1
|
Morgado-Gamero WB, Hernandez L, Medina J, De Moya I, Gallego-Cartagena E, Parody A, Agudelo-Castañeda D. Antibiotic-resistant bacteria aerosol in a Caribbean coastal city: Pre- and post- COVID-19 lockdown. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178158. [PMID: 39721525 DOI: 10.1016/j.scitotenv.2024.178158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
This study assessed the prevalence and spatial distribution of viable ultrafine and fine antibiotic-resistant bacteria aerosols (ARB) in the Metropolitan Area of Barranquilla, Colombia, pre- and post-lockdown (September 2019 to December 2020). Samples were systematically collected from urban, suburban, and rural sites using a six-stage viable cascade impactor. We employed logistic regression and Bayesian Neural Network Classifiers to analyze meteorological variables' influence on antibiotic resistance persistence. The lockdown led to a significant decrease (76 %) in overall bacterial aerosol concentrations, likely due to reduced human activity. The most significant reduction (82 %) was observed at Peace Square. Bacillus cereus was the most prevalent species, showing high concentrations at all sampling sites. Other species, like Leifsonia aquatica and Staphylococcus lentus, were linked to wastewater effluents and agricultural activities. Despite the overall decrease in bacterial aerosols, antibiotic-resistant bacteria remained high, particularly in highly impacted urban areas like the Barranquilla Riverwalk. Bacillus cereus exhibited resistance to multiple antibiotics, including commonly used ones like Ampicillin and Penicillin G. Resistance to newer antibiotics like Vancomycin was rare. Peace Square, a high-traffic urban area, showed elevated resistance rates in the deeper respiratory regions compared to other locations. Our findings indicate that while overall concentration levels decreased, the threat of antibiotic resistance in bacterial bioaerosols persists, emphasizing the need for continuous monitoring and targeted public health interventions in urban areas.
Collapse
Affiliation(s)
- Wendy B Morgado-Gamero
- Department of Exact and Natural Sciences, Universidad de la Costa, Colombia; Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Laura Hernandez
- Department of Exact and Natural Sciences, Universidad de la Costa, Colombia; Faculty of Basic Sciences, Universidad del Atlantico, Puerto Colombia, Colombia
| | - Jhorma Medina
- Department of Civil and Environmental, Universidad de la Costa, Barranquilla, Colombia
| | - Iuleder De Moya
- Department of Civil and Environmental, Universidad de la Costa, Barranquilla, Colombia
| | | | - Alexander Parody
- Engineering Faculty, Universidad Libre Barranquilla, Barranquilla, Colombia
| | - Dayana Agudelo-Castañeda
- Department of Civil and Environmental Engineering, Universidad del Norte, Barranquilla, Colombia.
| |
Collapse
|
2
|
Sheikh M, Gholipour S, Ghodsi S, Nikaeen M. Co-selection of antibiotic and disinfectant resistance in environmental bacteria: Health implications and mitigation strategies. ENVIRONMENTAL RESEARCH 2024:120708. [PMID: 39732420 DOI: 10.1016/j.envres.2024.120708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND The rapid emergence of co-selection between antimicrobials, including antibiotics and disinfectants, presents a significant challenge to healthcare systems. This phenomenon exacerbates contamination risks and limits the effectiveness of strategies to combat antibiotic resistance in clinical settings. This study aimed to investigate the prevalence and characteristics of bacteria in hospital environments that exhibit co-selection mechanisms and their potential implications for patient health, framed within the One Health perspective. METHODS Air and surface samples were collected from seven large hospitals and analyzed to detect antibiotic-resistant bacteria (ARB). The resistance profiles of isolated ARB to various disinfectants were determined. Bacterial species were identified using 16S rRNA gene sequencing, and the presence of antibiotic resistance genes (ARGs) and class 1 integrons (intI1) was investigated. RESULTS A high percentage (85%) of samples contained ARB, with β-lactam resistance being the most frequently observed. Alarmingly, 94% of isolated ARB exhibited resistance to at least one disinfectant, and 91% demonstrated resistance to three or more disinfectants. Staphylococcus and Bacillus emerged as the dominant genera displaying co-selection. The presence of ARGs, including mecA (associated with methicillin resistance) and qacB (associated with disinfectant resistance), along with intI1, provided further evidence supporting co-selection mechanisms. CONCLUSION These findings underscore the critical need for robust antimicrobial resistance surveillance and the prudent use of disinfectants in healthcare settings. Further research into co-selection mechanisms is essential to inform the development of effective infection control strategies and minimize the spread of resistant bacteria.
Collapse
Affiliation(s)
- Mina Sheikh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soudabeh Ghodsi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Shin S, Yoon WS, Lee HS, Jo JH, Byeon SH. Airborne concentrations of bacteria and mold in Korean public-use facilities: measurement, systematic review, meta-analysis, and probabilistic human inhalation risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54854-54872. [PMID: 39215918 DOI: 10.1007/s11356-024-34749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Bioaerosols adversely affect human health posing risk to users of public facilities in Korea. Between October 2021 and May 2022, airborne bacteria and mold were measured in 1,243 public-use facilities across 23 categories. A systematic review and meta-analysis were performed on these and other studies from June 2004 to May 2021, and the non-carcinogenic risks to humans were assessed using Monte Carlo simulations. For bacteria, the maximum 95th percentile concentration was 584.4 cfu/m3 and 1384.8 cfu/m3 for mold. The heterogeneity statistic I2 was over 50% in all facilities, and for subway station bacteria, there was a significant difference according to the measurement method. The 95th percentile of hazard by population group was 8.83 × 10-2 to 3.42 × 10-1 for bacteria, and 1.31 × 10-1 to 3.55 × 10-1 for mold. The probability of a hazard quotient exceeding 1 for some population groups was derived from exposure to bacteria and mold in the air resulting from the use of all public facilities. The most powerful explanatory factor for risk was exposure time to the facility, both within (up to 0.922 for bacteria and up to 0.960 for mold) and between populations (up to 0.543 for bacteria and 0.483 for mold). This study identified populations at risk of bioaerosol exposure in Korean public-use facilities and estimated the influencing factors, highlighting the need for comprehensive improvement in bioaerosol control in public-use facilities.
Collapse
Affiliation(s)
- Saemi Shin
- Research Institute of Health Sciences, Korea University, Seoul, Korea
| | - Won Suck Yoon
- Allergy and Immunology Center, Korea University, Seoul, Korea
| | - Hyo Seon Lee
- Allergy and Immunology Center, Korea University, Seoul, Korea
| | - Jeong Heum Jo
- National Institute of Environmental Research, Incheon, Korea
| | - Sang-Hoon Byeon
- School of Health and Environmental Science, Korea University, Seoul, Korea.
| |
Collapse
|
4
|
Gunawardana W, Kalupahana RS, Kottawatta SA, Gamage A, Merah O. A Review of the Dissemination of Antibiotic Resistance through Wastewater Treatment Plants: Current Situation in Sri Lanka and Future Perspectives. Life (Basel) 2024; 14:1065. [PMID: 39337850 PMCID: PMC11433486 DOI: 10.3390/life14091065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of antibiotic resistance (AR) poses a significant threat to both public health and aquatic ecosystems. Wastewater treatment plants (WWTPs) have been identified as potential hotspots for disseminating AR in the environment. However, only a limited number of studies have been conducted on AR dissemination through WWTPs in Sri Lanka. To address this knowledge gap in AR dissemination through WWTP operations in Sri Lanka, we critically examined the global situation of WWTPs as hotspots for transmitting antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) by evaluating more than a hundred peer-reviewed international publications and available national publications. Our findings discuss the current state of operating WWTPs in the country and highlight the research needed in controlling AR dissemination. The results revealed that the impact of different wastewater types, such as clinical, veterinary, domestic, and industrial, on the dissemination of AR has not been extensively studied in Sri Lanka; furthermore, the effectiveness of various wastewater treatment techniques in removing ARGs requires further investigation to improve the technologies. Furthermore, existing studies have not explored deeply enough the potential public health and ecological risks posed by AR dissemination through WWTPs.
Collapse
Affiliation(s)
- Wasana Gunawardana
- China Sri Lanka Joint Research and Demonstration Centre for Water Technology (JRDC), E.O.E Pereira Mawatha, Meewathura Road, Peradeniya 20400, Sri Lanka;
| | - Ruwani S. Kalupahana
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka; (R.S.K.); (S.A.K.)
| | - Sanda A. Kottawatta
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka; (R.S.K.); (S.A.K.)
| | - Ashoka Gamage
- China Sri Lanka Joint Research and Demonstration Centre for Water Technology (JRDC), E.O.E Pereira Mawatha, Meewathura Road, Peradeniya 20400, Sri Lanka;
- Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle, LCA, Institut National de la Recherche Agronomique et Environnement, Université de Toulouse, 31030 Toulouse, France
- Département Génie Biologique, Institut Universitaire de Technologie Paul Sabatier, Université Paul Sabatier, 32000 Auch, France
| |
Collapse
|
5
|
Alkorta I, Garbisu C. Expanding the focus of the One Health concept: links between the Earth-system processes of the planetary boundaries framework and antibiotic resistance. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2024-0013. [PMID: 38815132 DOI: 10.1515/reveh-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 06/01/2024]
Abstract
The scientific community warns that our impact on planet Earth is so acute that we are crossing several of the planetary boundaries that demarcate the safe operating space for humankind. Besides, there is mounting evidence of serious effects on people's health derived from the ongoing environmental degradation. Regarding human health, the spread of antibiotic resistant bacteria is one of the most critical public health issues worldwide. Relevantly, antibiotic resistance has been claimed to be the quintessential One Health issue. The One Health concept links human, animal, and environmental health, but it is frequently only focused on the risk of zoonotic pathogens to public health or, to a lesser extent, the impact of contaminants on human health, i.e., adverse effects on human health coming from the other two One Health "compartments". It is recurrently claimed that antibiotic resistance must be approached from a One Health perspective, but such statement often only refers to the connection between the use of antibiotics in veterinary practice and the antibiotic resistance crisis, or the impact of contaminants (antibiotics, heavy metals, disinfectants, etc.) on antibiotic resistance. Nonetheless, the nine Earth-system processes considered in the planetary boundaries framework can be directly or indirectly linked to antibiotic resistance. Here, some of the main links between those processes and the dissemination of antibiotic resistance are described. The ultimate goal is to expand the focus of the One Health concept by pointing out the links between critical Earth-system processes and the One Health quintessential issue, i.e., antibiotic resistance.
Collapse
Affiliation(s)
- Itziar Alkorta
- Department of Biochemistry and Molecular Biology, 16402 University of the Basque Country (UPV/EHU) , Bilbao, Spain
| | - Carlos Garbisu
- NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
6
|
Bezlepkina NP, Bocharnikova EN, Tchaikovskaya ON, Mayer GV, Solomonov VI, Makarova AS, Spirina AV, Chaikovsky SA. The Conversion and Degradation of Sulphaguanidine under UV and Electron Beam Irradiation Using Fluorescence. J Fluoresc 2024:10.1007/s10895-024-03640-w. [PMID: 38460095 DOI: 10.1007/s10895-024-03640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
The work presents a spectral-luminescent study of the sulfaguanidine transformation in water under a pulsed e-beam and UV irradiation of an UVb-04 bactericidal mercury lamp (from 180 to 275 nm), KrCl (222 nm), XeBr (282 nm) and XeCl (308 nm) excilamps. Fluorescent decay curves have been used in our analysis of the sulfaguanidine decomposition. The conversion of antibiotic under e-beam irradiation for up to 1 min was more than 80%, compared with UV radiation: UVb-04-26%, XeBr - 20%. KrCl and XeCl - about 10%. At the end of 64 min of irradiation with UVb-04 and XeBr lamps, the conversion was 99%. During irradiation with these lamps, sulfaguanidine almost completely decomposed and passed into the final fluorescent photoproducts. After e-beam irradiated at the end of 13 min the decrease in sulfaguanidine was 93%. At the same time, the formation of sulfaguanidine transformation products was minimal compared to UV irradiation. The effect of UV irradiation and a powerful e-beam on the decomposition mechanisms of sulfaguanidine are significantly different, which is manifested in various changes in the absorption and fluorescence spectra.
Collapse
Affiliation(s)
- Nadezhda P Bezlepkina
- Departament of Physics, National Research Tomsk State University, Tomsk, 634050, Russia
| | - Elena N Bocharnikova
- Departament of Physics, National Research Tomsk State University, Tomsk, 634050, Russia
| | - Olga N Tchaikovskaya
- Departament of Physics, National Research Tomsk State University, Tomsk, 634050, Russia.
- The FSBIS Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620016, Russia.
| | - Georgy V Mayer
- Departament of Physics, National Research Tomsk State University, Tomsk, 634050, Russia
| | - Vladimir I Solomonov
- The FSBIS Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620016, Russia
| | - Anna S Makarova
- The FSBIS Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620016, Russia
| | - Alya V Spirina
- The FSBIS Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620016, Russia
| | - Stanislav A Chaikovsky
- The FSBIS Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620016, Russia
- The Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, 19991, Russia
| |
Collapse
|
7
|
Nguyen HTT, Le GTH, Park SG, Jadhav DA, Le TTQ, Kim H, Vinayak V, Lee G, Yoo K, Song YC, Chae KJ. Optimizing electrochemically active microorganisms as a key player in the bioelectrochemical system: Identification methods and pathways to large-scale implementation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169766. [PMID: 38181955 DOI: 10.1016/j.scitotenv.2023.169766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
The rapid global economic growth driven by industrialization and population expansion has resulted in significant issues, including reliance on fossil fuels, energy scarcity, water crises, and environmental emissions. To address these issues, bioelectrochemical systems (BES) have emerged as a dual-purpose solution, harnessing electrochemical processes and the capabilities of electrochemically active microorganisms (EAM) to simultaneously recover energy and treat wastewater. This review examines critical performance factors in BES, including inoculum selection, pretreatment methods, electrodes, and operational conditions. Further, authors explore innovative approaches to suppress methanogens and simultaneously enhance the EAM in mixed cultures. Additionally, advanced techniques for detecting EAM are discussed. The rapid detection of EAM facilitates the selection of suitable inoculum sources and optimization of enrichment strategies in BESs. This optimization is essential for facilitating the successful scaling up of BES applications, contributing substantially to the realization of clean energy and sustainable wastewater treatment. This analysis introduces a novel viewpoint by amalgamating contemporary research on the selective enrichment of EAM in mixed cultures. It encompasses identification and detection techniques, along with methodologies tailored for the selective enrichment of EAM, geared explicitly toward upscaling applications in BES.
Collapse
Affiliation(s)
- Ha T T Nguyen
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School (OST), Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Giang T H Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Sung-Gwan Park
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Dipak A Jadhav
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Trang T Q Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Hyunsu Kim
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Hari Singh Gour Central University, Sagar, MP 470003, India
| | - Gihan Lee
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Keunje Yoo
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Young-Chae Song
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
8
|
Xu W, Pan Z, Wu Y, An XL, Wang W, Adamovich B, Zhu YG, Su JQ, Huang Q. A database on the abundance of environmental antibiotic resistance genes. Sci Data 2024; 11:250. [PMID: 38413616 PMCID: PMC10899624 DOI: 10.1038/s41597-024-03084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a severe threat to global health. The wide distribution of environmental antibiotic resistance genes (ARGs), which can be transferred between microbiota, especially clinical pathogens and human commensals, contributed significantly to AMR. However, few databases on the spatiotemporal distribution, abundance, and health risk of ARGs from multiple environments have been developed, especially on the absolute level. In this study, we compiled the ARG occurrence data generated by a high-throughput quantitative PCR platform from 1,403 samples in 653 sampling sites across 18 provinces in China. The database possessed 291,870 records from five types of habitats on the abundance of 290 ARGs, as well as 8,057 records on the abundance of 30 mobile genetic elements (MGEs) from 2013 to 2020. These ARGs conferred resistance to major common types of antibiotics (a total of 15 types) and represented five major resistance mechanisms, as well as four risk ranks. The database can provide information for studies on the dynamics of ARGs and is useful for the health risk assessment of AMR.
Collapse
Affiliation(s)
- Wenjuan Xu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhizhen Pan
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yangyu Wu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xin-Li An
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Weiyi Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Boris Adamovich
- Research Laboratory of Aquatic Ecology, Belarusian State University, Minsk, 220030, Belarus
| | - Yong-Guan Zhu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jian-Qiang Su
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- National Basic Science Data Center, Beijing, 100190, China.
| |
Collapse
|
9
|
Li X, Tang X, Chen M, Wang S, Tong C, Xu J, Xie G, Ma B, Zou Y, Wang Y, Wen X, Wu Y. Intramuscular therapeutic doses of enrofloxacin affect microbial community structure but not the relative abundance of fluoroquinolones resistance genes in swine manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169794. [PMID: 38181963 DOI: 10.1016/j.scitotenv.2023.169794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Livestock manure is a major source of veterinary antibiotics and antibiotic resistance genes (ARGs). Elucidation of the residual characteristics of ARGs in livestock manure following the administration of veterinary antibiotics is critical to assess their ecotoxicological effects and environmental contamination risks. Here, we investigated the effects of enrofloxacin (ENR), a fluoroquinolone antibiotic commonly used as a therapeutic drug in animal husbandry, on the characteristics of ARGs, mobile genetic elements, and microbial community structure in swine manure following its intramuscular administration for 3 days and a withdrawal period of 10 days. The results revealed the highest concentrations of ENR and ciprofloxacin (CIP) in swine manure at the end of the administration period, ENR concentrations in swine manure in groups L and H were 88.67 ± 45.46 and 219.75 ± 88.05 mg/kg DM, respectively. Approximately 15 fluoroquinolone resistance genes (FRGs) and 48 fluoroquinolone-related multidrug resistance genes (F-MRGs) were detected in swine manure; the relative abundance of the F-MRGs was considerably higher than that of the FRGs. On day 3, the relative abundance of qacA was significantly higher in group H than in group CK, and no significant differences in the relative abundance of other FRGs, F-MRGs, or MGEs were observed between the three groups on day 3 and day 13. The microbial community structure in swine manure was significantly altered on day 3, and the altered community structure was restored on day 13. The FRGs and F-MRGs with the highest relative abundance were qacA and adeF, respectively, and Clostridium and Lactobacillus were the dominant bacterial genera carrying these genes in swine manure. In summary, a single treatment of intramuscular ENR transiently increased antibiotic concentrations and altered the microbial community structure in swine manure; however, this treatment did not significantly affect the abundance of FRGs and F-MRGs.
Collapse
Affiliation(s)
- Xianghui Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyue Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Majan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shaoyu Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chang Tong
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaojiao Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Gaomiao Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Wang J, Yu Y, Raheem A, Guo Y, Ma Q, Lu D. The distribution characteristics of aerosol bacteria in different types of sheepfolds. Front Vet Sci 2024; 11:1348850. [PMID: 38420208 PMCID: PMC10900508 DOI: 10.3389/fvets.2024.1348850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
With the development of modern sheep raising technology, the increasing density of animals in sheep house leads to the accumulation of microbial aerosols in sheep house. It is an important prerequisite to grasp the characteristics of bacteria in aerosols in sheep house to solve the problems of air pollution and disease prevention and control in sheep house. In this study, the microorganisms present in the air of sheep houses were investigated to gain insights into the structure of bacterial communities and the prevalence of pathogenic bacteria. Samples from six sheep pens in each of three sheep farms, totaling 18, were collected in August 2022 from Ningxia province, China. A high-volume air sampler was utilized for aerosol collection within the sheep housing followed by DNA extraction for 16S rRNA sequencing. Employing high-throughput 16S rRNA sequencing technology, we conducted an in-depth analysis of microbial populations in various sheep pen air samples, enabling us to assess the community composition and diversity. The results revealed a total of 11,207 operational taxonomic units (OTUs) within the bacterial population across the air samples, encompassing 152 phyla, 298 classes, 517 orders, 853 families, 910 genera, and 482 species. Alpha diversity and beta diversity analysis indicated that differences in species diversity, evenness and coverage between different samples. At the bacterial phylum level, the dominant bacterial groups are Firmicutes, Proteobacteria, and Actinobacteria, among which Firmicutes (97.90-98.43%) is the highest. At the bacterial genus level, bacillus, Bacteroides, Fusobacterium, etc. had higher abundance, with Bacillus (85.47-89.87%) being the highest. Through an in-depth analysis of microbial diversity and a meticulous examination of pathogenic bacteria with high abundance in diverse sheep house air samples, the study provided valuable insights into the microbial diversity, abundance, and distinctive features of prevalent pathogenic bacteria in sheep house air. These findings serve as a foundation for guiding effective disease prevention and control strategies within sheep farming environments.
Collapse
Affiliation(s)
- Jiandong Wang
- Institute of Animal Science, NingXia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Youli Yu
- Institute of Animal Science, NingXia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Abdul Raheem
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yanan Guo
- Institute of Animal Science, NingXia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Qing Ma
- Institute of Animal Science, NingXia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Saibu S, Uhanie Perera I, Suzuki S, Rodó X, Fujiyoshi S, Maruyama F. Resistomes in freshwater bioaerosols and their impact on drinking and recreational water safety: A perspective. ENVIRONMENT INTERNATIONAL 2024; 183:108377. [PMID: 38103344 DOI: 10.1016/j.envint.2023.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Antibiotic resistance genes (ARGs) are widespread environmental pollutants of biological origin that pose a significant threat to human, animal, and plant health, as well as to ecosystems. ARGs are found in soil, water, air, and waste, and several pathways for global dissemination in the environment have been described. However, studies on airborne ARG transport through atmospheric particles are limited. The ARGs in microorganisms inhabiting an environment are referred to as the "resistome". A global search was conducted of air-resistome studies by retrieving bioaerosol ARG-related papers published in the last 30 years from PubMed. We found that there is no dedicated methodology for isolating ARGs in bioaerosols; instead, conventional methods for microbial culture and metagenomic analysis are used in combination with standard aerosol sampling techniques. There is a dearth of information on the bioaerosol resistomes of freshwater environments and their impact on freshwater sources used for drinking and recreational activities. More studies of aerobiome freshwater environments are needed to ensure the safe use of water and sanitation. In this review we outline and synthesize the few studies that address the freshwater air microbiome (from tap water, bathroom showers, rivers, lakes, and swimming pools) and their resistomes, as well as the likely impacts on drinking and recreational waters. We also discuss current knowledge gaps for the freshwater airborne resistome. This review will stimulate new investigations of the atmospheric microbiome, particularly in areas where both air and water quality are of public health concern.
Collapse
Affiliation(s)
- Salametu Saibu
- Department of Microbiology, Lagos State University of Ojo, Lagos, Nigeria
| | - Ishara Uhanie Perera
- Section of Microbial Genomics and Ecology, Planetary Health and Innovation Science Center (PHIS), The IDEC Institute, Hiroshima University, Japan
| | - Satoru Suzuki
- Graduate School of Science and Engineering, Center for Marine Environmental Studies, Ehime University, Japan
| | - Xavier Rodó
- ICREA and CLIMA Program, Barcelona Institute for Global Health (-ISGlobal), Barcelona, Spain
| | - So Fujiyoshi
- Section of Microbial Genomics and Ecology, Planetary Health and Innovation Science Center (PHIS), The IDEC Institute, Hiroshima University, Japan
| | - Fumito Maruyama
- Section of Microbial Genomics and Ecology, Planetary Health and Innovation Science Center (PHIS), The IDEC Institute, Hiroshima University, Japan.
| |
Collapse
|
12
|
Chawla H, Anand P, Garg K, Bhagat N, Varmani SG, Bansal T, McBain AJ, Marwah RG. A comprehensive review of microbial contamination in the indoor environment: sources, sampling, health risks, and mitigation strategies. Front Public Health 2023; 11:1285393. [PMID: 38074709 PMCID: PMC10701447 DOI: 10.3389/fpubh.2023.1285393] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
The quality of the indoor environment significantly impacts human health and productivity, especially given the amount of time individuals spend indoors globally. While chemical pollutants have been a focus of indoor air quality research, microbial contaminants also have a significant bearing on indoor air quality. This review provides a comprehensive overview of microbial contamination in built environments, covering sources, sampling strategies, and analysis methods. Microbial contamination has various origins, including human occupants, pets, and the outdoor environment. Sampling strategies for indoor microbial contamination include air, surface, and dust sampling, and various analysis methods are used to assess microbial diversity and complexity in indoor environments. The review also discusses the health risks associated with microbial contaminants, including bacteria, fungi, and viruses, and their products in indoor air, highlighting the need for evidence-based studies that can relate to specific health conditions. The importance of indoor air quality is emphasized from the perspective of the COVID-19 pandemic. A section of the review highlights the knowledge gap related to microbiological burden in indoor environments in developing countries, using India as a representative example. Finally, potential mitigation strategies to improve microbiological indoor air quality are briefly reviewed.
Collapse
Affiliation(s)
- Hitikk Chawla
- Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Purnima Anand
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Kritika Garg
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Neeru Bhagat
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Shivani G. Varmani
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Tanu Bansal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Andrew J. McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Ruchi Gulati Marwah
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| |
Collapse
|
13
|
Lu S, Li F, Liu B, Yang K, Tian F, Cheng Z, Ding S, Hou K. Monodisperse Fluorescent Polystyrene Microspheres for Staphylococcus aureus Aerosol Simulation. Polymers (Basel) 2023; 15:3614. [PMID: 37688240 PMCID: PMC10490235 DOI: 10.3390/polym15173614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Staphylococcus aureus (SA) is one of the most common causes of hospital-acquired infections and foodborne illnesses and is commonly found in nature in air, dust, and water. The spread and transmission of SA aerosols in the air has the potential to cause epidemic transmission among humans and between humans and animals. To effectively provide the timely warning of SA aerosols in the atmosphere, the identification and detection of SA aerosol concentrations are required. Due to their homogeneous physicochemical properties, highly monodisperse submicron polystyrene (PS) microspheres can be used as one of the simulants of SA aerosols. In this study, 800 nm monodisperse fluorescent PS (f-PS) microspheres with fluorescence spectra and particle size distribution similar to those of SA were prepared. The 800 nm monodisperse f-PS microspheres had a fluorescence characteristic peak at 465 nm; in aerosols, 800 nm monodisperse f-PS microspheres with a similar particle size distribution to that of SA were further verified, mainly in the range of 500 nm-1000 nm; finally, it was found that the f-PS microspheres still possessed similar fluorescence characteristics after 180 days. The f-PS microspheres prepared in this study are very close to SA in terms of particle size and fluorescence properties, providing a new idea for aerosol analogs of SA.
Collapse
Affiliation(s)
- Siyu Lu
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| | - Fan Li
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| | - Bo Liu
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| | - Kun Yang
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| | - Feng Tian
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| | - Zhi Cheng
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
- National Bio-Protection Engineering Center, Tianjin 300161, China
| | - Sheng Ding
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| | - Kexin Hou
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| |
Collapse
|
14
|
Mtetwa HN, Amoah ID, Kumari S, Bux F, Reddy P. Surveillance of multidrug-resistant tuberculosis in sub-Saharan Africa through wastewater-based epidemiology. Heliyon 2023; 9:e18302. [PMID: 37576289 PMCID: PMC10412881 DOI: 10.1016/j.heliyon.2023.e18302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
The spread of multidrug-resistant tuberculosis (MDR-TB) is a serious public health issue, particularly in developing nations. The current methods of monitoring drug-resistant TB (DR-TB) using clinical diagnoses and hospital records are insufficient due to limited healthcare access and underreporting. This study proposes using Wastewater-Based Epidemiology (WBE) to monitor DR-TB in six African countries (Ghana, Nigeria, Kenya, Uganda, Cameroon, and South Africa) and examines the impact of treated wastewater on the spread of TB drug-resistant genes in the environment. Using droplet-digital polymerase chain reaction (ddPCR), the study evaluated untreated and treated wastewater samples in selected African countries for TB surveillance. There was a statistically significant difference in concentrations of genes conferring resistance to TB drugs in wastewater samples from the selected countries (p-value<0.05); South African samples exhibited the highest concentrations of 4.3(±2,77), 4.8(±2.96), 4.4(±3,10) and 4.7(±3,39) log copies/ml for genes conferring resistance to first-line TB drugs (katG, rpoB, embB and pncA respectively) in untreated wastewater. This may be attributed to the higher prevalence of TB/MDR-TB in SA compared to other African countries. Interestingly, genes conferring resistance to second-line TB drugs such as delamanid (ddn gene) and bedaquiline (atpE gene) were detected in relatively high concentrations (4.8(±3,67 and 3.2(±2,31 log copies/ml for ddn and atpE respectively) in countries, such as Cameroon, where these drugs are not part of the MDR-TB treatment regimens, perhaps due to migration or the unapproved use of these drugs in the country. The gene encoding resistance to streptomycin (rrs gene) was abundant in all countries, perhaps due to the common use of this antibiotic for infections other than TB. These results highlight the need for additional surveillance and monitoring, such as WBE, to gather data at a community level. Combining WBE with the One Health strategy and current TB surveillance systems can help prevent the spread of DR-TB in populations.
Collapse
Affiliation(s)
- Hlengiwe N. Mtetwa
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Isaac D. Amoah
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
- Department of Environmental Science, The University of Arizona, Shantz Building Rm 4291177 E 4th St.Tucson, AZ 85721, USA
| | - Sheena Kumari
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Poovendhree Reddy
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| |
Collapse
|
15
|
Habibi N, Uddin S, Behbehani M, Kishk M, Abdul Razzack N, Zakir F, Shajan A. Antibiotic Resistance Genes in Aerosols: Baseline from Kuwait. Int J Mol Sci 2023; 24:ijms24076756. [PMID: 37047728 PMCID: PMC10095457 DOI: 10.3390/ijms24076756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the biggest threats to human health worldwide. The World Health Organization (WHO, Geneva, Switzerland) has launched the "One-Health" approach, which encourages assessment of antibiotic-resistant genes (ARGs) within environments shared by human-animals-plants-microbes to constrain and alleviate the development of AMR. Aerosols as a medium to disseminate ARGs, have received minimal attention. In the present study, we investigated the distribution and abundance of ARGs in indoor and outdoor aerosols collected from an urban location in Kuwait and the interior of three hospitals. The high throughput quantitative polymerase chain reaction (HT-qPCR) approach was used for this purpose. The results demonstrate the presence of aminoglycoside, beta-lactam, fluoroquinolone, tetracycline, macrolide-lincosamide-streptogramin B (MLSB), multidrug-resistant (MDR) and vancomycin-resistant genes in the aerosols. The most dominant drug class was beta-lactam and the genes were IMP-2-group (0.85), Per-2 group (0.65), OXA-54 (0.57), QnrS (0.50) and OXA-55 (0.55) in the urban non-clinical settings. The indoor aerosols possessed a richer diversity (Observed, Chao1, Shannon's and Pielou's evenness) of ARGs compared to the outdoors. Seasonal variations (autumn vs. winter) in relative abundances and types of ARGs were also recorded (R2 of 0.132 at p < 0.08). The presence of ARGs was found in both the inhalable (2.1 µm, 1.1 µm, 0.7 µm and < 0.3 µm) and respirable (>9.0 µm, 5.8 µm, 4.7 µm and 3.3 µm) size fractions within hospital aerosols. All the ARGs are of pathogenic bacterial origin and are hosted by pathogenic forms. The findings present baseline data and underpin the need for detailed investigations looking at aerosol as a vehicle for ARG dissemination among human and non-human terrestrial biota.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Saif Uddin
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Montaha Behbehani
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Mohamed Kishk
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Nasreem Abdul Razzack
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Farhana Zakir
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Anisha Shajan
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| |
Collapse
|
16
|
Despotovic M, de Nies L, Busi SB, Wilmes P. Reservoirs of antimicrobial resistance in the context of One Health. Curr Opin Microbiol 2023; 73:102291. [PMID: 36913905 DOI: 10.1016/j.mib.2023.102291] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 03/15/2023]
Abstract
The emergence and spread of antimicrobial resistance (AMR) and resistant bacteria, are a global public health challenge. Through horizontal gene transfer, potential pathogens can acquire antimicrobial resistance genes (ARGs) that can subsequently be spread between human, animal, and environmental reservoirs. To understand the dissemination of ARGs and linked microbial taxa, it is necessary to map the resistome within different microbial reservoirs. By integrating knowledge on ARGs in the different reservoirs, the One Health approach is crucial to our understanding of the complex mechanisms and epidemiology of AMR. Here, we highlight the latest insights into the emergence and spread of AMR from the One Health perspective, providing a baseline of understanding for future scientific investigations into this constantly growing global health threat.
Collapse
Affiliation(s)
- Milena Despotovic
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, 7 Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Laura de Nies
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, 7 Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Susheel Bhanu Busi
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, 7 Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 6, avenue du Swing, Belvaux, L-4367, Luxembourg.
| |
Collapse
|
17
|
Hu J, Li Z, Li L, Sun Y, Shi L, Li W, Zhang J, Wu Y, Xu H, Wang M. Detection of multidrug resistant pathogenic bacteria and novel complex class 1 integrons in campus atmospheric particulate matters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158976. [PMID: 36155039 DOI: 10.1016/j.scitotenv.2022.158976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Recent advances provided overwhelming evidence that atmospheric particulate matters carry a substantial amount of antibiotic resistance genes (ARGs). It has also been documented that polluted air facilitates transmission of bacterial pathogenesis and antimicrobial resistance (AMR). These investigations generally used culture-independent approaches which reveal sophisticated microbiomic and resistomic compositions in particulate matters, while culture-dependent methods directly demonstrating presence of live, functional bacteria has not been fully applied. In recent years, efforts undertaken worldwide managed to reduce air particulate matter pollution, leading to cleaner air in many parts of world, including China. Whether atmospheric particulate matters may still function as vehicles for pathogenic bacteria and AMR in improving air conditions is turning into an interesting question to address. In attempt to answer this question, a culture-dependent approach is used to find out the putative role of atmospheric particulate matters in relatively 'clean' air to transmit pathogenic bacteria and AMR in this work. By harvesting particulate matters in an unindustrialized and less-polluted university campus, culturing and identifying bacteria in particulate matters, and characterizing pathogenesis and AMR properties of these bacteria, interesting findings were made that even in relatively 'clean' air, antibiotic-resistant pathogenic bacteria are prevalent; and that mobile genetic elements including integrons are widespread. In particular, in air samples collected, multidrug-resistant hemolytic Bacillus strains that may pose significant health threat could be identified. Complex class 1 integrons, two of which carry novel antibiotic resistant gene cassette arrays, were also found for the first time in airborne bacteria, suggesting the danger of horizontal transfer of AMR in air. In conclusion, using culture-dependent methods, this work shows that atmospheric particulate matters are viable vehicles for the transmission of bacterial pathogenesis and AMR, and that even in relatively 'clean' air, the threat of airborne antibiotic-resistant pathogens is significant.
Collapse
Affiliation(s)
- Jiamin Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Ziyun Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yuqing Sun
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Lulu Shi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Weiwei Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jian Zhang
- School of Life Sciences, Shandong University, Qingdao, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China.
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China.
| |
Collapse
|
18
|
Zhou XY, Li H, Zhou SYD, Zhang YS, Su JQ. City-scale distribution of airborne antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159176. [PMID: 36191698 DOI: 10.1016/j.scitotenv.2022.159176] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Concerns around urban air quality have been increasing worldwide due to large-scale urbanization. A large volume of work has been focused on the chemical pollutants in the air and their impacts on human health. However, the profile of airborne microbial contaminants, especially antibiotic resistance genes (ARGs), is largely understudied. Here, high-throughput quantitative PCR (HT-qPCR) was employed to explore the temporal and spatial distribution of airborne ARGs from 11 sites with various functional zones and different urbanization levels within Xiamen, China. A total of 104 unique ARGs and 23 mobile genetic elements (MGEs) were detected across all samples. Temporal shift was observed in the distribution of ARG profiles, with significantly higher relative abundance of ARGs detected in summer than that in spring. Temperature is the key predictor of the total relative abundance of ARGs and MGEs in summer, while PM2.5 and PM10 were the two most important factors affecting the abundance in spring. Our findings suggest that urban aerosols accommodate rich and dynamic ARGs and MGEs, and emphasize the role of temperature, air quality and anthropogenic activities in shaping the profile of ARGs.
Collapse
Affiliation(s)
- Xin-Yuan Zhou
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Yu-Sen Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
19
|
Lou C, Bai Y, Chai T, Yu H, Lin T, Hu G, Guan Y, Wu B. Research progress on distribution and exposure risk of microbial aerosols in animal houses. Front Vet Sci 2022; 9:1015238. [PMID: 36439349 PMCID: PMC9684608 DOI: 10.3389/fvets.2022.1015238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Environmental aerosols in animal houses are closely related to the productive performance and health level of animals living in the houses. Preferable housing environments can improve animal welfare and production efficiency, so it is necessary to monitor and study these environments. In recent years, there have been many large-scale outbreaks of respiratory diseases related to biological aerosols, especially the novel coronavirus that has been sweeping the world. This has attracted much attention to the mode of aerosol transmission. With the rapid development of large-scale and intensive breeding, microbial aerosols have gradually become the main factor of environmental pollution in animal houses. They not only lead to a large-scale outbreak of infectious diseases, but they also have a certain impact on the health of animals and employees in the houses and increase the difficulty of prevention and control of animal-borne diseases. This paper reviews the distribution, harm, and control measures of microbial aerosols in animal house environments in order to improve people's understanding of them.
Collapse
Affiliation(s)
- Cheng Lou
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Tongjie Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province, Tai'an, China
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Tai'an, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Tuorong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Guangming Hu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuling Guan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
- *Correspondence: Bo Wu
| |
Collapse
|
20
|
Waśko I, Kozińska A, Kotlarska E, Baraniak A. Clinically Relevant β-Lactam Resistance Genes in Wastewater Treatment Plants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113829. [PMID: 36360709 PMCID: PMC9657204 DOI: 10.3390/ijerph192113829] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 05/17/2023]
Abstract
Antimicrobial resistance (AMR) is one of the largest global concerns due to its influence in multiple areas, which is consistent with One Health's concept of close interconnections between people, animals, plants, and their shared environments. Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) circulate constantly in various niches, sediments, water sources, soil, and wastes of the animal and plant sectors, and is linked to human activities. Sewage of different origins gets to the wastewater treatment plants (WWTPs), where ARB and ARG removal efficiency is still insufficient, leading to their transmission to discharge points and further dissemination. Thus, WWTPs are believed to be reservoirs of ARGs and the source of spreading AMR. According to a World Health Organization report, the most critical pathogens for public health include Gram-negative bacteria resistant to third-generation cephalosporins and carbapenems (last-choice drugs), which represent β-lactams, the most widely used antibiotics. Therefore, this paper aimed to present the available research data for ARGs in WWTPs that confer resistance to β-lactam antibiotics, with a particular emphasis on clinically important life-threatening mechanisms of resistance, including extended-spectrum β-lactamases (ESBLs) and carbapenemases (KPC, NDM).
Collapse
Affiliation(s)
- Izabela Waśko
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
- Correspondence: ; Tel.: +48-228-410-623
| | - Aleksandra Kozińska
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
| | - Ewa Kotlarska
- Genetics and Marine Biotechnology Department, Institute of Oceanology of the Polish Academy of Sciences, Powstancow Warszawy 55, 81-712 Sopot, Poland
| | - Anna Baraniak
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
| |
Collapse
|