1
|
Bislava SB, Daja A, Oderinde BS, Uzairu SM. Prevalence of vaccine-derived poliovirus in sewage waters in Maiduguri, Borno State, Nigeria. LE INFEZIONI IN MEDICINA 2024; 32:90-98. [PMID: 38456020 PMCID: PMC10917565 DOI: 10.53854/liim-3201-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
After a long global battle with wild poliovirus, the virus has been defeated through researches and vaccination using the oral polio vaccine and inactivated polio vaccine as well as sensitization. The issue that is now of global concern is that of vaccine-derived poliovirus which emerged from the unstable oral polio vaccine. Ninety sewage water samples were collected from slums in Maiduguri using grab method, concentrated using two phase separation method and subjected to intratypic differentiation and vaccine-derived poliovirus screening. The result revealed the presence of Sabin 1in 17 samples (61.0%) and Sabin 3 in 22 samples (79.0%), all of which were positive after vaccine-derived poliovirus screening. The presence of strains of Sabin 1 and Sabin 3 in the sewage water samples collected is an indication of virus shedding in individuals which could be as a result of vaccination or contact with the faeces infected or vaccinated individuals.
Collapse
Affiliation(s)
| | - Aliyu Daja
- Department of Biochemistry, University of Maiduguri, Borno State, Nigeria
| | - Bamidele Soji Oderinde
- Department of Medical Laboratory Sciences, University of Maiduguri, Borno State, Nigeria
| | | |
Collapse
|
2
|
Wang S, Pang Z, Fan H, Tong Y. Advances in anti-EV-A71 drug development research. J Adv Res 2024; 56:137-156. [PMID: 37001813 PMCID: PMC10834817 DOI: 10.1016/j.jare.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71) is capable of causing hand, foot and mouth disease (HFMD), which may lead to neurological sequelae and even death. As EV-A71 is resistant to environmental changes and mutates easily, there is still a lack of effective treatments or globally available vaccines. AIM OF REVIEW For more than 50 years since the HFMD epidemic, related drug research has been conducted. Progress in this area can promote the further application of existing potential drugs and develop more efficient and safe antiviral drugs, and provide useful reference for protecting the younger generation and maintaining public health security. KEY SCIENTIFIC CONCEPTS OF REVIEW At present, researchers have identified hundreds of EV-A71 inhibitors based on screening repurposed drugs, targeted structural design, and rational modification of previously effective drugs as the main development strategies. This review systematically introduces the current potential drugs to inhibit EV-A71 infection, including viral inhibitors targeting key sites such as the viral capsid, RNA-dependent RNA polymerase (RdRp), 2C protein, internal ribosome entry site (IRES), 3C proteinase (3Cpro), and 2A proteinase (2Apro), starting from each stage of the viral life cycle. Meanwhile, the progress of host-targeting antiviral drugs and their development are summarized in terms of regulating host immunity, inhibiting autophagy or apoptosis, and regulating the cellular redox environment. In addition, the current clinical methods for the prevention and treatment of HFMD are summarized and discussed with the aim of providing support and recommendations for the treatment of enterovirus infections including EV-A71.
Collapse
Affiliation(s)
- Shuqi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
3
|
Volle R, Luo L, Razafindratsimandresy R, Sadeuh-Mba SA, Gouandjika-Valisache I, Horwood P, Duong V, Buchy P, Joffret ML, Huang Z, Duizer E, Martin J, Chakrabarti LA, Dussart P, Jouvenet N, Delpeyroux F, Bessaud M. Neutralization of African enterovirus A71 genogroups by antibodies to canonical genogroups. J Gen Virol 2023; 104. [PMID: 37909282 DOI: 10.1099/jgv.0.001911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Enterovirus 71 (EV-A71) is a major public health problem, causing a range of illnesses from hand-foot-and-mouth disease to severe neurological manifestations. EV-A71 strains have been phylogenetically classified into eight genogroups (A to H), based on their capsid-coding genomic region. Genogroups B and C have caused large outbreaks worldwide and represent the two canonical circulating EV-A71 subtypes. Little is known about the antigenic diversity of new genogroups as compared to the canonical ones. Here, we compared the antigenic features of EV-A71 strains that belong to the canonical B and C genogroups and to genogroups E and F, which circulate in Africa. Analysis of the peptide sequences of EV-A71 strains belonging to different genogroups revealed a high level of conservation of the capsid residues involved in known linear and conformational neutralization antigenic sites. Using a published crystal structure of the EV-A71 capsid as a model, we found that most of the residues that are seemingly specific to some genogroups were mapped outside known antigenic sites or external loops. These observations suggest a cross-neutralization activity of anti-genogroup B or C antibodies against strains of genogroups E and F. Neutralization assays were performed with diverse rabbit and mouse anti-EV-A71 sera, anti-EV-A71 human standards and a monoclonal neutralizing antibody. All the batches of antibodies that were tested successfully neutralized all available isolates, indicating an overall broad cross-neutralization between the canonical genogroups B and C and genogroups E and F. A panel constituted of more than 80 individual human serum samples from Cambodia with neutralizing antibodies against EV-A71 subgenogroup C4 showed quite similar cross-neutralization activities between isolates of genogroups C4, E and F. Our results thus indicate that the genetic drift underlying the separation of EV-A71 strains into genogroups A, B, C, E and F does not correlate with the emergence of antigenically distinct variants.
Collapse
Affiliation(s)
- Romain Volle
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
- Present address: Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lingjie Luo
- Present address: Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, PR China
- Institut Pasteur, Control of Chronic Viral Infections (CIVIC) Group, Virus and Immunity Unit, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | | | - Serge Alain Sadeuh-Mba
- Present address: Maryland Department of Agriculture, Salisbury Animal Health Laboratory, Salisbury, USA
- Centre Pasteur of Cameroon, Yaounde, Cameroon
| | | | - Paul Horwood
- Present address: James Cook University, Townsville, Australia
- Institut Pasteur of Cambodia, Phnom Penh, Cambodia
| | - Veasna Duong
- Institut Pasteur of Cambodia, Phnom Penh, Cambodia
| | | | - Marie-Line Joffret
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Zhong Huang
- Present address: Fudan University, Shanghai, PR China
- Institut Pasteur of Shanghai - Chinese Academy of Sciences, Shanghai, PR China
| | - Erwin Duizer
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Javier Martin
- National Institute for Biological Standards and Control (NIBSC), Potters Bar, UK
| | - Lisa A Chakrabarti
- Institut Pasteur, Control of Chronic Viral Infections (CIVIC) Group, Virus and Immunity Unit, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | | | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Maël Bessaud
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| |
Collapse
|
4
|
Cheng D, Chiu YW, Huang SW, Lien YY, Chang CL, Tsai HP, Wang YF, Wang JR. Genetic and Cross Neutralization Analyses of Coxsackievirus A16 Circulating in Taiwan from 1998 to 2021 Suggest Dominant Genotype B1 can Serve as Vaccine Candidate. Viruses 2022; 14:2306. [PMID: 36298861 PMCID: PMC9608817 DOI: 10.3390/v14102306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Coxsackievirus A16 (CVA16) is well known for causing hand-foot-and-mouth disease (HFMD) and outbreaks were frequently reported in Taiwan in the past twenty years. The epidemiology and genetic variations of CVA16 in Taiwan from 1998 to 2021 were analyzed in this study. CVA16 infections usually occurred in early summer and early winter, and showed increased incidence in 1998, 2000-2003, 2005, 2007-2008, and 2010 in Taiwan. Little or no CVA16 was detected from 2017 to 2021. CVA16 infection was prevalent in patients between 1 to 3 years old. A total of 69 isolates were sequenced. Phylogenetic analysis based on the VP1 region showed that CVA16 subgenotype B1 was dominantly isolated in Taiwan from 1998 to 2019, and B2 was identified only from isolates collected in 1999 and 2000. There was a high frequency of synonymous mutations in the amino acid sequences of the VP1 region among CVA16 isolates, with the exception of position 145 which showed positive selection. The recombination analysis of the whole genome of CVA16 isolates indicated that the 5'-untranslated region and the non-structural protein region of CVA16 subgenotype B1 were recombined with Coxsackievirus A4 (CVA4) and enterovirus A71 (EVA71) genotype A, respectively. The recombination pattern of subgenotype B2 was similar to B1, however, the 3D region was similar to EVA71 genotype B. Cross-neutralization among CVA16 showed that mouse antisera from various subgenotypes viruses can cross-neutralize different genotype with high neutralizing antibody titers. These results suggest that the dominant CVA16 genotype B1 can serve as a vaccine candidate for CVA16.
Collapse
Affiliation(s)
- Dayna Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yo-Wei Chiu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 70101, Taiwan
| | - Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan 70101, Taiwan
| | - Yun-Yin Lien
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 70101, Taiwan
| | - Chia-Lun Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 70101, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ya-Fang Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 70101, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan 70101, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jen-Ren Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 70101, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
5
|
Activation of Host Cellular Signaling and Mechanism of Enterovirus 71 Viral Proteins Associated with Hand, Foot and Mouth Disease. Viruses 2022; 14:v14102190. [PMID: 36298746 PMCID: PMC9609926 DOI: 10.3390/v14102190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Enteroviruses are members of the Picornaviridae family consisting of human enterovirus groups A, B, C, and D as well as nonhuman enteroviruses. Human enterovirus type 71 (EV71) has emerged as a major cause of viral encephalitis, known as hand, foot, and mouth disease (HFMD), in children worldwide, especially in the Asia-Pacific region. EV71 and coxsackievirus A16 are the two viruses responsible for HFMD which are members of group A enteroviruses. The identified EV71 receptors provide useful information for understanding viral replication and tissue tropism. Host factors interact with the internal ribosome entry site (IRES) of EV71 to regulate viral translation. However, the specific molecular features of the respective viral genome that determine virulence remain unclear. Although a vaccine is currently approved, there is no effective therapy for treating EV71-infected patients. Therefore, understanding the host-pathogen interaction could provide knowledge in viral pathogenesis and further benefits to anti-viral therapy development. The aim of this study was to investigate the latest findings about the interaction of viral ligands with the host receptors as well as the activation of immunerelated signaling pathways for innate immunity and the involvement of different cytokines and chemokines during host-pathogen interaction. The study also examined the roles of viral proteins, mainly 2A and 3C protease, interferons production and their inhibitory effects.
Collapse
|
6
|
Kinobe R, Wiyatno A, Artika IM, Safari D. Insight into the Enterovirus A71: A review. Rev Med Virol 2022; 32:e2361. [PMID: 35510476 DOI: 10.1002/rmv.2361] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/08/2022]
Abstract
Enterovirus A71 is a major causative pathogen of hand, foot and mouth disease. It has become a global public health threat, and is especially important for infants and young children in the Asian-Pacific countries. The enterovirus A71 is a non-enveloped virus of the Picornaviridae family having a single-stranded positive-sense RNA genome of about 7.4 kb which encodes the structural and nonstructural proteins. Currently there are no US FDA-approved vaccines or antiviral therapy available against enterovirus A71 infection. Although enterovirus A71 vaccines have been licenced in China, clinically approved vaccines for widespread vaccination programs are lacking. Substantial progress has recently been achieved on understanding the structure and function of enterovirus A71 proteins together with information on the viral genetic diversity and geographic distribution. The present review is intended to provide an overview on our current understanding of the molecular biology and epidemiology of enterovirus A71 which will aid the development of vaccines, therapeutics and other control strategies so as to bolster the preparedness for future enterovirus A71 outbreaks.
Collapse
Affiliation(s)
- Robert Kinobe
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Ageng Wiyatno
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia.,Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Dodi Safari
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| |
Collapse
|