1
|
Zhang Y, Qi B, Li Q, Yang C, Yu P, Yang X, Li T. Dynamic changes on sensory property, nutritional quality and metabolic profiles of green kernel black beans during Eurotium cristatum-based solid-state fermentation. Food Chem 2024; 455:139846. [PMID: 38833863 DOI: 10.1016/j.foodchem.2024.139846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Eurotium cristatum, a unique probiotic in Fu brick tea, is widely used in food processing to enhance added values. Here, green kernel black beans (GKBBs) were solid-fermented with E. cristatum and dynamic changes in flavour, chemical composition and metabolites during fermentation were investigated. As results, E. cristatum fermentation altered aroma profiles and sensory attributes of GKBBs, especially reduced sourness. After fermentation, total polyphenolic and flavonoid contents in GKBBs were elevated, while polysaccharides, soluble proteins and short-chain fatty acids contents were decreased. E. cristatum fermentation also induced biotransformation of glycosidic isoflavones into sapogenic isoflavones. During fermentation, dynamic changes in levels of 17 amino acids were observed, in which 3 branched-chain amino acids were increased. Non-targeted metabolomics identified 51 differential compounds and 10 related metabolic pathways involved in E. cristatum fermentation of GKBBs. This study lays foundation for the development of green kernel black bean-based functional food products with E. cristatum fermentation.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Bangran Qi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Qiannan Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Pinglian Yu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
2
|
Chen J, Jiang Y, Gao Z, Dai J, Jia C, Lu Y, Cheng D. The Sexual Dimorphism in Rectum and Protein Digestion Pathway Influence Sex Pheromone Synthesis in Male Bactrocera Dorsalis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407353. [PMID: 39377305 DOI: 10.1002/advs.202407353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Sexual dimorphism is a crucial aspect of mating and reproduction in many animals, yet the molecular mechanisms remain unclear. In Bactrocera dorsalis, sex pheromones trimethylpyrazine (TMP) and tetramethylpyrazine (TTMP) are specifically synthesized by Bacillus strains in the male rectum. In the female rectum, Bacillus strains are found, but TMP and TTMP are not, indicating sexually dimorphic differences in sex pheromone synthesis. Our anatomical observations and precursor measurements revealed significant differences in rectal structure and ammonium levels between sexes. In vitro and in vivo experiments reveal that ammonium is vital for sex pheromone synthesis in rectal Bacillus strains. Comparative transcriptome analysis identified ammonium-producing genes (carboxypeptidase B and peptide transporter) in the protein digestion pathway that show much higher expression in the male rectum than in the female rectum. Knocking down the expression of either carboxypeptidase B (or inhibiting enzyme activity) or peptide transporter decreases rectal ammonium levels significantly, resulting in the failure of sex pheromone synthesis in the male rectum. This study provides insights into the presence of sexual dimorphism in internal organs and their functionalities in male-specific sex pheromone synthesis and has significant implications for understanding the molecular mechanisms underlying sex pheromone synthesis by symbionts in insects.
Collapse
Affiliation(s)
- Jingxiang Chen
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Yanling Jiang
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Zijie Gao
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Jiawang Dai
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Chunsheng Jia
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Daifeng Cheng
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| |
Collapse
|
3
|
Poddar BJ, Khardenavis AA. Genomic Insights into the Landfill Microbial Community: Denitrifying Activity Supporting One-Carbon Utilization. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04980-w. [PMID: 38980659 DOI: 10.1007/s12010-024-04980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/10/2024]
Abstract
In spite of the developments in understanding of denitrifying methylotrophy in the recent years, challenges still exist in unravelling the overall biochemistry of nitrate-dependent methane oxidation in novel or poorly characterized/not-yet-cultured bacteria. In the present study, landfill site was mined for novel C1-carbon-metabolizing bacteria which can use nitrate/nitrite as an electron acceptor. A high-throughput rapid plate assay identified three bacterial isolates with eminent ability for nitrate-dependent methane metabolism under anaerobic conditions. Taxonomic identification by whole-genome sequence-based overall genome relatedness indices accurately assigned the isolates AAK_M13, AAK_M29, and AAK_M39 at the species level to Enterobacter cloacae, Bacillus subtilis, and Bacillus halotolerans, respectively. Several genes encoding sub-components involved in alcohol utilization and denitrification pathways, such as adh, fdh, fdo, nar, nir, and nor, were identified in all the genomes. Though no gene clusters encoding MMO/AMO were annotated, sequencing of PCR amplicons revealed similarity with pMMO/AMO gene using translated nucleotide sequence of strains AAK_M29 and AAK_M39, while strain AAK_M13 showed similarity with XRE family transcriptional regulator. This suggests the horizontal gene transfer and/or presence of a truncated version of a housekeeping enzyme encoded by genes exhibiting partial sequence similarity with pMMO genes that mimicked its function at greenhouse gas emission sites. Owing to lack of conclusive evidence for presence of methane metabolism genes in the selected isolates, further experiment was performed to validate their nitrate-dependent methane oxidation capacities. Bacillus subtilis AAK_M29, Bacillus halotolerans AAK_M39, and Enterobacter cloacae AAK_M13 could oxidize 60%, 75%, and 85% of the added methane respectively accompanied by high nitrate reduction (56-62%) thus supporting the correlation between these two activities. The remarkable ability of these isolates for nitrate-dependent methane metabolism has highlighted their role in ecological contribution and biotechnological potential to serve as methane and nitrate sinks in the landfill sites.
Collapse
Affiliation(s)
- Bhagyashri J Poddar
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anshuman A Khardenavis
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Alam M, Pandit B, Moin A, Iqbal UN. Invisible Inhabitants of Plants and a Sustainable Planet: Diversity of Bacterial Endophytes and their Potential in Sustainable Agriculture. Indian J Microbiol 2024; 64:343-366. [PMID: 39011025 PMCID: PMC11246410 DOI: 10.1007/s12088-024-01225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/07/2024] [Indexed: 07/17/2024] Open
Abstract
Uncontrolled usage of chemical fertilizers, climate change due to global warming, and the ever-increasing demand for food have necessitated sustainable agricultural practices. Removal of ever-increasing environmental pollutants, treatment of life-threatening diseases, and control of drug-resistant pathogens are also the need of the present time to maintain the health and hygiene of nature, as well as human beings. Research on plant-microbe interactions is paving the way to ameliorate all these sustainably. Diverse bacterial endophytes inhabiting the internal tissues of different parts of the plants promote the growth and development of their hosts by different mechanisms, such as through nutrient acquisition, phytohormone production and modulation, protection from biotic or abiotic challenges, assisting in flowering and root development, etc. Notwithstanding, efficient exploitation of endophytes in human welfare is hindered due to scarce knowledge of the molecular aspects of their interactions, community dynamics, in-planta activities, and their actual functional potential. Modern "-omics-based" technologies and genetic manipulation tools have empowered scientists to explore the diversity, dynamics, roles, and functional potential of endophytes, ultimately empowering humans to better use them in sustainable agricultural practices, especially in future harsh environmental conditions. In this review, we have discussed the diversity of bacterial endophytes, factors (biotic as well as abiotic) affecting their diversity, and their various plant growth-promoting activities. Recent developments and technological advancements for future research, such as "-omics-based" technologies, genetic engineering, genome editing, and genome engineering tools, targeting optimal utilization of the endophytes in sustainable agricultural practices, or other purposes, have also been discussed.
Collapse
Affiliation(s)
- Masrure Alam
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| | - Baishali Pandit
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
- Department of Botany, Surendranath College, 24/2 MG Road, Kolkata, West Bengal 700009 India
| | - Abdul Moin
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| | - Umaimah Nuzhat Iqbal
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| |
Collapse
|
5
|
Luo Z, Yan Y, Du S, Zhu Y, Pan F, Wang R, Xu Z, Xu X, Li S, Xu H. Recent advances and prospects of Bacillus amyloliquefaciens as microbial cell factories: from rational design to industrial applications. Crit Rev Biotechnol 2023; 43:1073-1091. [PMID: 35997331 DOI: 10.1080/07388551.2022.2095499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/02/2022] [Indexed: 11/03/2022]
Abstract
Bacillus amyloliquefaciens is one of the most characterized Gram-positive bacteria. This species has unique characteristics that are beneficial for industrial applications, including its utilization of: cheap carbon as a substrate, a transparent genetic background, and large-scale robustness in fermentation. Indeed, the productivity characteristics of B. amyloliquefaciens have been thoroughly analyzed and further optimized through systems biology and synthetic biology techniques. Following the analysis of multiple engineering design strategies, B. amyloliquefaciens is now considered an efficient cell factory capable of producing large quantities of multiple products from various raw materials. In this review, we discuss the significant potential advantages offered by B. amyloliquefaciens as a platform for metabolic engineering and industrial applications. In addition, we systematically summarize the recent laboratory research and industrial application of B. amyloliquefaciens, including: relevant advances in systems and synthetic biology, various strategies adopted to improve the cellular performances of synthetic chemicals, as well as the latest progress in the synthesis of certain important products by B. amyloliquefaciens. Finally, we propose the current challenges and essential strategies to usher in an era of broader B. amyloliquefaciens use as microbial cell factories.
Collapse
Affiliation(s)
- Zhengshan Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yifan Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Shanshan Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yifan Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Fei Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiaoqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
6
|
Wang X, Hou X, Huo Y, Wang D, Fan X, Lin X, Yu W, Cui C, Guo J, Li Y. Phosphorylated Ser187-SNAP25-modulated hyperfunction of glutamatergic system in the vmPFC mediates depressive-like behaviors in male mice. Neuropharmacology 2023; 239:109691. [PMID: 37625690 DOI: 10.1016/j.neuropharm.2023.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Dysfunctional glutamatergic neurotransmission contributes importantly to the pathophysiology of depression. However, the underlying neural mechanisms of glutamatergic dysfunction remain poorly understood. Here, we employed chronic unpredictable mild stress (CUMS) to induce depression-like behavior in male mice and to assess the alterations of glutamatergic system within the ventromedial prefrontal cortex (vmPFC). Male mice subjected to CUMS showed an increase in levels of glutamate content, synaptosomal GluN2B-NMDA receptors (GluN2B-NMDARs) and phosphorylated synaptosomal associated protein 25 KD of Ser187 (pSer187-SNAP25), which is involved in synaptic vesicular fusion processes in the vmPFC. Downregulation of pSer187-SNAP25 via the TAT-S187 fusion peptide efficiently alleviated CUMS-induced depressive-like behaviors in male mice by reversing the increase of glutamate content and synaptosomal GluN2B-NMDARs. These findings demonstrated a critical role for pSer187-SNAP25-mediated glutamatergic dysfunction in CUMS-induced depressive-like behaviors, suggesting the potential of pS187-SNAP25 inhibitors for further investigation on depression management.
Collapse
Affiliation(s)
- Xinjuan Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Xueyu Hou
- Department of Pediatric, Peking University People's Hospital, Beijing 100044, China
| | - Yu Huo
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Di Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Xiang Fan
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Xiaorui Lin
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Weidong Yu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Cailian Cui
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Jingzhu Guo
- Department of Pediatric, Peking University People's Hospital, Beijing 100044, China.
| | - Yijing Li
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health Commission, Peking University, Beijing 100191, China.
| |
Collapse
|
7
|
Shahid M, Khan MS, Singh UB. Pesticide-tolerant microbial consortia: Potential candidates for remediation/clean-up of pesticide-contaminated agricultural soil. ENVIRONMENTAL RESEARCH 2023; 236:116724. [PMID: 37500042 DOI: 10.1016/j.envres.2023.116724] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Reclamation of pesticide-polluted lands has long been a difficult endeavour. The use of synthetic pesticides could not be restricted due to rising agricultural demand. Pesticide toxicity has become a pressing agronomic problem due to its adverse impact on agroecosystems, agricultural output, and consequently food security and safety. Among different techniques used for the reclamation of pesticide-polluted sites, microbial bioremediation is an eco-friendly approach, which focuses on the application of resilient plant growth promoting rhizobacteria (PGPR) that may transform or degrade chemical pesticides to innocuous forms. Such pesticide-resilient PGPR has demonstrated favourable effects on soil-plant systems, even in pesticide-contaminated environments, by degrading pesticides, providing macro-and micronutrients, and secreting active but variable secondary metabolites like-phytohormones, siderophores, ACC deaminase, etc. This review critically aims to advance mechanistic understanding related to the reduction of phytotoxicity of pesticides via the use of microbe-mediated remediation techniques leading to crop optimization in pesticide-stressed soils. The literature surveyed and data presented herein are extremely useful, offering agronomists-and crop protectionists microbes-assisted remedial strategies for affordably enhancing crop productivity in pesticide-stressed soils.
Collapse
Affiliation(s)
- Mohammad Shahid
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau Nath Bhanjan, 275103, UP, India; Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University (A.M.U.), Aligarh, 202001, UP, India.
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University (A.M.U.), Aligarh, 202001, UP, India
| | - Udai B Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau Nath Bhanjan, 275103, UP, India
| |
Collapse
|
8
|
Gao Z, Xie M, Gui S, He M, Lu Y, Wang L, Chen J, Smagghe G, Gershenzon J, Cheng D. Differences in rectal amino acid levels determine bacteria-originated sex pheromone specificity in two closely related flies. THE ISME JOURNAL 2023; 17:1741-1750. [PMID: 37550382 PMCID: PMC10504272 DOI: 10.1038/s41396-023-01488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Sex pheromones are widely used by insects as a reproductive isolating mechanism to attract conspecifics and repel heterospecifics. Although researchers have obtained extensive knowledge about sex pheromones, little is known about the differentiation mechanism of sex pheromones in closely related species. Using Bactrocera dorsalis and Bactrocera cucurbitae as the study model, we investigated how the male-borne sex pheromones are different. The results demonstrated that both 2,3,5-trimethylpyrazine (TMP) and 2,3,5,6-tetramethylpyrazine (TTMP) were sex pheromones produced by rectal Bacillus in the two flies. However, the TMP/TTMP ratios were reversed, indicating sex pheromone specificity in the two flies. Bacterial fermentation results showed that different threonine and glycine levels were responsible for the preference of rectal Bacillus to produce TMP or TTMP. Accordingly, threonine (glycine) levels and the expression of the threonine and glycine coding genes were significantly different between B. dorsalis and B. cucurbitae. In vivo assays confirmed that increased rectal glycine and threonine levels by amino acid feeding could significantly decrease the TMP/TTMP ratios and result in significantly decreased mating abilities in the studied flies. Meanwhile, decreased rectal glycine and threonine levels due to RNAi of the glycine and threonine coding genes was found to significantly increase the TMP/TTMP ratios and result in significantly decreased mating abilities. The study contributes to the new insight that insects and their symbionts can jointly regulate sex pheromone specificity in insects, and in turn, this helps us to better understand how the evolution of chemical communication affects speciation.
Collapse
Affiliation(s)
- Zijie Gao
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Mingxue Xie
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Shiyu Gui
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Muyang He
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Luoluo Wang
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Jingyuan Chen
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Molecular and Cellular Life Sciences, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, 1050, Belgium
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Daifeng Cheng
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China.
| |
Collapse
|
9
|
He X, Wang S, Yu X, Zhou X. Bone marrow mesenchymal stem cells response on collagen/hyaluronan/chondroitin scaffold enriched with gentamicin -loaded gelatin microparticles for skin tissue engineering. J Biomater Appl 2023:8853282231180714. [PMID: 37276487 DOI: 10.1177/08853282231180714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The repair and functional reconstruction of large skin defects caused by burn remains an intractable clinical problem. Collagen type I (ColI) was extracted from carp scales and confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis ultraviolet adsorption spectra and automatic amino acid analyzer. Then the scaffolds containing the purified ColI, hyaluronic acid (HA) and chondroitin sulfate (CS) were constructed and examined. The results showed that the scaffold (ColI:CS:HA=9:1:1) had larger pore diameter, porosity, water absorption, degradation rate and tensile strength. gentamycin sulphate (GS) - gelatin microspheres (GMSs) were prepared by emulsion cross-linking method. The drug release study of the ColI-CS-HA-GS/GMSs scaffold with antibacterial property showed a prolonged, continuous, and sustained release of GS. The bone marrow mesenchymal stem cells (BMSCs) were extracted from rat and inoculated into the ColI-HA-CS-GS/GMSs scaffold. The results performed that the scaffold could accelerate proliferation of the BMSCs and wound healing.
Collapse
Affiliation(s)
- Xiaoliang He
- Hebei University of Science and Technology, Shijiazhuang, China
| | - Shuai Wang
- Hebei University of Science and Technology, Shijiazhuang, China
| | - Xinran Yu
- Hebei University of Science and Technology, Shijiazhuang, China
| | - Xiaohui Zhou
- Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
10
|
Bilal S, Khan T, Asaf S, Khan NA, Saad Jan S, Imran M, Al-Rawahi A, Khan AL, Lee IJ, Al-Harrasi A. Silicon-Induced Morphological, Biochemical and Molecular Regulation in Phoenix dactylifera L. under Low-Temperature Stress. Int J Mol Sci 2023; 24:ijms24076036. [PMID: 37047009 PMCID: PMC10094002 DOI: 10.3390/ijms24076036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Climate changes abruptly affect optimum growth temperatures, leading to a negative influence on plant physiology and productivity. The present study aimed to investigate the extent of low-temperature stress effects on date palm growth and physiological indicators under the exogenous application of silicon (Si). Date palm seedlings were treated with Si (1.0 mM) and exposed to different temperature regimes (5, 15, and 30 °C). It was observed that the application of Si markedly improved fresh and dry biomass, photosynthetic pigments (chlorophyll and carotenoids), plant morphology, and relative water content by ameliorating low-temperature-induced oxidative stress. Low-temperature stress (5 and 15 °C), led to a substantial upregulation of ABA-signaling-related genes (NCED-1 and PyL-4) in non Si treated plants, while Si treated plants revealed an antagonistic trend. However, jasmonic acid and salicylic acid accumulation were markedly elevated in Si treated plants under stress conditions (5 and 15 °C) in comparison with non Si treated plants. Interestingly, the upregulation of low temperature stress related plant plasma membrane ATPase (PPMA3 and PPMA4) and short-chain dehydrogenases/reductases (SDR), responsible for cellular physiology, stomatal conductance and nutrient translocation under silicon applications, was observed in Si plants under stress conditions in comparison with non Si treated plants. Furthermore, a significant expression of LSi-2 was detected in Si plants under stress, leading to the significant accumulation of Si in roots and shoots. In contrast, non Si plants demonstrated a low expression of LSi-2 under stress conditions, and thereby, reduced level of Si accumulation were observed. Less accumulation of oxidative stress was evident from the expression of superoxide dismutase (SOD) and catalase (CAT). Additionally, Si plants revealed a significant exudation of organic acids (succinic acid and citric acid) and nutrient accumulation (K and Mg) in roots and shoots. Furthermore, the application of Si led to substantial upregulation of the low temperature stress related soybean cold regulated gene (SRC-2) and ICE-1 (inducer of CBF expression 1), involved in the expression of CBF/DREB (C-repeat binding factor/dehydration responsive element binding factor) gene family under stress conditions in comparison with non Si plants. The current research findings are crucial for exploring the impact on morpho-physio-biochemical attributes of date palms under low temperature and Si supplementation, which may provide an efficient strategy for growing plants in low-temperature fields.
Collapse
Affiliation(s)
- Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Taimoor Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Nasir Ali Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Syed Saad Jan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Imran
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
| | - In-Jung Lee
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
11
|
Xing Y, Liu Z, Ma X, Zhou C, Wang Y, Yao B, Fu J, Qi Y, Zhao P. Targeted metabolomics analysis identified the role of FOXA1 in the change in glutamate-glutamine metabolic pattern of BaP malignantly transformed 16HBE cells. Toxicol Appl Pharmacol 2023; 461:116402. [PMID: 36702312 DOI: 10.1016/j.taap.2023.116402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
The carcinogenic mechanism of benzo[a]pyrene (BaP) is far from being elucidated. FOXA1 has been confirmed to play an oncogenic role in BaP-transformed cell THBEc1. To explore the changes in amino acid metabolic patterns, especially glutamate-glutamine (Glu-Gln) metabolic pattern caused by BaP-induced transformation and the possible role FOXA1 might play in it, we compared amino acid metabolic characteristics between THBEc1 cells and control 16HBE cells using a targeted metabolomics method and determined the effects of FOXA1 knockout on the amino acid metabolic pattern using FOXA1 knockout cell THBEc1-ΔFOXA1-c34. The amino acid metabolic patterns of THBEc1 and 16HBE cells were different, which was manifested by the differential consumption of 18 amino acids and the difference in the intracellular content of 21 amino acids. The consumption and intracellular content of Glu and Gln are different between the two types of cells, accompanied by upregulation of FOXA1, GLUL, SLC1A3, SLC1A4, SLC1A5 and SLC6A14, and downregulation of FOXA2 and GPT2 in THBEc1 cells. FOXA1 knockout changed the consumption of 19 amino acids and the intracellular content of 21 amino acids and reversed the metabolic pattern of Glu and the changes in FOXA2, GLUL, SLC1A3 and SLC6A14 in THBEc1 cells. Additionally, FOXA1 knockout inhibited cell proliferation and further increased the dependence of THBEc1 cells on Glu. In conclusion, FOXA1 knockout partially reversed the change in Glu-Gln metabolism caused by BaP-induced transformation by upregulating the expression of GLUL and SLC1A3. Our findings provide a clue for the possible role of FOXA1 in amino acid metabolism regulation.
Collapse
Affiliation(s)
- Yunkun Xing
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Zhiyu Liu
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Xue Ma
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China; Zhejiang Province Center for Disease Control and Prevention, Hangzhou 310051, People's Republic of China
| | - Chuan Zhou
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Yu Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 10021, People's Republic of China
| | - Biyun Yao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Juanling Fu
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Yanmin Qi
- Civil Aviation Medicine Center, Civil Aviation Administration of China, Beijing 10123, People's Republic of China
| | - Peng Zhao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China.
| |
Collapse
|
12
|
Gui S, Yuval B, Engl T, Lu Y, Cheng D. Protein feeding mediates sex pheromone biosynthesis in an insect. eLife 2023; 12:83469. [PMID: 36656757 PMCID: PMC9908074 DOI: 10.7554/elife.83469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Protein feeding is critical for male reproductive success in many insect species. However, how protein affects the reproduction remains largely unknown. Using Bactrocera dorsalis as the study model, we investigated how protein feeding regulated sex pheromone synthesis. We show that protein ingestion is essential for sex pheromone synthesis in male. While protein feeding or deprivation did not affect Bacillus abundance, transcriptome analysis revealed that sarcosine dehydrogenase (Sardh) in protein-fed males regulates the biosynthesis of sex pheromones by increasing glycine and threonine (sex pheromone precursors) contents. RNAi-mediated loss-of-function of Sardh decreases glycine, threonine, and sex pheromone contents and results in decreased mating ability in males. The study links male feeding behavior with discrete patterns of gene expression that plays role in sex pheromone synthesis, which in turn translates to successful copulatory behavior of the males.
Collapse
Affiliation(s)
- Shiyu Gui
- Department of Entomology, South China Agricultural UniversityGuangzhouChina
| | - Boaz Yuval
- Department of Entomology, Hebrew University of JerusalemRehovotIsrael
| | - Tobias Engl
- Department of Insect Symbiosis, Max Planck Institute for Chemical EcologyJenaGermany
| | - Yongyue Lu
- Department of Entomology, South China Agricultural UniversityGuangzhouChina
| | - Daifeng Cheng
- Department of Entomology, South China Agricultural UniversityGuangzhouChina
| |
Collapse
|
13
|
Ruan W, Liu J, Li P, Zhao W, Zhang A, Liu S, Wang Z, Liu J. Dynamics of Microbial Communities, Flavor, and Physicochemical Properties during Ziziphus jujube Vinegar Fermentation: Correlation between Microorganisms and Metabolites. Foods 2022; 11:3334. [PMID: 36359947 PMCID: PMC9655239 DOI: 10.3390/foods11213334] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 07/26/2023] Open
Abstract
Jujube pulp separated from Ziziphus jujube is often discarded after processing, resulting in a serious waste of resources and environmental pollution. Herein, Ziziphus jujube pulp was used as a raw material for vinegar fermentation. To investigate the dynamic distribution of microorganisms and flavor substances in ZJV, correlations between environmental variables (e.g., total acid, reducing sugar, temperature) and flavor substances (organic acids, amino acids, volatile substances) and microorganisms were analyzed. Physicochemical indicators (temperature, total acid, alcohol) were the main factors affecting ZJV fermentation. The middle and later stages of ZJV fermentation were the periods showing the largest accumulation of flavor substances. Organic acids (acetic acid, malic acid, citric acid, lactic acid), amino acids (Asp, Glu, Arg) and volatile substances (ethyl phenylacetate, phenethyl alcohol) were important odor-presenting substances in ZJV. In the bacterial community, the Operational Taxonomic Units (OTUs) with an average relative abundance of more than 10% in at least one fermentation stage were mainly Acetobacter, Lactobacillus and Saccharopolyspora, while it was Thermomyces in the fungal community. Pearson correlation coefficients showed that Penicillium, Lactobacillus and Acetobacter were the core microorganisms, implying that these microorganisms contributed to the flavor formation greatly in ZJV fermentation. This study reveals the correlation between physicochemical indexes and flavor substances and microorganisms in ZJV fermentation. The results of the study can provide a theoretical basis for the development of the ZJV industry.
Collapse
Affiliation(s)
- Wei Ruan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, 598 Heping West Road, Shijiazhuang 050031, China
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050000, China
| | - Junli Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, 598 Heping West Road, Shijiazhuang 050031, China
| | - Pengliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, 598 Heping West Road, Shijiazhuang 050031, China
| | - Wei Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, 598 Heping West Road, Shijiazhuang 050031, China
| | - Aixia Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, 598 Heping West Road, Shijiazhuang 050031, China
| | - Songyan Liu
- Shijiazhuang Quality Inspection Centre of Animal Products, Feed, and Veterinary Drugs, 3 Yixi Street, Shijiazhuang 050035, China
| | - Zhixin Wang
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050000, China
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, 598 Heping West Road, Shijiazhuang 050031, China
| |
Collapse
|
14
|
Khan T, Bilal S, Asaf S, Alamri SS, Imran M, Khan AL, Al-Rawahi A, Lee IJ, Al-Harrasi A. Silicon-Induced Tolerance against Arsenic Toxicity by Activating Physiological, Anatomical and Biochemical Regulation in Phoenix dactylifera (Date Palm). PLANTS 2022; 11:plants11172263. [PMID: 36079645 PMCID: PMC9459973 DOI: 10.3390/plants11172263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022]
Abstract
Arsenic is a toxic metal abundantly present in agricultural, industrial, and pesticide effluents. To overcome arsenic toxicity and ensure safety for plant growth, silicon (Si) can play a significant role in its mitigation. Here, we aim to investigate the influence of silicon on date palm under arsenic toxicity by screening antioxidants accumulation, hormonal modulation, and the expression profile of abiotic stress-related genes. The results showed that arsenic exposure (As: 1.0 mM) significantly retarded growth attributes (shoot length, root length, fresh weight), reduced photosynthetic pigments, and raised reactive species levels. Contrarily, exogenous application of Si (Na2SiO3) to date palm roots strongly influenced stress mitigation by limiting the translocation of arsenic into roots and shoots as compared with the arsenic sole application. Furthermore, an enhanced accumulation of polyphenols (48%) and increased antioxidant activities (POD: 50%, PPO: 75%, GSH: 26.1%, CAT: 51%) resulted in a significant decrease in superoxide anion (O2•−: 58%) and lipid peroxidation (MDA: 1.7-fold), in silicon-treated plants, compared with control and arsenic-treated plants. The Si application also reduced the endogenous abscisic acid (ABA: 38%) under normal conditions, and salicylic acid (SA: 52%) and jasmonic acid levels (JA: 62%) under stress conditions as compared with control and arsenic. Interestingly, the genes; zeaxanthin epoxidase (ZEP) and 9-cis-epoxycarotenoid dioxygenase (NCED-1) involved in ABA biosynthesis were upregulated by silicon under arsenic stress. Likewise, Si application also upregulated gene expression of plant plasma membrane ATPase (PMMA-4), aluminum-activated malate transporter (ALMT) responsible for maintaining cellular physiology, stomatal conductance, and short-chain dehydrogenases/reductases (SDR) involved in nutrients translocation. Hence, the study demonstrates the remarkable role of silicon in supporting growth and inducing arsenic tolerance by increasing antioxidant activities and endogenous hormones in date palm. The outcomes of our study can be employed in further studies to better understand arsenic tolerance and decode mechanism.
Collapse
Affiliation(s)
- Taimoor Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Correspondence: (S.B.); (A.L.K.); (A.A.-H.)
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Safiya Salim Alamri
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Imran
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Korea
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
- Correspondence: (S.B.); (A.L.K.); (A.A.-H.)
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - In-Jung Lee
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Korea
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Correspondence: (S.B.); (A.L.K.); (A.A.-H.)
| |
Collapse
|
15
|
Silicon- and Boron-Induced Physio-Biochemical Alteration and Organic Acid Regulation Mitigates Aluminum Phytotoxicity in Date Palm Seedlings. Antioxidants (Basel) 2022; 11:antiox11061063. [PMID: 35739959 PMCID: PMC9219922 DOI: 10.3390/antiox11061063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
The current study aimed to understand the synergistic impacts of silicon (Si; 1.0 mM) and boron (B; 10 µM) application on modulating physio-molecular responses of date palm to mitigate aluminum (Al3+; 2.0 mM) toxicity. Results revealed that compared to sole Si and B treatments, a combined application significantly improved plant growth, biomass, and photosynthetic pigments during Al toxicity. Interestingly, Si and B resulted in significantly higher exudation of organic acid (malic acids, citric acids, and acetic acid) in the plant’s rhizosphere. This is also correlated with the reduced accumulation and translocation of Al in roots (60%) and shoots (56%) in Si and B treatments during Al toxicity compared to in sole Al3+ treatment. The activation of organic acids by combined Si + B application has significantly regulated the ALMT1, ALMT2 and plasma membrane ATPase; PMMA1 and PMMA3 in roots and shoots. Further, the Si-related transporter Lsi2 gene was upregulated by Si + B application under Al toxicity. This was also validated by the higher uptake and translocation of Si in plants. Al-induced oxidative stress was significantly counteracted by exhibiting lower malondialdehyde and superoxide production in Si + B treatments. Experiencing less oxidative stress was evident from upregulation of CAT and Cyt-Cu/Zn SOD expression; hence, enzymatic activities such as polyphenol oxidase, catalase, peroxidase, and ascorbate peroxidase were significantly activated. In the case of endogenous phytohormones, Si + B application demonstrated the downregulation of the abscisic acid (ABA; NCED1 and NCED6) and salicylic acid (SA; PYL4, PYR1) biosynthesis-related genes. Consequently, we also noticed a lower accumulation of ABA and rising SA levels under Al-stress. The current findings illustrate that the synergistic Si + B application could be an effective strategy for date palm growth and productivity against Al stress and could be further extended in field trails in Al-contaminated fields.
Collapse
|
16
|
Chen XL, Sun MC, Chong SL, Si JP, Wu LS. Transcriptomic and Metabolomic Approaches Deepen Our Knowledge of Plant-Endophyte Interactions. FRONTIERS IN PLANT SCIENCE 2022; 12:700200. [PMID: 35154169 PMCID: PMC8828500 DOI: 10.3389/fpls.2021.700200] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/22/2021] [Indexed: 05/10/2023]
Abstract
In natural systems, plant-symbiont-pathogen interactions play important roles in mitigating abiotic and biotic stresses in plants. Symbionts have their own special recognition ways, but they may share some similar characteristics with pathogens based on studies of model microbes and plants. Multi-omics technologies could be applied to study plant-microbe interactions, especially plant-endophyte interactions. Endophytes are naturally occurring microbes that inhabit plants, but do not cause apparent symptoms in them, and arise as an advantageous source of novel metabolites, agriculturally important promoters, and stress resisters in their host plants. Although biochemical, physiological, and molecular investigations have demonstrated that endophytes confer benefits to their hosts, especially in terms of promoting plant growth, increasing metabolic capabilities, and enhancing stress resistance, plant-endophyte interactions consist of complex mechanisms between the two symbionts. Further knowledge of these mechanisms may be gained by adopting a multi-omics approach. The involved interaction, which can range from colonization to protection against adverse conditions, has been investigated by transcriptomics and metabolomics. This review aims to provide effective means and ways of applying multi-omics studies to solve the current problems in the characterization of plant-microbe interactions, involving recognition and colonization. The obtained results should be useful for identifying the key determinants in such interactions and would also provide a timely theoretical and material basis for the study of interaction mechanisms and their applications.
Collapse
Affiliation(s)
| | | | | | | | - Ling-shang Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
17
|
Bacillus as a source of phytohormones for use in agriculture. Appl Microbiol Biotechnol 2021; 105:8629-8645. [PMID: 34698898 DOI: 10.1007/s00253-021-11492-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022]
Abstract
Microbial plant biostimulants (MPBs) are capable of improving the productivity and quality of crops by activating plant physiological and molecular processes, representing an efficient tool in sustainable agriculture. Through phytohormone production, MPBs are capable of regulating plant physiological processes, increasing the productivity and quality of crops, in addition to being an efficient alternative in the industrial production of phytohormones. Bacillus is a bacterial genus with various species on the market being used as biopesticides, due to their ability to produce antimicrobial, nematicidal and insecticidal compounds. The capability of Bacillus species to protect plants against pests and/or pathogens also entails the triggering or increase of plant defense responses. Furthermore, a relevant number of species from the genus Bacillus provoke plant growth promotion by different mechanisms such as increasing the tolerance of their host plants under abiotic stress conditions or improving plant nutrition. In several cases, the plant response is mediated by the bacterial production of phytohormones. In the present work, all studies from recent decades where the production of phytohormones by Bacillus species are reported, highlighting their role in host plants and the mechanisms by which they are capable of increasing plant growth, promoting their development, and improving their response to different stresses. KEY POINTS: • Different Bacillus-species are known as agricultural biopesticides. • Bacillus role as biostimulants is being increasingly addressed. • Bacillus represents a good source of phytohormones of agricultural interest.
Collapse
|
18
|
Zhu T, Yao D, Li D, Xu H, Jia S, Bi C, Cai J, Zhu X, Zhang X. Multiple strategies for metabolic engineering of Escherichia coli for efficient production of glycolate. Biotechnol Bioeng 2021; 118:4699-4707. [PMID: 34491579 DOI: 10.1002/bit.27934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 01/12/2023]
Abstract
Glycolate is a bulk chemical with wide applications in the textile, food processing, and pharmaceutical industries. Glycolate can be produced from glucose via the glycolysis and glyoxylate shunt pathways, followed by reduction to glycolate. However, two problems limit the productivity and yield of glycolate when using glucose as the sole carbon source. The first is a cofactor imbalance in the production of glycolate from glucose via the glycolysis pathway, since NADPH is required for glycolate production, while glycolysis generates NADH. To rectify this imbalance, the NADP+ -dependent glyceraldehyde 3-phosphate dehydrogenase GapC from Clostridium acetobutylicum was introduced to generate NADPH instead of NADH in the oxidation of glyceraldehyde 3-phosphate during glycolysis. The soluble transhydrogenase SthA was further eliminated to conserve NADPH by blocking its conversion into NADH. The second problem is an unfavorable carbon flux distribution between the tricarboxylic acid cycle and the glyoxylate shunt. To solve this problem, isocitrate dehydrogenase (ICDH) was eliminated to increase the carbon flux of glyoxylate and thereby improve the glycolate titer. After engineering through the integration of gapC, combined with the inactivation of ICDH, SthA, and by-product pathways, as well as the upregulation of the two key enzymes isocitrate lyase (encoding by aceA), and glyoxylate reductase (encoding by ycdW), the glycolate titer increased to 5.3 g/L with a yield of 1.89 mol/mol glucose. Moreover, an optimized fed-batch fermentation reached a titer of 41 g/L with a yield of 1.87 mol/mol glucose after 60 h.
Collapse
Affiliation(s)
- Tong Zhu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese of Academy of Sciences, Tianjin, China
| | - Die Yao
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese of Academy of Sciences, Tianjin, China.,Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Di Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese of Academy of Sciences, Tianjin, China
| | - Hongtao Xu
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese of Academy of Sciences, Tianjin, China
| | - Shiru Jia
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin, China.,Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese of Academy of Sciences, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese of Academy of Sciences, Tianjin, China
| |
Collapse
|
19
|
Ren L, Ma Y, Xie M, Lu Y, Cheng D. Rectal bacteria produce sex pheromones in the male oriental fruit fly. Curr Biol 2021; 31:2220-2226.e4. [PMID: 33740424 DOI: 10.1016/j.cub.2021.02.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
Volatile molecules produced by the microbiota play a primary role in chemical communication between insects,1 and direct production of pheromone components by the microbiota is one of the most obvious mechanisms.2 Here, we investigated the production of male-borne sex pheromones of the oriental fruit fly, Bactrocera dorsalis. As observed in previous studies,3,4 2,3,5-trimethylpyrazine (TMP) and 2,3,5,6-tetramethylpyrazine (TTMP) are sex pheromones produced in the male rectum. Mature virgin females are strongly attracted to TMP and TTMP. 16S rRNA sequencing results show that the rectal bacteria are dominated by Bacilli that harbor the pathway to produce TMP and TTMP.5-8 The levels of Bacilli, TMP, and TTMP in the male rectum can be significantly decreased by feeding male flies with antibiotics. In vitro assays show that Bacillus species isolated from the male rectum can produce TMP and TTMP when provided with the substrates glucose and threonine, the levels of which are significantly higher in the rectum of mature males. These findings highlight the influence of microbial symbionts on insect pheromones and provide an example of direct bacterial production of pheromones in insects.
Collapse
Affiliation(s)
- Lu Ren
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
| | - Yingao Ma
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
| | - Mingxue Xie
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
| | - Yongyue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China.
| | - Daifeng Cheng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China; Key Laboratory of Bio-Pesticide Innovation and Application, Guangdong Province, Guangzhou 510640, China.
| |
Collapse
|
20
|
Kuźniar A, Włodarczyk K, Sadok I, Staniszewska M, Woźniak M, Furtak K, Grządziel J, Gałązka A, Skórzyńska-Polit E, Wolińska A. A Comprehensive Analysis Using Colorimetry, Liquid Chromatography-Tandem Mass Spectrometry and Bioassays for the Assessment of Indole Related Compounds Produced by Endophytes of Selected Wheat Cultivars. Molecules 2021; 26:molecules26051394. [PMID: 33807585 PMCID: PMC7961968 DOI: 10.3390/molecules26051394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 01/01/2023] Open
Abstract
Liquid chromatography–tandem mass spectrometry (LC–MS/MS), colorimetry, and bioassays were employed for the evaluation of the ability of endophytic bacterial strains to synthesize indole-related compounds (IRCs) and in particular indole-3-acetic acid (IAA). A total of 54 endophytic strains belonging to seven bacterial genera isolated from tissues of common and spelt wheat cultivars were studied. The endophytic bacteria isolated from different tissues of the tested wheat types were capable of IRCs production, including IAA, which constituted from 1.75% to 52.68% of all IRCs, in in vitro conditions via the tryptophan dependent pathway. The selected post-culture medium was also examined using a plant bioassay. Substantial growth of wheat coleoptile segments treated with the bacterial post-culture medium was observed in several cases. Our data suggest that the studied endophytic bacteria produce auxin-type compounds to support plant development. Summarizing, our approach to use three complementary methods for estimation of IRCs in different endophytic strains provides a comprehensive picture of their effect on wheat growth.
Collapse
Affiliation(s)
- Agnieszka Kuźniar
- Department of Biology and Biotechnology of Microorganisms, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708 Lublin, Poland; (K.W.); (A.W.)
- Correspondence: ; Tel.: +48-81-454-5461
| | - Kinga Włodarczyk
- Department of Biology and Biotechnology of Microorganisms, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708 Lublin, Poland; (K.W.); (A.W.)
| | - Ilona Sadok
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 1J Konstantynów Str., 20-708 Lublin, Poland; (I.S.); (M.S.)
| | - Magdalena Staniszewska
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 1J Konstantynów Str., 20-708 Lublin, Poland; (I.S.); (M.S.)
| | - Małgorzata Woźniak
- Institute of Soil Science and Plant Cultivation State Research Institute, 8 Czartoryskich Str., 24-100 Puławy, Poland; (M.W.); (K.F.); (J.G.); (A.G.)
| | - Karolina Furtak
- Institute of Soil Science and Plant Cultivation State Research Institute, 8 Czartoryskich Str., 24-100 Puławy, Poland; (M.W.); (K.F.); (J.G.); (A.G.)
| | - Jarosław Grządziel
- Institute of Soil Science and Plant Cultivation State Research Institute, 8 Czartoryskich Str., 24-100 Puławy, Poland; (M.W.); (K.F.); (J.G.); (A.G.)
| | - Anna Gałązka
- Institute of Soil Science and Plant Cultivation State Research Institute, 8 Czartoryskich Str., 24-100 Puławy, Poland; (M.W.); (K.F.); (J.G.); (A.G.)
| | - Ewa Skórzyńska-Polit
- Department of Plant Physiology and Biotechnology, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708 Lublin, Poland;
| | - Agnieszka Wolińska
- Department of Biology and Biotechnology of Microorganisms, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708 Lublin, Poland; (K.W.); (A.W.)
| |
Collapse
|
21
|
Lwalaba JLW, Zvobgo G, Mwamba TM, Louis LT, Fu L, Kirika BA, Tshibangu AK, Adil MF, Sehar S, Mukobo RP, Zhang G. High accumulation of phenolics and amino acids confers tolerance to the combined stress of cobalt and copper in barley (Hordeum vulagare). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:927-937. [PMID: 32932124 DOI: 10.1016/j.plaphy.2020.08.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Cobalt (Co) and copper (Cu) co-exist in the metal contaminated soils and cause the serious toxicity to crops, while their interactive effect on plant growth and development is still poorly understood. In this work, a hydroponic experiment was carried out to reveal the interactive effect of Co and Cu on photosynthesis and metabolite profiles of two barley genotypes differing in metal tolerance. The results showed that both single and combined treatments of Co and Cu caused a significant reduction in chlorophyll content and photosynthetic rate of the two barley (Hordeum vulgare) genotypes, with the effect being greater for the combined treatment and the sensitive genotype (Ea52) being more affected than the tolerant genotype (Yan66). Compared to Cu or Co treatment alone, the combined treatment significantly increased the levels of phenolic components, including cinnamic derivatives (caffeic, chlorogenic, ferullic, p-coumaric); benzoic derivatives (p-hydroxybenzoic, vanillic, syringic, sallicilic, protocatechuic acid) as well as free amino acids, with Yan66 having more accumulation than Ea52. Meanwhile, under the combined treatment, the phenylalanine ammonialyase-related gene (HvPAL) was highly regulated along with the genes involved in the synthesis of malate (HvMDH) and citrate (HvCSY), with Ya66 showing the higher expression of these genes than Ea52. It can be concluded that higher Cu and Co stress tolerance in Yan66 is attributed to more accumulation of the metabolites including phenolics and amino acids.
Collapse
Affiliation(s)
- Jonas Lwalaba Wa Lwalaba
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Department of Crops sciences, Faculty of Agronomy, Université de Lubumbashi, PO Box 1825, Lubumbashi, DR, Congo
| | - Gerald Zvobgo
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Theodore Mulembo Mwamba
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Department of Crops sciences, Faculty of Agronomy, Université de Lubumbashi, PO Box 1825, Lubumbashi, DR, Congo
| | - Laurence Tennyson Louis
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Liangbo Fu
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Bibich Ansey Kirika
- Department of Crops sciences, Faculty of Agronomy, Université de Lubumbashi, PO Box 1825, Lubumbashi, DR, Congo
| | - Audry Kazadi Tshibangu
- Department of Crops sciences, Faculty of Agronomy, Université de Lubumbashi, PO Box 1825, Lubumbashi, DR, Congo
| | - Muhammad Faheem Adil
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Shafaque Sehar
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Robert Prince Mukobo
- Department of Crops sciences, Faculty of Agronomy, Université de Lubumbashi, PO Box 1825, Lubumbashi, DR, Congo
| | - Guoping Zhang
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
22
|
Khan A, Khan AL, Imran M, Asaf S, Kim YH, Bilal S, Numan M, Al-Harrasi A, Al-Rawahi A, Lee IJ. Silicon-induced thermotolerance in Solanum lycopersicum L. via activation of antioxidant system, heat shock proteins, and endogenous phytohormones. BMC PLANT BIOLOGY 2020; 20:248. [PMID: 32493420 PMCID: PMC7268409 DOI: 10.1186/s12870-020-02456-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 05/21/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Abiotic stresses (e.g., heat or limited water and nutrient availability) limit crop production worldwide. With the progression of climate change, the severity and variation of these stresses are expected to increase. Exogenous silicon (Si) has shown beneficial effects on plant growth; however, its role in combating the negative effects of heat stress and their underlying molecular dynamics are not fully understood. RESULTS Exogenous Si significantly mitigated the adverse impact of heat stress by improving tomato plant biomass, photosynthetic pigments, and relative water content. Si induced stress tolerance by decreasing the concentrations of superoxide anions and malondialdehyde, as well as mitigating oxidative stress by increasing the gene expression for antioxidant enzymes (peroxidases, catalases, ascorbate peroxidases, superoxide dismutases, and glutathione reductases) under stress conditions. This was attributed to increased Si uptake in the shoots via the upregulation of low silicon (SlLsi1 and SlLsi2) gene expression under heat stress. Interestingly, Si stimulated the expression and transcript accumulation of heat shock proteins by upregulating heat transcription factors (Hsfs) such as SlHsfA1a-b, SlHsfA2-A3, and SlHsfA7 in tomato plants under heat stress. On the other hand, defense and stress signaling-related endogenous phytohormones (salicylic acid [SA]/abscisic acid [ABA]) exhibited a decrease in their concentration and biosynthesis following Si application. Additionally, the mRNA and gene expression levels for SA (SlR1b1, SlPR-P2, SlICS, and SlPAL) and ABA (SlNCEDI) were downregulated after exposure to stress conditions. CONCLUSION Si treatment resulted in greater tolerance to abiotic stress conditions, exhibiting higher plant growth dynamics and molecular physiology by regulating the antioxidant defense system, SA/ABA signaling, and Hsfs during heat stress.
Collapse
Affiliation(s)
- Adil Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Yoon-Ha Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Muhammad Numan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, South Korea
| |
Collapse
|
23
|
Shahzad R, Shehzad A, Bilal S, Lee IJ. Bacillus amyloliquefaciens RWL-1 as a New Potential Strain for Augmenting Biochemical and Nutritional Composition of Fermented Soybean. Molecules 2020; 25:E2346. [PMID: 32443519 PMCID: PMC7288071 DOI: 10.3390/molecules25102346] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 12/23/2022] Open
Abstract
Soybean (Glycine max L.) is a good source of natural antioxidants and commonly consumed as fermented products such as cheonggukjang, miso, tempeh, and sufu in Asian countries. The aim of the current study was to examine the influence of novel endophytic bacterial strain, Bacillus amyloliquefaciens RWL-1 as a starter for soybean fermentation. During fermentation, the cooked soybeans were inoculated with different concentrations (1%, 3%, and 5%) of B. amyloliquefaciens RWL-1. The changes in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activities, total phenolic contents, isoflavones (Daidzin, Genistin, Glycitin, Daidzein, Glycitein, and Genistein), amino acids (aspartic acid, threonine, serine, glutamic acid, glycine, alanine, cysteine, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, lysine, histidine, arginine, and proline) composition, and minerals (calcium, copper, iron, potassium, magnesium, manganese, sodium, nickel, lead, arsenic, and zinc) were investigated. The level of antioxidants, total phenolic contents, isoflavones, and total amino acids were higher in fermented soybean inoculated with 1% B. amyloliquefaciens RWL-1 after 60 h of fermentation as compared to control, 3% and 5% B. amyloliquefaciens RWL-1. Additionally, fermented soybean inoculated with 5% B. amyloliquefaciens RWL-1 showed the highest values for mineral contents. Changes in antioxidant activities and bioactive compounds depended on the concentration of the strain used for fermentation. From these results, we conclude that fermented soybean has strong antioxidant activity, probably due to its increased total phenolic contents and aglycone isoflavone that resulted from fermentation. Such natural antioxidants could be used in drug and food industries and can be considered to alleviate oxidative stress.
Collapse
Affiliation(s)
- Raheem Shahzad
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
24
|
Khan A, Kamran M, Imran M, Al-Harrasi A, Al-Rawahi A, Al-Amri I, Lee IJ, Khan AL. Silicon and salicylic acid confer high-pH stress tolerance in tomato seedlings. Sci Rep 2019; 9:19788. [PMID: 31874969 PMCID: PMC6930214 DOI: 10.1038/s41598-019-55651-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
Alkalinity is a known threat to crop plant growth and production, yet the role of exogenous silicon (Si) and salicylic acid (SA) application has been largely unexplored. Here, we sought to understand the beneficial impacts of Si and SA on tomato seedlings during high-pH (9.0) stress. Results showed that Si- and SA-treated plants displayed higher biomass, chlorophyll contents, relative leaf water and better root system than none-treated plants under alkaline conditions. Both Si and SA counteracted the alkaline stress-induced oxidative damage by lowering the accumulation of reactive oxygen species and lipid peroxidation. The major antioxidant defence enzyme activities were largely stimulated by Si and SA, and these treatments caused significantly increased K+ and lowered Na+ concentrations in shoot and root under stress. Moreover, Si and SA treatments modulated endogenous SA levels and dramatically decreased abscisic acid levels in both shoot and root. Additionally, key genes involved in Si uptake, SA biosynthesis, the antioxidant defence system and rhizosphere acidification were up-regulated in Si and SA treatments under alkaline conditions. These results demonstrate that Si and SA play critical roles in improving alkaline stress tolerance in tomato seedlings, by modifying the endogenous Na+ and K+ contents, regulating oxidative damage and key genes and modulating endogenous hormone levels. These findings will help to broaden our understanding regarding the physiological and molecular mechanisms associated with the alkaline soil tolerance in plants.
Collapse
Affiliation(s)
- Adil Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Muhammad Kamran
- Plant Transport and Signalling Lab, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Issa Al-Amri
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| |
Collapse
|