring agents in the food industry and are also desirable ingredients as they possess preservative properties. The Mediterranean diet involves the use of a lot of herbs and spices and their products (infusions, EOs) as condiments and for the preservation of foods. Application of EOs has the advantage of homogeneous dispersion in comparison with dry leaf use in small pieces or powder. Among them, Laurus nobilis (bay laurel) L. EO is an interesting source of volatiles, such as 1,8-cineole and eugenol, which are known for their preservative properties. Its flavor suits cooked red meat, poultry, and fish, as well as vegetarian dishes, according to Mediterranean recipes. The review is focused on its chemistry, quality control aspects, and recent trends in methods of analysis and activity assessment with a focus on potential antioxidant activity and applications to olive industry products. Findings indicate that this EO is not extensively studied in comparison with those from other Mediterranean plants, such as oregano EO. More work is needed to establish authenticity and activity methods, whereas the interest for using it for the preparation of flavored olive oil or for the aromatization and preservation of table oils must be further encouraged.
Collapse
|
15
|
Essential Oil Variability of Azorean Cryptomeriajaponica Leaves under Different Distillation Methods, Part 1: Color, Yield and Chemical Composition Analysis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study mainly deals with the effect of hydrodistillation (HD) and water-steam distillation (WSD) methods on the color, yield, and chemical profile of the essential oil (EO) from Cryptomeria japonica fresh leaves from São Miguel Island (Azores Archipelago, Portugal). The yields of EO–HD (pale-yellowish) and EO–WSD (colorless) samples were 1.21% and 0.45% (v/w), respectively. The GC–FID, GC–MS, and 13C-NMR analyses of EO–HD vs. EO–WSD revealed (i) a high-content of monoterpenes (72.8% vs. 86.7%), mainly α-pinene (34.5% vs. 46.4%) and sabinene (20.2% vs. 11.6%), and oxygenated mono- and sesquiterpenes (20.2% vs. 9.6%); (ii) similar sesquiterpene (1.6% vs. 1.6%), β-myrcene (5.9% vs. 5.8%), and camphene (3.5% vs. 3.8%) contents; and (iii) significant differences in other classes/components: EO–HD is richer in oxygenated sesquiterpenes (17.1%, mainly elemol (10.4%) and α-eudesmol (3.4%)) and diterpenes (3%; mostly phyllocladene), while EO–WSD is richer in oxygenated monoterpenes (7.2%, mainly terpinen-4-ol (5.4%)), p-cymene (4.4%), and limonene (3.2%). Overall, the color, yield, and quantitative composition of the EO samples studied are strongly influenced by the distillation method. Nonetheless, this C. japonica leaf EO displayed a consistent α-pinene- and sabinene-rich composition. The same chemotype was found in a commercial Azorean C. japonica leaf EO sample, obtained by industrial steam distillation (SD), as well as in Corsica C. japonica leaf EO–HD. Furthermore, the bioactive composition of our EO samples revealed the potential to be used in green plant protection and in the medical, food, cosmetic, and household industries.
Collapse
|
16
|
Nehme R, Andrés S, Pereira RB, Ben Jemaa M, Bouhallab S, Ceciliani F, López S, Rahali FZ, Ksouri R, Pereira DM, Abdennebi-Najar L. Essential Oils in Livestock: From Health to Food Quality. Antioxidants (Basel) 2021; 10:330. [PMID: 33672283 PMCID: PMC7926721 DOI: 10.3390/antiox10020330] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/22/2022] Open
Abstract
Using plant essential oils (EOs) contributes to the growing number of natural plants' applications in livestock. Scientific data supporting the efficacy of EOs as anti-inflammatory, antibacterial and antioxidant molecules accumulates over time; however, the cumulative evidence is not always sufficient. EOs antioxidant properties have been investigated mainly from human perspectives. Still, so far, our review is the first to combine the beneficial supporting properties of EOs in a One Health approach and as an animal product quality enhancer, opening new possibilities for their utilization in the livestock and nutrition sectors. We aim to compile the currently available data on the main anti-inflammatory effects of EOs, whether encapsulated or not, with a focus on mammary gland inflammation. We will also review the EOs' antioxidant activities when given in the diet or as a food preservative to counteract oxidative stress. We emphasize EOs' in vitro and in vivo ruminal microbiota and mechanisms of action to promote animal health and performance. Given the concept of DOHaD (Developmental Origin of Health and Diseases), supplementing animals with EOs in early life opens new perspectives in the nutrition sector. However, effective evaluation of the significant safety components is required before extending their use to livestock and veterinary medicine.
Collapse
Affiliation(s)
- Ralph Nehme
- Quality and Health Department, IDELE Institute, 149 rue de Bercy, 75595 Paris CEDEX 12, France;
- INRAE, Institut Agro, STLO, F-35042 Rennes, France;
| | - Sonia Andrés
- Instituto de Ganadería de Montaña (CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, Spain; (S.A.); (S.L.)
| | - Renato B. Pereira
- REQUIMTE/LAQV Laboratory of Pharmacognosy, Department of Chemistry Faculty of Pharmacy, University of Porto R Jorge Viterbo Ferreir 228, 4050-313 Porto, Portugal; (R.B.P.); (D.M.P.)
| | - Meriem Ben Jemaa
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif BP 901 2050, Tunisia; (M.B.J.); (F.Z.R.); (R.K.)
| | | | - Fabrizio Ceciliani
- Department of Veterinary Medicine Università degli Studi di Milano, 20122 Milano, Italy;
| | - Secundino López
- Instituto de Ganadería de Montaña (CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, Spain; (S.A.); (S.L.)
- Departamento de Producción Animal, Universidad de León, 24007 León, Spain
| | - Fatma Zohra Rahali
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif BP 901 2050, Tunisia; (M.B.J.); (F.Z.R.); (R.K.)
| | - Riadh Ksouri
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif BP 901 2050, Tunisia; (M.B.J.); (F.Z.R.); (R.K.)
| | - David M. Pereira
- REQUIMTE/LAQV Laboratory of Pharmacognosy, Department of Chemistry Faculty of Pharmacy, University of Porto R Jorge Viterbo Ferreir 228, 4050-313 Porto, Portugal; (R.B.P.); (D.M.P.)
| | - Latifa Abdennebi-Najar
- Quality and Health Department, IDELE Institute, 149 rue de Bercy, 75595 Paris CEDEX 12, France;
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| |
Collapse
|