1
|
Norouzi M, Elhamifar D, Kargar S. Magnetic yolk-shell structured periodic mesoporous organosilica supported palladium as a powerful and highly recoverable nanocatalyst for the reduction of nitrobenzenes. Sci Rep 2024; 14:16262. [PMID: 39009610 PMCID: PMC11251011 DOI: 10.1038/s41598-024-66883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
A novel palladium-loaded yolk-shell structured nanomaterial with magnetite core and phenylene-based periodic mesoporous organosilica (PMO) shell (Fe3O4@YS-Ph-PMO/Pd) nanocatalyst was synthesized for the reduction of nitrobenzenes. The Fe3O4@YS-Ph-PMO/Pd was prepared through cetyltrimethylammonium bromide (CTAB) directed condensation of 1,4-bis(triethoxysilyl)benzene (BTEB) around Fe3O4@silica nanoparticles followed by treatment with palladium acetate. This nanocatalyst was characterized by using Fourier transform infrared (FT-IR) spectroscopy, thermal gravimetric analysis (TGA), low-angle and wide-angle powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) analyses. These analyses showed a magnetic nanomaterial with high chemical and thermal stability for the designed composite. The Fe3O4@YS-Ph-PMO/Pd nanocomposite was employed as a powerful and highly recoverable catalyst in the green reduction of nitroarenes in H2O at room temperature. A variety of nitroarene derivatives were applied as substrate in the presence of 0.9 mol% of Fe3O4@YS-Ph-PMO/Pd catalyst. All nitroarenes were selectively converted to their corresponding amines with high to excellent yields (92-96%) within short reaction times (10-18 min). This catalyst was recovered and reused at least 11 times without significant decrease in efficiency and stability.
Collapse
Affiliation(s)
- Meysam Norouzi
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran
| | - Dawood Elhamifar
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran.
| | - Shiva Kargar
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran
| |
Collapse
|
2
|
Abdelgalil MH, Elhammamy RH, Ragab HM, Sheta E, Wahid A. The hepatoprotective effect of 4-phenyltetrahydroquinolines on carbon tetrachloride induced hepatotoxicity in rats through autophagy inhibition. Biol Res 2024; 57:32. [PMID: 38797855 PMCID: PMC11129499 DOI: 10.1186/s40659-024-00510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The liver serves as a metabolic hub within the human body, playing a crucial role in various essential functions, such as detoxification, nutrient metabolism, and hormone regulation. Therefore, protecting the liver against endogenous and exogenous insults has become a primary focus in medical research. Consequently, the potential hepatoprotective properties of multiple 4-phenyltetrahydroquinolines inspired us to thoroughly study the influence of four specially designed and synthesized derivatives on carbon tetrachloride (CCl4)-induced liver injury in rats. METHODS AND RESULTS Seventy-seven Wistar albino male rats weighing 140 ± 18 g were divided into eleven groups to investigate both the toxicity profile and the hepatoprotective potential of 4-phenyltetrahydroquinolines. An in-vivo hepatotoxicity model was conducted using CCl4 (1 ml/kg body weight, a 1:1 v/v mixture with corn oil, i.p.) every 72 h for 14 days. The concurrent treatment of rats with our newly synthesized compounds (each at a dose of 25 mg/kg body weight, suspended in 0.5% CMC, p.o.) every 24 h effectively lowered transaminases, preserved liver tissue integrity, and mitigated oxidative stress and inflammation. Moreover, the histopathological examination of liver tissues revealed a significant reduction in liver fibrosis, which was further supported by the immunohistochemical analysis of α-SMA. Additionally, the expression of the apoptotic genes BAX and BCL2 was monitored using real-time PCR, which showed a significant decrease in liver apoptosis. Further investigations unveiled the ability of the compounds to significantly decrease the expression of autophagy-related proteins, Beclin-1 and LC3B, consequently inhibiting autophagy. Finally, our computer-assisted simulation dockingonfirmed the obtained experimental activities. CONCLUSION Our findings suggest that derivatives of 4-phenyltetrahydroquinoline demonstrate hepatoprotective properties in CCl4-induced liver damage and fibrosis in rats. The potential mechanism of action may be due to the inhibition of autophagy in liver cells.
Collapse
Affiliation(s)
- Mohamed Hussein Abdelgalil
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Reem H Elhammamy
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hanan M Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
3
|
Bodaghifard MA, Pourmousavi SA, Ahadi N, Zeynali P. An immobilized Schiff base-Mn complex as a hybrid magnetic nanocatalyst for green synthesis of biologically active [4,3- d]pyrido[1,2- a]pyrimidin-6-ones. NANOSCALE ADVANCES 2024; 6:2713-2721. [PMID: 38752148 PMCID: PMC11093261 DOI: 10.1039/d4na00131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/03/2024] [Indexed: 05/18/2024]
Abstract
The immobilization of metal ions on inorganic supports has garnered significant attention due to its wide range of applications. These immobilized metal ions serve as catalysts for chemical reactions and as probes for studying biological processes. In this study, we successfully prepared Fe3O4@SiO2@Mn-complex by immobilizing manganese onto the surface of magnetic Fe3O4@SiO2 nanoparticles through a layer-by-layer assembly technique. The structure of these hybrid nanoparticles was characterized by various analytical techniques, including Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM), and inductively coupled plasma-optical emission spectrometry (ICP-OES). Fe3O4@SiO2@Mn-complex was successfully utilized in the synthesis of biologically active 7-aryl[4,3-d]pyrido[1,2-a]pyrimidin-6(7H)-one derivatives in an aqueous medium, providing environmentally friendly conditions. The desired products were manufactured in high yields (81-95%) without the formation of side products. The heterogeneity of the solid nanocatalyst was assessed using a hot filtration test that confirmed minimal manganese leaching during the reaction. This procedure offers numerous advantages, including short reaction times, the use of a green solvent, the ability to reuse the catalyst without a significant decrease in catalytic activity, and easy separation of the catalyst using an external magnet. Furthermore, this approach aligns with environmental compatibility and sustainability standards.
Collapse
Affiliation(s)
- Mohammad Ali Bodaghifard
- Department of Chemistry, Faculty of Science, Arak University Arak 384817758 Iran
- Institute of Nanosciences &Nanotechnology, Arak University Arak Iran
| | | | - Najmieh Ahadi
- Institute of Nanosciences &Nanotechnology, Arak University Arak Iran
| | - Payam Zeynali
- School of Chemistry, Damghan University Damghan 36716-45667 Iran
| |
Collapse
|
4
|
Bodaghifard MA, Allahbakhshi H, Ahangarani-Farahani R. Efficient synthesis of benzoacridines and indenoquinolines catalyzed by acidic magnetic dendrimer. Sci Rep 2024; 14:8736. [PMID: 38627463 PMCID: PMC11021454 DOI: 10.1038/s41598-024-59212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
A novel solid acid catalyst with recoverability, named as Fe3O4@SiO2@TAD-G2-SO3H, was successfully synthesized by immobilizing sulfonic acid groups on triazine dendrimer-modified magnetic nanoparticles. This nanomaterial structure and composition were thoroughly characterized using various analytical techniques, including thermogravimetric analysis (TGA), elemental analysis, Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX), elemental mapping, acid-base titration, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The acid-decorated magnetic dendrimer was served as a highly effective catalyst for the synthesis of tetrahydrobenzo[c]acridin-8(9H)-one and benzo[h]indeno[1,2-b]quinoline-8-one derivatives. The reaction proceeded smoothly under mild conditions through the one-pot condensation of aromatic aldehydes, 1-naphthylamine, and either dimedone or 1,3-indanedione, affording the desired products in high yields ranging from 90 to 96%. The catalyst was easily separated from the reaction mixture by employing a magnetic field, allowing for its recycling up to five times with slight loss in its activity (only 10%). Nearly, quantitative recovery of catalyst (up to 95%) could be obtained from each run. So, this catalyst facilitates the reaction progress and simplifies the purification process. Other remarkable features of this method are operational simplicity, excellent yields, mild condition, and a wide range of substrate applicability.
Collapse
Affiliation(s)
- Mohammad Ali Bodaghifard
- Department of Chemistry, Faculty of Science, Arak University, 384817758, Arak, Iran.
- Institute of Nanosciences and Nanotechnology, Arak University, 384817758, Arak, Iran.
| | - Hanieh Allahbakhshi
- Department of Chemistry, Faculty of Science, Arak University, 384817758, Arak, Iran
| | | |
Collapse
|
5
|
Al-Ghamdi AR, Rahman S, Al-Wabli RI, Al-Mutairi MS, Rahman AFMM. Synthesis, Cytotoxicity, and Photophysical Investigations of 2-Amino-4,6-diphenylnicotinonitriles: An Experimental and Theoretical Study. Molecules 2024; 29:1808. [PMID: 38675628 PMCID: PMC11055175 DOI: 10.3390/molecules29081808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, we present a comprehensive investigation of 2-amino-4,6-diphenylnicotinonitriles (APNs, 1-6), including their synthesis, cytotoxicity against breast cancer cell lines, and photophysical properties. Compound 3 demonstrates exceptional cytotoxicity, surpassing the potency of Doxorubicin. The fluorescence spectra of the synthesized 1-6 in different solvents reveal solvent-dependent shifts in the emission maximum values, highlighting the influence of the solvent environment on their fluorescence properties. A quantum chemical TD-DFT analysis provides insights into the electronic structure and fluorescence behavior of 1-6, elucidating HOMO-LUMO energy gaps, electronegativity values, and dipole moments, contributing to a deeper understanding of their electronic properties and potential reactivity. These findings provide valuable knowledge for the development of APNs (1-6) as fluorescent sensors and potential anticancer agents.
Collapse
Affiliation(s)
- Alwah R. Al-Ghamdi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.R.A.-G.); (R.I.A.-W.); (M.S.A.-M.)
| | - Shofiur Rahman
- College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Reem I. Al-Wabli
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.R.A.-G.); (R.I.A.-W.); (M.S.A.-M.)
| | - Maha S. Al-Mutairi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.R.A.-G.); (R.I.A.-W.); (M.S.A.-M.)
| | - A. F. M. Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.R.A.-G.); (R.I.A.-W.); (M.S.A.-M.)
| |
Collapse
|
6
|
Ibrahim NSM, Kadry HH, Zaher AF, Mohamed KO. Synthesis of novel pyrimido[4,5-b]quinoline derivatives as dual EGFR/HER2 inhibitors as anticancer agents. Arch Pharm (Weinheim) 2024; 357:e2300513. [PMID: 38148301 DOI: 10.1002/ardp.202300513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023]
Abstract
A series of novel N-aryl-5-aryl-6,7,8,9-tetrahydropyrimido[4,5-b]quinolin-4-amines 4a-4l was synthesized as potential anticancer agents through Dimroth rearrangement reaction of intermediates 3a-3c. Pyrimido[4,5-b]quinolines 4a-4l showed promising activity against the Michigan Cancer Foundation-7 (MCF-7) cell line, compared with lapatinib as the reference drug. Compounds 4d, 4h, 4i, and 4l demonstrated higher cytotoxic activity than lapatinib, with IC50 values of 2.67, 6.82, 4.31, and 1.62 µM, respectively. Compounds 4d, 4i, and 4l showed promising epidermal growth factor receptor (EGFR) inhibition with IC50 values of 0.065, 0.116, and 0.052 µM, respectively. These compounds were subjected to human epidermal growth factor receptor 2 (HER2) inhibition and showed IC50 values of 0.09, 0.164, and 0.055 µM, respectively. Compounds 4d, 4i, and 4l are good candidates as dual EGFR/HER2 inhibitors. The most active compound, 4l, was subjected to cell-cycle analysis and induced cell-cycle arrest at the S phase. Compound 4l induced apoptosis 60-fold compared with control untreated MCF-7 cells. 4l can inhibit cancer metastasis. It reduced MCF-7 cell infiltration and metastasis by 45% compared with control untreated cells.
Collapse
Affiliation(s)
- Nahla Said M Ibrahim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan H Kadry
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ashraf F Zaher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Khaled O Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University-Arish Branch, Arish, Egypt
| |
Collapse
|
7
|
Nguyen PN, Nguyen LHT, Doan TLH, Tran PH, Nguyen HT. A eutectogels-catalyzed one-pot multi-component reaction: access to pyridine and chromene derivatives. RSC Adv 2024; 14:7006-7021. [PMID: 38414994 PMCID: PMC10897536 DOI: 10.1039/d4ra00123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024] Open
Abstract
The demand for a wide array of functional chemicals and materials has experienced a significant surge in tandem with the advancement of civilization. Regrettably, a number of perilous solvents are employed in chemical laboratories and industrial settings, posing significant risks to the well-being of researchers and contributing to environmental degradation through pollution. Eutectogels, which are based on the eutectic concept, may be synthesized by self-assembling or self-polymerization of various components when put under UV irradiation (254 nm). A novel copolymeric deep eutectic solvent (DES) was successfully synthesized, comprising choline chloride (HBA) as the hydrogen bond acceptor, acetamide (HBD) as the hydrogen bond donor, tetraethyl orthosilicate (TEOS), and formic acid. In this study, we present the preparation of four-component ETGs for synthesizing pyridine and chromene derivatives as a reusable catalyst through a multi-component pathway without solvents. The procedure of synthesizing these heterocyclic compounds is free of using toxic solvents and it could be categorized as a green method.
Collapse
Affiliation(s)
- Phat Ngoc Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Linh Ho Thuy Nguyen
- Vietnam National University Ho Chi Minh City 700000 Vietnam
- Center for Innovative Materials and Architectures, Vietnam National University Ho Chi Minh City 721337 Vietnam
| | - Tan Le Hoang Doan
- Vietnam National University Ho Chi Minh City 700000 Vietnam
- Center for Innovative Materials and Architectures, Vietnam National University Ho Chi Minh City 721337 Vietnam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Hai Truong Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
8
|
Synthesis, properties, and application of the new nanocatalyst of double layer hydroxides in the one-pot multicomponent synthesis of 2-amino-3-cyanopyridine derivatives. Sci Rep 2023; 13:1627. [PMID: 36709240 PMCID: PMC9884200 DOI: 10.1038/s41598-023-27940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/10/2023] [Indexed: 01/30/2023] Open
Abstract
A new heterogeneous nanocatalyst LDH@3-chloropyltrimethoxysilane@1,3-benzenedisulfonyl amine@Cu (LDH@TRMS@BDSA@Cu) was synthesized and confirmed by analyzes such as Fourier transform infrared spectroscopy, Field Emission Scanning Electron Microscopy, energy scattered X-ray spectroscopy (EDX), elemental mapping, X-ray diffraction analysis, heat gravity/heat derivatization (TGA) and differential scanning calorimetry. The newly synthesized nanocatalyst effectively catalyzed the reaction between different aryl aldehydes, malononitrile, different acetophenones and ammonium acetate in solvent-free conditions and they were converted into 2-amino-3-cyanopyridine derivatives with high efficiency. The reaction showed advantages such as simplicity, high stability, environmental friendliness, excellent efficiency and short time. Also, this catalyst is recyclable and was recycled 4 times without losing significant catalytic power.
Collapse
|
9
|
Sheikhhosseini E, Yahyazadehfar M. Synthesis and characterization of an Fe-MOF@Fe 3O 4 nanocatalyst and its application as an organic nanocatalyst for one-pot synthesis of dihydropyrano[2,3-c]chromenes. Front Chem 2023; 10:984502. [PMID: 36688030 PMCID: PMC9845633 DOI: 10.3389/fchem.2022.984502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
In this study, the recyclable heterogeneous cluster bud Fe-MOF@Fe3O4 'nanoflower' composite (CB Fe-MOF@Fe3O4 NFC) was successfully synthesized using Fe(NO3)3·9H2O, 8-hydroxyquinoline sulfate monohydrate, and Fe3O4 nanoparticles by microwave irradiation. The as-prepared CB Fe-MOF@Fe3O4 NFC was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), vibrational sampling magnetometry (VSM), and Fourier transform infrared spectroscopy (FTIR). The CB Fe-MOF@Fe3O4 NFC samples proved to have excellent catalytic activity. The activity of the CB Fe-MOF@Fe3O4 NFC nanocatalyst was explored in the synthesis of dihydropyrano[3, 2-c]chromene derivatives via a three-component reaction of 4-hydroxycoumarin, malononitrile, and a wide range of aromatic aldehyde compounds. Optimized reaction conditions had several advantages, including the use of water as a green solvent, environmental compatibility, simple work-up, reusability of the catalyst, low catalyst loading, faster reaction time, and higher yields.
Collapse
|
10
|
Tavassoli AM, Zolfigol MA, Yarie M. Application of new multi-H-bond catalyst for the preparation of substituted pyridines via a cooperative vinylogous anomeric-based oxidation. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
11
|
Nanostructured Na2CaP2O7: A New and Efficient Catalyst for One-Pot Synthesis of 2-Amino-3-Cyanopyridine Derivatives and Evaluation of Their Antibacterial Activity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A facile and novel synthesis of thirteen 2-amino-3-cyanopyridine derivatives 5(a–m) by a one-pot multicomponent reactions (MCRs) is described for the first time, starting from aromatic aldehydes, malononitrile, methyl ketones, or cyclohexanone and ammonium acetate in the presence of the nanostructured diphosphate Na2CaP2O7 (DIPH) at 80 °C under solvent-free conditions. These compounds were brought into existence in a short period with good to outstanding yields (84–94%). The diphosphate Na2CaP2O7 was synthesized and characterized by different techniques (FT-IR, XRD, SEM, and TEM) and used as an efficient, environmentally friendly, easy-to-handle, harmless, secure, and reusable catalyst. Our study was strengthened by combining five new pyrido[2,3-d]pyrimidine derivatives 6(b, c, g, h, j) by intermolecular cyclization of 2-amino-3-cyanopyridines 5(b, c, g, h, j) with formamide. The synthesized products were characterized by FT-IR, 1H NMR, and 13C NMR and by comparing measured melting points with known values reported in the literature. Gas chromatography/mass spectrometry was used to characterize the newly synthesized products and evaluate their purity. The operating conditions were optimized using a model reaction in which the catalyst amount, temperature, time, and solvent effect were evaluated. Antibacterial activity was tested against approved Gram-positive and Gram-negative strains for previously mentioned compounds.
Collapse
|
12
|
Ganjali F, Kashtiaray A, Zarei-Shokat S, Taheri-Ledari R, Maleki A. Functionalized hybrid magnetic catalytic systems on micro- and nanoscale utilized in organic synthesis and degradation of dyes. NANOSCALE ADVANCES 2022; 4:1263-1307. [PMID: 36133673 PMCID: PMC9418160 DOI: 10.1039/d1na00818h] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Herein, a concise review of the latest developments in catalytic processes involving organic reactions is presented, focusing on magnetic catalytic systems (MCSs). In recent years, various micro- and nanoscale magnetic catalysts have been prepared through different methods based on optimized reaction conditions and utilized in complex organic synthesis or degradation reactions of pharmaceutical compounds. These biodegradable, biocompatible and eco-benign MCSs have achieved the principles of green chemistry, and thus their usage is highly advocated. In addition, MCSs can shorten the reaction time, effectively accelerate reactions, and significantly upgrade both pharmaceutical synthesis and degradation mechanisms by preventing unwanted side reactions. Moreover, the other significant benefits of MCSs include their convenient magnetic separation, high stability and reusability, inexpensive raw materials, facile preparation routes, and surface functionalization. In this review, our aim is to present at the recent improvements in the structure of versatile MCSs and their characteristics, i.e., magnetization, recyclability, structural stability, turnover number (TON), and turnover frequency (TOF). Concisely, different hybrid and multifunctional MCSs are discussed. Additionally, the applications of MCSs for the synthesis of different pharmaceutical ingredients and degradation of organic wastewater contaminants such as toxic dyes and drugs are demonstrated.
Collapse
Affiliation(s)
- Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| |
Collapse
|
13
|
Torabi M, Zolfigol MA, Yarie M, Notash B, Azizian S, Azandaryani MM. Synthesis of triarylpyridines with sulfonate and sulfonamide moieties via a cooperative vinylogous anomeric-based oxidation. Sci Rep 2021; 11:16846. [PMID: 34413326 PMCID: PMC8377147 DOI: 10.1038/s41598-021-95830-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Herein, novel magnetic nanoparticles with pyridinium bridges namely Fe3O4@SiO2@PCLH-TFA through a multi-step pathway were designed and synthesized. The desired catalyst and its corresponding precursors were characterized with different techniques such as Fourier transform infrared (FT-IR) spectroscopy, 1H NMR, 13C NMR, Mass spectroscopy, energy dispersive X-ray (EDX) analysis, thermogravimetric/derivative thermogravimetry (TG/DTG) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM). In addition, the catalytic application of the prepared catalyst in the synthesis of new series of triarylpyridines bearing sulfonate and sulfonamide moieties via a cooperative vinylogous anomeric-based oxidation was highlighted. The current trend revealed that the mentioned catalyst shows high recoverability in the reported synthesis.
Collapse
Affiliation(s)
- Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran.
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran
| | - Behrouz Notash
- Department of Inorganic Chemistry and Catalysis, Shahid Beheshti University, Evin, Tehran, Iran
| | - Saeid Azizian
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran
| | - Mina Mirzaei Azandaryani
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran
| |
Collapse
|
14
|
Faroughi Niya H, Hazeri N, Maghsoodlou MT, Fatahpour M. Synthesis, characterization, and application of CoFe2O4@TRIS@sulfated boric acid nanocatalyst for the synthesis of 2-amino-3-cyanopyridine derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04369-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Synthesis of a novel acidic ionic liquid catalyst and its application for preparation of pyridines via a cooperative vinylogous anomeric-based oxidation. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04361-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Mohammadi Ziarani G, Kheilkordi Z, Mohajer F, Badiei A, Luque R. Magnetically recoverable catalysts for the preparation of pyridine derivatives: an overview. RSC Adv 2021; 11:17456-17477. [PMID: 35479731 PMCID: PMC9033112 DOI: 10.1039/d1ra02418c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Magnetically recoverable nano-catalysts can be readily separated from the reaction medium using an external magnet. In recent years, chemistry researchers have employed them as catalysts in chemical reactions. The high surface area, simple preparation, and modification are among their major advantages. Pyridine derivatives are an important category of heterocyclic compounds, which show a wide range of excellent biological activities, including IKK-β inhibitors, anti-microbial agents, A2A adenosine receptor antagonists, inhibitors of HIV-1 integrase, anti-tumor, anti-inflammatory, and anti-Parkinsonism. Recently, the catalytic activity of magnetic nanoparticles was investigated in multicomponent reactions in the synthesis of pyridine derivatives, which is discussed in this review. Magnetically recoverable nano-catalysts can be readily separated from the reaction medium using an external magnet.![]()
Collapse
Affiliation(s)
| | - Zohreh Kheilkordi
- Department of Chemistry
- Faculty of Physics and Chemistry
- Alzahra University
- Tehran
- Iran
| | - Fatemeh Mohajer
- Department of Chemistry
- Faculty of Physics and Chemistry
- Alzahra University
- Tehran
- Iran
| | - Alireza Badiei
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
- Iran
| | - Rafael Luque
- Departamento de Quimica Organica
- Universidad de Cordoba
- Campus de Rabanales
- Edificio Marie Curie
- Córdoba
| |
Collapse
|
17
|
Sameri F, Mobinikhaledi A, Bodaghifard MA. High-efficient synthesis of 2-imino-2H-chromenes and dihydropyrano[c]chromenes using novel and green catalyst (CaO@SiO2@AIL). RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04295-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
A green and efficient Pd-free protocol for the Suzuki–Miyaura cross-coupling reaction using Fe3O4@APTMS@Cp2ZrClx(x = 0, 1, 2) MNPs in PEG-400. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04145-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Gopal Hegde S, Koodlur L, Narayanarao M. Regioselective synthesis and biological evaluation of novel dispiropyrrolidine derivatives via one-pot four-component reaction. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1672746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Subramanya Gopal Hegde
- Department of Studies and Research in Chemistry, Vijayanagara Sri Krishnadevaraya University, Bellary, India
| | - Lokesh Koodlur
- Department of Studies and Research in Chemistry, Vijayanagara Sri Krishnadevaraya University, Bellary, India
| | - Manjunatha Narayanarao
- East Point College of Engineering and Technology, Visvesvaraya Technological University, Bangalore, India
| |
Collapse
|