1
|
Su Z, Hu Q, Li X, Wang Z, Xie Y. The Influence of Circadian Rhythms on DNA Damage Repair in Skin Photoaging. Int J Mol Sci 2024; 25:10926. [PMID: 39456709 PMCID: PMC11507642 DOI: 10.3390/ijms252010926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Circadian rhythms, the internal timekeeping systems governing physiological processes, significantly influence skin health, particularly in response to ultraviolet radiation (UVR). Disruptions in circadian rhythms can exacerbate UVR-induced skin damage and increase the risk of skin aging and cancer. This review explores how circadian rhythms affect various aspects of skin physiology and pathology, with a special focus on DNA repair. Circadian regulation ensures optimal DNA repair following UVR-induced damage, reducing mutation accumulation, and enhancing genomic stability. The circadian control over cell proliferation and apoptosis further contributes to skin regeneration and response to UVR. Oxidative stress management is another critical area where circadian rhythms exert influence. Key circadian genes like brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) modulate the activity of antioxidant enzymes and signaling pathways to protect cells from oxidative stress. Circadian rhythms also affect inflammatory and immune responses by modulating the inflammatory response and the activity of Langerhans cells and other immune cells in the skin. In summary, circadian rhythms form a complex defense network that manages UVR-induced damage through the precise regulation of DNA damage repair, cell proliferation, apoptosis, inflammatory response, oxidative stress, and hormonal signaling. Understanding these mechanisms provides insights into developing targeted skin protection and improving skin cancer prevention.
Collapse
Affiliation(s)
- Zhi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Qianhua Hu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Xiang Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Zirun Wang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Ying Xie
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
2
|
Cao C, Lei J, Zheng Y, Xu A, Zhou M. The brain-skin axis in vitiligo. Arch Dermatol Res 2024; 316:607. [PMID: 39240376 DOI: 10.1007/s00403-024-03362-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Vitiligo is an acquired autoimmune skin disease characterized by patchy depigmentation of the skin, often accompanied by white hair. The aetiology of vitiligo is complex and difficult to cure, and its disfiguring appearance significantly impacts patients' mental and physical health. Psychological stress is a major factor in inducing and exacerbating vitiligo, as well as affecting its treatment efficacy, though the specific mechanisms remain unclear. Increasing research on the brain-skin axis in skin immunity suggests that psychological stress can influence local skin immunity through this axis, which may play a crucial role in the pathogenesis of vitiligo. This review focuses on the role of brain-skin axis in the pathogenesis of vitiligo, and explores the possible mechanism of brain-skin axis mediating the pathogenesis of vitiligo from the aspects of sympathetic nervous system, hypothalamic-pituitary-adrenal (HPA) axis and hormones and neuropeptides, aiming to provide the necessary theoretical basis for psychological intervention in the prevention and treatment of vitiligo.
Collapse
Affiliation(s)
- Cheng Cao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jindi Lei
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yujie Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ai'e Xu
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Miaoni Zhou
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
3
|
Song G, Dai T, Chang Y, Pei H, Liu W, Guo P, Ren Y, Shen G, Feng J. A BEST classification system of large to giant congenital melanocytic nevi based on expert consensus and distribution characteristics. J Eur Acad Dermatol Venereol 2024. [PMID: 38708780 DOI: 10.1111/jdv.20075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/28/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Large to giant congenital melanocytic nevi (LGCMN) significantly decrease patients' quality of life, but the inaccuracy of current classification system makes their clinical management challenging. OBJECTIVES To improve and extend the existing LGCMN 6B/7B classification systems by developing a novel LGCMN classification system based on a new phenotypic approach to clinical tool development. METHODS Three hundred and sixty-one LGCMN cases were categorized into four subtypes based on anatomic site: bonce (25.48%), extremity (17.73%), shawl (19.67%) and trunks (37.12%) LGCMN. A 'BEST' classification system of LGCMN was established and validated by a support vector machine classifier combined with the 7B system. RESULTS The most common LGCMN distributions were on bonce and trunks (bathing trunk), whereas breast/belly and body LGCMN were exceptionally rare. Sexual dimorphism characterized distribution, with females showing a wider range of lesions in the genital area. Nearly half of the patients with bathing trunk LGCMN exhibited a butterfly-like distribution. Approximately half of the LGCMN with chest involvement did not have nipple-areola complex involvement. Abdomen, back and buttock involvement was associated with the presence of satellite nevi (r = 0.558), and back and buttock involvement was associated with the presence of nodules (r = 0.364). CONCLUSIONS The effective quantification of a standardized anatomical site provides data support for the accuracy of the 6B/7B classification systems. The simplified BEST classification system can help establish a LGCMN clinical database for exploration of LGCMN aetiology, disease management and prognosis prediction.
Collapse
Affiliation(s)
- Ge Song
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
- Department of Plastic Surgery, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Tao Dai
- Department of Wound Reconstructive Surgery, Tongji Hospital of Tongji University, Shanghai, China
| | - Yajie Chang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Huile Pei
- Department of Dermatology, Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Wuping Liu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Pengfei Guo
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Yongqiang Ren
- Department of Plastic Surgery, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Chen L, Yu Q, Guo F, Wang X, Cai Z, Zhou Q. Neurotensin counteracts hair growth inhibition induced by chronic restraint stress. Exp Dermatol 2024; 33:e14990. [PMID: 38071436 DOI: 10.1111/exd.14990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/30/2023] [Accepted: 11/23/2023] [Indexed: 01/30/2024]
Abstract
Stress has been considered as a potential trigger for hair loss through the neuroendocrine-hair follicle (HF) axis. Neurotensin (NTS), a neuropeptide, is known to be dysregulated in the inflammatory-associated skin diseases. However, the precise role of NTS in stress-induced hair loss is unclear. To investigate the function and potential mechanisms of NTS in stress-induced hair growth inhibition, we initially detected the expression of neurotensin receptor (Ntsr) and NTS in the skin tissues of stressed mice by RNA-sequencing and ELISA. We found chronic restraint stress (CRS) significantly decreased the expression of both NTS and Ntsr in the skin tissues of mice. Intracutaneous injection of NTS effectively counteracted CRS-induced inhibition of hair growth in mice. Furthermore, NTS regulated a total of 1093 genes expression in human dermal papilla cells (HDPC), with 591 genes being up-regulated and 502 genes being down-regulated. GO analysis showed DNA replication, cell cycle, integral component of plasma membrane and angiogenesis-associated genes were significantly regulated by NTS. KEGG enrichment demonstrated that NTS also regulated genes related to the Hippo signalling pathway, axon guidance, cytokine-cytokine receptor interaction and Wnt signalling pathway in HDPC. Our results not only uncovered the potential effects of NTS on stress-induced hair growth inhibition but also provided an understanding of the mechanisms at the gene transcriptional level.
Collapse
Affiliation(s)
- Lingjing Chen
- Department of Dermatology, Hangzhou Children's Hospital, Hangzhou, China
| | - Qing Yu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Dermatology, Yuyao People's Hospital, Ningbo, China
| | - Feiying Guo
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Dermatology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Xuewen Wang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenying Cai
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Zhou
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Lauritano D, Mastrangelo F, D’Ovidio C, Ronconi G, Caraffa A, Gallenga CE, Frydas I, Kritas SK, Trimarchi M, Carinci F, Conti P. Activation of Mast Cells by Neuropeptides: The Role of Pro-Inflammatory and Anti-Inflammatory Cytokines. Int J Mol Sci 2023; 24:ijms24054811. [PMID: 36902240 PMCID: PMC10002992 DOI: 10.3390/ijms24054811] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Mast cells (MCs) are tissue cells that are derived from bone marrow stem cells that contribute to allergic reactions, inflammatory diseases, innate and adaptive immunity, autoimmunity, and mental disorders. MCs located near the meninges communicate with microglia through the production of mediators such as histamine and tryptase, but also through the secretion of IL-1, IL-6 and TNF, which can create pathological effects in the brain. Preformed chemical mediators of inflammation and tumor necrosis factor (TNF) are rapidly released from the granules of MCs, the only immune cells capable of storing the cytokine TNF, although it can also be produced later through mRNA. The role of MCs in nervous system diseases has been extensively studied and reported in the scientific literature; it is of great clinical interest. However, many of the published articles concern studies on animals (mainly rats or mice) and not on humans. MCs are known to interact with neuropeptides that mediate endothelial cell activation, resulting in central nervous system (CNS) inflammatory disorders. In the brain, MCs interact with neurons causing neuronal excitation with the production of neuropeptides and the release of inflammatory mediators such as cytokines and chemokines. This article explores the current understanding of MC activation by neuropeptide substance P (SP), corticotropin-releasing hormone (CRH), and neurotensin, and the role of pro-inflammatory cytokines, suggesting a therapeutic effect of the anti-inflammatory cytokines IL-37 and IL-38.
Collapse
Affiliation(s)
- Dorina Lauritano
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Filiberto Mastrangelo
- Department of Clinical and Experimental Medicine, School of Dentistry, University of Foggia, 71100 Foggia, Italy
| | - Cristian D’Ovidio
- Section of Legal Medicine, Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gianpaolo Ronconi
- Clinica dei Pazienti del Territorio, Fondazione Policlinico Gemelli, 00185 Rome, Italy
| | | | - Carla E. Gallenga
- Section of Ophthalmology, Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, 44121 Ferrara, Italy
| | - Ilias Frydas
- Department of Parasitology, Aristotle University, 54124 Thessaloniki, Greece
| | - Spyros K. Kritas
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Macedonia, Greece
| | - Matteo Trimarchi
- Centre of Neuroscience of Milan, Department of Medicine and Surgery, University of Milan, 20122 Milano, Italy
| | - Francesco Carinci
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Pio Conti
- Immunology Division, Postgraduate Medical School, University of Chieti, 66100 Chieti, Italy
- Correspondence:
| |
Collapse
|
6
|
Slominski AT, Slominski RM, Raman C, Chen JY, Athar M, Elmets C. Neuroendocrine signaling in the skin with a special focus on the epidermal neuropeptides. Am J Physiol Cell Physiol 2022; 323:C1757-C1776. [PMID: 36317800 PMCID: PMC9744652 DOI: 10.1152/ajpcell.00147.2022] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
The skin, which is comprised of the epidermis, dermis, and subcutaneous tissue, is the largest organ in the human body and it plays a crucial role in the regulation of the body's homeostasis. These functions are regulated by local neuroendocrine and immune systems with a plethora of signaling molecules produced by resident and immune cells. In addition, neurotransmitters, endocrine factors, neuropeptides, and cytokines released from nerve endings play a central role in the skin's responses to stress. These molecules act on the corresponding receptors in an intra-, juxta-, para-, or autocrine fashion. The epidermis as the outer most component of skin forms a barrier directly protecting against environmental stressors. This protection is assured by an intrinsic keratinocyte differentiation program, pigmentary system, and local nervous, immune, endocrine, and microbiome elements. These constituents communicate cross-functionally among themselves and with corresponding systems in the dermis and hypodermis to secure the basic epidermal functions to maintain local (skin) and global (systemic) homeostasis. The neurohormonal mediators and cytokines used in these communications regulate physiological skin functions separately or in concert. Disturbances in the functions in these systems lead to cutaneous pathology that includes inflammatory (i.e., psoriasis, allergic, or atopic dermatitis, etc.) and keratinocytic hyperproliferative disorders (i.e., seborrheic and solar keratoses), dysfunction of adnexal structure (i.e., hair follicles, eccrine, and sebaceous glands), hypersensitivity reactions, pigmentary disorders (vitiligo, melasma, and hypo- or hyperpigmentary responses), premature aging, and malignancies (melanoma and nonmelanoma skin cancers). These cellular, molecular, and neural components preserve skin integrity and protect against skin pathologies and can act as "messengers of the skin" to the central organs, all to preserve organismal survival.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| | - Radomir M Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jake Y Chen
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| |
Collapse
|
7
|
Zouboulis CC, Coenye T, He L, Kabashima K, Kobayashi T, Niemann C, Nomura T, Oláh A, Picardo M, Quist SR, Sasano H, Schneider MR, Törőcsik D, Wong SY. Sebaceous immunobiology - skin homeostasis, pathophysiology, coordination of innate immunity and inflammatory response and disease associations. Front Immunol 2022; 13:1029818. [PMID: 36439142 PMCID: PMC9686445 DOI: 10.3389/fimmu.2022.1029818] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/17/2022] [Indexed: 08/01/2023] Open
Abstract
This review presents several aspects of the innovative concept of sebaceous immunobiology, which summarizes the numerous activities of the sebaceous gland including its classical physiological and pathophysiological tasks, namely sebum production and the development of seborrhea and acne. Sebaceous lipids, which represent 90% of the skin surface lipids in adolescents and adults, are markedly involved in the skin barrier function and perifollicular and dermal innate immune processes, leading to inflammatory skin diseases. Innovative experimental techniques using stem cell and sebocyte models have clarified the roles of distinct stem cells in sebaceous gland physiology and sebocyte function control mechanisms. The sebaceous gland represents an integral part of the pilosebaceous unit and its status is connected to hair follicle morphogenesis. Interestingly, professional inflammatory cells contribute to sebocyte differentiation and homeostasis, whereas the regulation of sebaceous gland function by immune cells is antigen-independent. Inflammation is involved in the very earliest differentiation changes of the pilosebaceous unit in acne. Sebocytes behave as potent immune regulators, integrating into the innate immune responses of the skin. Expressing inflammatory mediators, sebocytes also contribute to the polarization of cutaneous T cells towards the Th17 phenotype. In addition, the immune response of the perifollicular infiltrate depends on factors produced by the sebaceous glands, mostly sebaceous lipids. Human sebocytes in vitro express functional pattern recognition receptors, which are likely to interact with bacteria in acne pathogenesis. Sex steroids, peroxisome proliferator-activated receptor ligands, neuropeptides, endocannabinoids and a selective apoptotic process contribute to a complex regulation of sebocyte-induced immunological reaction in numerous acquired and congenital skin diseases, including hair diseases and atopic dermatitis.
Collapse
Affiliation(s)
- Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuro Kobayashi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Catherin Niemann
- Center for Molecular Medicine Cologne, CMMC Research Institute, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mauro Picardo
- San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Sven R. Quist
- Department of Dermatology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Marlon R. Schneider
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Daniel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen and ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Sunny Y. Wong
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Probing the Skin–Brain Axis: New Vistas Using Mouse Models. Int J Mol Sci 2022; 23:ijms23137484. [PMID: 35806489 PMCID: PMC9267936 DOI: 10.3390/ijms23137484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Inflammatory diseases of the skin, including atopic dermatitis and psoriasis, have gained increasing attention with rising incidences in developed countries over the past decades. While bodily properties, such as immunological responses of the skin, have been described in some detail, interactions with the brain via different routes are less well studied. The suggested routes of the skin–brain axis comprise the immune system, HPA axis, and the peripheral and central nervous system, including microglia responses and structural changes. They provide starting points to investigate the molecular mechanisms of neuropsychiatric comorbidities in AD and psoriasis. To this end, mouse models exist for AD and psoriasis that could be tested for relevant behavioral entities. In this review, we provide an overview of the current mouse models and assays. By combining an extensive behavioral characterization and state-of-the-art genetic interventions with the investigation of underlying molecular pathways, insights into the mechanisms of the skin–brain axis in inflammatory cutaneous diseases are examined, which will spark further research in humans and drive the development of novel therapeutic strategies.
Collapse
|
9
|
Recognition of Melanocytes in Immuno-Neuroendocrinology and Circadian Rhythms: Beyond the Conventional Melanin Synthesis. Cells 2022; 11:cells11132082. [PMID: 35805166 PMCID: PMC9266247 DOI: 10.3390/cells11132082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Melanocytes produce melanin to protect the skin from UV-B radiation. Notwithstanding, the spectrum of their functions extends far beyond their well-known role as melanin production factories. Melanocytes have been considered as sensory and computational cells. The neurotransmitters, neuropeptides, and other hormones produced by melanocytes make them part of the skin’s well-orchestrated and complex neuroendocrine network, counteracting environmental stressors. Melanocytes can also actively mediate the epidermal immune response. Melanocytes are equipped with ectopic sensory systems similar to the eye and nose and can sense light and odor. The ubiquitous inner circadian rhythm controls the body’s basic physiological processes. Light not only affects skin photoaging, but also regulates inner circadian rhythms and communicates with the local neuroendocrine system. Do melanocytes “see” light and play a unique role in photoentrainment of the local circadian clock system? Why, then, are melanocytes responsible for so many mysterious functions? Do these complex functional devices work to maintain homeostasis locally and throughout the body? In addition, melanocytes have also been shown to be localized in internal sites such as the inner ear, brain, and heart, locations not stimulated by sunlight. Thus, what can the observation of extracutaneous melanocytes tell us about the “secret identity” of melanocytes? While the answers to some of these intriguing questions remain to be discovered, here we summarize and weave a thread around available data to explore the established and potential roles of melanocytes in the biological communication of skin and systemic homeostasis, and elaborate on important open issues and propose ways forward.
Collapse
|
10
|
Shalnova SA, Imaeva NA, Imaeva AE, Kapustina AV. Aging Challenges. Perceived Age – a New Predictor of Longevity? RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2022. [DOI: 10.20996/1819-6446-2022-02-06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ageing process is accompanied by the manifestation of many characteristics, so-called biomarkers, which can be quantified and used to assess a patient's health status. One of these signs is the progressive decline of a human's facial look, which is described by the concept of 'perceived age'. Facial aging is the most important parameter of perceived age. However, over the years, researchers have identified risk factors that affect the facial skin, including smoking, systematic consumption of alcoholic beverages, overweight or underweight, environmental conditions, and psychosocial determinants. The influence of psychological state on the appearance and life prognosis is shown. The authors presented data from the international literature on the study of perceived age. The frontiers of using perceived age as a biomarker of aging were Danish scientists who developed the main methodological approaches to determine this indicator. One such methodology used in population studies has been the clinical technique of assessing perceived age through photography. The review presents this methodology in detail, with its advantages and modifications. The authors conclude that the measurement of an individual's perceived age can serve not only as a prognostic indicator, but also over time can become a useful marker of the effectiveness of various treatments. Until now perceived age has hardly been studied in population studies, the authors presented data from the works of V.A. Labunskaya, G.V. Serikov, T.A. Shkurko who develop the direction related to psychology of perceived age and in their studies use social-psychological approaches of appearance assessment.
Collapse
Affiliation(s)
- S. A. Shalnova
- National Medical Research Center for Therapy and Preventive Medicine
| | | | - A. E. Imaeva
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. V. Kapustina
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
11
|
Woźniak E, Owczarczyk-Saczonek A, Placek W. Psychological Stress, Mast Cells, and Psoriasis-Is There Any Relationship? Int J Mol Sci 2021; 22:ijms222413252. [PMID: 34948049 PMCID: PMC8705845 DOI: 10.3390/ijms222413252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Psoriasis vulgaris is a common inflammatory skin disease with still unknown pathogenesis. In recent years, genetic and environmental factors have been mentioned as the main causes. Among environmental factors, many researchers are trying to investigate the role of mental health and its importance in the development of many diseases. In the pathophysiology of psoriasis, the role of the interaction between the nervous, endocrine, and immune systems are often emphasized. So far, no one has clearly indicated where the pathological process begins. One of the hypotheses is that chronic stress influences the formation of hormonal changes (lowering the systemic cortisol level), which favors the processes of autoimmunity. In inflammatory skin conditions, mast cells (MCs) are localized close to blood vessels and peripheral nerves, where they probably play an important role in the response to environmental stimuli and emotional stress. They are usually connected with a fast immune response, not only in allergies but also a protective response to microbial antigens. Among many cells of the immune system, MCs have receptors for the hormones of the hypothalamic-pituitary-adrenal (HPA) axis on their surface. In this review, we will try to take a closer look at the role of MCs in the pathophysiology of psoriasis. This knowledge may give the opportunity to search for therapeutic solutions.
Collapse
|
12
|
Neurocosmetics in Skincare—The Fascinating World of Skin–Brain Connection: A Review to Explore Ingredients, Commercial Products for Skin Aging, and Cosmetic Regulation. COSMETICS 2021. [DOI: 10.3390/cosmetics8030066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The “modern” cosmetology industry is focusing on research devoted to discovering novel neurocosmetic functional ingredients that could improve the interactions between the skin and the nervous system. Many cosmetic companies have started to formulate neurocosmetic products that exhibit their activity on the cutaneous nervous system by affecting the skin’s neuromediators through different mechanisms of action. This review aims to clarify the definition of neurocosmetics, and to describe the features of some functional ingredients and products available on the market, with a look at the regulatory aspect. The attention is devoted to neurocosmetic ingredients for combating skin stress, explaining the stress pathways, which are also correlated with skin aging. “Neuro-relaxing” anti-aging ingredients derived from plant extracts and neurocosmetic strategies to combat inflammatory responses related to skin stress are presented. Afterwards, the molecular basis of sensitive skin and the suitable neurocosmetic ingredients to improve this problem are discussed. With the aim of presenting the major application of Botox-like ingredients as the first neurocosmetics on the market, skin aging is also introduced, and its theory is presented. To confirm the efficacy of the cosmetic products on the market, the concept of cosmetic claims is discussed.
Collapse
|
13
|
Passeron T, Zouboulis CC, Tan J, Andersen ML, Katta R, Lyu X, Aguilar L, Kerob D, Morita A, Krutmann J, Peters EMJ. Adult skin acute stress responses to short-term environmental and internal aggression from exposome factors. J Eur Acad Dermatol Venereol 2021; 35:1963-1975. [PMID: 34077579 PMCID: PMC8519049 DOI: 10.1111/jdv.17432] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 12/02/2022]
Abstract
Exposome factors that lead to stressed skin can be defined as any disturbance to homeostasis from environmental (meteorological factors, solar radiation, pollution or tobacco smoke) and/or internal exposure (unhealthy diet, hormonal variations, lack of sleep, psychosocial stress). The clinical and biological impact of chronic exposome effects on skin functions has been extensively reviewed, whereas there is a paucity of information on the impact of short‐term acute exposure. Acute stress, which would typically last minutes to hours (and generally no more than a week), provokes a transient but robust neuroendocrine‐immune and tissue remodelling response in the skin and can alter the skin barrier. Firstly, we provide an overview of the biological effects of various acute stressors on six key skin functions, namely the skin physical barrier, pigmentation, defences (antioxidant, immune cell‐mediated, microbial and microbiome maintenance), structure (extracellular matrix and appendages), neuroendocrine and thermoregulation functions. Secondly, we describe the biological and clinical effects on adult skin from individual exposome factors that elicit an acute stress response and their consequences in skin health maintenance. Clinical manifestations of acutely stressed skin may include dry skin that might accentuate fine lines, oily skin, sensitive skin, pruritus, erythema, pale skin, sweating, oedema and flares of inflammatory skin conditions such as acne, rosacea, atopic dermatitis, pigmentation disorders and skin superinfection such as viral reactivation. Acute stresses can also induce scalp sensitivity, telogen effluvium and worsen alopecia.
Collapse
Affiliation(s)
- T Passeron
- Department of Dermatology, University Hospital Centre Nice, Côte d'Azur University, Nice, France.,INSERM U1065, team 12, C3M, Nice, France
| | - C C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - J Tan
- Windsor Clinical Research Inc., Windsor, ON, Canada.,Department of Medicine, University of Western Ontario, London, Canada
| | - M L Andersen
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP)/Escola Paulista de Medicina, São Paulo, Brazil
| | - R Katta
- Volunteer Clinical Faculty, Baylor College of Medicine, Houston, Texas, USA.,McGovern Medical School at UT Health, Houston, Texas, USA
| | - X Lyu
- Department of Dermatology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - L Aguilar
- L'Oréal Advanced Research, Aulnay-sous-bois, France
| | - D Kerob
- Laboratoires Vichy, Levallois Perret, France
| | - A Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - J Krutmann
- IUF Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany.,Medical faculty, Heinrich-Heine-University, Dusseldorf, Germany
| | - E M J Peters
- Department of Psychosomatic Medicine and Psychotherapy, Justus-Liebig University, Gießen, Germany.,Charité Center 12 (CC12) for Internal Medicine and Dermatology, Berlin, Germany
| |
Collapse
|
14
|
Törőcsik D, Fazekas F, Póliska S, Gregus A, Janka EA, Dull K, Szegedi A, Zouboulis CC, Kovács D. Epidermal Growth Factor Modulates Palmitic Acid-Induced Inflammatory and Lipid Signaling Pathways in SZ95 Sebocytes. Front Immunol 2021; 12:600017. [PMID: 34025636 PMCID: PMC8134683 DOI: 10.3389/fimmu.2021.600017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/19/2021] [Indexed: 11/20/2022] Open
Abstract
Epidermal growth factor (EGF) acts as a paracrine and autocrine mediator of cell proliferation and differentiation in various types of epithelial cells, such as sebocytes, which produce the lipid-rich sebum to moisturize the skin. However, sebum lipids via direct contact and by penetrating through the epidermis may have regulatory roles on epidermal and dermal cells as well. As EGF receptor (EGFR) is expressed throughout the proliferating and the lipid-producing layers of sebaceous glands (SGs) in healthy and acne-involved skin, we investigated the effect of EGF on SZ95 sebocytes and how it may alter the changes induced by palmitic acid (PA), a major sebum component with bioactive roles. We found that EGF is not only a potent stimulator of sebocyte proliferation, but also induces the secretion of interleukin (IL)6 and down-regulates the expression of genes involved in steroid and retinoid metabolism. Importantly, when applied in combination with PA, the PA-induced lipid accumulation was decreased and the cells secreted increased IL6 levels. Functional clustering of the differentially regulated genes in SZ95 sebocytes treated with EGF, PA or co-treated with EGF+PA further confirmed that EGF may be a potent inducer of hyperproliferative/inflammatory pathways (IL1 signaling), an effect being more pronounced in the presence of PA. However, while a group of inflammatory genes was up-regulated significantly in EGF+PA co-treated sebocytes, PA treatment in the absence of EGF, regulated genes only related to cell homeostasis. Meta-analysis of the gene expression profiles of whole acne tissue samples and EGF- and EGF+PA -treated SZ95 sebocytes showed that the EGF+PA co-activation of sebocytes may also have implications in disease. Altogether, our results reveal that PA-induced lipid accumulation and inflammation can be modulated by EGF in sebocytes, which also highlights the need for system biological approaches to better understand sebaceous (immuno)biology.
Collapse
Affiliation(s)
- Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Fazekas
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Gregus
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eszter Anna Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Dull
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Division of Dermatological Allergology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Dóra Kovács
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
15
|
Stress and Nasal Allergy: Corticotropin-Releasing Hormone Stimulates Mast Cell Degranulation and Proliferation in Human Nasal Mucosa. Int J Mol Sci 2021; 22:ijms22052773. [PMID: 33803422 PMCID: PMC7967145 DOI: 10.3390/ijms22052773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Psychological stress exacerbates mast cell (MC)-dependent inflammation, including nasal allergy, but the underlying mechanisms are not thoroughly understood. Because the key stress-mediating neurohormone, corticotropin-releasing hormone (CRH), induces human skin MC degranulation, we hypothesized that CRH may be a key player in stress-aggravated nasal allergy. In the current study, we probed this hypothesis in human nasal mucosa MCs (hM-MCs) in situ using nasal polyp organ culture and tested whether CRH is required for murine M-MC activation by perceived stress in vivo. CRH stimulation significantly increased the number of hM-MCs, stimulated both their degranulation and proliferation ex vivo, and increased stem cell factor (SCF) expression in human nasal mucosa epithelium. CRH also sensitized hM-MCs to further CRH stimulation and promoted a pro-inflammatory hM-MC phenotype. The CRH-induced increase in hM-MCs was mitigated by co-administration of CRH receptor type 1 (CRH-R1)-specific antagonist antalarmin, CRH-R1 small interfering RNA (siRNA), or SCF-neutralizing antibody. In vivo, restraint stress significantly increased the number and degranulation of murine M-MCs compared with sham-stressed mice. This effect was mitigated by intranasal antalarmin. Our data suggest that CRH is a major activator of hM-MC in nasal mucosa, in part via promoting SCF production, and that CRH-R1 antagonists such as antalarmin are promising candidate therapeutics for nasal mucosa neuroinflammation induced by perceived stress.
Collapse
|
16
|
İnanç BB. Different Point of View to the Autoimmune Diseases and Treatment with Acupuncture. J Pharmacopuncture 2020; 23:187-193. [PMID: 33408894 PMCID: PMC7772076 DOI: 10.3831/kpi.2020.23.4.187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 11/27/2020] [Indexed: 01/22/2023] Open
Abstract
Objectives It was aimed to investigate the basic action mechanism of the autoimmune diseases and common features of all diseases. Autoimmune disease are classified organ specific and systemic. Methods These diseases are seen systemic and disease start locations, origins seem differently. This makes learning and understanding difficult. Autoimmune diseases investigated for easier understanding. It was noticed that, autoimmune diseases' starting places are specific and same all of them. This remarkable point is very important for acupuncture also. So; whole literatüre was researched and important point was found. Results Whole autoimmune diseases are attack to mesodermal layers and mesodermal origin organs of the body's. The common property of all these disease are same; Diseases start from the mesoderm and mesodermal layer even though their organ origins' belongs to different germ layer. From this point of view, we were able to classify autoimmune diseases simply and it was planned how can we effect body in this context with acupuncture. Conclusion And, when immunity comes into question, induction of adaptive immunity is depend on antigen presentation to T cells and this situation take place in the lymph node (LN) and also in the skin.When we sank the acupuncture needle into skin, signals create and start mesodermal contacts, during this time mesenchymal origin' autoimmune cells are regulated with this signals.
Collapse
Affiliation(s)
- Betül Battaloğlu İnanç
- Family Medicine Department, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
17
|
Gieler U, Gieler T, Peters EMJ, Linder D. Haut und Psychosomatik – Psychodermatologie heute. J Dtsch Dermatol Ges 2020; 18:1280-1300. [PMID: 33251743 DOI: 10.1111/ddg.14328_g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/21/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Uwe Gieler
- Universitäts-Hautklinik, Universitätsklinikum Gießen
| | - Tanja Gieler
- Kinder- und Jugendpsychosomatik, Universitäts-Kinderklinik, Universitätsklinikum Gießen
| | - Eva Milena Johanne Peters
- Psychoneuroimmunologie Labor, Klinik für Psychosomatik und Psychotherapie, Universitätsklinikum Gießen, Gießen in Kooperation mit der Klinik für Psychosomatische Medizin und Psychotherapie, Universitätsmedizin - Charité, Berlin
| | - Dennis Linder
- Universitäts-Hautklinik, Universität Padua, Italien, Institut für Medizinische Psychologie und Psychotherapie, Medizinische Universität Graz, Österreich
| |
Collapse
|
18
|
Gong Y, Li N, Lv Z, Zhang K, Zhang Y, Yang T, Wang H, Zhao X, Chen Z, Dou B, Chen B, Guo Y, Guo Y, Xu Z. The neuro-immune microenvironment of acupoints-initiation of acupuncture effectiveness. J Leukoc Biol 2020; 108:189-198. [PMID: 32645257 DOI: 10.1002/jlb.3ab0420-361rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/29/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Acupuncture is a centuried and unfading treatment of traditional Chinese medicine, which has been proved to exert curative effects on various disorders. Numerous works have been put in to uncover the effective mechanisms of acupuncture. And the interdependent interaction between acupuncture and acupoint microenvironment is a crucial topic. As a benign minimally invasive stimulation, the insertion and manipulation of needle at acupoint could cause deformation of local connective tissue and secretion of various molecules, such as high mobility group box 1 and ATP. The molecules are secreted into extracellular space and bind to the corresponding receptors thus active NF-κB, MAPK, ERK pathways on mast cells, fibroblasts, keratinocytes, and monocytes/macrophages, among others. This is supposed to trigger following transcription and translation of immune factors and neural active substance, as well as promote the free ion movement (such as Ca2+ influx) and the expansion of blood vessels to recruit more immune cells to acupoint. Finally, acupuncture could enhance network connectivity of local microenvironment at acupoints. The earlier mentioned substances further act on a variety of receptors in local nerve endings, transmitting electrical and biochemical signals to the CNS, and giving full play to the acupuncture action. In conclusion, we portrayed a neuro-immune microenvironment network of acupoints that medicates the acupuncture action, and would lay a foundation for the systematic study of the complex network relationship of acupoints in the future.
Collapse
Affiliation(s)
- Yinan Gong
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Ningcen Li
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Zhongxi Lv
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Kuo Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Nankai, Tianjin, China
| | - Yanfang Zhang
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Tao Yang
- Affiliated Hospital of Municipal Institute of Traditional Chinese Medicine of Changzhi City, Changzhi, Shanxi, China
| | - Hui Wang
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Xue Zhao
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Zelin Chen
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Baomin Dou
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Bo Chen
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Yongming Guo
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Yi Guo
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Zhifang Xu
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| |
Collapse
|
19
|
Gieler U, Gieler T, Peters EMJ, Linder D. Skin and Psychosomatics - Psychodermatology today. J Dtsch Dermatol Ges 2020; 18:1280-1298. [PMID: 33251751 PMCID: PMC7756276 DOI: 10.1111/ddg.14328] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Modern psychodermatology relies on the bio-psycho-social disease model in psychosomatics, according to which biological, psychological and social factors (on various levels, from molecules to the biosphere) play a major role in the disease pathogenesis through complex, non-linear interactions over the entire disease course. It is nowadays experimentally proven that "emotions get into the skin". Recent research shows close anatomical, physiological and functional connections between skin and nervous system, already known to be ontogenetically related. These connections are reflected in many skin diseases where psychological and somatic etiological factors are closely intertwined. A holistic approach by the physician should do justice to this interdependence; biological, psychological and social factors should be adequately taken into account when taking anamnesis, making a diagnosis and choosing a therapy. The "visibility" of the skin organ bestows dermatology a special position among the various other clinical subjects, and renders a holistic, psychosomatic approach to the patient that is particularly important. The life course belongs also to modern psychodermatological approaches. Based on the modern psychodermatology concept, other corresponding sub-areas such as psychogastroenterology, psychocardiology etc. have emerged. After the theoretical part of this article, some selected skin diseases are discussed in more detail from the psychosomatic point of view.
Collapse
Affiliation(s)
- Uwe Gieler
- Department of DermatologyUniversity Hospital Gießen
| | - Tanja Gieler
- Psychosomatic Medicine for Children and AdolescentsDepartment of PediatricsUniversity Hospital Gießen
| | - Eva Milena Johanne Peters
- Laboratory for PsychoneuroimmunologyDepartment of Psychosomatic Medicine and PsychotherapyUniversity Hospital Gießen in cooperation with the Department of Psychosomatic Medicine and PsychotherapyUniversity Hospital – CharitéBerlin
| | - Dennis Linder
- Department of DermatologyUniversity of PaduaItalyInstitute for Medical Psychology and PsychotherapyMedical University GrazAustria
| |
Collapse
|
20
|
Ramot Y, Böhm M, Paus R. Translational Neuroendocrinology of Human Skin: Concepts and Perspectives. Trends Mol Med 2020; 27:60-74. [PMID: 32981840 DOI: 10.1016/j.molmed.2020.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
Human skin responds to numerous neurohormones, neuropeptides, and neurotransmitters that reach it via the vasculature or skin nerves, and/or are generated intracutaneously, thus acting in a para- and autocrine manner. This review focuses on how neurohormones impact on human skin physiology and pathology. We highlight basic concepts, major open questions, and translational research perspectives in cutaneous neuroendocrinology and argue that greater emphasis on neuroendocrine human skin research will foster the development of novel dermatological therapies. Furthermore, human skin and its appendages can be used as highly accessible and clinically relevant model systems for probing nonclassical, ancestral neurohormone functions. This calls for close interdisciplinary collaboration between dermatologists, skin biologists, neuroendocrinologists, and neuropharmacologists.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | - Ralf Paus
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Monasterium Laboratory, Münster, Germany; Centre for Dermatology Research, University of Manchester, Manchester, UK.
| |
Collapse
|
21
|
Extra-adrenal glucocorticoid biosynthesis: implications for autoimmune and inflammatory disorders. Genes Immun 2020; 21:150-168. [PMID: 32203088 PMCID: PMC7276297 DOI: 10.1038/s41435-020-0096-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Glucocorticoid synthesis is a complex, multistep process that starts with cholesterol being delivered to the inner membrane of mitochondria by StAR and StAR-related proteins. Here its side chain is cleaved by CYP11A1 producing pregnenolone. Pregnenolone is converted to cortisol by the enzymes 3-βHSD, CYP17A1, CYP21A2 and CYP11B1. Glucocorticoids play a critical role in the regulation of the immune system and exert their action through the glucocorticoid receptor (GR). Although corticosteroids are primarily produced in the adrenal gland, they can also be produced in a number of extra-adrenal tissue including the immune system, skin, brain, and intestine. Glucocorticoid production is regulated by ACTH, CRH, and cytokines such as IL-1, IL-6 and TNFα. The bioavailability of cortisol is also dependent on its interconversion to cortisone which is inactive, by 11βHSD1/2. Local and systemic glucocorticoid biosynthesis can be stimulated by ultraviolet B, explaining its immunosuppressive activity. In this review, we want to emphasize that dysregulation of extra-adrenal glucocorticoid production can play a key role in a variety of autoimmune diseases including multiple sclerosis (MS), lupus erythematosus (LE), rheumatoid arthritis (RA), and skin inflammatory disorders such as psoriasis and atopic dermatitis (AD). Further research on local glucocorticoid production and its bioavailability may open doors into new therapies for autoimmune diseases.
Collapse
|
22
|
Schut C, Magerl M, Hawro T, Kupfer J, Rose M, Gieler U, Maurer M, Peters EMJ. Disease activity and stress are linked in a subpopulation of chronic spontaneous urticaria patients. Allergy 2020; 75:224-226. [PMID: 31392735 DOI: 10.1111/all.14015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Christina Schut
- Institute of Medical Psychology Justus‐Liebig‐University Gießen Germany
| | - Markus Magerl
- Dermatological Allergology, Department of Dermatology and Allergy Charité ‐ Universitätsmedizin Berlin Berlin Germany
| | - Tomasz Hawro
- Dermatological Allergology, Department of Dermatology and Allergy Charité ‐ Universitätsmedizin Berlin Berlin Germany
| | - Jörg Kupfer
- Institute of Medical Psychology Justus‐Liebig‐University Gießen Germany
| | - Matthias Rose
- CharitéCentrum 12 for Internal Medicine and Dermatology, Department of Psychosomatic Medicine and Psychotherapy Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Uwe Gieler
- Clinics for Dermatology and Allergology Justus‐Liebig‐University Gießen Germany
| | - Marcus Maurer
- Dermatological Allergology, Department of Dermatology and Allergy Charité ‐ Universitätsmedizin Berlin Berlin Germany
| | - Eva Milena Johanne Peters
- CharitéCentrum 12 for Internal Medicine and Dermatology, Department of Psychosomatic Medicine and Psychotherapy Charité‐Universitätsmedizin Berlin Berlin Germany
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy Justus‐Liebig‐University Gießen Germany
| |
Collapse
|
23
|
de Assis LVM, Moraes MN, Castrucci AMDL. The molecular clock in the skin, its functionality, and how it is disrupted in cutaneous melanoma: a new pharmacological target? Cell Mol Life Sci 2019; 76:3801-3826. [PMID: 31222374 PMCID: PMC11105295 DOI: 10.1007/s00018-019-03183-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/13/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
The skin is the interface between the organism and the external environment, acting as its first barrier. Thus, this organ is constantly challenged by physical stimuli such as UV and infrared radiation, visible light, and temperature as well as chemicals and pathogens. To counteract the deleterious effects of the above-mentioned stimuli, the skin has complex defense mechanisms such as: immune and neuroendocrine systems; shedding of epidermal squamous layers and apoptosis of damaged cells; DNA repair; and pigmentary system. Here we have reviewed the current knowledge regarding which stimuli affect the molecular clock of the skin, the consequences to skin-related biological processes and, based on such knowledge, we suggest some therapeutic targets. We also explored the recent advances regarding the molecular clock disruption in melanoma, its impact on the carcinogenic process, and its therapeutic value in melanoma treatment.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
- School of Health Science, University Anhembi Morumbi, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil.
| |
Collapse
|
24
|
Vojvodic P, Vlaskovic-Jovicevic T, Vojvodic J, Vojvodic A, Sijan G, Dimitrijevic S, Peric-Hajzler Z, Matovic D, Wollina U, Tirant M, Thuong NV, Fioranelli M, Lotti T. Psychotherapy Role in Treatment of Chronic Spontaneous Urticaria in a 32 Years Old Female Patient. Open Access Maced J Med Sci 2019; 7:3118-3120. [PMID: 31850136 PMCID: PMC6910793 DOI: 10.3889/oamjms.2019.773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/02/2022] Open
Abstract
As indicated by the latest scientific evidence, the lines between different fields of medicine gradually blur and overlap more and more. Psychiatry and dermatology have seen this trend in the last decade as an ever-increasing number of studies suggest the strong connection of many dermatological syndromes and diseases with psychiatric conditions and vice versa. It seems that the relationship is more intertwined than previously believed and the effects of different multidisciplinary approaches to diagnostic and treatment are being considered. The aim of this case report is to highlight the effect of psychotherapy on chronic spontaneous urticaria which is tightly related to the maladaptive stress response.
Collapse
Affiliation(s)
- Petar Vojvodic
- Clinic for Psychiatric Disorders "Dr. Laza Lazarevic", Belgrade, Serbia
| | | | - Jovana Vojvodic
- Clinic for Psychiatric Disorders "Dr. Laza Lazarevic", Belgrade, Serbia
| | - Aleksandra Vojvodic
- Department of Dermatology and Venereology, Military Medical Academy, Belgrade, Serbia
| | - Goran Sijan
- Clinic for Plastic Surgery and Burns, Military Medical Academy, Belgrade, Serbia
| | | | | | | | - Uwe Wollina
- Department of Dermatology and Allergology, Städtisches Klinikum Dresden, Dresden, Germany
| | | | - Nguyen Van Thuong
- Vietnam National Hospital of Dermatology and Venereology, Hanoi, Vietnam
| | - Massimo Fioranelli
- Department of Nuclear Physics, Sub-nuclear and Radiation, G. Marconi University, Rome, Italy
| | - Torello Lotti
- Department of Dermatology, University of G. Marconi, Rome, Italy
| |
Collapse
|
25
|
Caffarelli C, Paravati F, El Hachem M, Duse M, Bergamini M, Simeone G, Barbagallo M, Bernardini R, Bottau P, Bugliaro F, Caimmi S, Chiera F, Crisafulli G, De Ranieri C, Di Mauro D, Diociaiuti A, Franceschini F, Gola M, Licari A, Liotti L, Mastrorilli C, Minasi D, Mori F, Neri I, Pantaleo A, Saretta F, Tesi CF, Corsello G, Marseglia GL, Villani A, Cardinale F. Management of chronic urticaria in children: a clinical guideline. Ital J Pediatr 2019; 45:101. [PMID: 31416456 PMCID: PMC6694633 DOI: 10.1186/s13052-019-0695-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of this guidance is to provide recommendations to clinicians and other interested parties on chronic urticaria in children. The Italian Society for Pediatrics (SIP), the Italian Society for Allergy and Immunology (SIAIP), the Italian Society for Pediatric dermatology (SIDerP) convened a multidisciplinary panel that prepared clinical guidelines for diagnosis and management of chronic urticaria in childhood. Key questions on epidemiology, natural history, diagnosis, and management were developed. The literature was systematically searched and evaluated, recommendations were rated and algorithms for diagnosis and treatment were developed. The recommendations focus on identification of diseases and comorbidities, strategies to recognize triggering factors, improvement of treatment by individualized care.
Collapse
Affiliation(s)
- Carlo Caffarelli
- Clinica Pediatrica, Dipartimento Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Francesco Paravati
- Pediatric Unit, Maternal Infant Department, Azienda Sanitaria Provinciale Crotone, Crotone, Italy
| | - Maya El Hachem
- Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marzia Duse
- Department of Pediatrics, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | | | - Giovanni Simeone
- Primary care Pediatrician, Local Health Unit of Brindisi, Brindisi, Italy
| | - Massimo Barbagallo
- Pediatric Unit, Azienda di rilievo nazionale ARNAS "GARIBALDI", Catania, Italy
| | | | - Paolo Bottau
- Pediatric and Neonatology Unit, Imola Hospital, Imola, BO, Italy
| | - Filomena Bugliaro
- FEDERASMA e Allergie Onlus - Federazione Italiana Pazienti, Prato, Italy
| | - Silvia Caimmi
- Pediatric Clinic, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Fernanda Chiera
- Pediatric Unit, Maternal Infant Department, Azienda Sanitaria Provinciale Crotone, Crotone, Italy
| | - Giuseppe Crisafulli
- UO Allergologia, Dipartimento di Pediatria, Università di Messina, Messina, Italy
| | | | - Dora Di Mauro
- Clinica Pediatrica, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Diociaiuti
- Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Massimo Gola
- Allergological and Pediatric Dermatology Unit, AUTC and University of Florence, Florence, Italy
| | - Amelia Licari
- Pediatric Clinic, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Lucia Liotti
- Department of Pediatrics, Senigallia Hospital, Senigallia, Italy
| | - Carla Mastrorilli
- Department of Pediatrics and Emergency, Pediatric Allergy and Pulmunology Unit, Azienda Ospedaliera-Universitaria "Consorziale-Policlinico", Ospedale Pediatrico Giovanni XXIII, Bari, Italy
| | - Domenico Minasi
- UOC di Pediatria Azienda Ospedaliera "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Francesca Mori
- Allergy Unit, Department of Pediatric Medicine, Anna Meyer Children's University Hospital, Florence, Italy
| | - Iria Neri
- Dermatology Unit, University of Bologna, Bologna, Italy
| | - Aurelia Pantaleo
- Clinica Pediatrica, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Francesca Saretta
- Pediatric Department, AAS2 Bassa Friulana-Isontina, Palmanova-Latisana, Italy.,Pediatric Allergy Unit, Department of Medicine, Udine, Italy
| | - Carlo Filippo Tesi
- FEDERASMA e Allergie Onlus - Federazione Italiana Pazienti, Prato, Italy
| | - Giovanni Corsello
- Clinica Pediatrica Università degli Studi di Palermo, Palermo, Italy
| | - Gian Luigi Marseglia
- Pediatric Clinic, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Alberto Villani
- UOC di Pediatria Generale e Malattie Infettive, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Fabio Cardinale
- Department of Pediatrics and Emergency, Pediatric Allergy and Pulmunology Unit, Azienda Ospedaliera-Universitaria "Consorziale-Policlinico", Ospedale Pediatrico Giovanni XXIII, Bari, Italy.
| |
Collapse
|
26
|
Madden SK, Flanagan KL, Jones G. How lifestyle factors and their associated pathogenetic mechanisms impact psoriasis. Clin Nutr 2019; 39:1026-1040. [PMID: 31155371 DOI: 10.1016/j.clnu.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 04/11/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUNDS AND AIMS Psoriasis is a skin disorder affecting approximately 2-3% of the global population. While research has revealed a strong genetic component, there are few studies exploring the extent to which lifestyle factors influence psoriasis pathogenesis. The aim of this review was to describe the role of lifestyle factors as both a potential cause and treatment for psoriasis. The review also examines the underlying mechanisms through which these lifestyle factors may operate. METHODS This narrative review aims to incorporate current knowledge relating to both lifestyle and pathogenetic factors that contribute to and alleviate psoriasis presentation. Studies reporting the effect of an inflammatory diet and potential dietary benefits are reported, as well as insights into the effects of stress, smoking and alcohol, insulin resistance and exercise. RESULTS Poor nutrition and low Omega 3 fatty acid intake, likely combined with fat malabsorption caused by gut dysbiosis and systemic inflammation, are associated with psoriasis. The data strongly suggest that improvements to disease severity can be made through dietary and lifestyle interventions and increased physical activity. Less conclusive, although worthy of mention, is the beneficial effect of bile acid supplementation. CONCLUSIONS Lifestyle interventions are a promising treatment for psoriasis and its associated co-morbidities. However, gaps and inadequacies exist within the literature, e.g. methodology, absence of a unified scoring system, lack of controlled clinical data and lack of studies without simultaneous usage of biologics or alternative therapies. Future directions should focus on high quality cohort studies and clinical trials.
Collapse
Affiliation(s)
- Seonad K Madden
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Australia.
| | - Katie L Flanagan
- School of Medicine, College of Health and Medicine, University of Tasmania, Australia; School of Health & Biomedical Science, Royal Melbourne Institute of Technology, Australia; Infectious Diseases Service, Launceston General Hospital, Australia; Dept. of Immunology and Pathology, Monash University, Australia
| | - Graeme Jones
- Menzies Institute for Medical Research, University of Tasmania, Australia
| |
Collapse
|
27
|
Therianou A, Vasiadi M, Delivanis DA, Petrakopoulou T, Katsarou-Katsari A, Antoniou C, Stratigos A, Tsilioni I, Katsambas A, Rigopoulos D, Theoharides TC. Mitochondrial dysfunction in affected skin and increased mitochondrial DNA in serum from patients with psoriasis. Exp Dermatol 2019; 28:72-75. [PMID: 30390357 DOI: 10.1111/exd.13831] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/02/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022]
Abstract
Psoriasis is characterized by keratinocyte proliferation and chronic inflammation, but the pathogenesis is still unclear. Dysregulated mitochondria (mt) could lead to reduced apoptosis and extracellular secretion of mtDNA, acting as "innate pathogen" triggering inflammation. Serum was obtained from healthy volunteers and psoriatic patients. Mitochondrial DNA was extracted from the serum and amplified with quantitative PCR (qPCR). Punch biopsies were obtained from lesional and non-lesional psoriatic skin (10 cm apart) and from healthy volunteers, were placed in RNA later and were stored at -80°C until RNA was extracted and cDNA was synthesized; gene expression of uncoupling protein 2 (UCP2), Dynamin-related protein 1 (Drp1) and calcineurin, involved in the regulation of mitochondria function, was detected with qPCR. Mitochondrial DNA was significantly increased (7s, P = 0.0496 and Cytochrome B, CytB, P = 0.0403) in the serum of psoriatic patients (n = 63) as compared to controls (n = 27). Gene expression was significantly reduced for UCP2 (P = 0.0218), Drp1 (P = 0.0001) and calcineurin (P = 0.0001) in lesional psoriatic skin, as compared to non-lesional or control skin. Increased serum extracellular mtDNA in psoriatic patients and decreased expression of mitochondrial regulatory proteins in psoriatic skin suggest increased inflammation and reduced keratinocyte apoptosis, respectively. Inhibitors of mtDNA secretion and/or UCP2 stimulants may be potential treatment options.
Collapse
Affiliation(s)
- Anastasia Therianou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
- First Department of Dermatology, Andreas Syggros Hospital of Cutaneous & Venereal Diseases, Athens University Medical School, Athens, Greece
| | - Magdalini Vasiadi
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
- General Anti-Cancer Hospital Agios Savvas, Athens, Greece
| | - Danae A Delivanis
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| | | | - Alexandra Katsarou-Katsari
- First Department of Dermatology, Andreas Syggros Hospital of Cutaneous & Venereal Diseases, Athens University Medical School, Athens, Greece
| | - Christina Antoniou
- First Department of Dermatology, Andreas Syggros Hospital of Cutaneous & Venereal Diseases, Athens University Medical School, Athens, Greece
| | - Alexandros Stratigos
- First Department of Dermatology, Andreas Syggros Hospital of Cutaneous & Venereal Diseases, Athens University Medical School, Athens, Greece
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| | - Andreas Katsambas
- First Department of Dermatology, Andreas Syggros Hospital of Cutaneous & Venereal Diseases, Athens University Medical School, Athens, Greece
| | - Dimitris Rigopoulos
- First Department of Dermatology, Andreas Syggros Hospital of Cutaneous & Venereal Diseases, Athens University Medical School, Athens, Greece
| | - Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
28
|
Kim JS, Park MJ, Kang HY, Hong SP, Park BC, Kim MH. Neuropeptides Profile and Increased Innervation in Becker's Nevus. Ann Dermatol 2019; 31:154-163. [PMID: 33911564 PMCID: PMC7992669 DOI: 10.5021/ad.2019.31.2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 11/08/2022] Open
Abstract
Background Melanocytes are derived from neural crest, and various pigmentary disorders may accompany abnormalities in nerve system or develop following dermatome, suggesting that melanocyte and pigmentation may be closely related to neural factors. There are reports of Becker's nevus (BN) showing linear and segmental configuration, suggesting the association of BN with nerve system. However, there are no studies regarding the expression of neuropeptides in BN. Objective We investigated the expression of neuropeptides and innervation in BN. Methods Polymerase chain reaction (PCR) array of 84 genes related to neuronal process was done. Among the genes with 10-fold or more increase in lesional, real-time PCR was performed for neuropeptide Y (NPY), galanin, neurotensin (NTS) and their receptors skin compared to normal skin. IHC stain was done to look for the expression of NPY, galanin, NTS and their receptors and the distribution of protein gene products (PGP) 9.5 immunoreactive nerve fibers. Results PCR array revealed that 16 out of 84 genes related to neuronal process were increased by 10-fold or more in lesional skin. In real-time PCR of NPY, galanin, NTS and their receptors, statistically significant increase of NPY1R (p<0.05) and marginally significant increase of NPY2R, GAL2R, and NTS2R (p<0.1) was verified in lesional skin. In immunohistochemistry, NPY, NPY1R NPY2R, and NTS2R were highly expressed in lesional skin and increased PGP 9.5 immunoreactive linear nerve fibers were found in the epidermis of BN. Conclusion NPY, galanin, NTS and their receptors and increased innervation may play a role in the pathogenesis of BN.
Collapse
Affiliation(s)
- Ji Seok Kim
- Department of Dermatology, Dankook University College of Medicine, Cheonan, Korea
| | - Myeong Jin Park
- Department of Dermatology, Dankook University College of Medicine, Cheonan, Korea
| | - Hye Young Kang
- Department of Dermatology, Dankook University College of Medicine, Cheonan, Korea
| | - Seung Phil Hong
- Department of Dermatology, Dankook University College of Medicine, Cheonan, Korea
| | - Byung Cheol Park
- Department of Dermatology, Dankook University College of Medicine, Cheonan, Korea
| | - Myung Hwa Kim
- Department of Dermatology, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
29
|
Redegeld FA, Yu Y, Kumari S, Charles N, Blank U. Non-IgE mediated mast cell activation. Immunol Rev 2018; 282:87-113. [DOI: 10.1111/imr.12629] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Frank A. Redegeld
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Yingxin Yu
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Sangeeta Kumari
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Nicolas Charles
- INSERM U1149; Centre de Recherche sur l'Inflammation; Paris France
- CNRS ERL8252; Paris France
- Université Paris-Diderot; Sorbonne Paris Cité; Faculté de Médecine; Site Xavier Bichat; Paris France
| | - Ulrich Blank
- INSERM U1149; Centre de Recherche sur l'Inflammation; Paris France
- CNRS ERL8252; Paris France
- Université Paris-Diderot; Sorbonne Paris Cité; Faculté de Médecine; Site Xavier Bichat; Paris France
- Inflamex Laboratory of Excellence; Paris France
| |
Collapse
|
30
|
Patel AB, Tsilioni I, Weng Z, Theoharides TC. TNF stimulates IL-6, CXCL8 and VEGF secretion from human keratinocytes via activation of mTOR, inhibited by tetramethoxyluteolin. Exp Dermatol 2018; 27:135-143. [PMID: 29105195 DOI: 10.1111/exd.13461] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2017] [Indexed: 12/19/2022]
Abstract
Psoriasis is an autoimmune skin disease characterized by keratinocyte hyperproliferation and chronic inflammation. The pathogenesis of psoriasis involves proinflammatory cytokines, such as tumor necrosis factor (TNF), but the mechanism of keratinocyte activation is not well understood. Here, we show that TNF (10 or 50 ng/mL) stimulates a significant (P < .0001) gene expression and secretion of proinflammatory IL-6, CXCL8 and VEGF from both cultured human HaCaT and normal epidermal human keratinocytes (NHEKs). This effect occurs via activation of the mammalian target of rapamycin (mTOR) signalling complex as shown by Western blot analysis and phospho-ELISAs. Pretreatment with the novel natural flavonoid tetramethoxyluteolin (10-100 μmol L-1 ) significantly (P < .0001) inhibits gene expression and secretion (P < .0001) of all 3 mediators in a concentration-dependent manner. Moreover, tetramethoxyluteolin (50 μmol L-1 ) appears to be a potent inhibitor of the phosphorylated mTOR substrates (pmTORSer2448 , pp70S6KThr389 and p4EBP1Thr37/46 ) as compared to known mTOR inhibitors in keratinocytes. The present findings indicate that TNF stimulates skin inflammation via mTOR signalling. Inhibition by tetramethoxyluteolin may be used in the treatment for psoriasis.
Collapse
Affiliation(s)
- Arti B Patel
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA.,Graduate Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Zuyi Weng
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA.,Graduate Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.,Department of Internal Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
31
|
Sternberg F, Vidali S, Holub BS, Stockinger J, Brunner SM, Ebner S, Koller A, Trost A, Reitsamer HA, Schwarzenbacher D, Lang R, Kofler B. Lack of Galanin Receptor 3 Alleviates Psoriasis by Altering Vascularization, Immune Cell Infiltration, and Cytokine Expression. J Invest Dermatol 2018; 138:199-207. [PMID: 28844939 DOI: 10.1016/j.jid.2017.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 01/30/2023]
Abstract
The neuropeptide galanin is distributed in the central and peripheral nervous systems and in non-neuronal peripheral organs, including the skin. Galanin acts via three G protein-coupled receptors which, except galanin receptor 1, are expressed in various skin structures. The galanin system has been associated with inflammatory processes of the skin and of several other organs. Psoriasis is an inflammatory skin disease with increased neovascularization, keratinocyte hyperproliferation, a proinflammatory cytokine milieu, and immune cell infiltration. In this study, we showed that galanin receptor 3 is present in endothelial cells in human and murine dermal vessels and is co-expressed with nestin in neo-vessels of psoriatic patients. Moreover, in a murine psoriasis model, we showed that C57/BL6 mice lacking galanin receptor 3 display a milder course of psoriasis upon imiquimod treatment, leading to decreased disease severity, delayed neo-vascularization, reduced infiltration of neutrophils, and significantly lower levels of proinflammatory cytokines compared with wild-type mice. In contrast, galanin receptor 2-knockout animals did not differ significantly from wild type mice at both the macroscopic and molecular levels in their inflammatory response to imiquimod treatment. Our data indicate that galanin receptor 3, but not galanin receptor 2, plays an important role in psoriasis-like skin inflammation.
Collapse
Affiliation(s)
- Felix Sternberg
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Silvia Vidali
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Barbara S Holub
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria; Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Julia Stockinger
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Susanne M Brunner
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Sabine Ebner
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Andreas Koller
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Andrea Trost
- Department of Ophthalmology/Optometry, Research Program Experimental Ophthalmology, Paracelsus Medical University Salzburg, Austria
| | - Herbert A Reitsamer
- Department of Ophthalmology/Optometry, Research Program Experimental Ophthalmology, Paracelsus Medical University Salzburg, Austria
| | - David Schwarzenbacher
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Roland Lang
- Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
32
|
Theoharides TC. Neuroendocrinology of mast cells: Challenges and controversies. Exp Dermatol 2017; 26:751-759. [PMID: 28094875 DOI: 10.1111/exd.13288] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2016] [Indexed: 12/21/2022]
Abstract
Mast cells (MC) are hemotopoietically derived tissue immune cells that are ubiquitous in the body, including neuroendocrine organs such as the hypothalamus, pineal, pituitary, ovaries, pancreas and uterus where their action is not well understood. Mast cells have historically been associated with allergies because of their rich content of histamine and tryptase, but more recently with regulation of immunity and inflammation due to their synthesis and release of numerous cytokines and chemokines. Mast cells are located perivascularly and express numerous receptors for diverse ligands such as allergens, pathogens, neurotransmitters, neuropeptides and hormones including acetylcholine, calcitonin gene-related peptide (CGRP), corticosteroids, corticotropin-releasing hormone (CRH), β-endorphin, epinephrine, 17β-oestradiol, gonadotrophins, hemokinin-A (HKA), leptin, melatonin, neurotensin (NT), parathyroid hormone (PTH), substance P (SP) and vasoactive intestinal peptide (VIP). Moreover, MC can synthesize and release most of their neurohormonal triggers, including adrenocorticotropin hormone (ACTH), CRH, endorphins, HKA, leptin, melatonin, NT, SP and VIP. Animal experiments have shown that diencephalic MC increase in number during courting in doves, while stimulation of brain and nasal MC leads to activation of the hypothalamic-pituitary-adrenal (HPA) axis. Recent evidence indicates that MC reactivity exhibits diurnal variations, and it is interesting that melatonin appears to regulate MC secretion. However, the way MC change their phenotype or secrete specific molecules selectively at different pathophysiological settings still remains unknown. Mast cells developed over 500 million years ago and may have served as the original prototype neuroimmunoendocrine cell and then evolved into a master regulator of such interactions, especially as most of the known diseases involve neuroinflammation that worsens with stress.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA.,Sackler School of Graduate Biomedical Sciences, Program in Pharmacology and Experimental Therapeutics, Tufts University, Boston, MA, USA.,Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA.,Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
33
|
Conti P, Ronconi G, Caraffa A, Lessiani G, Duraisamy K. IL-37 a New IL-1 Family Member Emerges as a Key Suppressor of Asthma Mediated by Mast Cells. Immunol Invest 2016; 46:239-250. [PMID: 27982737 DOI: 10.1080/08820139.2016.1250220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In 1986, we reported a multiple biological effect of IL-1 including immunological, inflammatory, and tumor killing activity. Since then other IL-1 family cytokines have been discovered, some with inflammatory and other with anti-inflammatory activity. In this review article, we speculate on the possible inhibitory effect of IL-37 in the light of new findings. IL-37, formerly termed IL-1 family member 7 (IL-1F7), binding IL-18 receptor α chain, acts as a cytokine with intracellular as well as extracellular functionality and as a natural inhibitor of immune responses and inflammation. IL-37 inhibits many pro-inflammatory cytokine and increases anti-inflammatory cytokines such as IL-10. Asthma pathogenesis involves multiple cell types including mast cells, which are important cellular constituents of the human innate and adaptive immunity. IL-37 has an impact on inflammatory cytokines generated by mast cells and is beneficial for and protective in asthma. However, the precise mechanism(s), safety, and tolerability of IL-37 are unclear and still remain a mystery. ABBREVIATIONS GBP (Guanylate Binding Proteins); HMGB1 (High Mobility Group Box protein 1); NLRP (Nucleotide-like Receptor Pyrin domain 1); ASC (Apoptosis-associated Speck-like protein containing CARD, Caspase Recruitment Domain); FGF2 (Fibroblast Growth Factor 2).
Collapse
Affiliation(s)
- P Conti
- a Immunology Division, Postgraduate Medical School, University of Chieti-Pescara , Chieti , Italy
| | - G Ronconi
- b UOS Clinica dei Pazienti del Territorio, Policlinico Gemelli , Roma , Italy
| | - A Caraffa
- c Department of Pharmacology , University of Perugia , Perugia , Italy
| | - G Lessiani
- d Center of Intensive Rehabilitation, "S. Agnese" , Pineto ( TE ), Italy
| | - Kempuraj Duraisamy
- e Department of Neurology , Carver College of Medicine, University of Iowa , Iowa City , IA , USA
| |
Collapse
|
34
|
Paus R. Exploring the “brain-skin connection”: Leads and lessons from the hair follicle. Curr Res Transl Med 2016; 64:207-214. [DOI: 10.1016/j.retram.2016.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/22/2022]
|
35
|
Affiliation(s)
- Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Auenweg 38, 06847, Dessau, Germany.
| | - Constantine A Stratakis
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA
| | - George P Chrousos
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Christian A Koch
- Division of Endocrinology, Diabetes, Metabolism, University of Mississippi Medical Center, Jackson, MS, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, USA
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|