1
|
Peng X, Zeng Z, Hassan S, Xue Y. The potential of marine natural Products: Recent Advances in the discovery of Anti-Tuberculosis agents. Bioorg Chem 2024; 151:107699. [PMID: 39128242 DOI: 10.1016/j.bioorg.2024.107699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Tuberculosis (TB) is an infectious airborne disease caused by Mycobacterium tuberculosis. Since the 1990 s, many countries have made significant progress in reducing the incidence of TB and associated mortality by improving health services and strengthening surveillance systems. Nevertheless, due to the emergence of multidrug-resistant TB (MDR-TB), alongside extensively drug-resistant TB (XDR-TB) and TB-HIV co-infection, TB remains one of the lead causes of death arising from infectious disease worldwide, especially in developing countries and disadvantaged populations. Marine natural products (MNPs) have received a large amount of attention in recent years as a source of pharmaceutical constituents and lead compounds, and are expected to offer significant resources and potential in the fields of drug development and biotechnology in the years to come. This review summarizes 169 marine natural products and their synthetic derivatives displaying anti-TB activity from 2013 to the present, including their structures, sources and functions. Partial synthetic information and structure-activity relationships (SARs) are also included.
Collapse
Affiliation(s)
- Xinyu Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Ziqian Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Said Hassan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda 24540, Pakistan
| | - Yongbo Xue
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
2
|
Li L, Huang J, Feng L, Xu L, Lin H, Liu K, Li X, Wang R. Altechromone A Ameliorates Inflammatory Bowel Disease by Inhibiting NF-κB and NLRP3 Pathways. Mar Drugs 2024; 22:410. [PMID: 39330291 PMCID: PMC11432983 DOI: 10.3390/md22090410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Altechromone A, also known as 2,5-dimethyl-7-hydroxychromone, is a hydroxyketone containing one hydroxyl and one ketone group. In this study, we isolated Altechromone A from the marine-derived fungus Penicillium Chrysogenum (XY-14-0-4). Previous reports show that Altechromone A has various activities including tumor suppression, antibacterial, and antiviral activities. However, there is no study about its anti-inflammatory activity in inflammatory bowel disease (IBD). Here, we assess the anti-inflammatory activity, especially in IBD, and its potential mechanism using the zebrafish model. Our results indicated that Altechromone A has anti-inflammatory activity in a CuSO4-, tail-cutting-, and LPS-induced inflammatory model in zebrafish, respectively. In addition, Altechromone A greatly reduced the number of neutrophils, improved intestinal motility and efflux efficiency, alleviated intestinal damage, and reduced reactive oxygen species production in the TNBS-induced IBD zebrafish model. The transcriptomics sequencing and real-time qPCR indicated that Altechromone A inhibited the expression of pro-inflammatory genes including TNF-α, NF-κB, IL-1, IL-1β, IL-6, and NLRP3. Therefore, these data indicate that Altechromone A exhibits therapeutic effects in IBD by inhibiting the inflammatory response.
Collapse
Affiliation(s)
- Lei Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Jing Huang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Lixin Feng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Liyan Xu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Houwen Lin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Medical Decision and Economic Group, Department of Pharmacy, Ren Ji Hospital, South Campus, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| |
Collapse
|
3
|
Zhu S, Xu TC, Huang R, Gao Y, Wu SH. Four new polyketides from an endophytic fungus Talaromyces muroii. Fitoterapia 2024; 177:106073. [PMID: 38897246 DOI: 10.1016/j.fitote.2024.106073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
In our continuous work on the isolation of endophytes, the endophytic fungal strain YIMF00209 was obtained from the roots of Gmelina arborea, which is an ethnic medicinal plant mainly distributed in Southeast Asia. The fermentation extracts of the strain exhibited significant antimicrobial activities against Staphylococcus aureus, Fusarium solani, and Escherichia coli. Based on morphological characteristics and phylogenetic analysis, it was identified as Talaromyces muroii. Four new polyketides, talaromurolides A-D (1-4), along with 26 known compounds (5-30), were isolated from the culture broth of the strain in two different media. Their structures were identified based on HRESIMS, NMR, and CD spectral data. Among them, compounds 2, 4-6, 19, 22, 24, 27, 28, and 30 were isolated from the fermentation broth in CYM medium; compounds 1, 3, 7-18, 20, 21, 23, 25, 26, and 29 were obtained from the fermentation broth in PDB medium; and compounds 2, 5, and 30 were existed in both two media. Compounds 6-9, 12, 16, 20, 21, 23, 25, and 29 were obtained from the genus Talaromyces for the first time. The antimicrobial activities of several compounds were assayed against six pathogens. Compound 1 exhibited inhibitory activities against S. aureus, E. coli, Candida albicans, Salmonella typhimurium, and Botrytis cinerea with MIC value of 64 μg/mL. Compound 25 exhibited antibacterial activity against E. coli with MIC value of 32 μg/mL.
Collapse
Affiliation(s)
- Sha Zhu
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Tang-Chang Xu
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Rong Huang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yuan Gao
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Shao-Hua Wu
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
4
|
Pokhriyal A, Kapoor N, Negi S, Sharma G, Chandra S, Gambhir L, Douglas Melo Coutinho H. Endophytic Fungi: Cellular factories of novel medicinal chemistries. Bioorg Chem 2024; 150:107576. [PMID: 38901278 DOI: 10.1016/j.bioorg.2024.107576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Inflammation and associated disorders have been a major contributing factor to mortality worldwide. The augmented mortality rate and emerging resistance against the approved therapeutics necessitate the discovery of novel chemistries destined for multiple clinical settings. Cellular factories including endophytic fungi have been tapped for chemical diversity with therapeutic potential. The emerging evidence has suggested the potential of bioactive compounds isolated from the endophytic fungi as putative agents to combat inflammation-associated disorders. The review summarizesand assists the readers in comprehending the structural and functional aspects of the medicinal chemistries identified from endophytic fungi as anticancer, antiobesity, antigout, and immunomodulatory agents.
Collapse
Affiliation(s)
- Ankita Pokhriyal
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun 248001, India
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur 302015, India
| | - Sanskriti Negi
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun 248001, India
| | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur 302015, India
| | - Subhash Chandra
- Department of Pharmaceutical Chemistry, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun 248001, India.
| | - Lokesh Gambhir
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun 248001, India.
| | | |
Collapse
|
5
|
Leshchenko EV, Berdyshev DV, Yurchenko EA, Antonov AS, Borkunov GV, Kirichuk NN, Chausova VE, Kalinovskiy AI, Popov RS, Khudyakova YV, Chingizova EA, Chingizov AR, Isaeva MP, Yurchenko AN. Bioactive Polyketides from the Natural Complex of the Sea Urchin-Associated Fungi Penicillium sajarovii KMM 4718 and Aspergillus protuberus KMM 4747. Int J Mol Sci 2023; 24:16568. [PMID: 38068891 PMCID: PMC10706121 DOI: 10.3390/ijms242316568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
The marine-derived fungal strains KMM 4718 and KMM 4747 isolated from sea urchin Scaphechinus mirabilis as a natural fungal complex were identified as Penicillium sajarovii and Aspergillus protuberus based on Internal Transcribed Spacer (ITS), partial β-tubulin (BenA), and calmodulin (CaM) molecular markers as well as an ribosomal polymerase two, subunit two (RPB2) region for KMM 4747. From the ethyl acetate extract of the co-culture, two new polyketides, sajaroketides A (1) and B (2), together with (2'S)-7-hydroxy-2-(2'-hydroxypropyl)-5-methylchromone (3), altechromone A (4), norlichexanthone (5), griseoxanthone C (6), 1,3,5,6-tetrahydroxy-8-methylxanthone (7), griseofulvin (8), 6-O-desmethylgriseofulvin (9), dechlorogriseofulvin (10), and 5,6-dihydro-4-methyl-2H-pyran-2-one (11) were identified. The structures of the compounds were elucidated using spectroscopic analyses. The absolute configurations of the chiral centers of sajaroketides A and B were determined using time-dependent density functional theory (TDDFT)-based calculations of the Electronic Circular Dichroism (ECD) spectra. The inhibitory effects of these compounds on urease activity and the growth of Staphylococcus aureus, Escherichia coli, and Candida albicans were observed. Sajaroketide A, altechromone A, and griseofulvin showed significant cardioprotective effects in an in vitro model of S. aureus-induced infectious myocarditis.
Collapse
Affiliation(s)
- Elena V. Leshchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (D.V.B.); (A.S.A.); (G.V.B.); (N.N.K.); (V.E.C.); (A.I.K.); (R.S.P.); (Y.V.K.); (E.A.C.); (A.R.C.); (M.P.I.); (A.N.Y.)
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Dmitrii V. Berdyshev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (D.V.B.); (A.S.A.); (G.V.B.); (N.N.K.); (V.E.C.); (A.I.K.); (R.S.P.); (Y.V.K.); (E.A.C.); (A.R.C.); (M.P.I.); (A.N.Y.)
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (D.V.B.); (A.S.A.); (G.V.B.); (N.N.K.); (V.E.C.); (A.I.K.); (R.S.P.); (Y.V.K.); (E.A.C.); (A.R.C.); (M.P.I.); (A.N.Y.)
| | - Alexandr S. Antonov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (D.V.B.); (A.S.A.); (G.V.B.); (N.N.K.); (V.E.C.); (A.I.K.); (R.S.P.); (Y.V.K.); (E.A.C.); (A.R.C.); (M.P.I.); (A.N.Y.)
| | - Gleb V. Borkunov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (D.V.B.); (A.S.A.); (G.V.B.); (N.N.K.); (V.E.C.); (A.I.K.); (R.S.P.); (Y.V.K.); (E.A.C.); (A.R.C.); (M.P.I.); (A.N.Y.)
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Natalya N. Kirichuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (D.V.B.); (A.S.A.); (G.V.B.); (N.N.K.); (V.E.C.); (A.I.K.); (R.S.P.); (Y.V.K.); (E.A.C.); (A.R.C.); (M.P.I.); (A.N.Y.)
| | - Viktoria E. Chausova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (D.V.B.); (A.S.A.); (G.V.B.); (N.N.K.); (V.E.C.); (A.I.K.); (R.S.P.); (Y.V.K.); (E.A.C.); (A.R.C.); (M.P.I.); (A.N.Y.)
| | - Anatoly I. Kalinovskiy
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (D.V.B.); (A.S.A.); (G.V.B.); (N.N.K.); (V.E.C.); (A.I.K.); (R.S.P.); (Y.V.K.); (E.A.C.); (A.R.C.); (M.P.I.); (A.N.Y.)
| | - Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (D.V.B.); (A.S.A.); (G.V.B.); (N.N.K.); (V.E.C.); (A.I.K.); (R.S.P.); (Y.V.K.); (E.A.C.); (A.R.C.); (M.P.I.); (A.N.Y.)
| | - Yuliya V. Khudyakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (D.V.B.); (A.S.A.); (G.V.B.); (N.N.K.); (V.E.C.); (A.I.K.); (R.S.P.); (Y.V.K.); (E.A.C.); (A.R.C.); (M.P.I.); (A.N.Y.)
| | - Ekaterina A. Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (D.V.B.); (A.S.A.); (G.V.B.); (N.N.K.); (V.E.C.); (A.I.K.); (R.S.P.); (Y.V.K.); (E.A.C.); (A.R.C.); (M.P.I.); (A.N.Y.)
| | - Artur R. Chingizov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (D.V.B.); (A.S.A.); (G.V.B.); (N.N.K.); (V.E.C.); (A.I.K.); (R.S.P.); (Y.V.K.); (E.A.C.); (A.R.C.); (M.P.I.); (A.N.Y.)
| | - Marina P. Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (D.V.B.); (A.S.A.); (G.V.B.); (N.N.K.); (V.E.C.); (A.I.K.); (R.S.P.); (Y.V.K.); (E.A.C.); (A.R.C.); (M.P.I.); (A.N.Y.)
| | - Anton N. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (D.V.B.); (A.S.A.); (G.V.B.); (N.N.K.); (V.E.C.); (A.I.K.); (R.S.P.); (Y.V.K.); (E.A.C.); (A.R.C.); (M.P.I.); (A.N.Y.)
| |
Collapse
|
6
|
Balázs O, Dombi Á, Zsidó BZ, Hetényi C, Vida RG, Poór M. Probing the Interactions of 31 Mycotoxins with Xanthine Oxidase: Alternariol, Alternariol-3-Sulfate, and α-Zearalenol Are Allosteric Inhibitors of the Enzyme. Toxins (Basel) 2023; 15:250. [PMID: 37104188 PMCID: PMC10143053 DOI: 10.3390/toxins15040250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Mycotoxins are frequent toxic contaminants in foods and beverages, causing a significant health threat. Interactions of mycotoxins with biotransformation enzymes (e.g., cytochrome P450 enzymes, sulfotransferases, and uridine 5'-diphospho-glucuronosyltransferases) may be important due to their possible detoxification or toxic activation during enzymatic processes. Furthermore, mycotoxin-induced enzyme inhibition may affect the biotransformation of other molecules. A recent study described the strong inhibitory effects of alternariol and alternariol-9-methylether on the xanthine oxidase (XO) enzyme. Therefore, we aimed to test the impacts of 31 mycotoxins (including the masked/modified derivatives of alternariol and alternariol-9-methylether) on XO-catalyzed uric acid formation. Besides the in vitro enzyme incubation assays, mycotoxin depletion experiments and modeling studies were performed. Among the mycotoxins tested, alternariol, alternariol-3-sulfate, and α-zearalenol showed moderate inhibitory actions on the enzyme, representing more than tenfold weaker impacts compared with the positive control inhibitor allopurinol. In mycotoxin depletion assays, XO did not affect the concentrations of alternariol, alternariol-3-sulfate, and α-zearalenol in the incubates; thus, these compounds are inhibitors but not substrates of the enzyme. Experimental data and modeling studies suggest the reversible, allosteric inhibition of XO by these three mycotoxins. Our results help the better understanding of the toxicokinetic interactions of mycotoxins.
Collapse
Affiliation(s)
- Orsolya Balázs
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary
| | - Ágnes Dombi
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Balázs Zoltán Zsidó
- Unit of Pharmacoinformatics, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Csaba Hetényi
- Unit of Pharmacoinformatics, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Róbert György Vida
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| |
Collapse
|
7
|
Meena M, Mehta T, Nagda A, Yadav G, Sonigra P. PGPR-mediated synthesis and alteration of different secondary metabolites during plant-microbe interactions. PLANT-MICROBE INTERACTION - RECENT ADVANCES IN MOLECULAR AND BIOCHEMICAL APPROACHES 2023:229-255. [DOI: 10.1016/b978-0-323-91875-6.00002-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
8
|
Elbermawi A, Ali AR, Amen Y, Ashour A, Ahmad KF, Mansour ESS, Halim AF. Anti-diabetic activities of phenolic compounds of Alternaria sp., an endophyte isolated from the leaves of desert plants growing in Egypt. RSC Adv 2022; 12:24935-24945. [PMID: 36199870 PMCID: PMC9434606 DOI: 10.1039/d2ra02532a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
Six phenolic compounds (talaroflavone (1), alternarienoic acid (2), altenuene (3), altenusin (4), alternariol (5), and alternariol-5-O-methyl ether (6)) were isolated from the solid rice culture media of Alternaria sp., an endophyte isolated from the fresh leaves of three desert plants, Lycium schweinfurthii Dammer (Solanaceae), Pancratium maritimum L. (Amaryllidaceae) and Cynanchum acutum L. (Apocynaceae). Compounds 2, 3, and 4 exhibited potent α-glucosidase and lipase inhibitory activities suggesting that they might act as naturally occurring anti-diabetic candidates. The same compounds showed potent binding in the active site for both enzymes with desirable pharmacokinetic properties. The isolated bioactive compounds were not exclusive to a certain host plant which reveals the dominant ecological standpoints for consequent optimization. This could lead to a cost-effective and reproducible yield applicable to commercial scale-up. Six phenolic compounds were isolated from the solid rice culture media of Alternaria sp., an endophyte isolated from the leaves of three desert plants, Lycium schweinfurthii Dammer (Solanaceae), Pancratium maritimum L. (Amaryllidaceae) and Cynanchum acutum L. (Apocynaceae).![]()
Collapse
Affiliation(s)
- Ahmed Elbermawi
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Ahmed R. Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yhiya Amen
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Kadria F. Ahmad
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - El-Sayed S. Mansour
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Ahmed F. Halim
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
9
|
Tang Z, Qin Y, Chen W, Zhao Z, Lin W, Xiao Y, Chen H, Liu Y, Chen H, Bu T, Li Q, Cai Y, Yao H, Wan Y. Diversity, Chemical Constituents, and Biological Activities of Endophytic Fungi Isolated From Ligusticum chuanxiong Hort. Front Microbiol 2021; 12:771000. [PMID: 34867905 PMCID: PMC8636053 DOI: 10.3389/fmicb.2021.771000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to evaluate the diversity of endophytic fungi of different parts of Ligusticum chuanxiong Hort (CX) and further characterize their biological activities and identify chemical compounds produced by these endophytic fungi. A total of 21 endophytic fungi were isolated and identified from CX. Penicillium oxalicum, Simplicillium sp., and Colletotrichum sp. were identified as promising strains by the color reaction. Comparing different organic extracts of the three strains, it was observed that the ethyl acetate extract of Penicillium oxalicum and Simplicillium sp. and the n-butanol extract of Colletotrichum sp. showed significant antioxidant and antibacterial activities. The ethyl acetate extracts of Penicillium oxalicum had outstanding antioxidant and antibacterial effects, and its radical scavenging rates for ABTS and DPPH were 98.43 ± 0.006% and 90.11 ± 0.032%, respectively. At the same time, their IC50 values were only 0.18 ± 0.02 mg/mL and 0.04 ± 0.003 mg/mL. The ethyl acetate extract of Penicillium oxalicum showed MIC value of only 0.5 mg/mL against Escherichia coli and Staphylococcus aureus. By liquid chromatography-mass spectrometry (LC-MS), we found that Penicillium oxalicum could produce many high-value polyphenols, such as hesperidin (36.06 μmol/g), ferulic acid (1.17 μmol/g), and alternariol (12.64 μmol/g), which can be a potential resource for the pharmaceutical industry. In conclusion, these results increase the diversity of CX endophytic fungi and the antioxidant and antibacterial activities of their secondary metabolites.
Collapse
Affiliation(s)
- Zizhong Tang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yihan Qin
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Wenhui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Zhiqiao Zhao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Wenjie Lin
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Ya'an, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Tongliang Bu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yujun Wan
- Sichuan Food Fermentation Industry Research and Design Institute, Chengdu, China
| |
Collapse
|
10
|
|
11
|
Wethalawe AN, Alwis YV, Udukala DN, Paranagama PA. Antimicrobial Compounds Isolated from Endolichenic Fungi: A Review. Molecules 2021; 26:molecules26133901. [PMID: 34202392 PMCID: PMC8271976 DOI: 10.3390/molecules26133901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/25/2022] Open
Abstract
A lichen is a symbiotic relationship between a fungus and a photosynthetic organism, which is algae or cyanobacteria. Endolichenic fungi are a group of microfungi that resides asymptomatically within the thalli of lichens. Endolichenic fungi can be recognized as luxuriant metabolic artists that produce propitious bioactive secondary metabolites. More than any other time, there is a worldwide search for new antibiotics due to the alarming increase in microbial resistance against the currently available therapeutics. Even though a few antimicrobial compounds have been isolated from endolichenic fungi, most of them have moderate activities, implying the need for further structural optimizations. Recognizing this timely need and the significance of endolichenic fungi as a promising source of antimicrobial compounds, the activity, sources and the structures of 31 antibacterial compounds, 58 antifungal compounds, two antiviral compounds and one antiplasmodial (antimalarial) compound are summarized in this review. In addition, an overview of the common scaffolds and structural features leading to the corresponding antimicrobial properties is provided as an aid for future studies. The current challenges and major drawbacks of research related to endolichenic fungi and the remedies for them have been suggested.
Collapse
Affiliation(s)
- A. Nethma Wethalawe
- Institute of Chemistry Ceylon, College of Chemical Sciences, Rajagiriya 10100, Sri Lanka; (A.N.W.); (Y.V.A.); (D.N.U.)
| | - Y. Vindula Alwis
- Institute of Chemistry Ceylon, College of Chemical Sciences, Rajagiriya 10100, Sri Lanka; (A.N.W.); (Y.V.A.); (D.N.U.)
| | - Dinusha N. Udukala
- Institute of Chemistry Ceylon, College of Chemical Sciences, Rajagiriya 10100, Sri Lanka; (A.N.W.); (Y.V.A.); (D.N.U.)
| | - Priyani A. Paranagama
- Department of Chemistry, University of Kelaniya, Kelaniya 11600, Sri Lanka
- Correspondence:
| |
Collapse
|
12
|
Qader MM, Hamed AA, Soldatou S, Abdelraof M, Elawady ME, Hassane ASI, Belbahri L, Ebel R, Rateb ME. Antimicrobial and Antibiofilm Activities of the Fungal Metabolites Isolated from the Marine Endophytes Epicoccum nigrum M13 and Alternaria alternata 13A. Mar Drugs 2021; 19:md19040232. [PMID: 33924262 PMCID: PMC8074750 DOI: 10.3390/md19040232] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 01/15/2023] Open
Abstract
Epicotripeptin (1), a new cyclic tripeptide along with four known cyclic dipeptides (2-5) and one acetamide derivative (6) were isolated from seagrass-associated endophytic fungus Epicoccum nigrum M13 recovered from the Red Sea. Additionally, two new compounds, cyclodidepsipeptide phragamide A (7) and trioxobutanamide derivative phragamide B (8), together with eight known compounds (9-16), were isolated from plant-derived endophyte Alternaria alternata 13A collected from a saline lake of Wadi El Natrun depression in the Sahara Desert. The structures of the isolated compounds were determined based on the 1D and 2D NMR spectroscopic data, HRESIMS data, and a comparison with the reported literature. The absolute configurations of 1 and 7 were established by advanced Marfey's and Mosher's ester analyses. The antimicrobial screening indicated that seven of the tested compounds exhibited considerable (MIC range of 2.5-5 µg/mL) to moderate (10-20 µg/mL) antibacterial effect against the tested Gram-positive strains and moderate to weak (10-30 µg/mL) antibacterial effect against Gram-negative strains. Most of the compounds exhibited weak or no activity against the tested Gram-negative strains. On the other hand, four of the tested compounds showed considerable antibiofilm effects against biofilm forming Gram-positive and Gram-negative strains.
Collapse
Affiliation(s)
- M. Mallique Qader
- School of Computing, Engineering, & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (M.M.Q.); (A.S.I.H.)
- National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka
| | - Ahmed A. Hamed
- National Research Centre, Microbial Chemistry Department, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt; (A.A.H.); (M.A.)
| | - Sylvia Soldatou
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK;
| | - Mohamed Abdelraof
- National Research Centre, Microbial Chemistry Department, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt; (A.A.H.); (M.A.)
| | - Mohamed E. Elawady
- National Research Centre, Microbial Biotechnology Department, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt;
| | - Ahmed S. I. Hassane
- School of Computing, Engineering, & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (M.M.Q.); (A.S.I.H.)
- Aberdeen Royal Infirmary, Foresterhill Health Campus, Aberdeen AB25 2ZN, UK
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland;
| | - Rainer Ebel
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK;
- Correspondence: (R.E.); (M.E.R.); Tel.: +44-1224-272930 (R.E.); +44-141-8483072 (M.E.R.)
| | - Mostafa E. Rateb
- School of Computing, Engineering, & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (M.M.Q.); (A.S.I.H.)
- Correspondence: (R.E.); (M.E.R.); Tel.: +44-1224-272930 (R.E.); +44-141-8483072 (M.E.R.)
| |
Collapse
|
13
|
Santhakumaran I, Narayanaswamy R, Arumugam G. Bioinformatic insights into the biochemical efficacy of a fungal metabolite: asperyellone. NEW J CHEM 2021. [DOI: 10.1039/d1nj02938j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In silico multifunctional attributes of Asperyellone.
Collapse
Affiliation(s)
| | | | - Gnanamani Arumugam
- Microbiology Division, CSIR-CLRI, Adyar, Chennai-600 020, Tamil Nadu, India
| |
Collapse
|
14
|
Abdel-Azeem MA, El-Maradny YA, Othman AM, Abdel-Azeem AM. Endophytic Fungi as a Source of New Pharmaceutical Biomolecules. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Zhao S, Tian K, Li Y, Ji W, Liu F, Khan B, Yan W, Ye Y. Enantiomeric Dibenzo-α-Pyrone Derivatives from Alternaria alternata ZHJG5 and Their Potential as Agrochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15115-15122. [PMID: 33289556 DOI: 10.1021/acs.jafc.0c04106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three pairs of enantiomeric dibenzo-α-pyrone derivatives (1-3) including two pairs of new racemates (±)-alternaone A (1) and (±)-alternaone B (2) and one new enantiomer (-)-alternatiol (3), together with five known compounds (4-8) were isolated from the fungus Alternaria alternata ZHJG5. Their structures were confirmed by spectroscopic data and single-crystal X-ray diffraction analysis. All enantiomers were separated via chiral high-performance liquid chromatography, with their configurations determined by electronic circular dichroism calculation. Biogenetically, a key epoxy-rearrangement step was proposed for the formation of skeletons in 1-3; (+) 1, (-)-1, and 5 presented moderate antibacterial inhibition on phytopathogenic bacteria Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola. In the antifungal test, compounds 7 and 8 showed a moderate protective effect against Botrytis cinerea in vivo.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Kailin Tian
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Yu Li
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Wenxia Ji
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Fang Liu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Babar Khan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Wei Yan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yonghao Ye
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| |
Collapse
|
16
|
Zhao S, Xiao C, Wang J, Tian K, Ji W, Yang T, Khan B, Qian G, Yan W, Ye Y. Discovery of Natural FabH Inhibitors Using an Immobilized Enzyme Column and Their Antibacterial Activity against Xanthomonas oryzae pv. oryzae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14204-14211. [PMID: 33201689 DOI: 10.1021/acs.jafc.0c06363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
β-Ketoacyl-acyl carrier protein synthase III (KAS III, FabH) is essential for bacterial fatty acid biosynthesis. Recent studies indicate that FabH can be a potential target for bactericide development. In the present study, an immobilized FabH column was developed and used to screen FabH inhibitors from complex natural product extracts. Combined with HPLC, four secondary metabolites, alternariol (1), altenuisol (2), alterlactone (3), and dehydroaltenusin (4), were site-directed, isolated, and identified from the crude extract of Alternaria alternata ZHJG5. These compounds showed inhibitory activities on FabH of Xanthomonas oryzae pv. oryzae (Xoo) with IC50 values from 29.5 to 74.1 μM and also displayed a varying degree of antibacterial activities against Xoo with minimal inhibitory concentration values from 4 to 64 μg/mL. Molecular modeling was then used to picture how the compounds interact with XooFabH. Two inhibitors, compounds 1 and 3, exhibited significant bactericidal activity against rice bacterial leaf blight with a protective efficiency of 66.2 and 82.5% at the concentration of 200 μg/mL, respectively, suggesting that they could be lead candidates to develop novel bactericides.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Cheng Xiao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jiajie Wang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Kailin Tian
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wenxia Ji
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Tingting Yang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Babar Khan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Guoliang Qian
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wei Yan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yonghao Ye
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
17
|
Khuseib Hamed Al-Rashdi F, Al-Sadi AM, Al-Riyamy BZ, S. N. Maharachchikumbura S, Khalfan Al-Ruqaishi H, Velazhahan R. Alternaria alternata and Neocosmospora sp. from the medicinal plant Euphorbia larica exhibit antagonistic activity against Fusarium sp., a plant pathogenic fungus. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1759702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Fatma Khuseib Hamed Al-Rashdi
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Abdullah Mohammed Al-Sadi
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Bahja Z. Al-Riyamy
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Sajeewa S. N. Maharachchikumbura
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Huda Khalfan Al-Ruqaishi
- College of Agricultural and Marine Sciences, Central Instrument Laboratory, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Rethinasamy Velazhahan
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
18
|
Xu X, Huang Y, Xu J, He X, Wang Y. Anti-neuroinflammatory and antioxidant phenols from mulberry fruit (Morus alba L.). J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
19
|
Secondary Metabolites of The Endophytic Fungus Alternaria alternata JS0515 Isolated from Vitex rotundifolia and Their Effects on Pyruvate Dehydrogenase Activity. Molecules 2019; 24:molecules24244450. [PMID: 31817301 PMCID: PMC6943735 DOI: 10.3390/molecules24244450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
The fungal strain Alternaria alternata JS0515 was isolated from Vitex rotundifolia (beach vitex). Twelve secondary metabolites, including one new altenusin derivative (1), were isolated. The isolated metabolites included seven known altenusin derivatives (2–8), two isochromanones (9, 10), one perylenequinone (11), and one benzocycloalkanone (12). Their structures were determined via 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and computational electronic circular dichroism (ECD) analysis. Compounds 3 and 11 increased pyruvate dehydrogenase (PDH) activity in AD-293 human embryonic kidney cells and significantly inhibited PDH phosphorylation. The IC50 values of 3 and 11 were 32.58 and 27.82 μM, respectively.
Collapse
|
20
|
Brahmachari G, Mandal B, Mandal M, Mondal A. Sopherone A and B: Two new biologically relevant dibenzo-α-pyrones from Cassia sophera. Fitoterapia 2019; 136:104169. [DOI: 10.1016/j.fitote.2019.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 01/01/2023]
|
21
|
Berestetskiy AO, Dalinova AA, Volosatova NS. Metabolite Profiles and Biological Activity of Extracts from Alternaria sonchi S-102 Culture Grown by Different Fermentation Methods. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819030049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Isolation of taxol producing endophytic fungus Alternaria brassicicola from non-Taxus medicinal plant Terminalia arjuna. World J Microbiol Biotechnol 2019; 35:74. [DOI: 10.1007/s11274-019-2651-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/26/2019] [Indexed: 01/16/2023]
|
23
|
Sudharshana TN, Venkatesh HN, Nayana B, Manjunath K, Mohana DC. Anti-microbial and anti-mycotoxigenic activities of endophytic Alternaria alternata isolated from Catharanthus roseus (L.) G. Don.: molecular characterisation and bioactive compound isolation. Mycology 2019; 10:40-48. [PMID: 30834151 PMCID: PMC6394321 DOI: 10.1080/21501203.2018.1541933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/23/2018] [Indexed: 01/15/2023] Open
Abstract
The present study investigated the anti-microbial and anti-mycotoxigenic activities of the ethyl acetate extract (EA) and a bioactive compound obtained from an endophytic fungus Alternaria alternata isolated from Catharanthus roseus leaves. A. alternata was identified using PCR-based 5.8S rDNA sequencing. The EA and bioactive compound, p-Coumaric acid (PC), showed concentration-dependent broad-spectrum anti-microbial activity against the tested bacteria, yeast, and fungi with MICs ranging from 7.8 to 250 µg/mL. The in vitro production of aflatoxin B1 (AFB1) from Aspergillus flavus and fumonisin B1 (FB1) from Fusarium verticillioides was completely inhibited by EA and PC at 400 µg/mL. The synthesis of the membrane-bound ergosterol from A. flavus and F. verticillioides was strongly inhibited by PC at 200 µg/mL. The EA and PC were found to show significant anti-microbial and anti-mycotoxigenic activities, hence, they could be explored as protective agents for preventing microbial deterioration and mycotoxins accumulation in food and feedstuffs during pre- and post-harvest and storage.
Collapse
Affiliation(s)
- T. N. Sudharshana
- Department of Microbiology and Biotechnology, Bangalore University, Bengaluru, India
| | - H. N. Venkatesh
- Department of Microbiology and Biotechnology, Bangalore University, Bengaluru, India
| | - Borah Nayana
- Department of Microbiology and Biotechnology, Bangalore University, Bengaluru, India
| | - K. Manjunath
- Department of Microbiology and Biotechnology, Bangalore University, Bengaluru, India
| | - D. C. Mohana
- Department of Microbiology and Biotechnology, Bangalore University, Bengaluru, India
| |
Collapse
|
24
|
Patriarca A, da Cruz Cabral L, Pavicich MA, Nielsen KF, Andersen B. Secondary metabolite profiles of small-spored Alternaria support the new phylogenetic organization of the genus. Int J Food Microbiol 2019; 291:135-143. [DOI: 10.1016/j.ijfoodmicro.2018.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/28/2018] [Accepted: 11/18/2018] [Indexed: 01/25/2023]
|
25
|
Huang RH, Gou JY, Zhao DL, Wang D, Liu J, Ma GY, Li YQ, Zhang CS. Phytotoxicity and anti-phytopathogenic activities of marine-derived fungi and their secondary metabolites. RSC Adv 2018; 8:37573-37580. [PMID: 35558593 PMCID: PMC9089327 DOI: 10.1039/c8ra08047j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/26/2018] [Indexed: 01/06/2023] Open
Abstract
To find new pesticides for agricultural use, 133 fungal strains were isolated from coastal marine habitats, from which 37 independent isolates were identified, belonging to 20 genera in nine orders, and the diversity of the isolated fungi were discussed. The phytotoxicity and anti-phytopathogenic fungal and bacterial activities of these 37 extracts, and two previously isolated fungal extracts were evaluated, displaying different levels of bioactivity. Based on the bioactive and chemical screening, an Alternaria sp. (P8) strain, which showed prominent bioactivity and contained abundant secondary metabolites was selected for further chemical investigation; one new compound, a benzopyranone (1), and seven known compounds (2-8) were obtained. Their structures were determined by analysing extensive NMR spectroscopic data and ECD comparisons. Compounds 1, 2, and 6-8 showed obvious phytotoxicity, especially against amaranth, and compound 1 also showed potent antifungal activity toward Alternaria brassicicola. To the best of our knowledge, this is the first report of the phytotoxicity of marine-derived fungi and their secondary metabolites. These studies should provide the foundation for future research into the use of such fungal extracts to combat weeds and diseases in agriculture.
Collapse
Affiliation(s)
- Rui-Huan Huang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences Qingdao 266101 China +86-532-8870-2115
| | - Jian-Yu Gou
- Zunyi Branch, Guizhou Tobacco Company Zunyi 563000 China
| | - Dong-Lin Zhao
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences Qingdao 266101 China +86-532-8870-2115
| | - Dan Wang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences Qingdao 266101 China +86-532-8870-2115
| | - Jing Liu
- Zunyi Branch, Guizhou Tobacco Company Zunyi 563000 China
| | - Guo-Yong Ma
- Zunyi Branch, Guizhou Tobacco Company Zunyi 563000 China
| | - Yi-Qiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences Qingdao 266101 China +86-532-8870-2115
| | - Cheng-Sheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences Qingdao 266101 China +86-532-8870-2115
| |
Collapse
|
26
|
|
27
|
|
28
|
A fruitful decade for fungal polyketides from 2007 to 2016: antimicrobial activity, chemotaxonomy and chemodiversity. Future Med Chem 2017; 9:1631-1648. [DOI: 10.4155/fmc-2017-0028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The last three decades have shown that the fungi can be ‘biofactories’ of novel, bioactive secondary metabolites that produce numerous natural products with novel skeletons and biological activities. Particularly in the last 10 years, large numbers of antimicrobial fungal secondary metabolites have been discovered. This review provides an overview of key, defining developments of the last 10 years regarding the discovery of antimicrobial activity, chemotaxonomy and chemodiversity of fungal polyketides.
Collapse
|
29
|
Martinez-Klimova E, Rodríguez-Peña K, Sánchez S. Endophytes as sources of antibiotics. Biochem Pharmacol 2017; 134:1-17. [DOI: 10.1016/j.bcp.2016.10.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/25/2016] [Indexed: 11/27/2022]
|
30
|
Li Y, Wang J, He W, Lin X, Zhou X, Liu Y. One Strain-Many Compounds Method for Production of Polyketide Metabolites Using the Sponge-Derived Fungus Arthrinium arundinis ZSDS1-F3. Chem Nat Compd 2017. [DOI: 10.1007/s10600-017-1994-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
|
32
|
Zhang JC, Chen GY, Li XZ, Hu M, Wang BY, Ruan BH, Zhou H, Zhao LX, Zhou J, Ding ZT, Yang YB. Phytotoxic, antibacterial, and antioxidant activities of mycotoxins and other metabolites from Trichoderma sp. Nat Prod Res 2017; 31:2745-2752. [DOI: 10.1080/14786419.2017.1295235] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ju-cheng Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming, China
- College of Science, Honghe University, Mengzi, China
| | - Guang-Yi Chen
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Xiao-Zhan Li
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Ming Hu
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Bang-Yan Wang
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Bao-Hui Ruan
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Hao Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Li-Xing Zhao
- Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Jun Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Zhong-Tao Ding
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Ya-Bin Yang
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| |
Collapse
|
33
|
Shi Y, Xie H, Cao L, Zhang R, Xu Z, Wang Z, Deng Z. Effects of Cd- and Pb-resistant endophytic fungi on growth and phytoextraction of Brassica napus in metal-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:417-426. [PMID: 27726080 DOI: 10.1007/s11356-016-7693-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/12/2016] [Indexed: 05/24/2023]
Abstract
Metal-resistant endophytic fungi from roots improved phytoremediation efficacy of host plants; however, the effects of endophytic fungi from plant aerial parts on host plants are unknown. The aim of this study was to develop a feasible method to screen fungal endophytes from stems and roots of Brassica napus and to investigate effects of the endophytic fungi on growth and phytoremediation efficiency of the plant. Endophytic Fusarium sp. CBRF44, Penicillium sp. CBRF65, and Alternaria sp. CBSF68 with different traits were isolated from roots and stems of rapes grown in a metal-contaminated soil. Fusarium sp. CBRF44 (resistant to 5 mM Cd and 15 mM Pb, isolated from roots) and Alternaria sp. CBSF68 (resistant to 1 mM Cd and 10 mM Pb, isolated from stems) could produce indole-3-acetic acid (IAA) and siderophore; Penicillium sp. CBRF65 (tolerate 2 mM Cd and 20 mM Pb, isolated from roots) could not produce IAA and siderophore but showed the highest phosphate-solubilizing activities. Fusarium sp. CBRF44 and Penicillium sp. CBRF65 significantly increased the rape biomass and promoted the extraction efficacy of Pb and Cd, while Alternaria sp. CBSF68 did not show similar results. Penicillium sp. CBRF65 and Fusarium sp. CBRF44 could be frequently recovered from inoculated rape roots, while Alternaria sp. CBSF68 was scarcely recovered. The results indicate that the colonizing capacity of endophytic fungi in roots is important to improve phytoremediation efficacy of host plants.
Collapse
Affiliation(s)
- Yanan Shi
- School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Huarong Xie
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Lixiang Cao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Renduo Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zaichao Xu
- School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Zhuoya Wang
- School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Zujun Deng
- School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
34
|
Analysis of Chemical Constituents Changing in Physical Process and Nutritional Components of Malus halliana Koehne Tea. J FOOD QUALITY 2017. [DOI: 10.1155/2017/7950137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study aimed to establish a HPLC method for simultaneous determination of the changing of quercitrin, 3-hydroxyphloridzin, and phloridzin in physical process of M. halliana tea. Meanwhile, the nutritional compositions were determined, using anthrone-sulfuric acid colorimetry and direct titration determination of total sugar and reducing sugar, respectively, in order to provide theoretical basis for quality control and tea production. The results showed that the regression equations for quercitrin, 3-hydroxyphloridzin, and phloridzin were linear in the range of 0.0972–12.15 μg (r=0.999 8), 0.0932~11.65 μg (r=0.999 1), and 0.9~112.5 μg (r=0.999 6), respectively. The average recoveries ranged from 98.19% to 99.35%. The contents of crude protein and the crude fat were measured by spectrophotometric detection and soxhlet extraction detection, respectively. The contents of total sugar, reducing sugar, the fat, and protein were 6.8 g/100 g, 8.5 mg/100 g, 2.399 g/100 g, and 4.362 g/100 g, respectively, in M. halliana tea.
Collapse
|
35
|
Bourdel G, Roy-Bolduc A, St-Arnaud M, Hijri M. Concentration of Petroleum-Hydrocarbon Contamination Shapes Fungal Endophytic Community Structure in Plant Roots. Front Microbiol 2016; 7:685. [PMID: 27433155 PMCID: PMC4922216 DOI: 10.3389/fmicb.2016.00685] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/26/2016] [Indexed: 11/24/2022] Open
Abstract
Plant-root inhabiting fungi are a universal phenomenon found in all ecosystems where plants are able to grow, even in harsh environments. Interactions between fungi and plant roots can vary widely from mutualism to parasitism depending on many parameters. The role of fungal endophytes in phytoremediation of polluted sites, and characterization of the endophytic diversity and community assemblages in contaminated areas remain largely unexplored. In this study, we investigated the composition of endophytic fungal communities in the roots of two plant species growing spontaneously in petroleum-contaminated sedimentation basins of a former petro-chemical plant. The three adjacent basins showed a highly heterogeneous pattern of pollutant concentrations. We combined a culture-based isolation approach with the pyrosequencing of fungal ITS ribosomal DNA. We selected two species, Eleocharis erythropoda Steud. and Populus balsamifera L., and sampled three individuals of each species from each of three adjacent basins, each with a different concentration of petroleum hydrocarbons. We found that contamination level significantly shaped endophytic fungal diversity and community composition in E. erythropoda, with only 9.9% of these fungal Operational Taxonomic Units (OTUs) retrieved in all three basins. However, fungal community structure associated with P. balsamifera remained unaffected by the contamination level with 28.2% of fungal OTUs shared among all three basins. This could be explained by the smaller differences of pollutant concentrations in the soil around our set of P. balsamifera sampless compared to that around our set of E. erythropoda samples. Our culture-based approach allowed isolation of 11 and 30 fungal endophytic species from surface-sterilized roots of E. erythropoda and P. balsamifera, respectively. These isolates were ribotyped using ITS, and all were found in pyrosequensing datasets. Our results demonstrate that extreme levels of pollution reduce fungal diversity and shape community composition in E. erythropoda. Our findings shed light on the effect of soil petroleum contamination on fungal endophytic communities and could help to develop strategies for improving phytoremediation using fungal endophytes.
Collapse
Affiliation(s)
- Guillaume Bourdel
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal QC, Canada
| | - Alice Roy-Bolduc
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal QC, Canada
| | - Marc St-Arnaud
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal QC, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal QC, Canada
| |
Collapse
|
36
|
Lou J, Yu R, Wang X, Mao Z, Fu L, Liu Y, Zhou L. Alternariol 9-methyl ether from the endophytic fungus Alternaria sp. Samif01 and its bioactivities. Braz J Microbiol 2016; 47:96-101. [PMID: 26887231 PMCID: PMC4822747 DOI: 10.1016/j.bjm.2015.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/16/2014] [Indexed: 01/03/2023] Open
Abstract
One bioactive compound, identified as alternariol 9-methyl ether, was isolated from the crude extract of the endophytic fungus Alternaria sp. Samif01 residing in the roots of Salvia miltiorrhiza Bunge. Alternariol 9-methyl ether was active against bacteria with minimum inhibitory concentration values ranging from 25 to 75 μg/mL and median inhibitory concentration (IC50) values ranging from 16.00 to 38.27 μg/mL. The IC50 value of alternariol 9-methyl ether against spore germination of Magnaporthe oryzae was 87.18 μg/mL. Alternariol 9-methyl ether also showed antinematodal activity against Bursaphelenchus xylophilus and Caenorhabditis elegans with IC50 values of 98.17 μg/mL and 74.62 μg/mL, respectively. This work is the first report on alternariol 9-methyl ether and its biological activities from the endophytic fungus Alternaria sp. Samif01 derived from S. miltiorrhiza Bunge. The results indicate the potential of Alternaria sp. Samif01 as a source of alternariol 9-methyl ether and also support that alternariol 9-methyl ether is a natural compound with high potential bioactivity against microorganisms.
Collapse
Affiliation(s)
- Jingfeng Lou
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ruiting Yu
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiaohan Wang
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ziling Mao
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Linyun Fu
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yang Liu
- Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ligang Zhou
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
37
|
Garazd YL, Garazd MM. Natural Dibenzo[b,d]Pyran-6-Ones: Structural Diversity and Biological Activity. Chem Nat Compd 2016. [DOI: 10.1007/s10600-016-1536-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Influence of Culturing Conditions on Bioprospecting and the Antimicrobial Potential of Endophytic Fungi from Schinus terebinthifolius. Curr Microbiol 2015; 72:173-183. [PMID: 26563302 DOI: 10.1007/s00284-015-0929-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 09/22/2015] [Indexed: 02/04/2023]
Abstract
In this study, we analyzed the antimicrobial activity of extracts harvested from 17 endophytic fungi isolated from the medicinal plant Schinus terebinthifolius. Morphological and molecular analyses indicated that these fungal species belonged to the genera Alternaria, Bjerkandera, Colletotrichum, Diaporthe, Penicillium, and Xylaria. Of the endophytes analyzed, 64.7 % produced antimicrobial compounds under at least one of the fermentation conditions tested. Nine isolates produced compounds that inhibited growth of Staphylococcus aureus, four produced compounds that inhibited Candida albicans, and two that inhibited Pseudomonas aeruginosa. The fermentation conditions of the following endophytes were optimized: Alternaria sp. Sect. Alternata-LGMF626, Xylaria sp.-LGMF673, and Bjerkandera sp.-LGMF713. Specifically, the carbon and nitrogen sources, initial pH, temperature, and length of incubation were varied. In general, production of antimicrobial compounds was greatest when galactose was used as a carbon source, and acidification of the growth medium enhanced the production of compounds that inhibited C. albicans. Upon large-scale fermentation, Alternaria sp. Sect. Alternata-LGMF626 produced an extract containing two fractions that were active against methicillin-resistant S. aureus. One of the extracts exhibited high activity (minimum inhibitory concentration of 18.52 µg/mL), and the other exhibited moderate activity (minimum inhibitory concentration of 55.55 µg/mL). The compounds E-2-hexyl-cinnamaldehyde and two compounds of the pyrrolopyrazine alkaloids class were identified in the active fractions by gas chromatography-mass spectrometry.
Collapse
|
39
|
Bioactive metabolites from the endophytic fungus Alternaria alternata. Fitoterapia 2014; 99:153-8. [DOI: 10.1016/j.fitote.2014.09.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022]
|
40
|
Metwaly AM, Fronczek FR, Ma G, Kadry HA, El-Hela AA, Mohammad AEI, Cutler SJ, Ross SA. Antileukemic α-pyrone derivatives from the endophytic fungus Alternaria phragmospora. Tetrahedron Lett 2014; 55:3478-3481. [PMID: 27708462 DOI: 10.1016/j.tetlet.2014.04.085] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Four new (1-4) and two known (5 and 6) α-pyrone derivatives have been isolated from Alternaria phragmospora, an endophytic fungus from Vinca rosea, leaves. The isolated compounds were chemically identified to be 5-butyl-4-methoxy-6-methyl-2H-pyran-2-one (1), 5-butyl-6-(hydroxymethyl)-4-methoxy-2H-pyran-2-one (2), 5-(1-hydroxybutyl)-4-methoxy-6-methyl-2H-pyran-2-one (3), 4-methoxy-6-methyl-5-(3-oxobutyl)-2H-pyran-2-one (4), 5-(2-hydroxyethyl)-4-methoxy-6-methyl-2H-pyran-2-one (5), and 5-[(2E)-but-2-en-1-yl]-4-methoxy-6-methyl-2H-pyran-2-one (6). Compounds 2 and 4 showed moderate antileukemic activities against HL60 cells with IC50 values of 2.2 and 0.9 μM and against K562 cells with IC50 values of 4.5 and 1.5 μM, respectively.
Collapse
Affiliation(s)
- Ahmed M Metwaly
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Department of Pharmacognosy, Faculty of Pharmacy, University of Al-Azhar, Cairo, Egypt
| | - Frank R Fronczek
- Department of Chemistry, College of Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Guoyi Ma
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Hazem A Kadry
- Department of Pharmacognosy, Faculty of Pharmacy, University of Al-Azhar, Cairo, Egypt
| | - Atef A El-Hela
- Department of Pharmacognosy, Faculty of Pharmacy, University of Al-Azhar, Cairo, Egypt
| | | | - Stephen J Cutler
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Department of Medicinal Chemistry, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Samir A Ross
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| |
Collapse
|
41
|
Bioactive secondary metabolites from Phomopsis sp., an endophytic fungus from Senna spectabilis. Molecules 2014; 19:6597-608. [PMID: 24858094 PMCID: PMC6271730 DOI: 10.3390/molecules19056597] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/14/2014] [Accepted: 05/19/2014] [Indexed: 11/23/2022] Open
Abstract
Chemical investigation of an acetonitrile fraction from the endophytic fungus Phomopsis sp. led to the isolation of the new natural product 2-hydroxy-alternariol (7) together with the known compounds cytochalasins J (1) and H (2), 5'-epialtenuene (3) and the mycotoxins alternariol monomethyl ether (AME, 4), alternariol (AOH, 5) and cytosporone C (6). The structure of the new compound was elucidated by using 1-D and 2-D NMR (nuclear magnetic resonance) and high resolution mass spectrometry. The cytochalasins J (1) and H (2) and AOH (5) exhibited potent inhibition of the total ROS (reactive oxygen species) produced by stimulated human neutrophils and acted as potent potential anti-inflammatory agents. Moreover, cytochalasin H (2) demonstrated antifungal and acetylcholinesterase enzyme (AChE) inhibition in vitro.
Collapse
|
42
|
Mao Z, Sun W, Fu L, Luo H, Lai D, Zhou L. Natural dibenzo-α-pyrones and their bioactivities. Molecules 2014; 19:5088-108. [PMID: 24759070 PMCID: PMC6271090 DOI: 10.3390/molecules19045088] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/20/2022] Open
Abstract
Natural dibenzo-α-pyrones are an important group of metabolites derived from fungi, mycobionts, plants and animal feces. They exhibit a variety of biological activities such as toxicity on human and animals, phytotoxicity as well as cytotoxic, antioxidant, antiallergic, antimicrobial, antinematodal, and acetylcholinesterase inhibitory properties. Dibenzo-α-pyrones are biosynthesized via the polyketide pathway in microorganisms or metabolized from plant-derived ellagitannins and ellagic acid by intestinal bacteria. At least 53 dibenzo-α-pyrones have been reported in the past few decades. This mini-review aims to briefly summarize the occurrence, biosynthesis, biotransformation, as well as their biological activities and functions. Some considerations related to synthesis, production and applications of dibenzo-α-pyrones are also discussed.
Collapse
Affiliation(s)
- Ziling Mao
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Weibo Sun
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Linyun Fu
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Haiyu Luo
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Daowan Lai
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ligang Zhou
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
43
|
Poudel TN, Lee YR. An advanced and novel one-pot synthetic method for diverse benzo[c]chromen-6-ones by transition-metal free mild base-promoted domino reactions of substituted 2-hydroxychalcones with β-ketoesters and its application to polysubstituted terphenyls. Org Biomol Chem 2014; 12:919-30. [DOI: 10.1039/c3ob41800f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel one-pot syntheses of a variety of benzo[c]chromen-6-one derivatives were accomplished by Cs2CO3-promoted reactions of 2-hydroxychalcones.
Collapse
Affiliation(s)
- Tej Narayan Poudel
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan 712-749, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan 712-749, Republic of Korea
| |
Collapse
|
44
|
Chagas FO, Dias LG, Pupo MT. A Mixed Culture of Endophytic Fungi Increases Production of Antifungal Polyketides. J Chem Ecol 2013; 39:1335-42. [DOI: 10.1007/s10886-013-0351-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/08/2013] [Accepted: 09/25/2013] [Indexed: 01/22/2023]
|
45
|
Ye F, Chen GD, He JW, Li XX, Sun X, Guo LD, Li Y, Gao H. Xinshengin, the first altenusin with tetracyclic skeleton core from Phialophora spp. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.06.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Monkai J, Chukeatirote E, Chamyuang S, Synytsya A, Ruml T, Hyde KD. Antimicrobial activity of some saprobic fungi isolated from Magnolia liliiferaand Cinnamomum inersleaves. Mycology 2013. [DOI: 10.1080/21501203.2013.801044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
47
|
Lou J, Fu L, Peng Y, Zhou L. Metabolites from Alternaria fungi and their bioactivities. Molecules 2013; 18:5891-935. [PMID: 23698046 PMCID: PMC6270608 DOI: 10.3390/molecules18055891] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/06/2013] [Accepted: 05/16/2013] [Indexed: 01/10/2023] Open
Abstract
Alternaria is a cosmopolitan fungal genus widely distributing in soil and organic matter. It includes saprophytic, endophytic and pathogenic species. At least 268 metabolites from Alternaria fungi have been reported in the past few decades. They mainly include nitrogen-containing metabolites, steroids, terpenoids, pyranones, quinones, and phenolics. This review aims to briefly summarize the structurally different metabolites produced by Alternaria fungi, as well as their occurrences, biological activities and functions. Some considerations related to synthesis, biosynthesis, production and applications of the metabolites from Alternaria fungi are also discussed.
Collapse
Affiliation(s)
| | | | | | - Ligang Zhou
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
48
|
Donia AERM, Soliman GA, Zaghloul AM, Alqasoumi SI, Awaad AS, Radwan AM, Basodan OA. Chemical constituents and protective effect of Ficus ingens (Miq.) Miq. on carbon tetrachloride-induced acute liver damage in male Wistar albino rats. JOURNAL OF SAUDI CHEMICAL SOCIETY 2013. [DOI: 10.1016/j.jscs.2012.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Meng X, Mao Z, Lou J, Xu L, Zhong L, Peng Y, Zhou L, Wang M. Benzopyranones from the endophytic fungus Hyalodendriella sp. Ponipodef12 and their bioactivities. Molecules 2012; 17:11303-14. [PMID: 23011274 PMCID: PMC6268909 DOI: 10.3390/molecules171011303] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/04/2012] [Accepted: 09/19/2012] [Indexed: 11/16/2022] Open
Abstract
The endophytic fungus Hyalodendriella sp. Ponipodef12 was isolated from the hybrid 'Neva' of Populus deltoides Marsh × P. nigra L. In this study, four benzopyranones were isolated from the ethyl acetate extract of Hyalodendriella sp. Ponipodef12, and identified as palmariol B (1), 4-hydroxymellein (2), alternariol 9-methyl ether (3), and botrallin (4) by means of physicochemical and spectroscopic analysis. All the compounds were evaluated for their antibacterial, antifungal, antinematodal and acetylcholinesterase inhibitory activities. 4-Hydroxymellein (2) exhibited stronger antibacterial activity than the other compounds. Palmariol B (1) showed stronger antimicrobial, antinematodal and acetylcholinesterase inhibitory activities than alternariol 9-methyl ether (3) which indicated that the chlorine substitution at position 2 may contribute to its bioactivity. The results indicate the potential of this endophytic fungus as a source of bioactive benzopyranones.
Collapse
Affiliation(s)
- Xiangjie Meng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ziling Mao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jingfeng Lou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Liang Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Lingyun Zhong
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Youliang Peng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ligang Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Authors to whom correspondence should be addressed; (L.Z.); (M.W.)
| | - Mingan Wang
- College of Science, China Agricultural University, Beijing 100193, China
- Authors to whom correspondence should be addressed; (L.Z.); (M.W.)
| |
Collapse
|
50
|
Heptaketides with antiviral activity from three endolichenic fungal strains Nigrospora sp., Alternaria sp. and Phialophora sp. Fitoterapia 2012; 83:1087-91. [PMID: 22613072 DOI: 10.1016/j.fitote.2012.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/27/2012] [Accepted: 05/06/2012] [Indexed: 01/03/2023]
Abstract
Two new heptaketides, (+)-(2S,3S,4aS)-altenuene (1a) and (-)-(2S,3S,4aR)-isoaltenuene (2a), together with six known compounds, (-)-(2R,3R,4aR)-altenuene (1b), (+)-(2R,3R,4aS)-isoaltenuene (2b), 5'-methoxy-6-methyl-biphenyl-3,4,3'-triol (3), alternariol (4), alternariol-9-methyl ether (5), and 4-hydroxyalternariol-9-methyl ether (6) were isolated from the EtOAc extract of an endolichenic fungal strain Nigrospora sphaerica (No.83-1-1-2). Compounds 1a and 1b were separated from enantiomers 1 by chiral HPLC, and so were 2a and 2b from enantiomers 2. Interestingly, 1-6 were also obtained from other two endolichenic fungal strains Alternaria alternata (No.58-8-4-1) and Phialophora sp. (No.96-1-8-1). The structures of 1-6 were elucidated by means of MS, HR-MS, NMR, and X-ray diffraction. Furthermore, the absolute configurations of 1a-2b were determined by CD experiments and CD calculation. Of these compounds, 4 and 5 showed antiviral activity against herpes simplex virus (HSV) in vitro, with IC(50) values of 13.5 and 21.3 μM, and with selective index (SI) values of 26.5 and 17.1, respectively.
Collapse
|