1
|
Meng Y, Ma X, Luan F, Zhao Z, Li Y, Xiao X, Wang Q, Zhang J, Thandar SM. Sustainable enhancement of Cr(VI) bioreduction by the isolated Cr(VI)-resistant bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152433. [PMID: 34942251 DOI: 10.1016/j.scitotenv.2021.152433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Bioreduction of mobile Cr(VI) to sparingly soluble Cr(III) is an effective strategy for in situ remediations of Cr contaminated sites. The key of this technology is to screen Cr(VI)-resistant bacteria and further explore the sustainable enhancement approaches towards their Cr(VI) reduction performance. In this study, a total of ten Cr(VI)-resistant bacteria were isolated from a Cr(VI) contaminated site. All of them could reduce Cr(VI), and the greatest extent of Cr(VI) reduction (98%) was obtained by the isolated CRB6 strain. The isolated CRB6 was able to reduce structural Fe(III) in Nontronite NAu-2 to structural Fe(II). Compared with the slow bioreduction process, the produced structural Fe(II) can rapidly enhance Cr(VI) reduction. The resist dissolution characteristics of NAu-2 in the redox cycling may provide sustainable enhancement of Cr(VI) reduction. However, no enhancement on Cr(VI) bioreduction by the isolated CRB6 was observed in the presence of NAu-2, which was attributed to the inhibition of Cr(VI) on the electron transfer between the isolated CRB6 and NAu-2. AQDS can accelerate the electron transfer between the isolated CRB6 and NAu-2 as an electron shuttle in the presence of Cr(VI). Therefore, the combination of NAu-2 and AQDS generated a synergistic enhancement on Cr(VI) bioreduction compared with the enhancement obtained by NAu-2 and AQDS individually. Our results highlight that structural Fe(III) and electron shuttle can provide a sustainable enhancement of Cr(VI) reduction by Cr(VI)-reducing bacteria, which has great potential for the effective Cr(VI) in-situ remediation.
Collapse
Affiliation(s)
- Ying Meng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiaoxu Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Geographical Sciences,Hebei Normal University; Hebei Key Laboratory of Environmental Change and Ecological Construction; Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change,Shijiazhuang 050024, PR China
| | - Fubo Luan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ziwang Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuan Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Geological Exploration and Research Institute, CNACG, Beijing 100039, PR China
| | - Xiao Xiao
- New World Environmental Protection Group, ZhuZhou 412007, PR China
| | - Qianqian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Geographical Sciences,Hebei Normal University; Hebei Key Laboratory of Environmental Change and Ecological Construction; Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change,Shijiazhuang 050024, PR China
| | - Jianda Zhang
- School of Geographical Sciences,Hebei Normal University; Hebei Key Laboratory of Environmental Change and Ecological Construction; Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change,Shijiazhuang 050024, PR China.
| | - Soe Myat Thandar
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Department of Biotechnology, Mandalay Technological University, Ministry of Education, Mandalay, Myanmar.
| |
Collapse
|
2
|
Li M, Wang D, Liu X, Sun J. Evaluation and correction on quinones' quantification errors: Derived from the coexistence of different quinone species and pH-sensitive feature. CHEMOSPHERE 2019; 230:67-75. [PMID: 31102873 DOI: 10.1016/j.chemosphere.2019.04.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Quinones are becoming an essential tool for refractory organics treatment, while their quantification may be not well-considered. In this paper, two kinds of potential errors in quantification were evaluated in multiple pH conditions. They were derived from the coexistence of oxidized/reduced quinone species (Type I) and pH-sensitive feature (Type II), respectively. These errors would remarkably influence the accuracy of quantification while they haven't been emphasized. Thus, to elaborate the relationship between the two types of errors and the absorbance or pH conditions, three typical quinones [Anthraquinone-1-sulfonate (α-AQS), anthraquinone-2,6-disulfonate (AQDS) and lawsone] were selected and their acid dissociation coefficients (pKa) as well as UV-Vis spectra were determined. Results revealed that, for Type I, the relative error (RE) of α-AQS concentration would exceed the limit (5%) when reduced α-AQS was below 48% of total α-AQS. Similar results were found for lawsone. However, the RE can be eliminated by the equation established in this paper. For Type II, the pH-sensitive feature was related to the pKa values of quinones. Absorbances of α-AQS and lawsone would change remarkably with pH variation. Therefore, a model for correction was established. Analog data showed high consistency with experimental data [r = 0.995 (n = 25, p < 0.01) and r = 0.997 (n = 36, p < 0.01), for lawsone and α-AQS respectively]. Especially, the determination of AQDS concentrations was noticed to be pH-independent at 437 nm under pH 4.00 to 9.18 conditions. Based on these features, a comprehensive data solution was proposed for handling these errors.
Collapse
Affiliation(s)
- Meng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China; State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300350, PR China.
| | - Dong Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China; State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300350, PR China.
| | - Xiaoduo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China; State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300350, PR China.
| | - Jingmei Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China; State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300350, PR China.
| |
Collapse
|
3
|
Lipczynska-Kochany E. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review. CHEMOSPHERE 2018; 202:420-437. [PMID: 29579677 DOI: 10.1016/j.chemosphere.2018.03.104] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/19/2018] [Accepted: 03/15/2018] [Indexed: 05/27/2023]
Abstract
Depicted as large polymers by the traditional model, humic substances (HS) tend to be considered resistant to biodegradation. However, HS should be regarded as supramolecular associations of rather small molecules. There is evidence that they can be degraded not only by aerobic but also by anaerobic bacteria. HS presence alters biological transformations of organic pollutants in water and soil. HS, including humin, have a great potential for an application in aerobic and anaerobic wastewater treatment as well as in bioremediation. Black carbon materials, including char (biochar) and activated carbon (AC), long recognized effective sorbents, have been recently discovered to act as effective redox mediators (RM), which may significantly accelerate degradation of organic pollutants in a way similar to HS. Humic-like coating on the biochar surface has been identified. Explanation of mechanisms and possibility of applications of black carbon materials have only started to be explored. Results of many original and review papers, presented and discussed in this article, show an enormous potential for an interesting, multidisciplinary research as well as for a development of new, green technologies for biological wastewater treatment and bioremediation. Future research areas have been suggested.
Collapse
|
4
|
Tuo Y, Liu G, Dong B, Yu H, Zhou J, Wang J, Jin R. Microbial synthesis of bimetallic PdPt nanoparticles for catalytic reduction of 4-nitrophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5249-5258. [PMID: 28004366 DOI: 10.1007/s11356-016-8276-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
Bimetallic nanoparticles are generally believed to have improved catalytic activity and stability due to geometric and electronic changes. In this work, biogenic-Pd (bio-Pd), biogenic-Pt (bio-Pt), and biogenic-PdPt (bio-PdPt) nanoparticles were synthesized by Shewanella oneidensis MR-1 in the absence or presence of quinone. Compared with direct microbial reduction process, the addition of anthraquinone-2,6-disulfonate (AQDS) could promote the reduction efficiency of Pd(II) or/and Pt(IV) and result in decrease of particles size. All kinds of nanoparticles could catalyze 4-nitrophenol reduction by NaBH4 and their catalytic activities took the following order: bio-PdPt (AQDS) ∼ bio-PdPt > bio-Pd (AQDS) > bio-Pd > bio-Pt (AQDS) ∼ bio-Pt. Moreover, the bio-PdPt (AQDS) nanoparticles could be reused for 6 cycles. We believe that this simple and efficient biosynthesis approach for synthesizing bimetallic bio-PdPt nanocatalysts is important for preparing active and stable catalysts.
Collapse
Affiliation(s)
- Ya Tuo
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Bin Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Huali Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
5
|
Liu L, Liu G, Zhou J, Wang J, Jin R, Wang A. Improved bioreduction of nitrobenzene by black carbon/biochar derived from crop residues. RSC Adv 2016. [DOI: 10.1039/c6ra11671j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Black carbon and biochar can act as mediator to improve microbial reduction of nitrobenzene to aniline.
Collapse
Affiliation(s)
- Lecheng Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering
- Ministry of Education
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116024
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering
- Ministry of Education
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116024
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering
- Ministry of Education
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116024
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering
- Ministry of Education
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116024
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering
- Ministry of Education
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116024
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- China
| |
Collapse
|