1
|
Mouchel Dit Leguerrier D, Barré R, Ruet Q, Frachet V, Imbert D, Thomas F, Molloy JK. Symmetric CEST-active lanthanide complexes for redox monitoring. Dalton Trans 2022; 51:18400-18408. [PMID: 36415954 DOI: 10.1039/d2dt02776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two symmetric ligands harbouring two TEMPO radicals and two functionalized acetamide arms (R = OMe (L1), CF3 (L2)) were prepared and chelated to lanthanide ions (EuIII, YbIII for both L1 and L2, DyIII for L1). Luminescence measurements on the europium complexes support the coordination of a single water molecule. The TEMPO arms are magnetically interacting in L1 (and its complexes) but not in L2. The TEMPO moieties can be reversibly oxidized into an oxoammonium (0.33-0.36 V vs. Fc+/Fc) or reduced into a hydroxylamine (ill-defined redox wave, reduction by ascorbate), which are both diamagnetic. The europium complexes [Eu(L1)]3+ and [Eu(L2)]3+ in their hydroxylamine form exhibit a temperature dependent CEST effect, which is maximal at 25 °C (30%) and 37 °C (12%), respectively. The CEST activity is dramatically reduced in the corresponding nitroxide forms due to the paramagnetism of the ligand. The europium complexes show no cytotoxicity against M21 cell lines over long incubation times (72 h) at high concentration (40 μM).
Collapse
Affiliation(s)
| | - Richard Barré
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France.
| | - Quentin Ruet
- Institute for Advanced Biosciences, INSERM U1209, UMR CNRS 5309, Grenoble Alpes University, 38700 La Tronche, France.,EPHE, PSL Research University, 75014 Paris, France
| | - Véronique Frachet
- Institute for Advanced Biosciences, INSERM U1209, UMR CNRS 5309, Grenoble Alpes University, 38700 La Tronche, France.,EPHE, PSL Research University, 75014 Paris, France
| | - Daniel Imbert
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-LCBM, 38000 Grenoble, France
| | - Fabrice Thomas
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France.
| | | |
Collapse
|
2
|
Thomas AM, Yang E, Smith MD, Chu C, Calabresi PA, Glunde K, van Zijl PCM, Bulte JWM. CEST MRI and MALDI imaging reveal metabolic alterations in the cervical lymph nodes of EAE mice. J Neuroinflammation 2022; 19:130. [PMID: 35659311 PMCID: PMC9164344 DOI: 10.1186/s12974-022-02493-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a neurodegenerative disease, wherein aberrant immune cells target myelin-ensheathed nerves. Conventional magnetic resonance imaging (MRI) can be performed to monitor damage to the central nervous system that results from previous inflammation; however, these imaging biomarkers are not necessarily indicative of active, progressive stages of the disease. The immune cells responsible for MS are first activated and sensitized to myelin in lymph nodes (LNs). Here, we present a new strategy for monitoring active disease activity in MS, chemical exchange saturation transfer (CEST) MRI of LNs. METHODS AND RESULTS We studied the potential utility of conventional (T2-weighted) and CEST MRI to monitor changes in these LNs during disease progression in an experimental autoimmune encephalomyelitis (EAE) model. We found CEST signal changes corresponded temporally with disease activity. CEST signals at the 3.2 ppm frequency during the active stage of EAE correlated significantly with the cellular (flow cytometry) and metabolic (mass spectrometry imaging) composition of the LNs, as well as immune cell infiltration into brain and spinal cord tissue. Correlating primary metabolites as identified by matrix-assisted laser desorption/ionization (MALDI) imaging included alanine, lactate, leucine, malate, and phenylalanine. CONCLUSIONS Taken together, we demonstrate the utility of CEST MRI signal changes in superficial cervical LNs as a complementary imaging biomarker for monitoring disease activity in MS. CEST MRI biomarkers corresponded to disease activity, correlated with immune activation (surface markers, antigen-stimulated proliferation), and correlated with LN metabolite levels.
Collapse
Affiliation(s)
- Aline M Thomas
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ethan Yang
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chengyan Chu
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Cheng D, Ji Y, Wang B, Jin T, Xu Y, Qian X, Zhu W. Enzyme/GSH dual-responsive biodegradable nanohybrid for spatiotemporally specific photodynamic and hypoxia-augmented therapy against tumors. Int J Pharm 2021; 603:120730. [PMID: 34029662 DOI: 10.1016/j.ijpharm.2021.120730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT) efficacy has been severely limited by the hypoxia in tumor microenvironment. A multitherapy modality was developed, integrating the advantages of each therapy and a nanocarrier: PDT and PDT-induced hypoxia-activated chemotherapy. Following PDT-induced hypoxia augmented in the periphery of the tumors, chemotherapy was locally activated. To this end, new indocyanine green (IR820) and a hypoxia-activated prodrug tirapazamine (TPZ) were loaded in glutathione (GSH) decomposable mesoporous organic silica nanoparticles (GMONs), tethered by hyaluronic acid (HA). This nanohybrid showed a tendency to accumulate and be retained in tumors, due to passive and active targeting. The IR820 produced singlet oxygen (1O2) under near-infrared (NIR) laser irradiation and concomitantly tumorous abnormality exacerbated hypoxia. TPZ-mediated hypoxia-activated chemotherapy acted to kill more tumor cells. In vivo results indicated that the tumor inhibition rate of dual-loaded nanohybrids was up to 76% under NIR laser irradiation. The immunofluorescence staining of tumor slices demonstrated that the superficial part of tumors experienced exacerbated hypoxia with laser irradiation, resulting in TPZ exerting powerful chemotherapy effects. This nanohybrid is expected to be valuable as spatiotemporally specific therapy for cancer.
Collapse
Affiliation(s)
- Di Cheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuejia Ji
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Bin Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Tongxia Jin
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yufang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weiping Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
4
|
Zubair M, Wang S, Ali N. Advanced Approaches to Breast Cancer Classification and Diagnosis. Front Pharmacol 2021; 11:632079. [PMID: 33716731 PMCID: PMC7952319 DOI: 10.3389/fphar.2020.632079] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
The International Agency for Research on Cancer (IARC) has recently reported a 66% increase in the global number of cancer deaths since 1960. In the US alone, about one in eight women is expected to develop invasive breast cancer(s) (breast cancer) at some point in their lifetime. Traditionally, a BC diagnosis includes mammography, ultrasound, and some high-end molecular bioimaging. Unfortunately, these techniques detect BC at a later stage. So early and advanced molecular diagnostic tools are still in demand. In the past decade, various histological and immuno-molecular studies have demonstrated that BC is highly heterogeneous in nature. Its growth pattern, cytological features, and expression of key biomarkers in BC cells including hormonal receptor markers can be utilized to develop advanced diagnostic and therapeutic tools. A cancer cell's progression to malignancy exhibits various vital biomarkers, many of which are still underrepresented in BC diagnosis and treatment. Advances in genetics have also enabled the development of multigene assays to detect genetic heterogeneity in BC. However, thus far, the FDA has approved only four such biomarkers-cancer antigens (CA); CA 15-3, CA 27-29, Human epidermal growth factor receptor 2 (HER2), and circulating tumor cells (CTC) in assessing BC in body fluids. An adequately structured portable-biosensor with its non-invasive and inexpensive point-of-care analysis can quickly detect such biomarkers without significantly compromising its specificity and selectivity. Such advanced techniques are likely to discriminate between BC and a healthy patient by accurately measuring the cell shape, structure, depth, intracellular and extracellular environment, and lipid membrane compositions. Presently, BC treatments include surgery and systemic chemo- and targeted radiation therapy. A biopsied sample is then subjected to various multigene assays to predict the heterogeneity and recurrence score, thus guiding a specific treatment by providing complete information on the BC subtype involved. Thus far, we have seven prognostic multigene signature tests for BC providing a risk profile that can avoid unnecessary treatments in low-risk patients. Many comparative studies on multigene analysis projected the importance of integrating clinicopathological information with genomic-imprint analysis. Current cohort studies such as MINDACT, TAILORx, Trans-aTTOM, and many more, are likely to provide positive impact on long-term patient outcome. This review offers consolidated information on currently available BC diagnosis and treatment options. It further describes advanced biomarkers for the development of state-of-the-art early screening and diagnostic technologies.
Collapse
Affiliation(s)
- M. Zubair
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States
| | - S. Wang
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR, United States
| | - N. Ali
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States
| |
Collapse
|
5
|
Su C, Jiang J, Liu C, Shi J, Li S, Chen X, Ao Q. Comparison of amide proton transfer imaging and magnetization transfer imaging in revealing glioma grades and proliferative activities: a histogram analysis. Neuroradiology 2020; 63:685-693. [PMID: 32997164 DOI: 10.1007/s00234-020-02547-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/31/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Comprehensive understanding glioma metabolic characters is of great help for patient management. We aimed to compare amide proton transfer imaging (APTw) and magnetization transfer imaging (MT) in predicting glioma malignancy and reflecting tumor proliferation. METHODS Thirty low-grade gliomas (LGGs) and 39 high-grade gliomas (HGGs) were prospectively included, of which 58 samples Ki-67 levels were quantified. Anatomical MRI, APTw, and MT were scanned, and magnetization transfer ratio (MTR) and asymmetric magnetic transfer ratio at 3.5 ppm (MTRasym(3.5ppm)) were calculated. ROIs were semi-automatically drawn with ImageJ, from which histogram features, including 5th, 25th, 50th, mean, 70th, 90th, and 95th percentiles were extracted. The independent t test was used to test differences in LGGs and HGGs, and correlations between histogram features and tumor grades, Ki-67 were revealed by Spearman's rank or Pearson's correlation analysis. RESULTS The maximum correlation coefficient (R) values of APTw were 0.526 (p < 0.001) with tumor grades and 0.397 (p < 0.001) with Ki-67 at 90th percentiles, while only 5th and 25th percentiles of MT significantly correlated with tumor grades. Moreover, APTw features were significantly different in LGGs and HGGs, except 5th percentile. The most significantly different feature was 95th percentile, providing the excellent AUC of 0.808. However, the best feature in MTR was 5th percentiles with AUC of 0.703. Combing 5th and 95th of APTw achieved highest AUC Of 0.837. CONCLUSIONS Both APTw and MT provide quantitative information for tumor metabolite imaging. However, APTw supplys more specific information in reflecting glioma biological behaviors than MT, and well differentiates glioma malignancy.
Collapse
Affiliation(s)
- Changliang Su
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Jingjing Jiang
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Chengxia Liu
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - JingJing Shi
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Shihui Li
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Xiaowei Chen
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qilin Ao
- Department of Pathology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| |
Collapse
|
6
|
|
7
|
Loboda A, Smolanka Sr I, Orel VE, Syvak L, Golovko T, Dosenko I, Lyashenko A, Smolanka I, Dasyukevich O, Tarasenko T, Orel VB, Rykhalskyi A, Ganich O, Mokhonko O. Efficacy of Combination Neoadjuvant Chemotherapy and Regional Inductive Moderate Hyperthermia in the Treatment of Patients With Locally Advanced Breast Cancer. Technol Cancer Res Treat 2020; 19:1533033820963599. [PMID: 33025843 PMCID: PMC7545767 DOI: 10.1177/1533033820963599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/27/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To evaluate the efficacy of neoadjuvant chemotherapy in combination with regional inductive moderate hyperthermia for patients with locally advanced breast cancer. PATIENTS AND METHODS 200 patients with stage IIB-IIIA breast cancer received neoadjuvant chemotherapy (control group, n = 97) or chemotherapy combined with hyperthermia (experimental group, n = 103). Inductive hyperthermia was set at 27.12 ± 0.16 MHz and the 50 W output power. RESULTS Thermal and color Doppler ultrasound imaging demonstrated that hyperthermia increased the surface temperature on the breasts to < 4°С while the mean values for systolic blood flow were 3.5 times as high as those prior to treatment. Assessment of tumor size and response found a (31.24 ± 3.85)% reduction in the size of the primary tumor in patients receiving chemotherapy + hyperthermia, while chemotherapy alone showed a (22.95 ± 3.61)% decrease on average (p = 0.034). The rate of objective response increased by 15.9% in the experimental group (р = 0.034) compared with the control group. The patients in the experimental group also had axillary lymph node regression of 14.17% greater than in the control group (p = 0.011). Moreover, the combination treatment allowed to increase the proportion of women eligible for breast-conserving and reconstructive surgery by 13.63% in the experimental group. The viable tumor volume was lower in patients receiving neoadjuvant chemotherapy + hyperthermia (24.4 ± 0.2)% compared with those given chemotherapy alone (30.4 ± 0.25)%. The 10-year overall survival rates were higher (log-rank: p = 0.009) in breast cancer patients who underwent chemotherapy combined with hyperthermia than in patients receiving chemotherapy only. CONCLUSION The combination neoadjuvant chemotherapy and the technology of regional inductive moderate hyperthermia improved the efficacy of treatment for patients with locally advanced breast cancer staged IIB-IIIA.
Collapse
Affiliation(s)
| | | | - Valerii E. Orel
- National Cancer Institute, Kyiv, Ukraine
- Biomedical Engineering Department, “Igor Sikorsky Kyiv Polytechnic Institute,” Kyiv, Ukraine
| | | | | | | | | | | | | | | | | | | | | | - Oleksandr Mokhonko
- Biomedical Engineering Department, “Igor Sikorsky Kyiv Polytechnic Institute,” Kyiv, Ukraine
| |
Collapse
|
8
|
Damen FC, Tain RW, Thomas R, Li W, Tai L, Cai K. Evaluation of B 0-correction of relative CBF maps using tagging distance dependent Z-spectrum (TADDZ). Magn Reson Imaging 2019; 65:83-89. [PMID: 31669538 DOI: 10.1016/j.mri.2019.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/27/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Abstract
Arterial spin labeling (ASL) MRI, based on endogenous contrast from blood water, is used in research and diagnosis of cerebral vascular conditions. However, artifacts due to imperfect imaging conditions such as B0-inhomogeneity (ΔB0) could lead to variations in the quantification of relative cerebral blood flow (CBF). In this study, we evaluate a new approach using tagging distance dependent Z-spectrum (TADDZ) data, similar to the ΔB0 corrections in the chemical exchange saturation transfer (CEST) experiments, to remove the imaging plane B0 inhomogeneity induced CBF artifacts in ASL MRI. Our results indicate that imaging-plane B0-inhomogeneity can lead to variations and errors in the relative CBF maps especially under small tagging distances. Along with an acquired B0 map, TADDZ data helps to eliminate B0-inhomogeneity induced artifacts in the resulting relative CBF maps. We demonstrated the effective use of TADDZ data to reduce variation while subjected to systematic changes in ΔB0. In addition, TADDZ corrected ASL MRI, with improved consistency, was shown to outperform conventional ASL MRI by differentiating the subtle CBF difference in Alzheimer's disease (AD) mice brains with different APOE genotypes.
Collapse
Affiliation(s)
- Frederick C Damen
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Rong-Wen Tain
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States; Brain Imaging Research, University of California, Irvine, CA, United States
| | - Riya Thomas
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Weigo Li
- Research Resources Center, University of Illinois at Chicago, Chicago, IL, United States; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States; Department of Radiology, Northwestern University, Chicago, IL, United States
| | - Leon Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States; Center for MR Research, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
9
|
Ntziachristos V, Pleitez MA, Aime S, Brindle KM. Emerging Technologies to Image Tissue Metabolism. Cell Metab 2019; 29:518-538. [PMID: 30269982 DOI: 10.1016/j.cmet.2018.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/24/2018] [Accepted: 09/02/2018] [Indexed: 12/19/2022]
Abstract
Due to the implication of altered metabolism in a large spectrum of tissue function and disease, assessment of metabolic processes becomes essential in managing health. In this regard, imaging can play a critical role in allowing observation of biochemical and physiological processes. Nuclear imaging methods, in particular positron emission tomography, have been widely employed for imaging metabolism but are mainly limited by the use of ionizing radiation and the sensing of only one parameter at each scanning session. Observations in healthy individuals or longitudinal studies of disease could markedly benefit from non-ionizing, multi-parameter imaging methods. We therefore focus this review on progress with the non-ionizing radiation methods of MRI, hyperpolarized magnetic resonance and magnetic resonance spectroscopy, chemical exchange saturation transfer, and emerging optoacoustic (photoacoustic) imaging. We also briefly discuss the role of nuclear and optical imaging methods for research and clinical protocols.
Collapse
Affiliation(s)
- Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany; Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Ismaningerstr. 22, Munich 81675, Germany.
| | - Miguel A Pleitez
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany; Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Ismaningerstr. 22, Munich 81675, Germany
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin 10126, Italy
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, Old Addenbrooke's Site, Cambridge CB2 1GA, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
10
|
Liu J, Han Z, Chen G, Li Y, Zhang J, Xu J, van Zijl PCM, Zhang S, Liu G. CEST MRI of sepsis-induced acute kidney injury. NMR IN BIOMEDICINE 2018; 31:e3942. [PMID: 29897643 DOI: 10.1002/nbm.3942] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/15/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Sepsis-induced acute kidney injury (SAKI) is a major complication of kidney disease associated with increased mortality and faster progression. Therefore, the development of imaging biomarkers to detect septic AKI is of great clinical interest. In this study, we aimed to characterize the endogenous chemical exchange saturation transfer (CEST) MRI contrast in the lipopolysaccharide (LPS)-induced SAKI mouse model and to investigate the use of CEST MRI for detecting such injury. We used a SAKI mouse model that was generated by i.p. injection of 10 mg/kg LPS. The resulting kidney injury was confirmed by the elevation of serum creatinine and histology. MRI assessments were performed 24 h after LPS injection, including CEST MRI at different B1 strengths (1, 1.8 and 3 μT), T1 mapping, T2 mapping and conventional magnetization transfer contrast (MTC) MRI. The CEST MRI results were analyzed using Z-spectra, in which the normalized water signal saturation (Ssat /S0 ) is measured as a function of saturation frequency. Substantial decreases in CEST contrast were observed at both 3.5 and - 3.5 ppm frequency offset from water at all B1 powers, with the most significant difference obtained at a B1 of 1.8 μT. The average Ssat /S0 differences between injured and normal kidneys were 0.07 (0.55 ± 0.04 versus 0.62 ± 0.04, P = 0.0028) and 0.07 (0.50 ± 0.04 versus 0.57 ± 0.03, P = 0.0008) for 3.5 and - 3.5 ppm, respectively. In contrast, the T1 and T2 relaxation times and MTC contrast in the injured kidneys did not show a significant change compared with the normal control. Our results showed that CEST MRI is more sensitive to the pathological changes in injured kidneys than the changes in T1 , T2 and MTC effect, indicating its potential clinical utility for molecular imaging of renal diseases.
Collapse
Affiliation(s)
- Jing Liu
- Graduate College, Southern Medical University, Guangzhou, Guangdong, China
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong General Hospital, Guangzhou, Guangdong, China
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zheng Han
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guoli Chen
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yuguo Li
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jia Zhang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter C M van Zijl
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Shuixing Zhang
- Graduate College, Southern Medical University, Guangzhou, Guangdong, China
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong General Hospital, Guangzhou, Guangdong, China
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guanshu Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
11
|
Meng Q, Meng J, Ran W, Wang J, Zhai Y, Zhang P, Li Y. Light-Activated Core-Shell Nanoparticles for Spatiotemporally Specific Treatment of Metastatic Triple-Negative Breast Cancer. ACS NANO 2018; 12:2789-2802. [PMID: 29462553 DOI: 10.1021/acsnano.7b09210] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Triple-negative breast cancer (TNBC) tumors are heterogeneous, with mesenchymal-like cells at their core and fast proliferating cells on the periphery. It is desirable and beneficial to treat TNBC cells of different phenotypes with the most appropriate drugs. Here, we report a 78 nm, chlorin e6-, docetaxel-, and anti-Twist siRNA-containing polymeric nanoparticle (CDTN) with spatiotemporally specific activity when irradiated by light. Under conditions mimicking superficial tumor tissue with sufficient light input, TNBC cells are mainly killed by the photodynamic therapy (PDT) function of CDTNs. In contrast, under conditions mimicking deep tumor tissue with weak light input, PDT potentiates chemotherapy (CT) and gene therapy (GT) by facilitating the endolysosomal escape of CDTNs. Compared with free drugs, CDTNs improve the intratumoral exposure of docetaxel and anti-Twist siRNA by 2.5- and 2-fold, respectively. When combined with laser irradiation applied at the time of maximal intratumoral accumulation, the CDTNs significantly inhibit the growth of primary tumors and their lung metastasis (both >80%) by killing the peripheral cells, mainly through PDT and prohibiting the growth and metastasis of deep cells through PDT as enhanced CT and GT. On the contrary, dual-modality nanomedicine lacking CT, GT, or PDT showed fast primary tumor growth, poor metastasis control, or both, respectively. This study reveals the spatiotemporally specific mechanism of CDTNs in treating metastatic TNBC and highlights the importance of combined therapy in treating TNBC.
Collapse
Affiliation(s)
- Qingshuo Meng
- State Key Laboratory of Drug Research and Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jia Meng
- State Key Laboratory of Drug Research and Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wei Ran
- State Key Laboratory of Drug Research and Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Junyang Wang
- State Key Laboratory of Drug Research and Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- Jilin University , Changchun, Jilin 130012 , China
| | - Yihui Zhai
- State Key Laboratory of Drug Research and Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research and Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| |
Collapse
|
12
|
Wu S, Huang Y, Tang Q, Li Z, Horng H, Li J, Wu Z, Chen Y, Li H. Quantitative evaluation of redox ratio and collagen characteristics during breast cancer chemotherapy using two-photon intrinsic imaging. BIOMEDICAL OPTICS EXPRESS 2018. [PMID: 29541528 PMCID: PMC5846538 DOI: 10.1364/boe.9.001375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Preoperative neoadjuvant treatment in locally advanced breast cancer is recognized as an effective adjuvant therapy, as it improves treatment outcomes. However, the potential complications remain a threat, so there is an urgent clinical need to assess both the tumor response and changes in its microenvironment using non-invasive and precise identification techniques. Here, two-photon microscopy was employed to detect morphological alterations in breast cancer progression and recession throughout chemotherapy. The changes in structure were analyzed based on the autofluorescence and collagen of differing statuses. Parameters, including optical redox ratio, the ratio of second harmonic generation and auto-fluorescence signal, collagen density, and collagen shape orientation, were studied. Results indicate that these parameters are potential indicators for evaluating breast tumors and their microenvironment changes during progression and chemotherapy. Combined analyses of these parameters could provide a quantitative, novel method for monitoring tumor therapy.
Collapse
Affiliation(s)
- Shulian Wu
- College of Photonic and Electronic Engineering, Fujian Normal University, Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fuzhou, Fujian, 350007, China
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- These authors contributed equally to this work
| | - Yudian Huang
- Department of Pathology, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, 350009, China
- These authors contributed equally to this work
| | - Qinggong Tang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Zhifang Li
- College of Photonic and Electronic Engineering, Fujian Normal University, Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fuzhou, Fujian, 350007, China
| | - Hannah Horng
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Jiatian Li
- College of Photonic and Electronic Engineering, Fujian Normal University, Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fuzhou, Fujian, 350007, China
| | - Zaihua Wu
- Department of Pathology, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Yu Chen
- College of Photonic and Electronic Engineering, Fujian Normal University, Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fuzhou, Fujian, 350007, China
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Hui Li
- College of Photonic and Electronic Engineering, Fujian Normal University, Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fuzhou, Fujian, 350007, China
| |
Collapse
|
13
|
Cai K, Tain RW, Zhou XJ, Damen FC, Scotti AM, Hariharan H, Poptani H, Reddy R. Creatine CEST MRI for Differentiating Gliomas with Different Degrees of Aggressiveness. Mol Imaging Biol 2017; 19:225-232. [PMID: 27541025 PMCID: PMC5824619 DOI: 10.1007/s11307-016-0995-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Creatine (Cr) is a major metabolite in the bioenergetic system. Measurement of Cr using conventional MR spectroscopy (MRS) suffers from low spatial resolution and relatively long acquisition times. Creatine chemical exchange saturation transfer (CrCEST) magnetic resonance imaging (MRI) is an emerging molecular imaging method for tissue Cr measurements. Our previous study showed that the CrCEST contrast, obtained through multicomponent Z-spectral fitting, was lower in tumors compared to normal brain, which further reduced with tumor progression. The current study was aimed to investigate if CrCEST MRI can also be useful for differentiating gliomas with different degrees of aggressiveness. PROCEDURES Intracranial 9L gliosarcoma and F98 glioma bearing rats with matched tumor size were scanned with a 9.4 T MRI scanner at two time points. CEST Z-spectra were collected using a customized sequence with a frequency-selective rectangular saturation pulse (B1 = 50 Hz, duration = 3 s) followed by a single-shot readout. Z spectral data were fitted pixel-wise with five Lorentzian functions, and maps of CrCEST peak amplitude, linewidth, and integral were produced. For comparison, single-voxel proton MR spectroscopy (1H-MRS) was performed to quantify and compare the total Cr concentration in the tumor. RESULTS CrCEST contrasts decreased with tumor progression from weeks 3 to 4 in both 9L and F98 phenotypes. More importantly, F98 tumors had significantly lower CrCEST integral compared to 9L tumors. On the other hand, integrals of other Z-spectral components were unable to differentiate both tumor progression and phenotype with limited sample size. CONCLUSIONS Given that F98 is a more aggressive tumor than 9L, this study suggests that CrCEST MRI may help differentiate gliomas with different aggressiveness.
Collapse
Affiliation(s)
- Kejia Cai
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| | - Rong-Wen Tain
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaohong Joe Zhou
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Frederick C Damen
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Alessandro M Scotti
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Hari Hariharan
- The Center for Magnetic Resonance and Optical Imaging, Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Ravinder Reddy
- The Center for Magnetic Resonance and Optical Imaging, Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Xu HN, Tchou J, Feng M, Zhao H, Li LZ. Optical redox imaging indices discriminate human breast cancer from normal tissues. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:114003. [PMID: 27896360 PMCID: PMC5136669 DOI: 10.1117/1.jbo.21.11.114003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/27/2016] [Indexed: 05/20/2023]
Abstract
Our long-term goal was to investigate the potential of incorporating redox imaging technique as a breast cancer (BC) diagnosis component to increase the positive predictive value of suspicious imaging finding and to reduce unnecessary biopsies and overdiagnosis. We previously found that precancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. We also revealed abnormal mitochondrial redox state in cancerous specimens from three BC patients. Here, we extend our study to include biopsies of 16 patients. Tissue aliquots were collected from both apparently normal and cancerous tissues from the affected cancer-bearing breasts shortly after surgical resection. All specimens were snap-frozen and scanned with the Chance redox scanner, i.e., the three-dimensional cryogenic NADH/Fp (reduced nicotinamide adenine dinucleotide/oxidized flavoproteins) fluorescence imager. We found both Fp and NADH in the cancerous tissues roughly tripled that in the normal tissues ( p < 0.05 ). The redox ratio Fp/(NADH + Fp) was ? 27 % higher in the cancerous tissues ( p < 0.05 ). Additionally, Fp, or NADH, or the redox ratio alone could predict cancer with reasonable sensitivity and specificity. Our findings suggest that the optical redox imaging technique can provide parameters independent of clinical factors for discriminating cancer from noncancer breast tissues in human patients.
Collapse
Affiliation(s)
- He N. Xu
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Molecular Imaging Laboratory, B6 Blockley Hall, 423 Guardian Drive, Philadelphia, Pennsylvania 19104, United States
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Johnson Research Foundation, Britton Chance Laboratory of Redox Imaging, R171 John Morgan Building, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Julia Tchou
- University of Pennsylvania, Perelman School of Medicine, Division of Endocrine and Oncologic Surgery, Department of Surgery, West Pavilion 3rd Floor, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, United States
- University of Pennsylvania, Perelman School of Medicine, Abramson Cancer Center, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, United States
- University of Pennsylvania, Perelman School of Medicine, Rena Rowan Breast Center, West Pavilion, 3rd Floor, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - Min Feng
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Molecular Imaging Laboratory, B6 Blockley Hall, 423 Guardian Drive, Philadelphia, Pennsylvania 19104, United States
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Johnson Research Foundation, Britton Chance Laboratory of Redox Imaging, R171 John Morgan Building, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Huaqing Zhao
- Temple University, School of Medicine, Department of Clinical Sciences, Kresge Room 218, 3440 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Lin Z. Li
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Molecular Imaging Laboratory, B6 Blockley Hall, 423 Guardian Drive, Philadelphia, Pennsylvania 19104, United States
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Johnson Research Foundation, Britton Chance Laboratory of Redox Imaging, R171 John Morgan Building, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
- University of Pennsylvania, Perelman School of Medicine, Abramson Cancer Center, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
15
|
Song JL, Chen C, Yuan JP, Sun SR. Progress in the clinical detection of heterogeneity in breast cancer. Cancer Med 2016; 5:3475-3488. [PMID: 27774765 PMCID: PMC5224851 DOI: 10.1002/cam4.943] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is currently the most common form of cancer and the second‐leading cause of death from cancer in women. Though considerable progress has been made in the treatment of breast cancer, the heterogeneity of tumors (both inter‐ and intratumor) remains a considerable diagnostic and prognostic challenge. From clinical observation to genetic mutations, the history of understanding the heterogeneity of breast cancer is lengthy and detailed. Effectively detecting heterogeneity in breast cancer is important during treatment. Various methods of depicting this heterogeneity are now available and include genetic, pathologic, and imaging analysis. These methods allow characterization of the heterogeneity of breast cancer on a genetic level, providing greater insight during the process of establishing an effective therapeutic plan. This study reviews how the understanding of tumor heterogeneity in breast cancer evolved, and further summarizes recent advances in the detection and monitoring of this heterogeneity in patients with breast cancer.
Collapse
Affiliation(s)
- Jun-Long Song
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Jing-Ping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| |
Collapse
|
16
|
Randtke EA, Pagel MD, Cárdenas-Rodríguez J. QUESPOWR MRI: QUantification of Exchange as a function of Saturation Power On the Water Resonance. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 270:56-70. [PMID: 27404128 PMCID: PMC6010190 DOI: 10.1016/j.jmr.2016.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 05/30/2023]
Abstract
QUantification of Exchange as a function of Saturation Power On the Water Resonance (QUESPOWR) MRI is a new method that can estimate chemical exchange rates. This method acquires a series of OPARACHEE MRI acquisitions with a range of RF powers for the WALTZ16(∗) pulse train, which are applied on the water resonance. A QUESPOWR plot can be generated from the power dependence of the % water signal, which is similar to a QUESP plot that is generated from CEST MRI acquisition methods with RF saturation applied off-resonance from water. A QUESPOWR plot can be quantitatively analyzed using linear fitting methods to provide estimates of average chemical exchange rates. Analyses of the shapes of QUESPOWR plots can also be used to estimate relative differences in average chemical exchange rates and concentrations of biomolecules. The performance of QUESPOWR MRI was assessed via simulations, an in vitro study with iopamidol, and an in vivo study with a mouse model of mammary carcinoma. The results showed that QUESPOWR MRI is especially sensitive to chemical exchange between water and biomolecules that have intermediate to fast chemical exchange rates and chemical shifts that are close to water, which are notoriously difficult to assess with other CEST MRI methods. In addition, in vivo QUESPOWR MRI detected acidic tumor tissues relative to normal tissues that are pH-neutral, and therefore may be a new paradigm for tumor detection with MRI.
Collapse
Affiliation(s)
- Edward A Randtke
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA.
| | - Mark D Pagel
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA.
| | | |
Collapse
|
17
|
Chan KWY, Jiang L, Cheng M, Wijnen JP, Liu G, Huang P, van Zijl PCM, McMahon MT, Glunde K. CEST-MRI detects metabolite levels altered by breast cancer cell aggressiveness and chemotherapy response. NMR IN BIOMEDICINE 2016; 29:806-16. [PMID: 27100284 PMCID: PMC4873340 DOI: 10.1002/nbm.3526] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 05/08/2023]
Abstract
Chemical exchange saturation transfer (CEST) is an MRI contrast mechanism that detects the exchange of protons from distinct hydroxyl, amine, and amide groups to tissue water through the transfer of signal loss, with repeated exchange enhancing their effective signal. We applied CEST to detect systematically 15 common cellular metabolites in a panel of differentially aggressive human breast cancer cell lines. The highest CEST contrast was generated by creatine, myo-inositol, glutamate, and glycerophosphocholine, whose cellular concentrations decreased with increasing breast cancer aggressiveness. These decreased metabolite concentrations resulted in turn in a decreased CEST profile with increasing breast cancer aggressiveness in water-soluble extracts of breast cell lines. Treatment of both breast cancer cell lines with the chemotherapy drug doxorubicin resulted in increased metabolic CEST profiles, which correlated with significant increases in creatine, phosphocreatine, and glycerophosphocholine. CEST can detect breast cancer aggressiveness and response to chemotherapy in water-soluble extracts of breast cell lines. The presented results help shed light on possible contributions from CEST-active metabolites to the CEST contrast produced by breast cancers. The metabolic CEST profile may improve detection sensitivity over conventional MRS, and may have the potential to assess breast cancer aggressiveness and response to chemotherapy non-invasively using MRI if specialized metabolic CEST profile detection can be realized in vivo. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kannie W. Y. Chan
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lu Jiang
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Menglin Cheng
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jannie P. Wijnen
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peng Huang
- Department of Oncology, Biostatistics and Bioinformatics Division, School of Medicine and Department of Biostatistics, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C. M. van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Michael T. McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- To whom correspondence may be addressed. ,
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- To whom correspondence may be addressed. ,
| |
Collapse
|
18
|
Tsujikawa T, Asahi S, Oh M, Sato Y, Narita N, Makino A, Mori T, Kiyono Y, Tsuchida T, Kimura H, Fujieda S, Okazawa H. Assessment of the Tumor Redox Status in Head and Neck Cancer by 62Cu-ATSM PET. PLoS One 2016; 11:e0155635. [PMID: 27187778 PMCID: PMC4871355 DOI: 10.1371/journal.pone.0155635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 05/02/2016] [Indexed: 12/23/2022] Open
Abstract
Purpose Tumor redox is an important factor for cancer progression, resistance to treatments, and a poor prognosis. The aim of the present study was to define tumor redox (over-reduction) using 62Cu-diacetyl-bis(N4-methylthiosemicarbazone) (62Cu-ATSM) PET and compare its prognostic potential in head and neck cancer (HNC) with that of 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG). Methods Thirty HNC patients (stage II–IV) underwent pretreatment 62Cu-ATSM and 18F-FDG PET scans. Maximum standardized uptake values (SUVATSM and SUVFDG) and tumor-to-muscle activity concentration ratios (TMRATSM and TMRFDG) were measured. Reductive-tumor-volume (RTV) was then determined at four thresholds (40%, 50%, 60%, and 70% SUVATSM), and total-lesion-reduction (TLR) was calculated as the product of the mean SUV and RTV for 62Cu-ATSM. In 18F-FDG, metabolic-tumor-volume (MTV) and total-lesion-glycolysis (TLG) were obtained at a threshold of 40%. A ROC analysis was performed to determine % thresholds for RTV and TLR showing the best predictive performance, and these were then used to determine the optimal cut-off values to stratify patients for each parameter. Progression-free-survival (PFS) and cause-specific-survival (CSS) were evaluated by the Kaplan-Meier method. Results The means ± standard deviations of PFS and CSS periods were 16.4±13.4 and 19.2±12.4 months, respectively. A ROC analysis determined that the 70% SUVATSM threshold for RTV and TLR was the best for predicting disease progression and cancer death. Optimal cut-offs for each index were SUVATSM = 3.6, SUVFDG = 7.9, TMRATSM = 3.2, TMRFDG = 5.6, RTV = 2.9, MTV = 8.1, TLR = 14.0, and TLG = 36.5. When the cut-offs for TMRATSM and TLR were set as described above in 62Cu-ATSM PET, patients with higher TMRATSM (p = 0.03) and greater TLR (p = 0.02) showed significantly worse PFS, while patients with greater TLR had significantly worse CSS (p = 0.02). Only MTV in 18F-FDG PET predicted differences in PSF and CSS (p = 0.03 and p = 0.03, respectively). Conclusion Tumor redox parameters measured by 62Cu-ATSM PET may be determinants of HNC patient outcomes and help define optimal patient-specific treatments.
Collapse
Affiliation(s)
- Tetsuya Tsujikawa
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
- * E-mail:
| | - Satoko Asahi
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Myungmi Oh
- Department of Otolaryngology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yoshitaka Sato
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Norihiko Narita
- Department of Otolaryngology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Akira Makino
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Tatsuro Tsuchida
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hirohiko Kimura
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shigeharu Fujieda
- Department of Otolaryngology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| |
Collapse
|
19
|
Sengupta D, Pratx G. Imaging metabolic heterogeneity in cancer. Mol Cancer 2016; 15:4. [PMID: 26739333 PMCID: PMC4704434 DOI: 10.1186/s12943-015-0481-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/10/2015] [Indexed: 01/01/2023] Open
Abstract
As our knowledge of cancer metabolism has increased, it has become apparent that cancer metabolic processes are extremely heterogeneous. The reasons behind this heterogeneity include genetic diversity, the existence of multiple and redundant metabolic pathways, altered microenvironmental conditions, and so on. As a result, methods in the clinic and beyond have been developed in order to image and study tumor metabolism in the in vivo and in vitro regimes. Both regimes provide unique advantages and challenges, and may be used to provide a picture of tumor metabolic heterogeneity that is spatially and temporally comprehensive. Taken together, these methods may hold the key to appropriate cancer diagnoses and treatments in the future.
Collapse
Affiliation(s)
- Debanti Sengupta
- Stanford University School of Medicine, A226 Building A, 1050 Arastradero Road, Palo Alto, CA, 94304, USA
| | - Guillem Pratx
- Stanford University School of Medicine, A226 Building A, 1050 Arastradero Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
20
|
Tain R, Xu HN, Zhou XJ, Li LZ, Cai K. Magnetization Transfer MRI Contrast May Correlate with Tissue Redox State in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 923:401-406. [PMID: 27526169 PMCID: PMC5411113 DOI: 10.1007/978-3-319-38810-6_52] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developing imaging biomarkers for non-invasive measurement of the tissue redox state is a key research area. Recently, we presented the first non-invasive MR imaging method that demonstrated the correlation between the endogenous chemical exchange saturation transfer (CEST) contrast and the tissue redox state. It is well known that the broadband magnetization transfer (MT) can occur via chemical exchange (CEST) and/or dipole-dipole interactions. The present study investigated if the broadband MT also correlated with the tissue redox state. The preliminary result for the prostate tumor xenografts indeed showed a significant correlation between the broadband MT contrast and the NADH redox ratio quantified with the optical redox scanning. In vivo MT contrast, once calibrated, may potentially serve as an imaging biomarker for tissue redox state.
Collapse
Affiliation(s)
- Rongwen Tain
- Department of Radiology, Center for MR Research, University of Illinois at Chicago, 2242 w. Harrison st., Chicago, IL, 60612, USA
| | - He N Xu
- Britton Chance Laboratory of Redox Imaging, Johnson Research Foundation; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaohong J Zhou
- Department of Radiology, Center for MR Research, University of Illinois at Chicago, 2242 w. Harrison st., Chicago, IL, 60612, USA
| | - Lin Z Li
- Molecular Imaging Laboratory, Department of Radiology, Britton Chance Laboratory of Redox Imaging, Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kejia Cai
- Department of Radiology, Center for MR Research, University of Illinois at Chicago, 2242 w. Harrison st., Chicago, IL, 60612, USA.
| |
Collapse
|
21
|
Abstract
The ability to identify key biomolecules and molecular changes associated with cancer malignancy and the capacity to monitor the therapeutic outcome against these targets is critically important for cancer treatment. Recent developments in molecular imaging based on magnetic resonance (MR) techniques have provided researchers and clinicians with new tools to improve most facets of cancer care. Molecular imaging is broadly described as imaging techniques used to detect molecular signature at the cellular and gene expression levels. This article reviews both established and emerging molecular MR techniques in oncology and discusses the potential of these techniques in improving the clinical cancer care. It also discusses how molecular MR, in conjunction with other structural and functional MR imaging techniques, paves the way for developing tailored treatment strategies to enhance cancer care.
Collapse
|
22
|
Zhang Y, Heo HY, Jiang S, Lee DH, Bottomley PA, Zhou J. Highly accelerated chemical exchange saturation transfer (CEST) measurements with linear algebraic modeling. Magn Reson Med 2015; 76:136-44. [PMID: 26302147 DOI: 10.1002/mrm.25873] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/13/2015] [Accepted: 07/16/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE In clinical studies, compartmental average chemical exchange saturation transfer (CEST) measurements rather than voxel-by-voxel CEST images may suffice for evaluating its diagnostic value. A recently developed method-spectroscopy with linear algebraic modeling, or SLAM-could directly provide compartmental measures with dramatically reduced scan time and optimal signal-to-noise ratios. Here, we test whether SLAM can be adapted to significantly accelerate CEST acquisitions. THEORY AND METHODS Conventional anatomical images and raw CEST image k-space data were acquired from seven brain tumor patients. SLAM was applied to the CEST data using acceleration factors of R = 1-45, after segmenting compartments from co-registered images. SLAM-CEST measures were compared with average values from the identical compartments obtained by conventional Fourier transform (FT) CEST. RESULTS SLAM generated compartmental average CEST z-spectra that were indistinguishable from conventional FT-CEST for R ≤ 45. SLAM-CEST z-spectra at ±3.5 ppm were highly correlated with FT-CEST measures (r(2) ≥ 0.98 for R ≤ 9; r ≥ 0.995 for R ≤ 45). The average error of SLAM-CEST versus FT-CEST measures was ≤10% for R ≤ 45, in acquisitions requiring as few as a single k-space phase-encoding step. CONCLUSION Applied to patients with brain tumors, SLAM-CEST can yield results that are quantitatively equivalent to conventional CEST up to 45 times faster, which could prove enabling in clinical settings where scan time is limiting. Magn Reson Med 76:136-144, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi Zhang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dong-Hoon Lee
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Paul A Bottomley
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Donahue MJ, Donahue PCM, Rane S, Thompson CR, Strother MK, Scott AO, Smith SA. Assessment of lymphatic impairment and interstitial protein accumulation in patients with breast cancer treatment-related lymphedema using CEST MRI. Magn Reson Med 2015; 75:345-55. [PMID: 25752499 DOI: 10.1002/mrm.25649] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE Lymphatic impairment is known to reduce quality of life in some of the most crippling diseases of the 21st century, including obesity, lymphedema, and cancer. However, the lymphatics are not nearly as well-understood as other bodily systems, largely owing to a lack of sensitive imaging technologies that can be applied using standard clinical equipment. Here, proton exchange-weighted MRI is translated to the lymphatics in patients with breast cancer treatment-related lymphedema (BCRL). METHODS Healthy volunteers (N = 8) and BCRL patients (N = 7) were scanned at 3 Tesla using customized structural MRI and amide proton transfer (APT) chemical exchange saturation transfer (CEST) MRI in sequence with the hypothesis that APT effects would be elevated in lymphedematous tissue. APT contrast, lymphedema stage, symptomatology, and histology information were evaluated. RESULTS No significant difference between proton-weighted APT contrast in the right and left arms of healthy controls was observed. An increase in APT contrast in the affected arms of patients was found (P = 0.025; Cohen's d = 2.4), and variability among patients was consistent with documented damage to lymphatics as quantified by lymphedema stage. CONCLUSION APT CEST MRI may have relevance for evaluating lymphatic impairment in patients with BCRL, and may extend to other pathologies where lymphatic compromise is evident.
Collapse
Affiliation(s)
- Manus J Donahue
- Department of Radiology, Vanderbilt School of Medicine, Nashville, Tennessee.,Department of Psychiatry, Vanderbilt School of Medicine, Nashville, Tennessee.,Department of Neurology, Vanderbilt School of Medicine, Nashville, Tennessee.,Department of Physics and Astronomy, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Paula C M Donahue
- Physical Medicine and Rehabilitation, Vanderbilt School of Medicine, Nashville, Tennessee.,Dayani Center for Health and Wellness, Nashville, Tennessee
| | - Swati Rane
- Department of Radiology, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Christopher R Thompson
- Vanderbilt University Institute of Imaging Science, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Megan K Strother
- Department of Radiology, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Allison O Scott
- Department of Radiology, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Seth A Smith
- Department of Radiology, Vanderbilt School of Medicine, Nashville, Tennessee
| |
Collapse
|
24
|
Cai K, Singh A, Poptani H, Li W, Yang S, Lu Y, Hariharan H, Zhou XJ, Reddy R. CEST signal at 2ppm (CEST@2ppm) from Z-spectral fitting correlates with creatine distribution in brain tumor. NMR IN BIOMEDICINE 2015; 28:1-8. [PMID: 25295758 PMCID: PMC4257884 DOI: 10.1002/nbm.3216] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 08/14/2014] [Accepted: 08/17/2014] [Indexed: 05/03/2023]
Abstract
In general, multiple components such as water direct saturation, magnetization transfer (MT), chemical exchange saturation transfer (CEST) and aliphatic nuclear Overhauser effect (NOE) contribute to the Z-spectrum. The conventional CEST quantification method based on asymmetrical analysis may lead to quantification errors due to the semi-solid MT asymmetry and the aliphatic NOE located on a single side of the Z-spectrum. Fitting individual contributors to the Z-spectrum may improve the quantification of each component. In this study, we aim to characterize the multiple exchangeable components from an intracranial tumor model using a simplified Z-spectral fitting method. In this method, the Z-spectrum acquired at low saturation RF amplitude (50 Hz) was modeled as the summation of five Lorentzian functions that correspond to NOE, MT effect, bulk water, amide proton transfer (APT) effect and a CEST peak located at +2 ppm, called CEST@2ppm. With the pixel-wise fitting, the regional variations of these five components in the brain tumor and the normal brain tissue were quantified and summarized. Increased APT effect, decreased NOE and reduced CEST@2ppm were observed in the brain tumor compared with the normal brain tissue. Additionally, CEST@2ppm decreased with tumor progression. CEST@2ppm was found to correlate with the creatine concentration quantified with proton MRS. Based on the correlation curve, the creatine contribution to CEST@2ppm was quantified. The CEST@2ppm signal could be a novel imaging surrogate for in vivo creatine, the important bioenergetics marker. Given its noninvasive nature, this CEST MRI method may have broad applications in cancer bioenergetics.
Collapse
Affiliation(s)
- Kejia Cai
- Department of Radiology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Anup Singh
- Center for Magnetic Resonance and Optical Imaging (CMROI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Molecular Imaging Labs, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Weiguo Li
- Research Resource Center, Department of Bioengineering, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Shaolin Yang
- Department of Psychiatry and Radiology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Yang Lu
- Department of Radiology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Hari Hariharan
- Center for Magnetic Resonance and Optical Imaging (CMROI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaohong J. Zhou
- Department of Radiology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging (CMROI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|