1
|
Ko KY, Wang SY, Yen RF, Shiau YC, Hsu JC, Tsai HY, Lee CL, Chiu KM, Wu YW. Clinical significance of quantitative assessment of glucose utilization in patients with ischemic cardiomyopathy. J Nucl Cardiol 2020; 27:269-279. [PMID: 30109593 DOI: 10.1007/s12350-018-1395-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The aim of this study was to prospectively quantify the rate of myocardial glucose uptake (MRGlu) in myocardium with different perfusion-metabolism patterns and determine its prognostic value in patients with ischemic cardiomyopathy. METHODS AND RESULTS 79 patients with ischemic cardiomyopathy were prospectively enrolled for dynamic cardiac FDG PET, and then followed for at least 6 months. Perfusion-metabolism patterns were determined based on visual score analysis of 201Tl SPECT and FDG PET. MRGlu was analyzed using the Patlak kinetic model. The primary end-point was cardiovascular mortality. Significantly higher MRGlu was observed in viable compared with non-viable areas. Negative correlations were found between MRGlu in transmural match and a history of hyperlipidemia, statin usage, and triglyceride levels. Diabetic patients receiving dipeptidyl peptidase-4 inhibitors (DPP4i) had a significantly lower MRGlu in transmural match, mismatch, and reverse mismatch. Patients with MRGlu in transmural match ≥ 23.40 or reverse mismatch ≥ 36.90 had a worse outcome. CONCLUSIONS Myocardial glucose utilization was influenced by substrates and medications, including statins and DPP4i. MRGlu could discriminate between viable and non-viable myocardium, and MRGlu in transmural match and reverse mismatch may be prognostic predictors of cardiovascular death in patients with ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Kuan-Yin Ko
- Department of Nuclear Medicine, National Taiwan University Hospital, Yunlin Branch, Yunlin County, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shan-Ying Wang
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chien Shiau
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Jung-Cheng Hsu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Hao-Yuan Tsai
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chien-Lin Lee
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yen-Wen Wu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
- National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
2
|
Ko KY, Wu YW, Liu CW, Cheng MF, Yen RF, Yang WS. Longitudinal evaluation of myocardial glucose metabolism and contractile function in obese type 2 diabetic db/db mice using small-animal dynamic 18F-FDG PET and echocardiography. Oncotarget 2017; 8:87795-87808. [PMID: 29152121 PMCID: PMC5675673 DOI: 10.18632/oncotarget.21202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/17/2017] [Indexed: 02/02/2023] Open
Abstract
The aim was to evaluate sequential changes of myocardial glucose utilization and LV systolic function in db/db mice. Eight db/db and eight wild-type mice underwent plasma substrate analysis and dynamic 18F-FDG PET at week 8 (W8), W10, W12, W14, and W16. 18F-FDG uptake constant Ki and the rate of myocardial glucose uptake (MRGlu) were derived via Patlak graphic analysis. Another 8 db/db and 8 wild-type mice received echocardiography at W8, W12, and W16 and LV structure and function were measured. The db/db mice showed increased weights and glucose levels as they aged. The index of homeostasis model assessment-estimated insulin resistance, insulin, and free fatty acid concentrations were higher in db/db mice compared with wild-type. MRGlu of db/db mice across all time points was markedly higher than that of wild-type. An age-dependent elevation of MRGlu was observed in db/db mice. Ki and MRGlu of db/db mice showed negative correlation with triglyceride levels. When two groups were pooled together, Ki and MRGlu were significantly proportional to glucose levels. No significant difference in LV structure and function was noted between db/db and control mice. In conclusion, we demonstrated altered myocardial glucose utilization preceding the onset of LV systolic dysfunction in db/db mice.
Collapse
Affiliation(s)
- Kuan-Yin Ko
- Department of Nuclear Medicine, National Taiwan University Hospital, Yunlin Branch, Yunlin County, Taiwan.,Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Wen Wu
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,National Yang-Ming University School of Medicine, Taipei, Taiwan.,Cardiology Division of Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Cheng-Wei Liu
- Cardiology Division of Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Internal Medicine, Tri-Service General Hospital, Songshan Branch, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Fang Cheng
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Wei-Shiung Yang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medicine and Graduate Institute of Medical Genomics & Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,R & D Branch Office, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Transcriptional Changes Associated with Long-Term Left Ventricle Volume Overload in Rats: Impact on Enzymes Related to Myocardial Energy Metabolism. BIOMED RESEARCH INTERNATIONAL 2015; 2015:949624. [PMID: 26583150 PMCID: PMC4637065 DOI: 10.1155/2015/949624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/13/2015] [Indexed: 01/12/2023]
Abstract
Patients with left ventricle (LV) volume overload (VO) remain in a compensated state for many years although severe dilation is present. The myocardial capacity to fulfill its energetic demand may delay decompensation. We performed a gene expression profile, a model of chronic VO in rat LV with severe aortic valve regurgitation (AR) for 9 months, and focused on the study of genes associated with myocardial energetics. Methods. LV gene expression profile was performed in rats after 9 months of AR and compared to sham-operated controls. LV glucose and fatty acid (FA) uptake was also evaluated in vivo by positron emission tomography in 8-week AR rats treated or not with fenofibrate, an activator of FA oxidation (FAO). Results. Many LV genes associated with mitochondrial function and metabolism were downregulated in AR rats. FA β-oxidation capacity was significantly impaired as early as two weeks after AR. Treatment with fenofibrate, a PPARα agonist, normalized both FA and glucose uptake while reducing LV dilation caused by AR. Conclusion. Myocardial energy substrate preference is affected early in the evolution of LV-VO cardiomyopathy. Maintaining a relatively normal FA utilization in the myocardium could translate into less glucose uptake and possibly lesser LV remodeling.
Collapse
|
4
|
Thackeray JT, Bankstahl JP, Bengel FM. Impact of Image-Derived Input Function and Fit Time Intervals on Patlak Quantification of Myocardial Glucose Uptake in Mice. J Nucl Med 2015; 56:1615-21. [DOI: 10.2967/jnumed.115.160820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/31/2015] [Indexed: 11/16/2022] Open
|
5
|
Lachance D, Dhahri W, Drolet MC, Roussel É, Gascon S, Sarrhini O, Rousseau JA, Lecomte R, Arsenault M, Couet J. Endurance training or beta-blockade can partially block the energy metabolism remodeling taking place in experimental chronic left ventricle volume overload. BMC Cardiovasc Disord 2014; 14:190. [PMID: 25518920 PMCID: PMC4279960 DOI: 10.1186/1471-2261-14-190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/11/2014] [Indexed: 01/24/2023] Open
Abstract
Background Patients with chronic aortic valve regurgitation (AR) causing left ventricular (LV) volume overload can remain asymptomatic for many years despite having a severely dilated heart. The sudden development of heart failure is not well understood but alterations of myocardial energy metabolism may be contributive. We studied the evolution of LV energy metabolism in experimental AR. Methods LV glucose utilization was evaluated in vivo by positron emission tomography (microPET) scanning of 6-month AR rats. Sham-operated or AR rats (n = 10-30 animals/group) were evaluated 3, 6 or 9 months post-surgery. We also tested treatment intervention in order to evaluate their impact on metabolism. AR rats (20 animals) were trained on a treadmill 5 times a week for 9 months and another group of rats received a beta-blockade treatment (carvedilol) for 6 months. Results MicroPET revealed an abnormal increase in glucose consumption in the LV free wall of AR rats at 6 months. On the other hand, fatty acid beta-oxidation was significantly reduced compared to sham control rats 6 months post AR induction. A significant decrease in citrate synthase and complex 1 activity suggested that mitochondrial oxidative phosphorylation was also affected maybe as soon as 3 months post-AR. Moderate intensity endurance training starting 2 weeks post-AR was able to partially normalize the activity of various myocardial enzymes implicated in energy metabolism. The same was true for the AR rats treated with carvedilol (30 mg/kg/d). Responses to these interventions were different at the level of gene expression. We measured mRNA levels of a number of genes implicated in the transport of energy substrates and we observed that training did not reverse the general down-regulation of these genes in AR rats whereas carvedilol normalized the expression of most of them. Conclusion This study shows that myocardial energy metabolism remodeling taking place in the dilated left ventricle submitted to severe volume overload from AR can be partially avoided by exercise or beta-blockade in rats. Electronic supplementary material The online version of this article (doi:10.1186/1471-2261-14-190) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jacques Couet
- Groupe de recherche sur les valvulopathies, Centre de Recherche, Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725, Chemin Sainte-Foy, Québec City, Québec G1V 4G5, Canada.
| |
Collapse
|
6
|
Monge-Roffarello B, Labbe SM, Roy MC, Lemay ML, Coneggo E, Samson P, Lanfray D, Richard D. The PVH as a site of CB1-mediated stimulation of thermogenesis by MC4R agonism in male rats. Endocrinology 2014; 155:3448-58. [PMID: 24949658 DOI: 10.1210/en.2013-2092] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present study was designed to investigate the involvement of the cannabinoid receptor 1 (CB1) in the stimulating effects of the melanocortin-4 receptor (MC4R) agonism on whole-body and brown adipose tissue (BAT) thermogenesis. In a first series of experiments, whole-body and BAT thermogenesis were investigated in rats infused in the third ventricle of the brain with the MC4R agonist melanotan II (MTII) and the CB1 agonist δ9-tetrahydrocannabinol (δ(9)-THC) or the CB1 antagonist AM251. Whole-body thermogenesis was measured by indirect calorimetry and BAT thermogenesis assessed from interscapular BAT (iBAT) temperature. δ(9)-THC blunted the effects of MTII on energy expenditure and iBAT temperature, whereas AM251 tended to potentiate the MTII effects. δ(9)-THC also blocked the stimulating effect of MTII on (14)C-bromopalmitate and (3)H-deoxyglucose uptakes in iBAT. Additionally, δ(9)-THC attenuated the stimulating effect of MTII on the expression of peroxisome proliferator-activated receptor-γ coactivator 1-α (Pgc1α), type II iodothyronine deiodinase (Dio2), carnitine palmitoyltransferase 1B (Cpt1b), and uncoupling protein 1 (Ucp1). In a second series of experiments, we addressed the involvement of the paraventricular hypothalamic nucleus (PVH) in the CB1-mediated effects of MTII on iBAT thermogenesis, which were assessed following the infusion of MTII in the PVH and δ(9)-THC or AM251 in the fourth ventricle of the brain. We demonstrated the ability of δ(9)-THC to blunt MTII-induced iBAT temperature elevation. δ(9)-THC also blocked the PVH effect of MTII on (14)C-bromopalmitate uptake as well as on Pgc1α and Dio2 expression in iBAT. Altogether the results of this study demonstrate the involvement of the PVH in the CB1-mediated stimulating effects of the MC4R agonist MTII on whole-body and BAT thermogenesis.
Collapse
MESH Headings
- Adipose Tissue, Brown/metabolism
- Animals
- Male
- Paraventricular Hypothalamic Nucleus/metabolism
- Peptides, Cyclic/metabolism
- Piperidines
- Pyrazoles
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/metabolism
- Thermogenesis
- alpha-MSH/analogs & derivatives
- alpha-MSH/metabolism
Collapse
Affiliation(s)
- Boris Monge-Roffarello
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada G1V 4G5
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Monge-Roffarello B, Labbe SM, Lenglos C, Caron A, Lanfray D, Samson P, Richard D. The medial preoptic nucleus as a site of the thermogenic and metabolic actions of melanotan II in male rats. Am J Physiol Regul Integr Comp Physiol 2014; 307:R158-66. [DOI: 10.1152/ajpregu.00059.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study was designed to investigate the role of the medial preoptic nucleus (MPO) as a site of the thermogenic and metabolic effects of the α-melanocyte-stimulating hormone analog melanotan II (MTII). We also assessed the involvement of the dorsomedial hypothalamic nucleus (DMH) by investigating the effects of the MPO infusion of MTII in rats with DMH lesions produced by kainic acid. Infusion of MTII in the MPO led to increases in interscapular brown adipose tissue (iBAT) temperature and iBAT uptake of 14C-bromopalmitate. Both increases were blocked by DMH lesions. iBAT temperature increase (area under curve) and 14C-bromopalmitate uptake emerged as two correlated variables ( r = 0.63, P < 0.001). DMH lesions also blocked MTII-induced expression of mRNAs coding for proteins involved in 1) thermogenesis [type II iodothyronine deiodinase ( Dio2) and peroxisome proliferator-activated receptor gamma coactivator 1-α ( Pgc1α)], 2) lipolysis [hormone-sensitive lipase ( Hsl)], and 3) lipogenesis [diacylglycerol-O-acyltransferase 2 ( Dgat2), fatty acid synthase ( Fas)], in iBAT of rats killed 1 h after MPO infusion of MTII. MTII also stimulated expression of genes in iWAT but only in rats with DMH lesions. These genes included glucose transporter member 4 ( Glut4), glycerol-3-phosphate acyltransferase 3 ( Gpat3), Dgat1, Dgat2, triglyceride lipase ( Atgl), Hsl, and carnitine palmitoyltransferase 1β ( Cpt1β). Altogether, the present results reveal the MPO as a site of the thermogenic and metabolic actions of MTII. They also contribute to establish the MPO-DMH duet as a significant target for melanocortins to modulate energy homeostasis.
Collapse
Affiliation(s)
- Boris Monge-Roffarello
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Sebastien M. Labbe
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Christophe Lenglos
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Alexandre Caron
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Damien Lanfray
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Pierre Samson
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| |
Collapse
|
8
|
Thorn SL, deKemp RA, Dumouchel T, Klein R, Renaud JM, Wells RG, Gollob MH, Beanlands RS, DaSilva JN. Repeatable noninvasive measurement of mouse myocardial glucose uptake with 18F-FDG: evaluation of tracer kinetics in a type 1 diabetes model. J Nucl Med 2013; 54:1637-44. [PMID: 23940301 DOI: 10.2967/jnumed.112.110114] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED A noninvasive and repeatable method for assessing mouse myocardial glucose uptake with (18)F-FDG PET and Patlak kinetic analysis was systematically assessed using the vena cava image-derived blood input function (IDIF). METHODS Contrast CT and computer modeling was used to determine the vena cava recovery coefficient. Vena cava IDIF (n = 7) was compared with the left ventricular cavity IDIF, with blood and liver activity measured ex vivo at 60 min. The test-retest repeatability (n = 9) of Patlak influx constant K(i) at 10-40 min was assessed quantitatively using Bland-Altman analysis. Myocardial glucose uptake rates (rMGU) using the vena cava IDIF were calculated at baseline (n = 8), after induction of type 1 diabetes (streptozotocin [50 mg/kg] intraperitoneally, 5 d), and after acute insulin stimulation (0.08 mU/kg of body weight intraperitoneally). These changes were analyzed with a standardized uptake value calculation at 20 and 40 min after injection to correlate to the Patlak time interval. RESULTS The proximal mouse vena cava diameter was 2.54 ± 0.30 mm. The estimated recovery coefficient, calculated using nonlinear image reconstruction, decreased from 0.76 initially (time 0 to peak activity) to 0.61 for the duration of the scan. There was a 17% difference in the image-derived vena cava blood activity at 60 min, compared with the ex vivo blood activity measured in the γ-counter. The coefficient of variability for Patlak K(i) values between mice was found to be 23% with the proposed method, compared with 51% when using the left ventricular cavity IDIF (P < 0.05). No significant bias in K(i) was found between repeated scans with a coefficient of repeatability of 0.16 mL/min/g. Calculated rMGU values were reduced by 60% in type 1 diabetic mice from baseline scans (P < 0.03, ANOVA), with a subsequent increase of 40% to a level not significantly different from baseline after acute insulin treatment. These results were confirmed with a standardized uptake value measured at 20 and 40 min. CONCLUSION The mouse vena cava IDIF provides repeatable assessment of the blood time-activity curve for Patlak kinetic modeling of rMGU. An expected significant reduction in myocardial glucose uptake was demonstrated in a type 1 diabetic mouse model, with significant recovery after acute insulin treatment, using a mouse vena cava IDIF approach.
Collapse
Affiliation(s)
- Stephanie L Thorn
- Division of Cardiology, National Cardiac PET Centre, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Arsenault M, Zendaoui A, Roussel E, Drolet MC, Dhahri W, Grenier A, Gascon S, Sarrhini O, Rousseau JA, Lecomte R, Couet J. Angiotensin II-converting enzyme inhibition improves survival, ventricular remodeling, and myocardial energetics in experimental aortic regurgitation. Circ Heart Fail 2013; 6:1021-8. [PMID: 23861486 DOI: 10.1161/circheartfailure.112.000045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Aortic valve regurgitation (AR) is a volume-overload disease causing severe eccentric left ventricular (LV) hypertrophy and eventually heart failure. There is currently no approved drug to treat patients with AR. Many vasodilators including angiotensin-converting enzyme inhibitors have been evaluated in clinical trials, but although some results were promising, others were inconclusive. Overall, no drug has yet been able to improve clinical outcome in AR and the controversy remains. We have previously shown in an animal model that captopril (Cpt) reduced LV hypertrophy and protected LV systolic function, but we had not evaluated the clinical outcome. This protocol was designed to evaluate the effects of a long-term Cpt treatment on survival in the same animal model of severe aortic valve regurgitation. METHODS AND RESULTS Forty Wistar rats with AR were treated or untreated with Cpt (1 g/L in drinking water) for a period of 7 months to evaluate survival, myocardial remodeling, and function by echocardiography as well as myocardial metabolism by µ positron emission tomography scan. Survival was significantly improved in Cpt-treated animals with a survival benefit visible as soon as after 4 months of treatment. Cpt reduced LV dilatation and LV hypertrophy. It also significantly improved the myocardial metabolic profile by restoring the level of fatty acids metabolic enzymes and use. CONCLUSIONS In a controlled animal model of pure severe aortic valve regurgitation, Cpt treatment reduced LV remodeling and LV hypertrophy and improved myocardial metabolic profile and survival. These results support the need to reevaluate the role of angiotensin-converting enzyme inhibitors in humans with AR in a large, carefully designed prospective clinical trial.
Collapse
Affiliation(s)
- Marie Arsenault
- Groupe de Recherche en Valvulopathies, Centre de Recherche, Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Carpentier AC. The 2012 CDA-CIHR INMD young investigator award lecture: dysfunction of adipose tissues and the mechanisms of ectopic fat deposition in type 2 diabetes. Can J Diabetes 2013; 37:109-14. [PMID: 24070801 DOI: 10.1016/j.jcjd.2013.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 12/20/2022]
Abstract
Ectopic fat deposition in skeletal muscles, liver, heart, and other tissues has been closely linked with the development of lean tissues' insulin resistance and progression toward type 2 diabetes mellitus. Mechanisms of overexposure of these tissues to fatty acids include increased de novo lipogenesis, impaired fatty acid oxidation and increased fatty acid flux to these organs. White adipose tissues are the main organs responsible for the regulation of circulating fatty acids. It has been clearly demonstrated that pre-diabetes individuals and individuals with diabetes display impaired adipose tissue dietary fatty acid storage that may lead to increased circulating flux and exaggerated lean tissue fatty acid exposure. Additionally, brown adipose tissue depots are less metabolically active in individuals with type 2 diabetes. We have developed a series of novel in vivo investigative tools using positron emission tomography to comprehensively assess postprandial interorgan fatty acid partitioning and white and brown adipose tissue metabolism in subjects with pre-diabetes and type 2 diabetes. Our findings shed new lights into the sophisticated mechanisms that regulate fatty acid partitioning and energy homeostasis during the development of type 2 diabetes. New links between abnormal dietary fatty acid metabolism and early myocardial metabolic and functional defects are now being uncovered in humans with the hope to find novel ways to predict and avoid the devastating complications of diabetes.
Collapse
Affiliation(s)
- André C Carpentier
- CIHR-GSK Chair in Diabetes Department of Medicine, Division of Endocrinology, Université de Sherbrooke, Centre de recherche clinique Étienne-Le Bel, Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
11
|
Labbé SM, Grenier-Larouche T, Noll C, Phoenix S, Guérin B, Turcotte EE, Carpentier AC. Increased myocardial uptake of dietary fatty acids linked to cardiac dysfunction in glucose-intolerant humans. Diabetes 2012; 61:2701-10. [PMID: 23093657 PMCID: PMC3478552 DOI: 10.2337/db11-1805] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Impaired cardiac systolic and diastolic function has been observed in preclinical models and in subjects with type 2 diabetes. Using a recently validated positron emission tomography (PET) imaging method with 14(R,S)-[(¹⁸F]-fluoro-6-thia-heptadecanoic acid to quantify organ-specific dietary fatty acid partitioning, we demonstrate in this study that overweight and obese subjects with impaired glucose tolerance (IGT⁺) display significant increase in fractional myocardial dietary fatty acid uptake over the first 6 h postprandial compared with control individuals (IGT⁻). Measured by [¹¹C]acetate with PET, IGT⁺ subjects have a significant increase in myocardial oxidative index. IGT⁺ subjects have significantly reduced left ventricular stroke volume and ejection fraction (LVEF) and tend to display impaired diastolic function, as assessed by PET ventriculography. We demonstrate an inverse relationship between increased myocardial dietary fatty acid partitioning and LVEF. Fractional dietary fatty acid uptake is reduced in subcutaneous abdominal and visceral adipose tissues in IGT⁺ directly associated with central obesity. Fractional dietary fatty acid uptake in skeletal muscles or liver is, however, similar in IGT⁺ versus IGT⁻. The current study demonstrates, for the first time, that excessive myocardial partitioning of dietary fatty acids occurs in prediabetic individuals and is associated with early impairment of left ventricular function and increased myocardial oxidative metabolism.
Collapse
Affiliation(s)
- Sébastien M. Labbé
- Department of Medicine, Division of Endocrinology, Centre de Recherche Clinique Etienne-LeBel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Thomas Grenier-Larouche
- Department of Medicine, Division of Endocrinology, Centre de Recherche Clinique Etienne-LeBel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Christophe Noll
- Department of Medicine, Division of Endocrinology, Centre de Recherche Clinique Etienne-LeBel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Serge Phoenix
- Department of Medicine, Division of Endocrinology, Centre de Recherche Clinique Etienne-LeBel, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche Clinique Etienne-LeBel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche Clinique Etienne-LeBel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric E. Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche Clinique Etienne-LeBel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - André C. Carpentier
- Department of Medicine, Division of Endocrinology, Centre de Recherche Clinique Etienne-LeBel, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Corresponding author: André C. Carpentier,
| |
Collapse
|
12
|
Geib AJ, Liebelt E, Manini AF. Clinical experience with intravenous lipid emulsion for drug-induced cardiovascular collapse. J Med Toxicol 2012; 8:10-4. [PMID: 21989640 DOI: 10.1007/s13181-011-0187-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Intravenous lipid emulsion (ILE) is an emerging therapy for refractory cardiotoxicity due to lipid-soluble drugs. The purpose of this study was to assess survival to hospital discharge, effects on hemodynamic parameters, and adverse event occurrence for patients who were treated with ILE as part of the resuscitative effort for drug-induced cardiotoxicity. This is a multicenter retrospective chart review of inpatients at three tertiary referral medical centers receiving ILE for drug-induced cardiotoxicity between November 2007 and March 2009. Nine cases with drug-induced cardiovascular collapse, defined as cardiac arrest or refractory shock, were selected for review if patients received either bolus or infusion of ILE in any combination. No interventions were done. The main outcome measures were survival to hospital discharge, effect on hemodynamic parameters, and adverse event. Hemodynamic vital signs (heart rate, systolic blood pressure, diastolic blood pressure, calculated mean arterial pressure [MAP]) were measured before administration of ILE and up to five measurements (if available) were recorded after administration of ILE. Attribution of adverse events was determined by assignment of Naranjo adverse drug reaction (ADR) likelihood score (3) with adjudication of three medical toxicologists; disagreements were settled by majority consensus. Of nine cases identified based on inclusion criteria (three cardiac arrest, six refractory shock), five (55%) survived to hospital discharge. ILE regimens were bolus alone in five patients and bolus plus infusion in four patients. Hemodynamic trends in response to ILE demonstrated no difference in MAP immediately pre- and post-administration of ILE (p = NS). Administration of infusion (versus boluses alone) did not demonstrate a statistically significant improvement in MAP. Adverse events due to ILE therapy that were categorized as "possible" or "probable" based on Naranjo scores included lipemia, digit amputation, lung injury, renal failure, and deep venous thrombosis. ILE administered to patients with drug-induced cardiovascular collapse was associated with 55% survival but with clinically significant adverse effects. At this time, ILE should be restricted to cardiotoxicity involving cardiac arrest or refractory shock until further prospective studies can better evaluate risks and benefits of ILE therapy.
Collapse
Affiliation(s)
- Ann-Jeannette Geib
- Medical Toxicology Program, Department of Emergency Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | | | | |
Collapse
|
13
|
Kreissl MC, Stout DB, Wong KP, Wu HM, Caglayan E, Ladno W, Zhang X, Prior JO, Reiners C, Huang SC, Schelbert HR. Influence of dietary state and insulin on myocardial, skeletal muscle and brain [F]-fluorodeoxyglucose kinetics in mice. EJNMMI Res 2011; 1:8. [PMID: 21841971 PMCID: PMC3155201 DOI: 10.1186/2191-219x-1-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We evaluated the effect of insulin stimulation and dietary changes on myocardial, skeletal muscle and brain [(18)F]-fluorodeoxyglucose (FDG) kinetics and uptake in vivo in intact mice. METHODS Mice were anesthetized with isoflurane and imaged under different conditions: non-fasted (n = 7; "controls"), non-fasted with insulin (2 IU/kg body weight) injected subcutaneously immediately prior to FDG (n = 6), fasted (n = 5), and fasted with insulin injection (n = 5). A 60-min small-animal PET with serial blood sampling and kinetic modeling was performed. RESULTS We found comparable FDG standardized uptake values (SUVs) in myocardium in the non-fasted controls and non-fasted-insulin injected group (SUV 45-60 min, 9.58 ± 1.62 vs. 9.98 ± 2.44; p = 0.74), a lower myocardial SUV was noted in the fasted group (3.48 ± 1.73; p < 0.001). In contrast, the FDG uptake rate constant (K(i)) for myocardium increased significantly by 47% in non-fasted mice by insulin (13.4 ± 3.9 ml/min/100 g vs. 19.8 ± 3.3 ml/min/100 g; p = 0.030); in fasted mice, a lower myocardial K(i) as compared to controls was observed (3.3 ± 1.9 ml/min/100 g; p < 0.001). Skeletal muscle SUVs and K(i) values were increased by insulin independent of dietary state, whereas in the brain, those parameters were not influenced by fasting or administration of insulin. Fasting led to a reduction in glucose metabolic rate in the myocardium (19.41 ± 5.39 vs. 3.26 ± 1.97 mg/min/100 g; p < 0.001), the skeletal muscle (1.06 ± 0.34 vs. 0.34 ± 0.08 mg/min/100 g; p = 0.001) but not the brain (3.21 ± 0.53 vs. 2.85 ±0.25 mg/min/100 g; p = 0.19). CONCLUSIONS Changes in organ SUVs, uptake rate constants and metabolic rates induced by fasting and insulin administration as observed in intact mice by small-animal PET imaging are consistent with those observed in isolated heart/muscle preparations and, more importantly, in vivo studies in larger animals and in humans. When assessing the effect of insulin on the myocardial glucose metabolism of non-fasted mice, it is not sufficient to just calculate the SUV - dynamic imaging with kinetic modeling is necessary.
Collapse
Affiliation(s)
- Michael C Kreissl
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Martin E, Brassard P, Gagnon-Auger M, Yale P, Carpentier AC, Ardilouze JL. Subcutaneous adipose tissue metabolism and pharmacology: a new investigative technique. Can J Physiol Pharmacol 2011; 89:383-91. [DOI: 10.1139/y11-039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
According to the Fick principle, any metabolic or hormonal exchange through a given tissue depends on the product of blood flow by arteriovenous difference. Because adipose tissue plays dual storage and endocrine roles, regulation of adipose tissue blood flow (ATBF) is of pivotal importance. Monitoring ATBF in humans can be achieved through different methodologies, such as the 133Xe washout technique, considered to be the “gold standard”, as well as microdialysis and other methods that are not well validated as of yet. This report describes a new method, called “adipose tissue microinfusion” or “ATM”, which simultaneously quantifies ATBF by combining the 133Xe washout technique together with variations of ATBF induced by local infusion of vasoactive agents. The most appropriate site for ATM investigation is the subcutaneous adipose tissue of the anterior abdominal wall. This innovative method conveniently enables the direct comparison of the effects on ATBF of any vasoactive compound, drug, or hormone against a contralateral saline control. The ATM method improves the accuracy and feasibility of physiological and pharmacological studies on the regulation of ATBF in vivo in humans.
Collapse
Affiliation(s)
- Elizabeth Martin
- Diabetes and Metabolism Research Group, Division of Endocrinology, Department of Medicine, Sherbrooke University Hospital Centre, Sherbrooke, QC J1H 5N4, Canada
| | - Pascal Brassard
- Diabetes and Metabolism Research Group, Division of Endocrinology, Department of Medicine, Sherbrooke University Hospital Centre, Sherbrooke, QC J1H 5N4, Canada
| | - Maude Gagnon-Auger
- Diabetes and Metabolism Research Group, Division of Endocrinology, Department of Medicine, Sherbrooke University Hospital Centre, Sherbrooke, QC J1H 5N4, Canada
| | - Philippe Yale
- Diabetes and Metabolism Research Group, Division of Endocrinology, Department of Medicine, Sherbrooke University Hospital Centre, Sherbrooke, QC J1H 5N4, Canada
| | - André C. Carpentier
- Diabetes and Metabolism Research Group, Division of Endocrinology, Department of Medicine, Sherbrooke University Hospital Centre, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Luc Ardilouze
- Diabetes and Metabolism Research Group, Division of Endocrinology, Department of Medicine, Sherbrooke University Hospital Centre, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
15
|
Labbé SM, Grenier-Larouche T, Croteau E, Normand-Lauzière F, Frisch F, Ouellet R, Guérin B, Turcotte EE, Carpentier AC. Organ-specific dietary fatty acid uptake in humans using positron emission tomography coupled to computed tomography. Am J Physiol Endocrinol Metab 2011; 300:E445-53. [PMID: 21098737 DOI: 10.1152/ajpendo.00579.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A noninvasive method to determine postprandial fatty acid tissue partition may elucidate the link between excess dietary fat and type 2 diabetes. We hypothesized that the positron-emitting fatty acid analog 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid ((18)FTHA) administered orally during a meal would be incorporated into chylomicron triglycerides, allowing determination of interorgan dietary fatty acid uptake. We administered (18)FTHA orally at the beginning of a standard liquid meal ingested in nine healthy men. There was no significant (18)FTHA uptake in the portal vein and the liver during the 1st hour. Whole body PET/CT acquisition revealed early appearance of (18)FTHA in the distal thoracic duct, reaching a peak at time 240 min. (18)FTHA mean standard uptake value increased progressively in the liver, heart, quadriceps, and subcutaneous and visceral adipose tissues between time 60 and 240 min. Most circulating (18)F activity between time 0 and 360 min was recovered into chylomicron triglycerides. Using Triton WR-1339 treatment in rats that received (18)FTHA by gavage, we confirmed that >90% of this tracer reached the circulation as triglycerides. This novel noninvasive method to determine tissue dietary fatty acid distribution in humans should prove useful in the study of the mechanisms leading to lipotoxicity.
Collapse
Affiliation(s)
- Sébastien M Labbé
- Division of Endocrinology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Labbé SM, Croteau E, Grenier-Larouche T, Frisch F, Ouellet R, Langlois R, Guérin B, Turcotte EE, Carpentier AC. Normal postprandial nonesterified fatty acid uptake in muscles despite increased circulating fatty acids in type 2 diabetes. Diabetes 2011; 60:408-15. [PMID: 21228312 PMCID: PMC3028339 DOI: 10.2337/db10-0997] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Postprandial plasma nonesterified fatty acid (NEFA) appearance is increased in type 2 diabetes. Our objective was to determine whether skeletal muscle uptake of plasma NEFA is abnormal during the postprandial state in type 2 diabetes. RESEARCH DESIGN AND METHODS Thigh muscle blood flow and oxidative metabolism indexes and NEFA uptake were determined using positron emission tomography coupled with computed tomography (PET/CT) with [(11)C]acetate and 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid ((18)FTHA) in seven healthy control subjects (CON) and seven subjects with type 2 diabetes during continuous oral intake of a liquid meal to achieve steady postprandial NEFA levels with insulin infusion to maintain similar plasma glucose levels in both groups. RESULTS In the postprandial state, plasma NEFA level was higher in type 2 diabetic subjects versus CON (P < 0.01), whereas plasma glucose was at the same level in both groups. Muscle NEFA fractional extraction and blood flow index levels were 56% (P < 0.05) and 24% (P = 0.27) lower in type 2 diabetes, respectively. However, muscle NEFA uptake was similar to that of CON (quadriceps femoris [QF] 1.47 ± 0.23 vs. 1.37 ± 0.24 nmol·g(-1)·min(-1), P = 0.77; biceps femoris [BF] 1.54 ± 0.26 vs. 1.46 ± 0.28 nmol·g(-1)·min(-1), P = 0.85). Muscle oxidative metabolism was similar in both groups. Muscle NEFA fractional extraction and blood flow index were strongly and positively correlated (r = 0.79, P < 0.005). CONCLUSIONS Postprandial muscle NEFA uptake is normal despite elevated systemic NEFA levels and acute normalization of plasma glucose in type 2 diabetes. Lower postprandial muscle blood flow with resulting reduction in muscle NEFA fractional extraction may explain this phenomenon.
Collapse
Affiliation(s)
- Sébastien M. Labbé
- Department of Medicine, Division of Endocrinology, Université de Sherbrooke, Québec, Canada
| | - Etienne Croteau
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Québec, Canada
| | | | - Frédérique Frisch
- Department of Medicine, Division of Endocrinology, Université de Sherbrooke, Québec, Canada
| | - René Ouellet
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Québec, Canada
| | - Réjean Langlois
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Québec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Québec, Canada
| | - Eric E. Turcotte
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Québec, Canada
| | - André C. Carpentier
- Department of Medicine, Division of Endocrinology, Université de Sherbrooke, Québec, Canada
- Corresponding author: André C. Carpentier,
| |
Collapse
|
17
|
Ménard SL, Croteau E, Sarrhini O, Gélinas R, Brassard P, Ouellet R, Bentourkia M, van Lier JE, Des Rosiers C, Lecomte R, Carpentier AC. Abnormal in vivo myocardial energy substrate uptake in diet-induced type 2 diabetic cardiomyopathy in rats. Am J Physiol Endocrinol Metab 2010; 298:E1049-57. [PMID: 20159856 DOI: 10.1152/ajpendo.00560.2009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The purpose of this study was to determine in vivo myocardial energy metabolism and function in a nutritional model of type 2 diabetes. Wistar rats rendered insulin-resistant and mildly hyperglycemic, hyperinsulinemic, and hypertriglyceridemic with a high-fructose/high-fat diet over a 6-wk period with injection of a small dose of streptozotocin (HFHFS) and control rats were studied using micro-PET (microPET) without or with a euglycemic hyperinsulinemic clamp. During glucose clamp, myocardial metabolic rate of glucose measured with [(18)F]fluorodeoxyglucose ([(18)F]FDG) was reduced by approximately 81% (P < 0.05), whereas myocardial plasma nonesterified fatty acid (NEFA) uptake as determined by [(18)F]fluorothia-6-heptadecanoic acid ([(18)F]FTHA) was not significantly changed in HFHFS vs. control rats. Myocardial oxidative metabolism as assessed by [(11)C]acetate and myocardial perfusion index as assessed by [(13)N]ammonia were similar in both groups, whereas left ventricular ejection fraction as assessed by microPET was reduced by 26% in HFHFS rats (P < 0.05). Without glucose clamp, NEFA uptake was approximately 40% lower in HFHFS rats (P < 0.05). However, myocardial uptake of [(18)F]FTHA administered by gastric gavage was significantly higher in HFHFS rats (P < 0.05). These abnormalities were associated with reduced Glut4 mRNA expression and increased Cd36 mRNA expression and mitochondrial carnitine palmitoyltransferase 1 activity (P < 0.05). HFHFS rats display type 2 diabetes complicated by left ventricular contractile dysfunction with profound reduction in myocardial glucose utilization, activation of fatty acid metabolic pathways, and preserved myocardial oxidative metabolism, suggesting reduced myocardial metabolic efficiency. In this model, increased myocardial fatty acid exposure likely occurs from circulating triglyceride, but not from circulating plasma NEFA.
Collapse
Affiliation(s)
- Sébastien L Ménard
- Division of Endocrinology, Department of Medicine, University de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|