1
|
Sato N, Choyke PL. Whole-Body Imaging to Assess Cell-Based Immunotherapy: Preclinical Studies with an Update on Clinical Translation. Mol Imaging Biol 2022; 24:235-248. [PMID: 34816284 PMCID: PMC8983636 DOI: 10.1007/s11307-021-01669-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
In the past decades, immunotherapies against cancers made impressive progress. Immunotherapy includes a broad range of interventions that can be separated into two major groups: cell-based immunotherapies, such as adoptive T cell therapies and stem cell therapies, and immunomodulatory molecular therapies such as checkpoint inhibitors and cytokine therapies. Genetic engineering techniques that transduce T cells with a cancer-antigen-specific T cell receptor or chimeric antigen receptor have expanded to other cell types, and further modulation of the cells to enhance cancer targeting properties has been explored. Because cell-based immunotherapies rely on cells migrating to target organs or tissues, there is a growing interest in imaging technologies that non-invasively monitor transferred cells in vivo. Here, we review whole-body imaging methods to assess cell-based immunotherapy using a variety of examples. Following a review of preclinically used cell tracking technologies, we consider the status of their clinical translation.
Collapse
Affiliation(s)
- Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 10/Rm. B3B406, 10 Center Dr, Bethesda, MD, 20892, USA.
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 10/Rm. B3B69F, 10 Center Dr, Bethesda, MD, 20892, USA
| |
Collapse
|
2
|
In vivo imaging in experimental spinal cord injury – Techniques and trends. BRAIN AND SPINE 2022; 2:100859. [PMID: 36248104 PMCID: PMC9560701 DOI: 10.1016/j.bas.2021.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022]
Abstract
Introduction Traumatic Spinal Cord Injury (SCI) is one of the leading causes of disability in the world. Treatment is limited to supportive care and no curative therapy exists. Experimental research to understand the complex pathophysiology and potential mediators of spinal cord regeneration is essential to develop innovative translational therapies. A multitude of experimental imaging methods to monitor spinal cord regeneration in vivo have developed over the last years. However, little literature exists to deal with advanced imaging methods specifically available in SCI research. Research Question This systematic literature review examines the current standards in experimental imaging in SCI allowing for in vivo imaging of spinal cord regeneration on a neuronal, vascular, and cellular basis. Material and Methods Articles were included meeting the following criteria: experimental research, original studies, rodent subjects, and intravital imaging. Reviewed in detail are microstructural and functional Magnetic Resonance Imaging, Micro-Computed Tomography, Laser Speckle Imaging, Very High Resolution Ultrasound, and in vivo microscopy techniques. Results Following the PRISMA guidelines for systematic reviews, 689 articles were identified for review, of which 492 were sorted out after screening and an additional 104 after detailed review. For qualitative synthesis 93 articles were included in this publication. Discussion and Conclusion With this study we give an up-to-date overview about modern experimental imaging techniques with the potential to advance the knowledge on spinal cord regeneration following SCI. A thorough knowledge of the strengths and limitations of the reviewed techniques will help to optimally exploit our current experimental armamentarium in the field. In vivo imaging is essential to enhance the understanding of SCI pathophysiology. Multiple experimental imaging methods have evolved over the past years. Detailed review of in vivo (f)MRI, μCT, VHRUS, and Microcopy in experimental SCI. Experimental imaging allows for longitudinal examination to the cellular level. Knowledge of the strengths and limitations is essential for future research.
Collapse
|
3
|
Melo KP, Makela AV, Knier NN, Hamilton AM, Foster PJ. Magnetic microspheres can be used for magnetic particle imaging of cancer cells arrested in the mouse brain. Magn Reson Med 2021; 87:312-322. [PMID: 34453462 DOI: 10.1002/mrm.28987] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE Magnetic particle imaging (MPI) is a new imaging modality that sensitively and specifically detects superparamagnetic iron oxide nanoparticles (SPIOs). MRI cell tracking with SPIOs has very high sensitivity, but low specificity and quantification is difficult. MPI could overcome these limitations. There are no reports of micron-sized iron oxide particles (MPIO) for cell tracking by MPI. Therefore, the goal was to evaluate if MPIO can be used for in vivo detection and quantification of cancer cells distributed in the mouse brain by MPI. METHODS In the first experiment mice were injected with either 2.5 × 105 or 5.0 × 105 MPIO-labeled cancer cells and MPI was performed ex vivo. In a second experiment, mice received either 2.5 × 105 or 5.0 × 104 MPIO-labeled cells and MPI was performed in vivo. In a third experiment, mice were injected with 5.0 × 104 cells, labeled with either MPIO or ferucarbotran, and MPI was performed in vivo. RESULTS MPIO-labeled cells were visible in all MPI images of the mouse brain. The MPI signal and iron content measurements were greater for brains of mice that were injected with higher numbers of MPIO-labeled cells. Ferucarbotran-labeled cells were not detected in the brain by MPI. CONCLUSION This is the first example of the use of MPIO for cell tracking with MPI. With an intracardiac cell injection, ~15% of cells will arrest in the brain vasculature. For our lowest cell injection of 5.0 × 104 cells, this was ~10 000 cells, distributed throughout the brain.
Collapse
Affiliation(s)
- Kierstin P Melo
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Ashley V Makela
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, USA
| | - Natasha N Knier
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Amanda M Hamilton
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Paula J Foster
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
Li WY, Jia H, Wang ZD, Zhai FG, Sun GD, Ma D, Liu GB, Li CM, Wang Y. Combinatory transplantation of mesenchymal stem cells with flavonoid small molecule in acellular nerve graft promotes sciatic nerve regeneration. J Tissue Eng 2020; 11:2041731420980136. [PMID: 34956585 PMCID: PMC8693221 DOI: 10.1177/2041731420980136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Previous animal studies have demonstrated that the flavonoid small-molecule TrkB agonist, 7, 8-dihydroxyflavone (DHF), promotes axon regeneration in transected peripheral nerves. In the present study, we investigated the combined effects of 7, 8-DHF treatment and bone marrow-derived stem/stromal cells (BMSCs) engraftment into acellular nerve allografts (ANAs) and explore relevant mechanisms that may be involved. Our results show that TrkB and downstream ERK1/2 phosphorylation are increased upon 7, 8-DHF treatment compared to the negative control group. Also, 7, 8-DHF promotes proliferation, survival, and Schwann-like cell differentiation of BMSCs in vitro. While selective ERK1/2 inhibitor U0126 suppressed the effect of upregulation of ERK1/2 phosphorylation and decreased cell proliferation, survival, and Schwann-like cell differentiation partially induced by 7, 8-DHF. In vivo, 7, 8-DHF promotes survival of transplanted BMSCs and upregulates axonal growth and myelination in regenerating ANAs. 7, 8-DHF+BMSCs also improved motor endplate density of target musculature. These benefits were associated with increased motor functional recovery. 7, 8-DHF+BMSCs significantly upregulated TrkB and ERK1/2 phosphorylation expression in regenerating ANA, and increased TrkB expression in the lumbar spinal cord. The mechanism of 7, 8-DHF action may be related to its ability to upregulate TrkB signaling, and downstream activation of survival signaling molecules ERK1/2 in the regenerating ANAs and spinal cord and improved survival of transplanted BMSCs. This study provides novel foundational data connecting the benefits of 7, 8-DHF treatment in neural injury and repair to BMSCs biology and function and demonstrates a potential combination approach for the treatment of injured peripheral nerve via nerve graft transplant.
Collapse
Affiliation(s)
- Wen-yuan Li
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, China
| | - Hua Jia
- Department of Anatomy, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Zhen-Dong Wang
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Mudanjiang College of Medicine, Mudanjiang, China
| | - Feng-guo Zhai
- Department of Pharmacology, Mudanjiang College of Medicine, Mudanjiang, China
| | - Guang-da Sun
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, China
| | - Duo Ma
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, China
| | - Gui-Bo Liu
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, China
| | - Chun-Mei Li
- Department of Basic Psychological, Mudanjiang College of Medicine, Mudanjiang, China
| | - Ying Wang
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, China
| |
Collapse
|
5
|
Abstract
Many labs have been developing cellular magnetic resonance imaging (MRI), using both superparamagnetic iron oxide nanoparticles (SPIONs) and fluorine-19 (19F)-based cell labels, to track immune and stem cells used for cellular therapies. Although SPION-based MRI cell tracking has very high sensitivity for cell detection, SPIONs are indirectly detected owing to relaxation effects on protons, producing negative magnetic resonance contrast with low signal specificity. Therefore, it is not possible to reliably quantify the local tissue concentration of SPION particles, and cell number cannot be determined. 19F-based cell tracking has high specificity for perfluorocarbon-labeled cells, and 19F signal is directly related to cell number. However, 19F MRI has low sensitivity. Magnetic particle imaging (MPI) is a new imaging modality that directly detects SPIONs. SPION-based cell tracking using MPI displays great potential for overcoming the challenges of MRI-based cell tracking, allowing for both high cellular sensitivity and specificity, and quantification of SPION-labeled cell number. Here we describe nanoparticle and MPI system factors that influence MPI sensitivity and resolution, quantification methods, and give our perspective on testing and applying MPI for cell tracking.
Collapse
Affiliation(s)
- Olivia C. Sehl
- Imaging Research Laboratories, Robarts Research Institute; and
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Julia J. Gevaert
- Imaging Research Laboratories, Robarts Research Institute; and
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Kierstin P. Melo
- Imaging Research Laboratories, Robarts Research Institute; and
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Natasha N. Knier
- Imaging Research Laboratories, Robarts Research Institute; and
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Paula J. Foster
- Imaging Research Laboratories, Robarts Research Institute; and
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| |
Collapse
|
6
|
Yang X, Meng Y, Han Z, Ye F, Wei L, Zong C. Mesenchymal stem cell therapy for liver disease: full of chances and challenges. Cell Biosci 2020; 10:123. [PMID: 33117520 PMCID: PMC7590738 DOI: 10.1186/s13578-020-00480-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Liver disease is a major health problem that endangers human health worldwide. Currently, whole organ allograft transplantation is the gold standard for the treatment of end-stage liver disease. A shortage of suitable organs, high costs and surgical complications limit the application of liver transplantation. Mesenchymal stem cell therapy has been considered as a promising alternative approach for end-stage liver disease. Some clinical trials have confirmed the effectiveness of MSC therapy for liver disease, but its application has not been promoted and approved. There are still many issues that should be solved prior to using MSC therapy in clinical applications. The types of liver disease that are most suitable for MSC application should be determined, and the preparation and engraftment of MSCs should be standardized. These may be bottlenecks that limit the use of MSCs. We investigated 22 completed and several ongoing clinical trials to discuss these questions from a clinical perspective. We also discussed the important mechanisms by which MSCs play a therapeutic role in liver disease. Finally, we also proposed novel prospective approaches that can improve the therapeutic effect of MSCs.
Collapse
Affiliation(s)
- Xue Yang
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai, 200438 China
| | - Yan Meng
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai, 200438 China
| | - Zhipeng Han
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai, 200438 China
| | - Fei Ye
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai, 200438 China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai, 200438 China
| | - Chen Zong
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai, 200438 China
| |
Collapse
|
7
|
Stem Cells and Labeling for Spinal Cord Injury. Int J Mol Sci 2016; 18:ijms18010006. [PMID: 28035961 PMCID: PMC5297641 DOI: 10.3390/ijms18010006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that usually results in sudden and long-lasting locomotor and sensory neuron degeneration below the lesion site. During the last two decades, the search for new therapies has been revolutionized with the improved knowledge of stem cell (SC) biology. SCs therapy offers several attractive strategies for spinal cord repair. The transplantation of SCs promotes remyelination, neurite outgrowth and axonal elongation, and activates resident or transplanted progenitor cells across the lesion cavity. However, optimized growth and differentiation protocols along with reliable safety assays should be established prior to the clinical application of SCs. Additionally, the ideal method of SCs labeling for efficient cell tracking after SCI remains a challenging issue that requires further investigation. This review summarizes the current findings on the SCs-based therapeutic strategies, and compares different SCs labeling approaches for SCI.
Collapse
|
8
|
Oh SK, Jeon SR. Current Concept of Stem Cell Therapy for Spinal Cord Injury: A Review. Korean J Neurotrauma 2016; 12:40-46. [PMID: 27857906 PMCID: PMC5110917 DOI: 10.13004/kjnt.2016.12.2.40] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/10/2016] [Accepted: 04/28/2016] [Indexed: 01/17/2023] Open
Abstract
Spinal cord injury (SCI) is a catastrophic condition associated with significant neurological deficit, social, and financial burdens. Over the past decades, various treatments including medication, surgery, and rehabilitation therapy for SCI have been performed, but there were no definite treatment option to improve neurological function of patients with chronic SCI. Therefore, new treatment trials with stem cells have been studied to regenerate injured spinal cord. Among various types of stem cells, bone marrow derived mesenchymal stem cells is highly expected as candidates for the stem cell therapy. The result of the current research showed that direct intramedullary injection to the injured spinal cord site in subacute phase is most effective. Neurological examination, electrophysiologic studies, and magnetic resonance imaging are commonly used to assess the effectiveness of treatment. Diffusion tensor imaging visualizing white matter tract can be also alternative option to identify neuronal regeneration. Despite various challenging issues, stem cell therapy will open new perspectives for SCI treatment.
Collapse
Affiliation(s)
- Sun Kyu Oh
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
A multimodality imaging model to track viable breast cancer cells from single arrest to metastasis in the mouse brain. Sci Rep 2016; 6:35889. [PMID: 27767185 PMCID: PMC5073295 DOI: 10.1038/srep35889] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/06/2016] [Indexed: 01/08/2023] Open
Abstract
Cellular MRI involves sensitive visualization of iron-labeled cells in vivo but cannot differentiate between dead and viable cells. Bioluminescence imaging (BLI) measures cellular viability, and thus we explored combining these tools to provide a more holistic view of metastatic cancer cell fate in mice. Human breast carcinoma cells stably expressing Firefly luciferase were loaded with iron particles, injected into the left ventricle, and BLI and MRI were performed on days 0, 8, 21 and 28. The number of brain MR signal voids (i.e., iron-loaded cells) on day 0 significantly correlated with BLI signal. Both BLI and MRI signals decreased from day 0 to day 8, indicating a loss of viable cells rather than a loss of iron label. Total brain MR tumour volume on day 28 also correlated with BLI signal. Overall, BLI complemented our sensitive cellular MRI technologies well, allowing us for the first time to screen animals for successful injections, and, in addition to MR measures of cell arrest and tumor burden, provided longitudinal measures of cancer cell viability in individual animals. We predict this novel multimodality molecular imaging framework will be useful for evaluating the efficacy of emerging anti-cancer drugs at different stages of the metastatic cascade.
Collapse
|
10
|
Makela AV, Murrell DH, Parkins KM, Kara J, Gaudet JM, Foster PJ. Cellular Imaging With MRI. Top Magn Reson Imaging 2016; 25:177-186. [PMID: 27748707 DOI: 10.1097/rmr.0000000000000101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cellular magnetic resonance imaging (MRI) is an evolving field of imaging with strong translational and research potential. The ability to detect, track, and quantify cells in vivo and over time allows for studying cellular events related to disease processes and may be used as a biomarker for decisions about treatments and for monitoring responses to treatments. In this review, we discuss methods for labeling cells, various applications for cellular MRI, the existing limitations, strategies to address these shortcomings, and clinical cellular MRI.
Collapse
Affiliation(s)
- Ashley V Makela
- *Imaging Research Laboratories, Robarts Research Institute †Department of Medical Biophysics, Western University, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
11
|
MRI-Based Assessment of Intralesional Delivery of Bone Marrow-Derived Mesenchymal Stem Cells in a Model of Equine Tendonitis. Stem Cells Int 2016; 2016:8610964. [PMID: 27746821 PMCID: PMC5056306 DOI: 10.1155/2016/8610964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
Ultrasound-guided intralesional injection of mesenchymal stem cells (MSCs) is held as the benchmark for cell delivery in tendonitis. The primary objective of this study was to investigate the immediate cell distribution following intralesional injection of MSCs. Unilateral superficial digital flexor tendon (SDFT) lesions were created in the forelimb of six horses and injected with 10 × 106 MSCs labeled with superparamagnetic iron oxide nanoparticles (SPIOs) under ultrasound guidance. Assays were performed to confirm that there were no significant changes in cell viability, proliferation, migration, or trilineage differentiation due to the presence of SPIOs. Limbs were imaged on a 1.5-tesla clinical MRI scanner postmortem before and after injection to determine the extent of tendonitis and detect SPIO MSCs. Clusters of labeled cells were visible as signal voids in 6/6 subjects. Coalescing regions of signal void were diffusely present in the peritendinous tissues. Although previous reports have determined that local injury retains cells within a small radius of the site of injection, our study shows greater than expected delocalization and relatively few cells retained within collagenous tendon compared to surrounding fascia. Further work is needed if this is a reality in vivo and to determine if directed intralesional delivery of MSCs is as critical as presently thought.
Collapse
|
12
|
Gaudet JM, Hamilton AM, Chen Y, Fox MS, Foster PJ. Application of dual19F and iron cellular MRI agents to track the infiltration of immune cells to the site of a rejected stem cell transplant. Magn Reson Med 2016; 78:713-720. [DOI: 10.1002/mrm.26400] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/07/2016] [Accepted: 08/09/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Jeffrey M. Gaudet
- Imaging Research Laboratories, Robarts Research Institute; London Ontario Canada
- Department of Medical Biophysics; University of Western Ontario; London Ontario Canada
| | - Amanda M. Hamilton
- Imaging Research Laboratories, Robarts Research Institute; London Ontario Canada
| | - Yuanxin Chen
- Imaging Research Laboratories, Robarts Research Institute; London Ontario Canada
| | - Matthew S. Fox
- Imaging Research Laboratories, Robarts Research Institute; London Ontario Canada
- Department of Medical Biophysics; University of Western Ontario; London Ontario Canada
| | - Paula J. Foster
- Imaging Research Laboratories, Robarts Research Institute; London Ontario Canada
- Department of Medical Biophysics; University of Western Ontario; London Ontario Canada
| |
Collapse
|
13
|
Lamanna JJ, Gutierrez J, Urquia LN, Hurtig CV, Amador E, Grin N, Svendsen CN, Federici T, Oshinski JN, Boulis NM. Ferumoxytol Labeling of Human Neural Progenitor Cells for Diagnostic Cellular Tracking in the Porcine Spinal Cord with Magnetic Resonance Imaging. Stem Cells Transl Med 2016; 6:139-150. [PMID: 28170192 PMCID: PMC5442757 DOI: 10.5966/sctm.2015-0422] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/11/2016] [Indexed: 12/15/2022] Open
Abstract
We report on the diagnostic capability of magnetic resonance imaging (MRI)‐based tracking of ferumoxytol‐labeled human neural progenitor cells (hNPCs) transplanted into the porcine spinal cord. hNPCs prelabeled with two doses of ferumoxytol nanoparticles (hNPC‐FLow and hNPC‐FHigh) were injected into the ventral horn of the spinal cord in healthy minipigs. Ferumoxytol‐labeled grafts were tracked in vivo up to 105 days after transplantation with MRI. Injection accuracy was assessed in vivo at day 14 and was predictive of “on” or “off” target cell graft location assessed by histology. No difference in long‐term cell survival, assessed by quantitative stereology, was observed among hNPC‐FLow, hNPC‐FHigh, or control grafts. Histological iron colocalized with MRI signal and engrafted human nuclei. Furthermore, the ferumoxytol‐labeled cells retained nanoparticles and function in vivo. This approach represents an important leap forward toward facilitating translation of cell‐tracking technologies to clinical trials by providing a method of assessing transplantation accuracy, delivered dose, and potentially cell survival. Stem Cells Translational Medicine2017;6:139–150
Collapse
Affiliation(s)
- Jason J. Lamanna
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Juanmarco Gutierrez
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Lindsey N. Urquia
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - C. Victor Hurtig
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Elman Amador
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Natalia Grin
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Clive N. Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars‐Sinai Medical Center, Los Angeles, California, USA
| | - Thais Federici
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - John N. Oshinski
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Nicholas M. Boulis
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Spinal Cord Cellular Therapeutics Delivery: Device Design Considerations. REGENERATIVE MEDICINE FOR DEGENERATIVE MUSCLE DISEASES 2016. [DOI: 10.1007/978-1-4939-3228-3_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Ngen EJ, Wang L, Kato Y, Krishnamachary B, Zhu W, Gandhi N, Smith B, Armour M, Wong J, Gabrielson K, Artemov D. Imaging transplanted stem cells in real time using an MRI dual-contrast method. Sci Rep 2015; 5:13628. [PMID: 26330231 PMCID: PMC4556978 DOI: 10.1038/srep13628] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/31/2015] [Indexed: 12/25/2022] Open
Abstract
Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies.
Collapse
Affiliation(s)
- Ethel J Ngen
- The In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Lee Wang
- The In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Yoshinori Kato
- The In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA.,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Balaji Krishnamachary
- The In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Wenlian Zhu
- The In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Nishant Gandhi
- The Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21287, USA
| | - Barbara Smith
- The Institute for Basic Biomedical Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Michael Armour
- The Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21287, USA
| | - John Wong
- The Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21287, USA
| | - Kathleen Gabrielson
- The Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Dmitri Artemov
- The In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA.,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| |
Collapse
|
16
|
Scharf A, Holmes S, Thoresen M, Mumaw J, Stumpf A, Peroni J. Superparamagnetic iron oxide nanoparticles as a means to track mesenchymal stem cells in a large animal model of tendon injury. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:388-97. [PMID: 26033748 DOI: 10.1002/cmmi.1642] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/12/2015] [Accepted: 03/15/2015] [Indexed: 12/11/2022]
Abstract
The goal of this study was to establish an SPIO-based cell-tracking method in an ovine model of tendonitis and to determine if this method may be useful for further study of cellular therapies in tendonitis in vivo. Functional assays were performed on labeled and unlabeled cells to ensure that no significant changes were induced by intracellular SPIOs. Following biosafety validation, tendon lesions were mechanically (n = 4) or chemically (n = 4) induced in four sheep and scanned ex vivo at 7 and 14 days to determine the presence and distribution of intralesional cells. Ovine MSCs labeled with 50 µg SPIOs/mL remained viable, proliferate, and undergo tri-lineage differentiation (p < 0.05). Labeled ovine MSCs remained detectable in vitro in concentrated cell numbers as low as 10 000 and in volumetric distributions as low as 100 000 cells/mL. Cells remained detectable by MRI at 7 days, as confirmed by correlative histology for dually labeled SPIO+/GFP+ cells. Histological evidence at 14 days suggested that SPIO particles remained embedded in tissue, providing MRI signal, although cells were no longer present. SPIO labeling has proven to be an effective method for cell tracking for a large animal model of tendon injury for up to 7 days post-injection. The data obtained in this study justify further investigation into the effects of MSC survival and migration on overall tendon healing and tissue regeneration.
Collapse
Affiliation(s)
- Alexandra Scharf
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, H-322, Athens, GA, 30602, USA.,Department of Biological and Agricultural Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Shannon Holmes
- Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Merrilee Thoresen
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, H-322, Athens, GA, 30602, USA
| | - Jennifer Mumaw
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, H-322, Athens, GA, 30602, USA
| | - Alaina Stumpf
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, H-322, Athens, GA, 30602, USA
| | - John Peroni
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, H-322, Athens, GA, 30602, USA
| |
Collapse
|
17
|
Gaudet JM, Ribot EJ, Chen Y, Gilbert KM, Foster PJ. Tracking the fate of stem cell implants with fluorine-19 MRI. PLoS One 2015; 10:e0118544. [PMID: 25767871 PMCID: PMC4358825 DOI: 10.1371/journal.pone.0118544] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/20/2015] [Indexed: 01/13/2023] Open
Abstract
Background In this study we used cellular magnetic resonance imaging (MRI) to detect mesenchymal stem cells (MSC) labeled with a Fluorine-19 (19F) agent. 19F-MRI offers unambiguous detection and in vivo quantification of labeled cells. Methods We investigated two common stem cell transplant mouse models: an immune competent, syngeneic transplant model and an immune compromised, xenograft transplant model. 19F labelled stem cells were implanted intramuscularly into the hindlimb of healthy mice. The transplant was then monitored for up to 17 days using 19F-MRI, after which the tissue was excised for fluorescence microscopy and immunohistochemisty. Results Immediately following transplantation, 19F-MRI quantification correlated very well with the expected cell number in both models. The 19F signal decreased over time in both models, with a more rapid decrease in the syngeneic model. By endpoint, only 2/7 syngeneic mice had any detectable 19F signal. In the xenograft model, all mice had detectable signal at endpoint. Fluorescence microscopy and immunohistochemistry were used to show that the 19F signal was related to the presence of bystander labeled macrophages, and not original MSC. Conclusions Our results show that 19F-MRI is an excellent tool for verifying the delivery of therapeutic cells early after transplantation. However, in certain circumstances the transfer of cellular label to other bystander cells may confuse interpretation of the long-term fate of the transplanted cells.
Collapse
Affiliation(s)
- Jeffrey M. Gaudet
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- * E-mail:
| | - Emeline J. Ribot
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Yuhua Chen
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Kyle M. Gilbert
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Paula J. Foster
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| |
Collapse
|
18
|
Patel S, Lee KB. Probing stem cell behavior using nanoparticle-based approaches. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:759-78. [PMID: 25903468 PMCID: PMC5808881 DOI: 10.1002/wnan.1346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/22/2015] [Accepted: 03/07/2015] [Indexed: 01/07/2023]
Abstract
Stem cells hold significant clinical potential to treat numerous debilitating diseases and injures that currently have no treatment plan. While several advances have been made in developing stem cell platforms and methods to induce their differentiation, there are two critical aspects need to be addressed: (1) efficient delivery of nucleic acids and small molecules for stem cell differentiation, and (2) effective, noninvasive, and real-time tracking of transplanted stem cells. To address this, there has been a trend of utilizing various types of nanoparticles to not only deliver biomolecules to targeted site but also track the location of transplanted stem cells in real time. Over the past decade, various types of nanoparticles, including magnetic nanoparticles, silica nanoparticles, quantum dots, and gold nanoparticles, have been developed to serve as vehicles for targeted biomolecule delivery. In addition of being biocompatible without causing adverse side effect to stem cells, these nanoparticles have unique chemical and physical properties that allow tracking and imaging in real time using different imaging instruments that are commonly found in hospitals. A summary of the landmark and progressive demonstrations that utilize nanoparticles for stem cell application is described.
Collapse
|
19
|
Carelli S, Giallongo T, Gerace C, De Angelis A, Basso MD, Di Giulio AM, Gorio A. Neural stem cell transplantation in experimental contusive model of spinal cord injury. J Vis Exp 2014:52141. [PMID: 25548937 PMCID: PMC4396970 DOI: 10.3791/52141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Spinal cord injury is a devastating clinical condition, characterized by a complex of neurological dysfunctions. Animal models of spinal cord injury can be used both to investigate the biological responses to injury and to test potential therapies. Contusion or compression injury delivered to the surgically exposed spinal cord are the most widely used models of the pathology. In this report the experimental contusion is performed by using the Infinite Horizon (IH) Impactor device, which allows the creation of a reproducible injury animal model through definition of specific injury parameters. Stem cell transplantation is commonly considered a potentially useful strategy for curing this debilitating condition. Numerous studies have evaluated the effects of transplanting a variety of stem cells. Here we demonstrate an adapted method for spinal cord injury followed by tail vein injection of cells in CD1 mice. In short, we provide procedures for: i) cell labeling with a vital tracer, ii) pre-operative care of mice, iii) execution of a contusive spinal cord injury, and iv) intravenous administration of post mortem neural precursors. This contusion model can be utilized to evaluate the efficacy and safety of stem cell transplantation in a regenerative medicine approach.
Collapse
Affiliation(s)
- Stephana Carelli
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan
| | - Toniella Giallongo
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan
| | - Claudio Gerace
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan
| | - Anthea De Angelis
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan
| | - Michele D Basso
- Department of Neuroscience, College of Medicine, The Ohio State University
| | | | - Alfredo Gorio
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan;
| |
Collapse
|
20
|
Rohani R, Figueredo R, Bureau Y, Koropatnick J, Foster P, Thompson RT, Prato FS, Goldhawk DE. Imaging tumor growth non-invasively using expression of MagA or modified ferritin subunits to augment intracellular contrast for repetitive MRI. Mol Imaging Biol 2014; 16:63-73. [PMID: 23836502 DOI: 10.1007/s11307-013-0661-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE The bacterial gene MagA imparts magnetic properties to mammalian cells and provides a basis for cell tracking by magnetic resonance imaging (MRI). In a mouse model of tumor growth from transplanted cells, we used repetitive MRI to demonstrate the in vivo imaging potential of MagA expression relative to a modified ferritin overexpression system, lacking regulation through iron response elements (HF + LF). PROCEDURES Subcutaneous tumor xenografts were monitored weekly from days 2 to 34 post-injection. Small animal MRI employed balanced steady-state free precession. Imaging was correlated with tumor histology using hematoxylin, Prussian Blue, Ki-67, and BS-1 lectin. RESULTS Tumor heterogeneity with respect to tissue morphology and magnetic resonance (MR) contrast was apparent within a week of cell transplantation. In MagA- and HF + LF-expressing tumors, MR contrast enhancement was recorded up to day 20 post-injection and 0.073-cm(3) tumor volumes. MagA-expressing tumors showed increases in both quantity and quality of MR contrast as measured by fractional void volume and contrast-to-noise ratio, respectively. MR contrast in both MagA- and HF + LF-expressing tumors was maximal by day 13, doubling fractional void volume 1 week ahead of controls. CONCLUSIONS MagA- and HF + LF-expressing tumor xenografts augment MR contrast after 1 week of growth. MagA expression increases MR contrast within days of cell transplantation and provides MR contrast comparable to HF + LF. MagA has utility for monitoring cell growth and differentiation, with potential for in vivo detection of reporter gene expression using MRI.
Collapse
Affiliation(s)
- Roja Rohani
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ribot EJ, Gaudet JM, Chen Y, Gilbert KM, Foster PJ. In vivo MR detection of fluorine-labeled human MSC using the bSSFP sequence. Int J Nanomedicine 2014; 9:1731-9. [PMID: 24748787 PMCID: PMC3986292 DOI: 10.2147/ijn.s59127] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mesenchymal stem cells (MSC) are used to restore deteriorated cell environments. There is a need to specifically track these cells following transplantation in order to evaluate different methods of implantation, to follow their migration within the body, and to quantify their accumulation at the target. Cellular magnetic resonance imaging (MRI) using fluorine-based nanoemulsions is a great means to detect these transplanted cells in vivo because of the high specificity for fluorine detection and the capability for precise quantification. This technique, however, has low sensitivity, necessitating improvement in MR sequences. To counteract this issue, the balanced steady-state free precession (bSSFP) imaging sequence can be of great interest due to the high signal-to-noise ratio (SNR). Furthermore, it can be applied to obtain 3D images within short acquisition times. In this paper, bSSFP provided accurate quantification of samples of the perfluorocarbon Cell Sense-labeled cells in vitro. Cell Sense was internalized by human MSC (hMSC) without adverse alterations in cell viability or differentiation into adipocytes/osteocytes. The bSSFP sequence was applied in vivo to track and quantify the signals from both Cell Sense-labeled and iron-labeled hMSC after intramuscular implantation. The fluorine signal was observed to decrease faster and more significantly than the volume of iron-associated voids, which points to the advantage of quantifying the fluorine signal and the complexity of quantifying signal loss due to iron.
Collapse
Affiliation(s)
- Emeline J Ribot
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Jeffrey M Gaudet
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Yuhua Chen
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Kyle M Gilbert
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Paula J Foster
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| |
Collapse
|
22
|
Hamilton AM, Mallett C, Foster PJ. High-resolution MRI and nanoparticles: the future of brain imaging. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.13.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT: Cellular MRI uses superparamagnetic iron oxide nanoparticles to label cells (in vitro or in vivo) for detection in magnetic resonance images. The infiltration of inflammatory macrophages can be visualized in brain diseases, such as multiple sclerosis, stroke and Alzheimer‘s disease, and correlates with disease severity and responses to treatments. Mesenchymal stromal cells, neural stem cells and immune cells used as cell therapies in CNS diseases can be tracked in vivo over time to determine their migration and dispersion. Tracking labeled cancer cells provides information about metastasis and proliferative status in preclinical tumor models. Ongoing technical improvements come from the development of new particles, the use of fluorine-based contrast agents and the refinement of high-field MRI for cell tracking.
Collapse
Affiliation(s)
- Amanda M Hamilton
- Imaging Research Laboratories, Robarts Research Institute, London, ON, N6A 5K8, Canada
| | - Christiane Mallett
- Imaging Research Laboratories, Robarts Research Institute, London, ON, N6A 5K8, Canada
| | - Paula J Foster
- Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
23
|
Brain metastases from breast cancer: lessons from experimental magnetic resonance imaging studies and clinical implications. J Mol Med (Berl) 2013; 92:5-12. [PMID: 24306136 DOI: 10.1007/s00109-013-1108-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 01/24/2023]
Abstract
Breast cancer that has metastasized to the brain presents difficult clinical challenges. This diagnosis comes with high mortality rates, largely due to complexities in early detection and ineffective therapies associated with both dormancy and impermeability of the blood-brain barrier (BBB). Magnetic resonance imaging (MRI) is the current gold standard for diagnosis and assessment of brain tumors. It has been used clinically to investigate metastatic development as well as monitor response to therapy. Here, we describe preclinical imaging strategies that we have used to study the development of brain metastases due to breast cancer. Using this approach, we have identified three subsets of metastatic disease: permeable metastases, nonpermeable metastases, and solitary, dormant cancer cells, which likely have very different biology and responses to therapy. The ability to simultaneously monitor the spatial and temporal distribution of dormant cancer cells, metastatic growth, and associated tumor permeability can provide great insight into factors that contribute to malignant proliferation. Our preclinical findings suggest that standard clinical detection strategies may underestimate the true metastatic burden of breast cancer that has metastasized to the brain. A better understanding of true metastatic burden in brains will be important to assist in the development of more effective chemotherapeutics-particularly those targeted to cross the BBB-as well as detection of small nonpermeable metastases.
Collapse
|
24
|
Cellular therapeutics delivery to the spinal cord: technical considerations for clinical application. Ther Deliv 2013; 4:1397-410. [DOI: 10.4155/tde.13.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Current literature demonstrates the efficacy of cell-based therapeutics in small animal models of varied spinal cord diseases. However, logistic challenges remain towards development of an optimized delivery approach to the human spinal cord. Clinical trials utilize a variety of methods to achieve this aim. In this article, the authors review currently employed delivery methods, compare the merits of alternate delivery paradigms, introduce their implementation in completed and ongoing clinical trials, and discuss promising near-term advances in image-guided delivery and in vivo graft tracking.
Collapse
|
25
|
MRI detection of nonproliferative tumor cells in lymph node metastases using iron oxide particles in a mouse model of breast cancer. Transl Oncol 2013; 6:347-54. [PMID: 23730415 DOI: 10.1593/tlo.13121] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 01/28/2023] Open
Abstract
Cell tracking with magnetic resonance imaging (MRI) and iron nanoparticles is commonly used to monitor the fate of implanted cells in preclinical disease models. Few studies have employed these methods to study cancer cells because proliferative iron-labeled cancer cells will lose the label as they divide. In this study, we evaluate the potential for retention of the iron nanoparticle label, and resulting MRI signal, to serve as a marker for slowly dividing cancer cells. Green fluorescent protein-transfected MDA-MB-231 breast cancer cells were labeled with red fluorescent micron-sized superparamagnetic iron oxide (MPIO) nanoparticles. Cells were examined in vitro at multiple time points after labeling by staining for iron-labeled cells and by flow cytometric detection of the fluorescent MPIO. Severe combined immune deficiency (SCID) mice were implanted with 5 x 10(5) MPIO-labeled or unlabeled cells in the mammary fat pad and MRI was performed weekly until 28 days after injection. Microscopy was performed to validate MRI. In vitro assays revealed a very small percentage of cells that retained MPIO at 14 days after labeling. Regions of signal loss were observed in MRI of primary tumors that developed from iron-labeled cancer cells. Small focal regions of signal loss were detected in images of the axillary and brachial nodes in six of eight mice, at day 14 or later, with microscopy confirming the presence of iron-labeled cancer cells. Our data suggest an interesting role for cell tracking with iron particles since label retention leads to persistent signal void, allowing proliferative status to be determined.
Collapse
|
26
|
Specific chemotaxis of magnetically labeled mesenchymal stem cells: implications for MRI of glioma. Mol Imaging Biol 2013; 14:676-87. [PMID: 22418788 DOI: 10.1007/s11307-012-0553-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is a lethal disease marked by infiltration of cancerous cells into the surrounding normal brain. The dire outcome of GBM patients stems in part from the limitations of current neuroimaging methods. Notably, early cancer detection methodologies are lacking, without the ability to identify aggressive, metastatic tumor cells. We propose a novel approach for tumor detection using magnetic resonance imaging (MRI) based on imaging specific tumor tropism of mesenchymal stem cells (MSCs) labeled with micron-sized iron oxide particles (MPIOs). PROCEDURES MPIO labeled and unlabeled MSCs were compared for viability, multi-lineage differentiation, and migration, where both chemotactic and chemokinetic movement were assessed in the presence of serum-free medium, serum-containing medium, and glioma-conditioned medium. MRI was performed on agarose samples, consisting of MPIO-labeled single MSCs, to confirm the capability to detect single cells. RESULTS We determined that MPIO-labeled MSCs exhibit specific and significant chemotactic migration towards glioma-conditioned medium in vitro. Confocal fluorescence microscopy confirmed that MPIOs are internalized and do not impact important cell processes of MSCs. Lastly, MPIO-labeled MSCs appear as single distinct, dark spots on T(2)*-weighted MRI, supporting the robustness of this contrast agent for cell tracking. CONCLUSIONS This is the first study to show that MPIO-labeled MSCs exhibit specific tropism toward tumor-secreted factors in vitro. The potential for detecting single MPIO-labeled MSCs provides rationale for in vivo extension of this methodology to visualize GBM in animal models.
Collapse
|
27
|
Noad J, Gonzalez-Lara LE, Broughton HC, McFadden C, Chen Y, Hess DA, Foster PJ. MRI tracking of transplanted iron-labeled mesenchymal stromal cells in an immune-compromised mouse model of critical limb ischemia. NMR IN BIOMEDICINE 2013; 26:458-467. [PMID: 23165968 DOI: 10.1002/nbm.2884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/30/2012] [Accepted: 09/29/2012] [Indexed: 06/01/2023]
Abstract
Peripheral arterial disease is a clinical problem in which mesenchymal stromal cell (MSC) transplantation may offer substantial benefit by promoting the generation of new blood vessels and improving limb ischemia and wound healing via their potent paracrine activities. MRI allows for the noninvasive tracking of cells over time using iron oxide contrast agents to label cells before they are injected or transplanted. However, a major limitation of the tracking of iron oxide-labeled cells with MRI is the possibility that dead or dying cells will transfer the iron oxide label to local bystander macrophages, making it very difficult to distinguish between viable transplanted cells and endogenous macrophages in the images. In this study, a severely immune-compromised mouse, with limited macrophage activity, was investigated to examine cell tracking in a system in which bystander cell uptake of dead, iron-labeled cells or free iron particles was minimized. MRI was used to track the fate of MSCs over 21 days after their intramuscular transplantation in mice with a femoral artery ligation. In all mice, a region of signal loss was observed at the injection site and the volume of signal hypointensity diminished over time. Fluorescence and light microscopy showed that iron-positive MSCs persisted at the transplant site and often appeared to be integrated in perivascular niches. This was compared with MSC transplantation in immune-competent mice with femoral artery ligation. In these mice, the regions of signal loss caused by iron-labeled MSC cleared more slowly, and histology revealed iron particles trapped at the site of cell transplantation and associated with areas of inflammation.
Collapse
Affiliation(s)
- Jennifer Noad
- Robarts Research Institute, London, ON, Canada; Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Siegers GM, Ribot EJ, Keating A, Foster PJ. Extensive expansion of primary human gamma delta T cells generates cytotoxic effector memory cells that can be labeled with Feraheme for cellular MRI. Cancer Immunol Immunother 2013; 62:571-83. [PMID: 23100099 PMCID: PMC11029191 DOI: 10.1007/s00262-012-1353-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
Abstract
Gamma delta T cells (GDTc) comprise a small subset of cytolytic T cells shown to kill malignant cells in vitro and in vivo. We have developed a novel protocol to expand GDTc from human blood whereby GDTc were initially expanded in the presence of alpha beta T cells (ABTc) that were then depleted prior to use. We achieved clinically relevant expansions of up to 18,485-fold total GDTc, with 18,849-fold expansion of the Vδ1 GDTc subset over 21 days. ABTc depletion yielded 88.1 ± 4.2 % GDTc purity, and GDTc continued to expand after separation. Immunophenotyping revealed that expanded GDTc were mostly CD27-CD45RA- and CD27-CD45RA+ effector memory cells. GDTc cytotoxicity against PC-3M prostate cancer, U87 glioblastoma and EM-2 leukemia cells was confirmed. Both expanded Vδ1 and Vδ2 GDTc were cytotoxic to PC-3M in a T cell antigen receptor- and CD18-dependent manner. We are the first to label GDTc with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles for cellular MRI. Using protamine sulfate and magnetofection, we achieved up to 40 % labeling with clinically approved Feraheme (Ferumoxytol), as determined by enumeration of Perls' Prussian blue-stained cytospins. Electron microscopy at 2,800× magnification verified the presence of internalized clusters of iron oxide; however, high iron uptake correlated negatively with cell viability. We found improved USPIO uptake later in culture. MRI of GDTc in agarose phantoms was performed at 3 Tesla. The signal-to-noise ratios for unlabeled and labeled cells were 56 and 21, respectively. Thus, Feraheme-labeled GDTc could be readily detected in vitro via MRI.
Collapse
Affiliation(s)
- Gabrielle M Siegers
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, ON, Canada.
| | | | | | | |
Collapse
|
29
|
Blomster LV, Cowin GJ, Kurniawan ND, Ruitenberg MJ. Detection of endogenous iron deposits in the injured mouse spinal cord through high-resolution ex vivo and in vivo MRI. NMR IN BIOMEDICINE 2013; 26:141-150. [PMID: 22730180 DOI: 10.1002/nbm.2829] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 05/07/2012] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
The main aim of this study was to employ high-resolution MRI to investigate the spatiotemporal development of pathological features associated with contusive spinal cord injury (SCI) in mice. Experimental mice were subjected to either sham surgery or moderate contusive SCI. A 16.4-T small-animal MR system was employed for nondestructive imaging of post-mortem, fixed spinal cord specimens at the subacute (7 days) and more chronic (28-35 days) stages post-injury. Routine histological techniques were used for subsequent investigation of the observed neuropathology at the microscopic level. The central core of the lesion appeared as a dark hypo-intense area on MR images at all time points investigated. Small focal hypo-intense spots were also observed spreading through the dorsal funiculi proximal and distal to the site of impact, an area that is known to undergo gliosis and Wallerian degeneration in response to injury. Histological examination revealed these hypo-intense spots to be high in iron content as determined by Prussian blue staining. Quantitative image analysis confirmed the increased presence of iron deposits at all post-injury time points investigated (p<0.05). Distant iron deposits were also detectable through live imaging without the use of contrast-enhancing agents, enabling the longitudinal investigation of this pathology in individual animals. Further immunohistochemical evaluation showed that intracellular iron deposits localised to macrophages/microglia, astrocytes and oligodendrocytes in the subacute phase of SCI, but predominantly to glial fibrillary acidic protein-positive, CC-1-positive astrocytes at later stages of recovery. Progressive, widespread intracellular iron accumulation is thus a normal feature of SCI in mice, and high-resolution MRI can be effectively used to detect and monitor these neuropathological changes with time.
Collapse
Affiliation(s)
- Linda V Blomster
- University of Queensland, School of Biomedical Sciences, St Lucia, Qld, Australia
| | | | | | | |
Collapse
|
30
|
Stem cell therapy for the spinal cord. Stem Cell Res Ther 2012; 3:24. [PMID: 22776143 PMCID: PMC3580462 DOI: 10.1186/scrt115] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 07/03/2012] [Indexed: 02/08/2023] Open
Abstract
Injury and disease of the spinal cord are generally met with a poor prognosis. This poor prognosis is due not only to the characteristics of the diseases but also to our poor ability to deliver therapeutics to the spinal cord. The spinal cord is extremely sensitive to direct manipulation, and delivery of therapeutics has proven a challenge for both scientists and physicians. Recent advances in stem cell technologies have opened up a new avenue for the treatment of spinal cord disease and injury. Stem cells have proven beneficial in rodent models of spinal cord disease and injury. In these animal models, stem cells have been shown to produce their effect by the dual action of cell replacement and the trophic support of the factors secreted by these cells. In this review we look at the main clinical trials involving stem cell transplant into the spinal cord, focusing on motor neuron diseases and spinal cord injury. We will also discuss the major hurdles in optimizing stem cell delivery methods into the spinal cord. We shall examine current techniques such as functional magnetic resonance imaging guidance and cell labeling and will look at the current research striving to improve these techniques. With all caveats and future research taken into account, this is a very exciting time for stem cell transplant into the spinal cord. We are only beginning to realize the huge potential of stem cells in a central nervous system setting to provide cell replacement and trophic support. Many more trials will need to be undertaken before we can fully exploit the attributes of stem cells.
Collapse
|
31
|
Ribot EJ, Foster PJ. In vivo MRI discrimination between live and lysed iron-labelled cells using balanced steady state free precession. Eur Radiol 2012; 22:2027-34. [DOI: 10.1007/s00330-012-2435-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/26/2012] [Accepted: 02/11/2012] [Indexed: 11/30/2022]
|
32
|
Current world literature. Curr Opin Lipidol 2012; 23:156-63. [PMID: 22418573 DOI: 10.1097/mol.0b013e3283521229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Spaeth EL, Kidd S, Marini FC. Tracking inflammation-induced mobilization of mesenchymal stem cells. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 904:173-90. [PMID: 22890932 DOI: 10.1007/978-1-61779-943-3_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The act of migration is similar for many cell types. The migratory mechanism of mesenchymal stem cells (MSC) is not completely elucidated, yet many of the initial studies have been based on current understanding of the leukocyte migration. A normal function of MSC is the ability of the cell to migrate to and repair wounded tissue. This wound healing property of MSC originates with migration towards inflammatory signals produced by the wounded environment [1]. A tumor and its microenvironment are capable of eliciting a similar inflammatory response from the MSC, thus resulting in migration of the MSC towards the tumor microenvironment. We have shown MSC migration both in vitro and in vivo. In this chapter, we elucidate several in vivo methods to study MSC migration and mobilization to the tumor microenvironment. The first model is an exogenous model of MSC migration that can be performed in both xenograft and syngenic systems with in vitro expanded MSC. The second model utilizes transgenic-fluorescent--colored mice to follow endogenous bone marrow components including MSC. The third technique enables us to analyze data from the transgenic model through multispectral imaging. Furthermore, the migratory phenotype of MSC can be exploited for use in tumor-targeted gene delivery therapy has been efficacious in animal model studies and is an anticipated therapeutic device in clinical trials.
Collapse
Affiliation(s)
- Erika L Spaeth
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
34
|
Zhang X, de Chickera SN, Willert C, Economopoulos V, Noad J, Rohani R, Wang AY, Levings MK, Scheid E, Foley R, Foster PJ, Dekaban GA. Cellular magnetic resonance imaging of monocyte-derived dendritic cell migration from healthy donors and cancer patients as assessed in a scid mouse model. Cytotherapy 2011; 13:1234-48. [PMID: 21923625 DOI: 10.3109/14653249.2011.605349] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AIMS. The use of dendritic cells (DC) as an adjuvant in cell-based immunotherapeutic cancer vaccines is a growing field of interest. A reliable and non-invasive method to track the fate of autologous DC following their administration to patients is required in order to confirm that clinically sufficient numbers are reaching the lymph node (LN). We demonstrate that an immunocompromised mouse model can be used to conduct translational studies employing cellular magnetic resonance imaging (MRI). Such studies can provide clinically relevant information regarding the migration potential of clinical-grade DC used in cancer immunotherapies. METHODS. Human monocyte-derived dendritic cells (mo-DC) were generated from negatively selected monocytes obtained from either healthy donors or cancer patients. DC were labeled with superparamagnetic iron oxide (SPIO) nanoparticles in order to track them in vivo in a CB17scid mouse model using cellular MRI. SPIO did not have any adverse effects on DC phenotype or function, independent of donor type. Cellular MRI readily detected migration of SPIO-loaded DC in CB17scid mice. No differences in migration were observed between DC obtained from healthy donors and those obtained from donors undergoing autologous stem cell transplant for cancer therapy. CONCLUSIONS. Cellular MRI provided semi-quantitative image data that corresponded with data obtained by digital morphometry, validating cellular MRI's potential to assess DC migration in DC-based cancer immunotherapy clinical trials.
Collapse
Affiliation(s)
- Xizhong Zhang
- BioTherapeutics Research Laboratory, University of Western Ontario, London, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ribot EJ, Martinez-Santiesteban FM, Simedrea C, Steeg PS, Chambers AF, Rutt BK, Foster PJ. In vivo single scan detection of both iron-labeled cells and breast cancer metastases in the mouse brain using balanced steady-state free precession imaging at 1.5 T. J Magn Reson Imaging 2011; 34:231-8. [PMID: 21698713 PMCID: PMC3501681 DOI: 10.1002/jmri.22593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE To simultaneously detect iron-labeled cancer cells and brain tumors in vivo in one scan, the balanced steady-state free precession (b-SSFP) imaging sequence was optimized at 1.5 T on mice developing brain metastases subsequent to the injection of micron-sized iron oxide particle-labeled human breast cancer cells. MATERIALS AND METHODS b-SSFP sequence parameters (repetition time, flip angle, and receiver bandwidth) were varied and the signal-to-noise ratio, contrast between the brain and tumors, and the number of detected iron-labeled cells were evaluated. RESULTS Optimal b-SSFP images were acquired with a 26 msec repetition time, 35° flip angle, and bandwidth of ±21 kHz. b-SSFP images were compared with T(2) -weighted 2D fast spin echo (FSE) and 3D spoiled gradient recalled echo (SPGR) images. The mean tumor-brain contrast-to-noise ratio and the ability to detect iron-labeled cells were the highest in the b-SSFP images. CONCLUSION A single b-SSFP scan can be used to visualize both iron-labeled cells and brain metastases.
Collapse
Affiliation(s)
- Emeline J. Ribot
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | | | | | - Patricia S. Steeg
- Women’s Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ann F. Chambers
- London Regional Cancer Program, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Brian K. Rutt
- Richard M. Lucas Center for Imaging, Radiology Department, Stanford University, Stanford, California, USA
| | - Paula J. Foster
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| |
Collapse
|