1
|
El-Bestawy E, Metwally MAA, Aly ARA. Integrated biological-chemical system for phenol removal from petrochemicals wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35645-0. [PMID: 39739168 DOI: 10.1007/s11356-024-35645-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/21/2024] [Indexed: 01/02/2025]
Abstract
Phenol is a highly concerning pollutant in petrochemical industrial wastewater. It is extremely poisonous, carcinogenic, and persistent, therefore, it bioaccumulates in the food chain reaching humans, where it causes acute irritation to the skin, eyes, and respiratory tract, as well as chronic effects on the liver, kidneys, and nervous system. It spills or leaks easily into surface water or groundwater sources, leading to the creation of other harmful substituted compounds. Therefore, the present study aimed to design an integrated biological-chemical system (phenol degrader(s) and nanoparticle assemblage) for the efficient removal of phenolic compounds from wastewater of a poly-vinyl chloride production unit at a petrochemical company in Alexandria. Ten indigenous microbial isolates were obtained from phenol-contaminated wastewater and purified. Two fungal isolates were excluded, and eight bacterial isolates were screened for their efficiency in the degradation and removal of phenol. Three isolates (Stutzerimonas chloritidismutans strain AW-1 (A2), Stutzerimonas stutzeri ATCC 17588 = LMG 11199 (A4), and Arthrobacter ruber strain MDB1-42 (A9)) proved to be the most promising candidate(s) and were investigated as individual and mixed cultures. The mixed culture (A2, A4, and A9) proved to be the most efficient, and could achieve 98.85, 31.08, 45.83, and 45.83% removal of phenol, chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total dissolved solids (TDS), respectively (all below their maximum permissible limits (MPLs)), for discharge or reuse. The bacterial consortium was decorated with the synthesized and characterized Fe3O4 Nanoparticles (NPs) at 1:3 (g/g), the optimum ratio for coating and immobilization (94.22%) of the bacterial consortium. Fe3O4 NP/bacteria assembly (trial 1) showed the highest RE of 20, 56.66, 47.06, 25.16, and 96.78% for TDS, total suspended solids (TSS), BOD, COD, and phenol, respectively, all after only 1 h except TSS (2 h), compared to the treatment with undecorated bacterial consortium (trial 2) or bacteria-free Fe3O4 NPs (trial 3). It is concluded that the proposed treatment system (Fe3O4 NP/bacterial assembly) is an extraordinarily effective, practical, quick, clean, renewable, long-lasting, ecologically friendly, and simply implemented technology for remediating phenol-contaminated wastewater compared to other conventional treatment methods. Concerning TSS, COD, and phenol residues that are still higher than their MPLs, it can be easily overcome by increasing the exposure (contact) time or the dose of the Fe3O4 NP/bacterial assembly, using multiple units of the proposed treatment in sequence, or fixing the decorated bacteria as a biofilm system and treating the effluent in a continuous mode.
Collapse
Affiliation(s)
- Ebtesam El-Bestawy
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt.
| | | | - Abdel Rahman Ahmed Aly
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt
| |
Collapse
|
2
|
Hammad EN, Eltaweil AS, Abouelenein SA, El-Subruiti G. Enhanced Cr(VI) removal via CPBr-modified MIL-88A@amine-functionalized GO: synthesis, performance, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47851-47865. [PMID: 39009817 DOI: 10.1007/s11356-024-33859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/27/2024] [Indexed: 07/17/2024]
Abstract
Water contamination by heavy metals, especially chromium (VI), poses a critical environmental issue due to its carcinogenic nature and persistence in the environment. Addressing this, the current study develops an efficient adsorbent, CPBr-MIL-88A@AmGO, which utilizes the synergistic capabilities of Cetylpyridinium bromide-modified MIL-88A and amine-functionalized graphene oxide to enhance Cr(VI) removal from aqueous solutions. The obtained results indicate that CPBr-MIL-88A@AmGO achieves its highest removal efficacy at pH 2, where the interaction of CPBr and AmGO's positively charged centers significantly contributes to the adsorption processes. According to the Langmuir isotherm model, the composite's adsorption capacity reached a maximum of 306.75 mg/g. The adsorption kinetics adhered to a pseudo-second-order model along with the endothermic nature of the process. Although the presence of SO42- ions significantly reduces adsorption capacity, other interfering ions including Na+, K+, Ca2+, Cl-, and NO3- only slightly affect it. Remarkably, the composite maintains high removal efficiency, over 82%, even after 7 recycling tests, underscoring its potential for practical applications in water treatment systems. The proposed mechanism involves the contribution of electrostatic attractions, ion exchange, complexation, and the reduction of Cr(VI) to Cr(III) in the removal process. This study not only offers a potent solution for Cr(VI) remediation but also contributes to sustainable water resource management.
Collapse
Affiliation(s)
- Eman N Hammad
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Abdelazeem S Eltaweil
- Department of Engineering, Faculty of Engineering and Technology, University of Technology and Applied Sciences, Sultanate of Oman, Ibra, Oman.
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Saeyda A Abouelenein
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Gehan El-Subruiti
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Omer AM, Eltaweil AS, Abdelhamed AM, Abd El-Monaem EM, El-Subruiti GM. Sustainable synthesis of magnetic petroleum coke/nonanyl chitosan composite for efficient removal of o-nitrophenol. Sci Rep 2024; 14:14463. [PMID: 38914588 PMCID: PMC11196280 DOI: 10.1038/s41598-024-64117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024] Open
Abstract
Worldwide industrialization has grown at a rapid pace, contaminating water resources, particularly with phenolic pollutants that pose a risk to aquatic systems and human health. The goal of this study is to create an inexpensive magnetic composite that can effectively remove nitrophenol (o-NP) using adsorptive means. In this instance, a nonanyl chitosan (N-Cs) derivative was synthesized and then combined with activated petroleum coke (AP-coke) and magnetic Fe3O4 to boost its adsorbability towards o-NP and to facilitate its separation. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffractometer (XRD), Vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), and zeta potential were employed to characterize the magnetic composite. The experimental results indicated that the Fe3O4/AP-coke/N-Cs composite possesses a greater affinity toward o-NP with a maximal efficiency reached 88% compared to 22.8, 31.2, and 45.8% for Fe3O4, AP-coke and N-Cs, respectively. The equilibrium adsorption data coincided with the Langmuir, Freundlich, and Temkin isotherm models, with a maximum adsorption capacity of 291.55 mg/g at pH 6, whereas the pseudo second order kinetic model offered the best fit to the experimental data. Besides, the developed adsorbent preserved satisfactory adsorption characteristics after reuse for five successive cycles. The proposed adsorption mechanism involves the H-bonding, π-π interaction, hydrophobic interactions and electron donor-acceptor interactions. These findings hypothesize that the constructed magnetic composite could efficiently remove nitrophenols from polluted water with high performance and ease-separation.
Collapse
Affiliation(s)
- Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Abdelazeem S Eltaweil
- Department of Engineering, Faculty of Technology and Engineering, University of Technology and Applied Sciences, Ibra, Sultanate of Oman
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Aly M Abdelhamed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Environmental department, EPROM-MIDOR Refinery, P. O. Box: 1001, Alexandria, Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Guo H, Zhang X, Zhang N. Ferrate (IV) synthesis using derived persulfate during treatment of oil recovery wastewater. ENVIRONMENTAL TECHNOLOGY 2024:1-7. [PMID: 38875359 DOI: 10.1080/09593330.2024.2365428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
Using oil recovery wastewater as the target material, the degradation of organic matter in oilfield wastewater was studied in an anodic oxidation system using Ti/Ru-Ir oxide-coated anode and 0.7mMNa2SO4 as the electrolyte. The TOC of the wastewater was 210 mg/L at the beginning of the electrolysis in the electrolysis system, and it decreased from 210 to 93.6 mg/L after 50 min of electrolysis. Under the action of this system, sulfate was oxidized to persulfate, and the apparent concentration of persulfate was 15.02 mM, oxidation and degradation of organic matter in wastewater by the action of newly generated persulfate.. Afterwards, NaOH and Fe2(SO4)3 were added to the electrolyzed wastewater, and the TOC in the wastewater was further reduced to 25.1 mg/L due to the coagulation effect of the newly generated Fe(OH)3 precipitate. The TOC removal rate of the wastewater treated by this process reached 88.0%, which meets the discharge requirements. At the same time, the derived persulfate oxidized Fe(OH)3 to generate a green substance, which was identified as Na2FeO3 by IR, UV, and XRD analyses. Na2FeO3 served as a highly effective water-purifying agent, demonstrating superior performance when compared to FeO42-. The method reported in this study not only provides a strategy for waste resource recycling but also offers the potential for mass production of ferrate (IV).
Collapse
Affiliation(s)
- Haoda Guo
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, People's Republic of China
| | - Xingxing Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, People's Republic of China
| | - Naidong Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, People's Republic of China
| |
Collapse
|
5
|
El Bestawy E, El-Hameed ASA, Fadl E. Desalination of seawater using integrated microbial biofilm/cellulose acetate membrane and silver NPs/activated carbon nanocomposite in a continuous mode. Sci Rep 2024; 14:274. [PMID: 38168504 PMCID: PMC10762133 DOI: 10.1038/s41598-023-50311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
The main objective of the present study was to desalinate seawater using Bacillus cereus gravel biofilm and cellulose acetate (CA) membranes with and without silver nanoparticles (AgNPs) as a potent and safe disinfectant for the treated water. Six desalination trials (I, II, III, IV, V and VI) were performed using the proposed biofilm/cellulose membrane. Results confirmed that Bacillus cereus gravel biofilm (microbial desalination) is the optimal system for desalination of seawater. It could achieve 45.0% RE (initial salinity: 44,478 mg/L), after only 3 h compared to the other tested treatments. It could also achieve 42, 42, 57, 43 and 59% RE for TDS, EC, TSS, COD and BOD, respectively. To overcome the problem of the residual salinity and reach complete elimination of salt content for potential reuse, multiple units of the proposed biofilm can be used in sequence. As a general conclusion, the Bacillus cereus biofilm system can be considered as remarkably efficient, feasible, rapid, clean, renewable, durable, environmentally friendly and easily applied technology compared to the very costly and complicated common desalination technologies. Up to our knowledge, this is the first time microbial biofilm was developed and used as an effective system for seawater desalination.
Collapse
Affiliation(s)
- Ebtesam El Bestawy
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt.
| | - Adel Salah Abd El-Hameed
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt
| | - Eman Fadl
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt
| |
Collapse
|
6
|
Feng JR, Deng QX, Han SK, Ni HG. Use of nanoparticle-coated bacteria for the bioremediation of organic pollution: A mini review. CHEMOSPHERE 2023; 313:137391. [PMID: 36457267 DOI: 10.1016/j.chemosphere.2022.137391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Nanoparticle (NP)-coated (immobilized) bacteria are an effective method for treating environmental pollution due to their multifarious benefits. This review collates a vast amount of existing literature on organic pollution treatment using NP-coated bacteria. We discuss the features of bacteria, NPs, and decoration techniques of NP-bacteria assemblies, with special attention given to the surface modification of NPs and connection mechanisms between NPs and cells. Furthermore, the performance of NP-coated bacteria was examined. We summarize the factors that affect bioremediation efficiency using coated bacteria, including pH, temperature, and agitation, and the possible mechanisms involving them are proposed. From future perspectives, suitable surface modification of NPs and wide application in real practice will make the NP-coated bacterial technology a viable treatment strategy.
Collapse
Affiliation(s)
- Jin-Ru Feng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qing-Xin Deng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Shang-Kun Han
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Nnamdi Ekwueme B, Anthony Ezema C, Asadu CO, Elijah Onu C, Onah TO, Sunday Ike I, Chinonyelum Orga A. Isotherm Modelling and Optimization of Oil layer Removal from Surface Water by Organic Acid Activated Plantain Peels Fiber. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
8
|
Zhang J, Wei J, Massey IY, Peng T, Yang F. Immobilization of Microbes for Biodegradation of Microcystins: A Mini Review. Toxins (Basel) 2022; 14:toxins14080573. [PMID: 36006234 PMCID: PMC9416196 DOI: 10.3390/toxins14080573] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Harmful cyanobacterial blooms (HCBs) frequently occur in eutrophic freshwater ecosystems worldwide. Microcystins (MCs) are considered to be the most prominent and toxic metabolites during HCBs. MCs may be harmful to human and animal health through drinking water and recreational water. Biodegradation is eco-friendly, cost-effective and one of the most effective methods to remove MCs. Many novel MC-degrading bacteria and their potential for MCs degradation have been documented. However, it is a challenge to apply the free MC-degrading bacterial cells in natural environments due to the long-term operational instability and difficult recycling. Immobilization is the process of restricting the mobility of bacteria using carriers, which has several advantages as biocatalysts compared to free bacterial cells. Biological water treatment systems with microbial immobilization technology can potentially be utilized to treat MC-polluted wastewater. In this review article, various types of supporting materials and methods for microbial immobilization and the application of bacterial immobilization technology for the treatment of MCs-contaminated water are discussed. This article may further broaden the application of microbial immobilization technology to the bioremediation of MC-polluted environments.
Collapse
Affiliation(s)
- Jiajia Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Jia Wei
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Isaac Yaw Massey
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Correspondence: (T.P.); (F.Y.); Tel./Fax: +86-731-8480-5460 (F.Y.)
| | - Fei Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
- Correspondence: (T.P.); (F.Y.); Tel./Fax: +86-731-8480-5460 (F.Y.)
| |
Collapse
|
9
|
Nassar HN, Rabie AM, Abu Amr SS, El-Gendy NS. Kinetic and statistical perspectives on the interactive effects of recalcitrant polyaromatic and sulfur heterocyclic compounds and in-vitro nanobioremediation of oily marine sediment at microcosm level. ENVIRONMENTAL RESEARCH 2022; 209:112768. [PMID: 35085558 DOI: 10.1016/j.envres.2022.112768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A halotolerant biosurfactant producer Pseudomonas aeruginosa strain NSH3 (NCBI Gene Bank Accession No. MN149622) was isolated to degrade high concentrations of recalcitrant polyaromatic hydrocarbons (PAHs) and polyaromatic heterocyclic sulfur compounds (PASHs). In biphasic batch bioreactors, the biodegradation and biosurfactant-production activities of NSH3 have been significantly enhanced (p < 0.0001) by its decoration with eco-friendly prepared magnetite nanoparticles (MNPs). On an artificially contaminated sediment microcosm level, regression modeling and statistical analysis based on a 23 full factorial design of experiments were trendily applied to provide insights into the interactive impacts of such pollutants. MNPs-coated NSH3 were also innovatively applied for nanobioremediation (NBR) of in-vitro diesel oil-polluted sediment microcosms. Gravimetric, chromatographic, and microbial respiratory analyses proved the significantly enhanced biodegradation capabilities of MNPs-coated NSH3 (p < 0.001) and the complete mineralization of various recalcitrant diesel oil components. Kinetic analyses showed that the biodegradation of iso- and n-alkanes was best fitted with a second-order kinetic model equation. Nevertheless, PAHs and PASHs in biphasic batch bioreactors and sediment microcosms followed the first-order kinetic model equation. Sustainable NBR overcome the toxicity of low molecular weight hydrocarbons, mass transfer limitation, and steric hindrance of hydrophobic recalcitrant high molecular weight hydrocarbons and alkylated polyaromatic compounds.
Collapse
Affiliation(s)
- Hussein N Nassar
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO, 11727, Egypt; Center of Excellence, October University for Modern Sciences and Arts (MSA), 6(th) of October City, Giza, PO, 12566, Egypt
| | - Abdelrahman M Rabie
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO, 11727, Egypt
| | - Salem S Abu Amr
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Karabuk University, Demir Campus, Karabuk, PO, 78050, Turkey
| | - Nour Sh El-Gendy
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO, 11727, Egypt; Center of Excellence, October University for Modern Sciences and Arts (MSA), 6(th) of October City, Giza, PO, 12566, Egypt.
| |
Collapse
|
10
|
Toto NA, Elhenawy HI, Eltaweil AS, El-Ashram S, El-Samad LM, Moussian B, El Wakil A. Musca domestica (Diptera: Muscidae) as a biological model for the assessment of magnetite nanoparticles toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151483. [PMID: 34742953 DOI: 10.1016/j.scitotenv.2021.151483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The use of nanoparticles (NPs) is rapidly expanding; there is a critical need for efficient assays to first determine the potential toxicity of NPs before their use in human applications. Magnetite nanoparticles (Fe3O4 NPs) have tremendous applications which include cell separation, arsenic removal from water and DNA separation. Spherically shaped Fe3O4 NPs with sizes ranging from 23 to 30 nm were used in this study. The housefly, Musca domestica is the most common fly species. It is present worldwide and considered to be an important medical insect which can carry and transmit over 100 human pathogens and zoonotic agents. It has been used in this study to assess Fe3O4NPs toxicity and give us an overview of their impact. The larvicidal activity of Fe3O4NPs was tested against the third instar larvae of M. domestica. We investigated the effects of six varying concentrations (15, 30, 45, 60, 75 and 90 μg/mL) used under laboratory conditions in two differential application assays: contact and feeding. The LC50 value for Fe3O4 NPs was 60 and 75 μg/mL by feeding and contact, respectively. To investigate the toxicity effects of Fe3O4 NPs on houseflies, morphological and histoarchitectural changes in larvae, pupae and adult flies were analyzed. NP exposure caused morphological abnormalities of larvae and pupae as well as larval pupal intermediates, and deformed adult with crumpled wings. Also, some adults couldn't emerge and remained in their puparia. The histological examinations showed that Fe3O4 NPs caused severe tissue damage especially in the cuticle and the digestive system. Thus, besides affecting the organ of first contact (digestive system), remote organs such as the integument are also targeted by Fe3O4 NPs suggesting a systemic impact on fly development and physiology.
Collapse
Affiliation(s)
- Noura A Toto
- Department of Zoology, Faculty of Science, Damanhour University, Egypt
| | - Hanan I Elhenawy
- Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | | | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan 528231, Guangdong Province, China; Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | - Bernard Moussian
- Université Nice Sophia Antipolis, Parc Valrose, Nice Cedex, France
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Egypt.
| |
Collapse
|
11
|
Immobilized enzymes and cell systems: an approach to the removal of phenol and the challenges to incorporate nanoparticle-based technology. World J Microbiol Biotechnol 2022; 38:42. [PMID: 35043353 DOI: 10.1007/s11274-022-03229-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/04/2022] [Indexed: 12/07/2022]
Abstract
The presence of phenol in wastewater poses a risk to ecosystems and human health. The traditional processes to remove phenol from wastewater, although effective, have several drawbacks. The best alternative is the application of ecological biotechnology tools since they involve biological systems (enzymes and microorganisms) with moderate economic and environmental impact. However, these systems have a high sensitivity to environmental factors and high substrate concentrations that reduce their effectiveness in phenol removal. This can be overcome by immobilization-based technology to increase the performance of enzymes and bacteria. A key component to ensure successful immobilization is the material (polymeric matrices) used as support for the biological system. In addition, by incorporating magnetic nanoparticles into conventional immobilized systems, a low-cost process is achieved but, most importantly, the magnetically immobilized system can be recovered, recycled, and reused. In this review, we study the existing alternatives for treating wastewater with phenol, from physical and chemical to biological techniques. The latter focus on the immobilization of enzymes and microorganisms. The characteristics of the support materials that ensure the viability of the immobilization are compared. In addition, the challenges and opportunities that arise from incorporating magnetic nanoparticles in immobilized systems are addressed.
Collapse
|
12
|
Omer AM, Abd El-Monaem EM, El-Subruiti GM, Abd El-Latif MM, Eltaweil AS. Fabrication of easy separable and reusable MIL-125(Ti)/MIL-53(Fe) binary MOF/CNT/Alginate composite microbeads for tetracycline removal from water bodies. Sci Rep 2021; 11:23818. [PMID: 34893701 PMCID: PMC8664953 DOI: 10.1038/s41598-021-03428-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/30/2021] [Indexed: 01/17/2023] Open
Abstract
In this investigation, we aimed to fabricate easy separable composite microbeads for efficient adsorption of tetracycline (TC) drug. MIL-125(Ti)/MIL-53(Fe) binary metal organic framework (MOF) was synthetized and incorporated with carbon nanotube (CNT) into alginate (Alg) microbeads to form MIL-125(Ti)/MIL-53(Fe)/CNT@Alg composite microbeads. Various tools including FTIR, XRD, SEM, BET, Zeta potential and XPS were applied to characterize the composite microbeads. It was found that the specific surface area of MIL-125(Ti)/MIL-53(Fe)/CNT@Alg microbeads was 273.77 m2/g. The results revealed that the adsorption of TC augmented with rising CNT proportion up to 15 wt% in the microbeads matrix. In addition, the adsorption process followed the pseudo-second-order and well-fitted to Freundlich and Langmuir models with a maximum adsorption capacity of 294.12 mg/g at 25 ◦C and pH 6. Furthermore, thermodynamic study clarified that the TC adsorption process was endothermic, random and spontaneous. Besides, reusability test signified that MIL-125(Ti)/MIL-53(Fe)/CNT@Alg composite microbeads retained superb adsorption properties for six consecutive cycles, emphasizing its potentiality for removing of pharmaceutical residues.
Collapse
Affiliation(s)
- Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mona M Abd El-Latif
- Fabrication Technology Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt
| | | |
Collapse
|
13
|
Eltaweil AS, Omer AM, El-Aqapa HG, Gaber NM, Attia NF, El-Subruiti GM, Mohy-Eldin MS, Abd El-Monaem EM. Chitosan based adsorbents for the removal of phosphate and nitrate: A critical review. Carbohydr Polym 2021; 274:118671. [PMID: 34702487 DOI: 10.1016/j.carbpol.2021.118671] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 01/18/2023]
Abstract
The tremendous development in the industrial sector leads to discharging of the several types of effluents containing detrimental contaminants into water sources. Lately, the proliferation of toxic anions particularly phosphates and nitrates onto aquatic systems certainly depreciates the ecological system and causes a deadly serious problem. Chitosan (Cs) is one of the most auspicious biopolymer adsorbents that are being daily developed for removing of various contaminants from polluted water. This is due to its unparalleled benefits involving biocompatibility, non-toxicity, facile modifications and low-cost production. Nevertheless, chitosan displays considerable drawbacks including low adsorption capacity, low surface area and lack of reusability. Therefore, few findings have been established regarding the aptitude of modified chitosan-based adsorbents towards phosphate and nitrate anions. This review elaborates an overview for the current advances of modified chitosan based-adsorbent for phosphate and nitrate removal, in specific multivalent metals-modified chitosan, clays and zeolite-modified chitosan, magnetic chitosan and carbon materials-modified chitosan. The efforts that have been executed for enriching their adsorption characteristics as well as their possible adsorption mechanisms and reusability were well addressed. Besides, the research conclusions for the optimum adsorption conditions were also discussed, along with emphasizing the foremost research gaps and future potential trends that could motivate further research and innovation to find best solutions for water treatment problems facing the world.
Collapse
Affiliation(s)
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt.
| | - Hisham G El-Aqapa
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nourhan Mohamed Gaber
- Department of Medical Laboratories, Faculty of Applied health science technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Nour F Attia
- Fire Protection Laboratory, Chemistry Division, National Institute for Standards, 136, Giza 12211, Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
14
|
Abdelfatah A, Fawzy M, Eltaweil AS, El-Khouly ME. Green Synthesis of Nano-Zero-Valent Iron Using Ricinus Communis Seeds Extract: Characterization and Application in the Treatment of Methylene Blue-Polluted Water. ACS OMEGA 2021; 6:25397-25411. [PMID: 34632198 PMCID: PMC8495865 DOI: 10.1021/acsomega.1c03355] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 05/15/2023]
Abstract
In this study, the removal of methylene blue dye (MB) from aqueous solution was examined using a novel green adsorbent to overcome the obstacles encountered in chemical methods. Ricinus communis (RC) aqueous seeds extract was herein used as a reducing and capping agent to synthesize a novel nano-zero-valent iron (RC-nZVI) for the adsorption of harmful MB. Structural and morphological characterization of the synthesized RC-nZVI were performed using several techniques, e.g., steady-state absorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and zeta potential. The maximum efficiency of the removal was 96.8% at pH 6 and 25 °C. According to the kinetics study results, the adsorption process obeys the pseudo-first-order model. The experimental equilibrium data were fitted to the Freundlich isotherm model, the maximum adsorption capacity reached was 61.37 mg·g-1, and the equilibrium parameters were determined. The synthesized RC-nZVI possesses good reusability and can be considered as a potential economic and environmentally friendly adsorbent.
Collapse
Affiliation(s)
- Ahmed
M. Abdelfatah
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Manal Fawzy
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Abdelazeem S. Eltaweil
- Department
of Chemistry, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Mohamed E. El-Khouly
- Institute
of Basic and Applied Sciences, Egypt-Japan University of Science and
Technology (E-JUST), New Borg
El-Arab, Alexandria 21934, Egypt
| |
Collapse
|
15
|
Development of novel cellulose acetate-g-poly(sodium 4-styrenesulfonate) proton conducting polyelectrolyte polymer. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Eltaweil AS, Mamdouh IM, Abd El-Monaem EM, El-Subruiti GM. Highly Efficient Removal for Methylene Blue and Cu 2+ onto UiO-66 Metal-Organic Framework/Carboxylated Graphene Oxide-Incorporated Sodium Alginate Beads. ACS OMEGA 2021; 6:23528-23541. [PMID: 34549149 PMCID: PMC8444308 DOI: 10.1021/acsomega.1c03479] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 05/02/2023]
Abstract
Herein, we report a new metal-organic framework (MOF)-based composite beads adsorbent made via incorporating UiO-66 MOF, carboxylated graphene oxide (GOCOOH) into sodium alginate for efficient removal of methylene blue dye, and Cu2+ ions. The successful fabrication of the synthesized UiO-66/GOCOOH@SA composite beads was confirmed by means of X-ray diffraction, Fourier transform infrared, scanning electron microscopy, zeta potential, X-ray photoelectron spectroscopy analysis, and thermogravimetric analysis and BET measurement. The incorporation of both UiO-66 and GOCOOH into SA beads greatly increased their adsorption efficiency for the removal of both MB and Cu2+ with maximum adsorption capacities of 490.72 and 343.49 mg/g, respectively. The removal process of both MB and Cu2+ follows the pseudo-second-order model and Freundlich isotherm model. A plausible adsorption mechanism was discussed in detail. Regeneration tests clarified that the removal efficiencies toward both MB and Cu2+ remained higher than 87% after five cycles. These results reveal the potentiality of UiO-66/GOCOOH@SA beads as an excellent adsorbent.
Collapse
Affiliation(s)
- Abdelazeem S. Eltaweil
- Chemistry Department, Faculty
of Science, Alexandria University, Alexandria 21321, Egypt
| | - Injy M. Mamdouh
- Chemistry Department, Faculty
of Science, Alexandria University, Alexandria 21321, Egypt
| | - Eman M. Abd El-Monaem
- Chemistry Department, Faculty
of Science, Alexandria University, Alexandria 21321, Egypt
| | - Gehan M. El-Subruiti
- Chemistry Department, Faculty
of Science, Alexandria University, Alexandria 21321, Egypt
| |
Collapse
|
17
|
Eltaweil AS, El-Monaem EMA, Mohy-Eldin MS, Omer AM. Fabrication of attapulgite/magnetic aminated chitosan composite as efficient and reusable adsorbent for Cr (VI) ions. Sci Rep 2021; 11:16598. [PMID: 34400760 PMCID: PMC8368087 DOI: 10.1038/s41598-021-96145-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
An efficient composite was constructed based on aminated chitosan (NH2Cs), attapulgite (ATP) clay and magnetic Fe3O4 for adsorptive removal of Cr(VI) ions. The as-fabricated ATP@Fe3O4-NH2Cs composite was characterized by Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analyzer (TGA), Scanning Electron Microscope (SEM), Zeta potential (ZP), Vibrating Sample Magnetometer (VSM), Brunauer-Emmett-Teller method (BET) and X-ray photoelectron spectroscope (XPS). A significant improve in the adsorption profile was established at pH 2 in the order of ATP@Fe3O4-NH2Cs(1:3) > ATP@Fe3O4-NH2Cs(1:1) > ATP@Fe3O4-NH2Cs(3:1) > Fe3O4-NH2Cs > ATP. The maximum removal (%) of Cr(VI) exceeded 94% within a short equilibrium time of 60 min. The adsorption process obeyed the pseudo 2nd order and followed the Langmuir isotherm model with a maximum monolayer adsorption capacity of 294.12 mg/g. In addition, thermodynamics studies elucidated that the adsorption process was spontaneous, randomness and endothermic process. Interestingly, the developed adsorbent retained respectable adsorption properties with acceptable removal efficiency exceeded 58% after ten sequential cycles of reuse. Besides, the results hypothesize that the adsorption process occurs via electrostatic interactions, reduction of Cr(VI) to Cr(III) and ion-exchanging. These findings substantiate that the ATP@Fe3O4-NH2Cs composite could be effectively applied as a reusable adsorbent for removing of Cr(VI) ions from aqueous solutions.
Collapse
Affiliation(s)
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt.
| |
Collapse
|
18
|
Omer AM, Abd El-Monaem EM, Abd El-Latif MM, El-Subruiti GM, Eltaweil AS. Facile fabrication of novel magnetic ZIF-67 MOF@aminated chitosan composite beads for the adsorptive removal of Cr(VI) from aqueous solutions. Carbohydr Polym 2021; 265:118084. [PMID: 33966848 DOI: 10.1016/j.carbpol.2021.118084] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/19/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022]
Abstract
Metal organic frameworks (MOFs) have become premium candidates for the removal of hazardous contaminants from wastewater. However, MOFs have a vast obstacle which is their poor recyclability. In this study, ZIF-67 was decorated with magnetic Fe3O4 nanoparticles, and then embedded into aminated chitosan (AmCs) matrix to form core-dual shell Fe3O4/ZIF-67@AmCs composite beads. Diverse analysis tools were utilized to ensure the successful fabrication of the magnetic composite beads. The fabricated magnetic composite beads were examined their adsorptive removal aptitude towards toxic Cr(VI) ions. The gained results refereed that a maximum adsorption capacity of 119.05 mg/g was attained by magnetic Fe3O4/ZIF-67@AmCs composite beads at 25 °C. The process obeyed both of Langmuir and Freundlich isotherm models, and the pseudo 2nd order was more suitable kinetic model to represent the adsorption process. Besides, Fe3O4/ZIF-67@AmCs composite showed an excellent recyclability for the removal of Cr(VI) ions from their aqueous solutions for seven consecutive cycles.
Collapse
Affiliation(s)
- Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt.
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mona M Abd El-Latif
- Fabrication Technology Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
19
|
Eltaweil AS, El-Tawil AM, Abd El-Monaem EM, El-Subruiti GM. Zero Valent Iron Nanoparticle-Loaded Nanobentonite Intercalated Carboxymethyl Chitosan for Efficient Removal of Both Anionic and Cationic Dyes. ACS OMEGA 2021; 6:6348-6360. [PMID: 33718725 PMCID: PMC7948244 DOI: 10.1021/acsomega.0c06251] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 05/12/2023]
Abstract
A zero valent iron-loaded nano-bentonite intercalated carboxymethyl chitosan (nZVI@nBent-CMC) composite was fabricated and characterized by FT-IR, TEM, TEM-EDX, XRD, BET surface area, and zeta potential measurements. The as-fabricated nZVI@nBent-CMC composite exhibited excellent removal efficiency for both anionic Congo red (CR) dye and cationic crystal violet (CV) dye. The maximum uptake capacities of CR and CV onto the nZVI@nBent-CMC composite were found to be 884.95 and 505.05 mg/g, respectively. The adsorption process of both dyes well fitted with the Langmuir isotherm model and pseudo-second order kinetic model. Thermodynamic data clarified that the adsorptions of both CR and CV onto the nZVI@nBent-CMC composite are spontaneous processes. Moreover, the adsorption of CR onto the nZVI@nBent-CMC composite was found to be an exothermic process while that of CV is an endothermic process. The nZVI@nBent-CMC composite also exhibited excellent reusability for both studied dyes without noticeable loss in the removal efficiency, suggesting its validity to remove both anionic and cationic dyes from wastewater.
Collapse
Affiliation(s)
- Abdelazeem S. Eltaweil
- Department of Chemistry, Faculty of
Science, Chemistry, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Ashraf M. El-Tawil
- Department of Chemistry, Faculty of
Science, Chemistry, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Eman M. Abd El-Monaem
- Department of Chemistry, Faculty of
Science, Chemistry, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Gehan M. El-Subruiti
- Department of Chemistry, Faculty of
Science, Chemistry, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| |
Collapse
|
20
|
Eltaweil AS, Elshishini HM, Ghatass ZF, Elsubruiti GM. Ultra-high adsorption capacity and selective removal of Congo red over aminated graphene oxide modified Mn-doped UiO-66 MOF. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.10.084] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|