1
|
Zhou G, Tian J, Tian Y, Ma Q, Li Q, Wang S, Shi H. Recombinant-attenuated Salmonella enterica serovar Choleraesuis vector expressing the PlpE protein of Pasteurella multocida protects mice from lethal challenge. BMC Vet Res 2023; 19:128. [PMID: 37598169 PMCID: PMC10439597 DOI: 10.1186/s12917-023-03679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 07/27/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Bacterial surface proteins play key roles in pathogenicity and often contribute to microbial adhesion and invasion. Pasteurella lipoprotein E (PlpE), a Pasteurella multocida (P. multocida) surface protein, has recently been identified as a potential vaccine candidate. Live attenuated Salmonella strains have a number of potential advantages as vaccine vectors, including immunization with live vector can mimic natural infections by organisms, lead to the induction of mucosal, humoral, and cellular immune responses. In this study, a previously constructed recombinant attenuated Salmonella Choleraesuis (S. Choleraesuis) vector rSC0016 was used to synthesize and secrete the surface protein PlpE of P. multocida to form the vaccine candidate rSC0016(pS-PlpE). Subsequently, the immunogenicity of S. Choleraesuis rSC0016(pS-PlpE) as an oral vaccine to induce protective immunity against P. multocida in mice was evaluated. RESULTS After immunization, the recombinant attenuated S. Choleraesuis vector can efficiently delivered P. multocida PlpE protein in vivo and induced a specific immune response against this heterologous antigen in mice. In addition, compared with the inactivated vaccine, empty vector (rSC0016(pYA3493)) and PBS immunized groups, the rSC0016(pS-PlpE) vaccine candidate group induced higher antigen-specific mucosal, humoral and mixed Th1/Th2 cellular immune responses. After intraperitoneal challenge, the rSC0016(pS-PlpE) immunized group had a markedly enhanced survival rate (80%), a better protection efficiency than 60% of the inactivated vaccine group, and significantly reduced tissue damage. CONCLUSIONS In conclusion, our study found that the rSC0016(pS-PlpE) vaccine candidate provided good protection against challenge with wild-type P. multocida serotype A in a mouse infection model, and may potentially be considered for use as a universal vaccine against multiple serotypes of P. multocida in livestock, including pigs.
Collapse
Affiliation(s)
- Guodong Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Jiashuo Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yichen Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Qifeng Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
2
|
Yaqinuddin A, Shafqat A, Kashir J, Alkattan K. Effect of SARS-CoV-2 Mutations on the Efficacy of Antibody Therapy and Response to Vaccines. Vaccines (Basel) 2021; 9:914. [PMID: 34452039 PMCID: PMC8402590 DOI: 10.3390/vaccines9080914] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 causes severe acute respiratory syndrome, which has led to significant morbidity and mortality around the world. Since its emergence, extensive prophylactic and therapeutic countermeasures have been employed to successfully prevent the spread of COVID-19. Extensive work has been undertaken on using monoclonal antibody therapies, mass vaccination programs, and antiviral drugs to prevent and treat COVID-19. However, since antiviral drugs could take years to become widely available, immunotherapy and vaccines currently appear to be the most feasible option. In December 2020, the first vaccine against SARS-CoV-2 was approved by the World Health Organization (WHO) and, subsequently, many other vaccines were approved for use by different international regulators in different countries. Most monoclonal antibodies (mAbs) and vaccines target the SARS-CoV-2 surface spike (S) protein. Recently, mutant (or variant) SARS-CoV-2 strains with increased infectivity and virulence that evade protective host antibodies present either due to infection, antibody therapy, or vaccine administration have emerged. In this manuscript, we discuss the different monoclonal antibody and vaccine therapies available against COVID-19 and how the efficacy of these therapies is affected by the emergence of variants of SARS-CoV-2. We also discuss strategies that might help society cope with variants that could neutralize the effects of immunotherapy and escape the protective immunity conferred by vaccines.
Collapse
Affiliation(s)
- Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (J.K.); (K.A.)
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (J.K.); (K.A.)
| | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (J.K.); (K.A.)
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11533, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (J.K.); (K.A.)
| |
Collapse
|
3
|
Seyfoori A, Shokrollahi Barough M, Mokarram P, Ahmadi M, Mehrbod P, Sheidary A, Madrakian T, Kiumarsi M, Walsh T, McAlinden KD, Ghosh CC, Sharma P, Zeki AA, Ghavami S, Akbari M. Emerging Advances of Nanotechnology in Drug and Vaccine Delivery against Viral Associated Respiratory Infectious Diseases (VARID). Int J Mol Sci 2021; 22:6937. [PMID: 34203268 PMCID: PMC8269337 DOI: 10.3390/ijms22136937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Viral-associated respiratory infectious diseases are one of the most prominent subsets of respiratory failures, known as viral respiratory infections (VRI). VRIs are proceeded by an infection caused by viruses infecting the respiratory system. For the past 100 years, viral associated respiratory epidemics have been the most common cause of infectious disease worldwide. Due to several drawbacks of the current anti-viral treatments, such as drug resistance generation and non-targeting of viral proteins, the development of novel nanotherapeutic or nano-vaccine strategies can be considered essential. Due to their specific physical and biological properties, nanoparticles hold promising opportunities for both anti-viral treatments and vaccines against viral infections. Besides the specific physiological properties of the respiratory system, there is a significant demand for utilizing nano-designs in the production of vaccines or antiviral agents for airway-localized administration. SARS-CoV-2, as an immediate example of respiratory viruses, is an enveloped, positive-sense, single-stranded RNA virus belonging to the coronaviridae family. COVID-19 can lead to acute respiratory distress syndrome, similarly to other members of the coronaviridae. Hence, reviewing the current and past emerging nanotechnology-based medications on similar respiratory viral diseases can identify pathways towards generating novel SARS-CoV-2 nanotherapeutics and/or nano-vaccines.
Collapse
Affiliation(s)
- Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mahdieh Shokrollahi Barough
- Department of Immunology, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Pooneh Mokarram
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran 1316943551, Iran;
| | - Alireza Sheidary
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Mohammad Kiumarsi
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Tavia Walsh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
| | - Kielan D. McAlinden
- Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Chandra C. Ghosh
- Roger Williams Medical Center, Immuno-Oncology Institute (Ix2), Providence, RI 02908, USA;
| | - Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Amir A. Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, U.C. Davis Lung Center, Davis School of Medicine, University of California, Davis, CA 95817, USA;
- Veterans Affairs Medical Center, Mather, CA 95817, USA
| | - Saeid Ghavami
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
4
|
Heinrich MA, Martina B, Prakash J. Nanomedicine strategies to target coronavirus. NANO TODAY 2020; 35:100961. [PMID: 32904707 PMCID: PMC7457919 DOI: 10.1016/j.nantod.2020.100961] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 05/05/2023]
Abstract
With the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002, the middle east respiratory syndrome CoV (MERS-CoV) in 2012 and the recently discovered SARS-CoV-2 in December 2019, the 21st first century has so far faced the outbreak of three major coronaviruses (CoVs). In particular, SARS-CoV-2 spread rapidly over the globe affecting nearly 25.000.000 people up to date. Recent evidences pointing towards mutations within the viral spike proteins of SARS-CoV-2 that are considered the cause for this rapid spread and currently around 300 clinical trials are running to find a treatment for SARS-CoV-2 infections. Nanomedicine, the application of nanocarriers to deliver drugs specifically to a target sites, has been applied for different diseases, such as cancer but also in viral infections. Nanocarriers can be designed to encapsulate vaccines and deliver them towards antigen presenting cells or function as antigen-presenting carriers themselves. Furthermore, drugs can be encapsulated into such carriers to directly target them to infected cells. In particular, virus-mimicking nanoparticles (NPs) such as self-assembled viral proteins, virus-like particles or liposomes, are able to replicate the infection mechanism and can not only be used as delivery system but also to study viral infections and related mechanisms. This review will provide a detailed description of the composition and replication strategy of CoVs, an overview of the therapeutics currently evaluated in clinical trials against SARS-CoV-2 and will discuss the potential of NP-based vaccines, targeted delivery of therapeutics using nanocarriers as well as using NPs to further investigate underlying biological processes in greater detail.
Collapse
Affiliation(s)
- Marcel Alexander Heinrich
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Byron Martina
- Artemis One Health Research Institute, 2629JD, Delft, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| |
Collapse
|
5
|
The Application of Mucoadhesive Chitosan Nanoparticles in Nasal Drug Delivery. Mar Drugs 2020; 18:md18120605. [PMID: 33260406 PMCID: PMC7759871 DOI: 10.3390/md18120605] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
Mucosal delivery of antigens can induce both humoral and cellular immune responses. Particularly, the nasal cavity is a strongly inductive site for mucosal immunity among several administration routes, as it is generally the first point of contact for inhaled antigens. However, the delivery of antigens to the nasal cavity has some disadvantages such as rapid clearance and disposition of inhaled materials. For these reasons, remarkable efforts have been made to develop antigen delivery systems which suit the nasal route. The use of nanoparticles as delivery vehicles enables protection of the antigen from degradation and sustains the release of the loaded antigen, eventually resulting in improved vaccine and/or drug efficacy. Chitosan, which exhibits low toxicity, biodegradability, good cost performance, and strong mucoadhesive properties, is a useful material for nanoparticles. The present review provides an overview of the mucosal immune response induced by nanoparticles, recent advances in the use of nanoparticles, and nasal delivery systems with chitosan nanoparticles.
Collapse
|
6
|
Jindal S, Gopinath P. Nanotechnology based approaches for combatting COVID-19 viral infection. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abb714] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
An Intranasal Vaccination with a Recombinant Outer Membrane Protein H against Haemorrhagic Septicemia in Swamp Buffaloes. Vet Med Int 2020; 2020:3548973. [PMID: 32547726 PMCID: PMC7271248 DOI: 10.1155/2020/3548973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/19/2020] [Accepted: 05/09/2020] [Indexed: 12/17/2022] Open
Abstract
Hemorrhagic septicemia (HS) is an important infectious disease in cattle and buffaloes, caused by Pasteurella multocida B:2 and E:2. The intranasal recombinant OmpH-based vaccine was successfully used to protect dairy cattle from HS in a previous study. Thus, this study aimed to examine the protective ability of that vaccine among buffaloes. Four groups of Thai swamp buffaloes received different vaccines and were labeled as 100 or 200 μg of the rOmpH with CpG-ODN2007, commercial HS bacterin vaccine, and nonvaccinated control groups. Sera and whole blood were collected to examine the antibody levels and cellular immune response using indirect ELISA and MTT assay, respectively. Challenge exposure was performed with virulent P. multocida strain M-1404 serotype B:2 on day 72 of the experiment. The antibody titers to P. multocida among immunized buffaloes were significantly higher than in the control group (p < 0.01), especially the 200 μg of the rOmpH group. The stimulation index (SI) of the intranasally vaccinated groups revealed significantly higher levels than the nonvaccinated group (p < 0.01), but not different from the intramuscularly commercial HS vaccine. The clinical signs and high fever were observed after challenge exposure in the nonvaccinated group, while it was not observed among the 200 μg of rOmpH immunized buffaloes. The other immunized groups showed partial protection with transient fever. In conclusion, the rOmpH-based intranasal vaccine could elicit protective ability and induce antibody- and cell-mediated immune response against virulent P. multocida strain among swamp buffaloes.
Collapse
|
8
|
The ABA392/pET30a protein of Pasteurella multocida provoked mucosal immunity against HS disease in a rat model. Microb Pathog 2019; 128:90-96. [DOI: 10.1016/j.micpath.2018.12.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023]
|
9
|
Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D. Nanoparticle-Based Vaccines Against Respiratory Viruses. Front Immunol 2019; 10:22. [PMID: 30733717 PMCID: PMC6353795 DOI: 10.3389/fimmu.2019.00022] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022] Open
Abstract
The respiratory mucosa is the primary portal of entry for numerous viruses such as the respiratory syncytial virus, the influenza virus and the parainfluenza virus. These pathogens initially infect the upper respiratory tract and then reach the lower respiratory tract, leading to diseases. Vaccination is an affordable way to control the pathogenicity of viruses and constitutes the strategy of choice to fight against infections, including those leading to pulmonary diseases. Conventional vaccines based on live-attenuated pathogens present a risk of reversion to pathogenic virulence while inactivated pathogen vaccines often lead to a weak immune response. Subunit vaccines were developed to overcome these issues. However, these vaccines may suffer from a limited immunogenicity and, in most cases, the protection induced is only partial. A new generation of vaccines based on nanoparticles has shown great potential to address most of the limitations of conventional and subunit vaccines. This is due to recent advances in chemical and biological engineering, which allow the design of nanoparticles with a precise control over the size, shape, functionality and surface properties, leading to enhanced antigen presentation and strong immunogenicity. This short review provides an overview of the advantages associated with the use of nanoparticles as vaccine delivery platforms to immunize against respiratory viruses and highlights relevant examples demonstrating their potential as safe, effective and affordable vaccines.
Collapse
Affiliation(s)
- Soultan Al-Halifa
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
| | - Laurie Gauthier
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| | - Dominic Arpin
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| | - Steve Bourgault
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| | - Denis Archambault
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| |
Collapse
|
10
|
Muangthai K, Tankaew P, Varinrak T, Uthi R, Rojanasthien S, Sawada T, Sthitmatee N. Intranasal immunization with a recombinant outer membrane protein H based Haemorrhagic septicemia vaccine in dairy calves. J Vet Med Sci 2017; 80:68-76. [PMID: 29109353 PMCID: PMC5797862 DOI: 10.1292/jvms.17-0176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Haemorrhagic septicemia (HS) is a contagious disease in cattle with high morbidity and mortality rates. HS vaccine in Thailand is an oil-adjuvant formulation, and is difficult to administer. The present study aimed to
formulate and evaluate the protection in dairy calves conferred by immunization with an in-house intranasal HS vaccine. The intranasal vaccine was formulated in a total volume of 500 µl containing either
50 or 100 µg of the recombinant outer membrane protein H (rOmpH) of Pasteurella multocida strain M-1404 (serovar B:2), and 10 µg of Cytosine-phosphate-guanosine
oligodeoxynucleotides (CpG-ODN) as a mucosal adjuvant. Intranasal immunizations were conducted three times at three-week intervals. The antibodies post-immunization were detected by indirect ELISA and demonstrated
efficient in vitro activity in suppressing a P. multocida strain from the complement-mediated killing assay. An intranasal vaccine induced both the serum IgG and secretory IgA levels
that were significantly higher than the level conferred by the parenteral vaccine (P<0.05). Challenge exposure was conducted with a P. multocida strain M-1404 at day 72 of the
experiments. The immunized calves had reduced clinical signs after challenge exposure that would normally result in disease proliferation. We conclude that intranasal vaccination of calves with rOmpH with CpG-ODN 2007
stimulated serum and secretory antibodies to rOmpH and whole cells of P. multocida strain M-1404 antigen. Moreover, it would result in protection in calves against artificial P.
multocida infection.
Collapse
Affiliation(s)
- Korkiat Muangthai
- Bureau of Veterinary Biologics, Department of Livestock Developments, Ministry of Agriculture and Cooperative, Nakhon Ratchasima 30130, Thailand
| | - Pallop Tankaew
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100 Thailand
| | - Thanya Varinrak
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100 Thailand
| | - Ratchanee Uthi
- Bureau of Veterinary Biologics, Department of Livestock Developments, Ministry of Agriculture and Cooperative, Nakhon Ratchasima 30130, Thailand
| | | | - Takuo Sawada
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100 Thailand.,Laboratory of Veterinary Microbiology, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Nattawooti Sthitmatee
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100 Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, 50100, Thailand
| |
Collapse
|
11
|
Aranda-Uribe IS, Ortega E, Martínez-Cordero E. Immunization of BALB/c mice with pigeon IgY induces the production of anti-IgG autoantibodies. Autoimmunity 2017; 50:336-345. [PMID: 28699799 DOI: 10.1080/08916934.2017.1344974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The breakdown of immunological tolerance due to the activation of autoreactive B and T cells triggers physiopathological processes. An example of such conditions is the production of IgG autoantibodies specific for the Fc portion of IgG (anti-Fcγ IgG). Previous reports have shown that patients with pigeon-related hypersensitivity pneumonitis exhibit an increase in the serum levels of anti-Fcγ IgG. There is no in vivo model for the study of this condition and the immunological mechanisms of tolerance breakdown associated with sensitization by pigeon antigens are still unknown. In this work, we show that the repeated immunization of BALB/c mice with pigeon IgY during 16-weeks induces the production of anti-Fcγ IgG and keeps their high levels for seven weeks. The late appearance of anti-Fcγ IgG autoantibodies in the plasma is similar to what has been reported in other experimental autoimmune models. With the occurrence of anti-Fcγ IgG, there is a reduction in the proportion of Foxp3 + cells (regulatory T cells, Tregs) within the population of splenic CD4 + CD25 + T cells. Thus, our data showed that the immunization of BALB/c mice with IgY promotes the production of anti-Fcγ IgG along with a decrease in Tregs in the spleen. We propose that immunization of mice with pigeon antigens, like IgY can provide a model to study the immunological mechanisms involved in the development of pigeon-related hypersensitivity pneumonitis.
Collapse
Affiliation(s)
- Ivan Sammir Aranda-Uribe
- a Facultad de Medicina , Universidad Nacional Autónoma de México, Posgrado Ciencias Biológicas , México City , México.,b Laboratorio de Autoinmunidad , Unidad de Investigación INER , México City , México
| | - Enrique Ortega
- c Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México , México City , México
| | | |
Collapse
|
12
|
Varinrak T, Poolperm P, Sawada T, Sthitmatee N. Cross-protection conferred by immunization with an rOmpH-based intranasal fowl cholera vaccine. Avian Pathol 2017; 46:515-525. [PMID: 28421815 DOI: 10.1080/03079457.2017.1321105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A previous study demonstrated that a recombinant outer membrane protein H (rOmpH)-based intranasal fowl cholera vaccine elicited efficient homologous protection against the Pasteurella multocida strain X-73 (A:1) in chickens. The present study aimed to determine the cross-protectivity against heterologous P. multocida strains. The rOmpH was purified via electroelution and formulated with two kinds of adjuvants. The vaccine formulations in a total volume of 100 µl were 100 µg rOmpH with 3 µg of Escherichia coli enterotoxin B or 10 µg of CpG ODN2007. Chickens were assigned to three experimental groups depending on bacterial strain challenge exposure as well as three control groups. The chickens were immunized intranasally three times at three-week intervals. Challenge exposures were conducted by inoculation with homologous strain X-73 or heterologous strains P-1059 (A:3) or P-1662 (A:4) at four weeks after the final immunization. The specific antibody against rOmpH was produced in vaccinated birds. Sera IgY and secretory IgA antibody titres were significantly increased (P < 0.05) post-immunization. The stimulation index values of the vaccinated groups were significantly different from stimulation index values of the non-vaccinated groups (P < 0.05). Chicken survival rates after exposure to avian P. multocida strains ranged from 70% to 100%. There was no significant difference in protection between two kinds of adjuvants in vaccine formulations. Statistical analysis indicated no significant differences in protection among avian P. multocida strains challenge exposure. We conclude that an in-house rOmpH-based intranasal fowl cholera vaccine produced efficient cross-protectivity against heterologous strains of P. multocida.
Collapse
Affiliation(s)
- Thanya Varinrak
- a Faculty of Veterinary Medicine , Chiang Mai University , Chiang Mai , Thailand
| | - Pichayanut Poolperm
- a Faculty of Veterinary Medicine , Chiang Mai University , Chiang Mai , Thailand
| | - Takuo Sawada
- a Faculty of Veterinary Medicine , Chiang Mai University , Chiang Mai , Thailand.,b Laboratory of Veterinary Microbiology , Nippon Veterinary and Life Science University , Tokyo , Japan
| | | |
Collapse
|
13
|
Kwon AJ, Moon JY, Kim WK, Kim S, Hur J. Protection efficacy of the Brucella abortus ghost vaccine candidate lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36) in murine models. J Vet Med Sci 2016; 78:1541-1548. [PMID: 27349900 PMCID: PMC5095622 DOI: 10.1292/jvms.16-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brucella abortus cells were lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid
antimicrobial peptide 36). Next, the protection efficacy of the lysed fragment as a vaccine candidate was evaluated. Group A mice were immunized with sterile
PBS, group B mice were intraperitoneally (ip) immunized with 3 × 108 colony-forming units (CFUs) of B. abortus strain RB51, group C
mice were immunized ip with 3 × 108 cells of the B. abortus vaccine candidate, and group D mice were orally immunized with 3 ×
109 cells of the B. abortus vaccine candidate. Brucella lipopolysaccharide (LPS)-specific serum IgG titers were
considerably higher in groups C and D than in group A. The levels of interleukin (IL)-4, IL-10, tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ)
were significantly higher in groups B–D than in group A. After an ip challenge with B. abortus 544, only group C mice showed a significant
level of protection as compared to group A. Overall, these results show that ip immunization with a vaccine candidate lysed by GI24 can effectively protect mice
from systemic infection with virulent B. abortus.
Collapse
Affiliation(s)
- Ae Jeong Kwon
- Veterinary Public Health, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | | | | | | | | |
Collapse
|
14
|
Thanasarasakulpong A, Poolperm P, Tankaew P, Sawada T, Sthitmatee N. Protectivity conferred by immunization with intranasal recombinant outer membrane protein H from Pasteurella multocida serovar A:1 in chickens. J Vet Med Sci 2014; 77:321-6. [PMID: 25650149 PMCID: PMC4383778 DOI: 10.1292/jvms.14-0532] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Recombinant outer membrane protein H (rOmpH) is a potential fowl cholera vaccine
candidate. The present study was aimed at developing rOmpH formulations for intranasal
administration. The rOmpH was purified and formulated with either Escherichia
coli enterotoxin B (LTB) or CpG oligodeoxynucleotides (ODN) as an adjuvant.
Antibody responses in chickens intranasally immunized with rOmpH in combination with 2
different adjuvants were significantly increased (P<0.05) post
immunization. Chicken survival rates showed that rOmpH formulated with ODN and LTB
elicited 90% and 70% protection, respectively. Our findings indicated that rOmpH
formulated with ODN elicited protection better than that formulated with LTB. Therefore,
the vaccines formulations in the present study can be considered new intranasal vaccine
formulations for fowl cholera in chickens.
Collapse
|
15
|
Shivachandra SB, Yogisharadhya R, Kumar A, Mohanty NN, Nagaleekar VK. Recombinant transferrin binding protein A (rTbpA) fragments of Pasteurella multocida serogroup B:2 provide variable protection following homologous challenge in mouse model. Res Vet Sci 2014; 98:1-6. [PMID: 25544697 DOI: 10.1016/j.rvsc.2014.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/07/2014] [Accepted: 11/23/2014] [Indexed: 10/24/2022]
Abstract
Transferrin binding protein A (TbpA), an iron acquisition surface protein that also acts as virulence factor, is widely distributed among strains of Pasteurella multocida. In the present study, a total of seven clones of TbpA fragments (39D to F777; 39D to Q697; 188V to F777; 188V to Q697; 39D to P377; 188V to P377 and 39D to F187) belonging to P. multocida B:2 were constructed, over-expressed and purified as recombinant fusion proteins from Escherichia coli using affinity chromatography. Immunization of mice with rTbpA fragments resulted in a significant (p < 0.05) rise in antigen specific serum total IgG and subtypes (IgG1 and IgG2a) tires. All immunized mice challenged with 8 LD50 of P. multocida B:2 resulted in a variable protective efficacy up to 50%. The study indicated the potential possibilities to incorporate full length TbpA in subunit vaccine formulation composed of synergistic subunit antigens against haemorrhagic septicaemia (HS) in cattle and buffalo.
Collapse
Affiliation(s)
- Sathish Bhadravati Shivachandra
- Clinical Bacteriology Laboratory, Indian Veterinary Research Institute (IVRI), Mukteswar-263138, Nainital, Uttarakhand, India.
| | - Revanaiah Yogisharadhya
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru-560024, Karnataka, India
| | - Abhinendra Kumar
- Clinical Bacteriology Laboratory, Indian Veterinary Research Institute (IVRI), Mukteswar-263138, Nainital, Uttarakhand, India
| | - Nihar Nalini Mohanty
- Clinical Bacteriology Laboratory, Indian Veterinary Research Institute (IVRI), Mukteswar-263138, Nainital, Uttarakhand, India
| | - Viswas Konasagara Nagaleekar
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute (IVRI), Izatnagar-243122, Bareilly, Uttar Pradesh, India
| |
Collapse
|
16
|
Generation of an attenuated Salmonella-delivery strains expressing adhesin and toxin antigens for progressive atrophic rhinitis, and evaluation of its immune responses in a murine model. Vaccine 2014; 32:5057-64. [DOI: 10.1016/j.vaccine.2014.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 06/05/2014] [Accepted: 07/08/2014] [Indexed: 11/22/2022]
|
17
|
Ahmad TA, Rammah SS, Sheweita SA, Haroun M, El-Sayed LH. Development of immunization trials against Pasteurella multocida. Vaccine 2013; 32:909-17. [PMID: 24295805 DOI: 10.1016/j.vaccine.2013.11.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/04/2013] [Accepted: 11/18/2013] [Indexed: 11/27/2022]
Abstract
Pasteurellosis is one of the most important respiratory diseases facing economically valuable farm animals such as poultry, rabbit, cattle, goats and pigs. It causes severe economic loss due to its symptoms that range from primary local infection to fatal septicemia. Pasteurella multocida is the responsible pathogen for this contagious disease. Chemotherapeutic treatment of Pasteurella is expensive, lengthy, and ineffective due to the increasing antibiotics resistance of the bacterium, as well as its toxicity to human consumers. Though, biosecurity measures played a role in diminishing the spread of the pathogen, the immunization methods were always the most potent preventive measures. Since the early 1950s, several trials for constructing and formulating effective vaccines were followed. This up-to-date review classifies and documents such trials. A section is devoted to discussing each group benefits and defects.
Collapse
Affiliation(s)
- Tarek A Ahmad
- Scientific Support and Projects Section, Bibliotheca Alexandrina, Alexandria, Egypt.
| | - Samar S Rammah
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Salah A Sheweita
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Medhat Haroun
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Laila H El-Sayed
- Immunology Department, Medical Researches Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Mouse model of haemorrhagic septicaemia: dissemination and multiplication of Pasteurella multocida B:2 in vital organs after intranasal and subcutaneous challenge in mice. Vet Res Commun 2012; 37:59-63. [DOI: 10.1007/s11259-012-9547-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
|