1
|
David JJ, Stephen AMM, Kavitha S, Krishnan SK, Mariappan S, Sebastian SL, Palanichamy J, Kalivel P, Sathishkumar P. Investigating the efficiency of electrocoagulation using similar/dissimilar electrodes for the detoxification of Coralene Rubine dye: a cost effective approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:322. [PMID: 39012612 DOI: 10.1007/s10653-024-02096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Efficient treatment of textile dyeing wastewater can be achieved through electrocoagulation (EC) with minimal sludge production; however, the selection of the appropriate electrode is essential in lowering overall costs. Also, the reuse of the treated aqueous azo dye solution from this process has not been explored in detail. With these objectives, this study aims to treat synthetic azo dye solutions and achieve high colour removal efficiency (CRE%) using similar (Ti-Ti) and dissimilar (Ti-Cu) metal electrodes through EC with an attempt to reduce the cost. The aqueous Coralene Rubine GFL azo dye was used to examine the efficiency and cost of the EC process. X-Ray Photoelectron Spectroscopy was used to study the EC mechanism, while High Performance Liquid Chromatography was used to analyse the degradation of the dye and the formation of intermediate compounds. The concentration of metal ions in the treated dye solution was quantified using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), with Ti-Ti treated solution having 14.20 mg/L concentration of Ti and Ti-Cu treated solution having 0.078 mg/L of Ti and 0.001 mg/L of Cu, respectively. Colour removal efficiency of 99.49% was obtained for both electrode sets, with a lower operating time and voltage for dissimilar metal combination. Ecotoxicity studies showed negligible toxicity of Ti-Cu treated dye samples compared to untreated solutions. Survival rate, protein estimation, and catalase activity was used to validate the treatment method's efficacy. The study found that the dissimilar electrode material exhibited reduced toxicity due to the presence of heavy metals below the permissible limit.
Collapse
Affiliation(s)
- Jovitha Jane David
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Asath Murphy Maria Stephen
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Subbiah Kavitha
- Department of Biotechnology, Karunya Institute of Technology and Sciences,, Coimbatore, Tamil Nadu, 641114, India
| | - Suresh Kumar Krishnan
- Department of Biotechnology, Karunya Institute of Technology and Sciences,, Coimbatore, Tamil Nadu, 641114, India
| | - Santhiya Mariappan
- Department of Biotechnology, Karunya Institute of Technology and Sciences,, Coimbatore, Tamil Nadu, 641114, India
| | - Sahaya Leenus Sebastian
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
- Department of Chemistry, Jayaraj Annapackiam College for Women (Autonomous), Periyakulam, 625601, India
| | - Jegathambal Palanichamy
- Water Institute, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Parameswari Kalivel
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India.
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
2
|
Dutta S, Adhikary S, Bhattacharya S, Roy D, Chatterjee S, Chakraborty A, Banerjee D, Ganguly A, Nanda S, Rajak P. Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120103. [PMID: 38280248 DOI: 10.1016/j.jenvman.2024.120103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/29/2024]
Abstract
Textile dyes are the burgeoning environmental contaminants across the world. They might be directly disposed of from textile industries into the aquatic bodies, which act as the direct source for the entire ecosystem, ultimately impacting the human beings. Hence, it is essential to dissect the potential adverse outcomes of textile dye exposure on aquatic plants, aquatic fauna, terrestrial entities, and humans. Analysis of appropriate literature has revealed that textile dye effluents could affect the aquatic biota by disrupting their growth and reproduction. Various aquatic organisms are targeted by textile dye effluents. In such organisms, these chemicals affect their development, behavior, and induce oxidative stress. General populations of humans are exposed to textile dyes via the food chain and drinking contaminated water. In humans, textile dyes are biotransformed into electrophilic intermediates and aromatic amines by the enzymes of the cytochrome family. Textile dyes and their biotransformed products form the DNA and protein adducts at sub-cellular moiety. Moreover, these compounds catalyze the production of free radicals and oxidative stress, and trigger the apoptotic cascades to produce lesions in multiple organs. In addition, textile dyes modulate epigenetic factors like DNA methyltransferase and histone deacetylase to promote carcinogenesis. Several bioremediation approaches involving algae, fungi, bacteria, biomembrane filtration techniques, etc., have been tested and some other hybrid systems are currently under investigation to treat textile dye effluents. However, many such approaches are at the trial stage and require further research to develop more efficient, cost-effective, and easy-to-handle techniques.
Collapse
Affiliation(s)
- Sohini Dutta
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, West Bengal, India
| | | | - Dipsikha Roy
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sovona Chatterjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Aritra Chakraborty
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Diyasha Banerjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
3
|
Karaman M. Biochemical and molecular assessment of oxidative stress in fruit fly exposed to azo dye Brilliant Black PN. Mol Biol Rep 2024; 51:150. [PMID: 38236489 DOI: 10.1007/s11033-023-09108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Azo dyes are widely used in the food industry to prevent color loss during processing and storage of products. This study aimed to investigate the effect of a diazo dye Brilliant Black PN (E151) on oxidative stress-related parameters in fruit flies (Drosophila melanogaster) at biochemical and molecular levels. METHODS AND RESULTS Third instar larvae were transferred to a medium containing the dye at different doses (1, 2.5, and 5 mg/mL). Gene expression and activity of superoxide dismutase, catalase (CAT), glutathione peroxidase (GPX), and acetylcholinesterase (AChE) enzymes were determined in the heads of adult flies obtained from these larvae. In addition, the glutathione (GSH) and malondialdehyde levels were measured using spectrophotometric analysis. Mitochondrial DNA (mtDNA) copy number was also detected by real-time PCR. The results showed that treatment with 5 mg/mL of the dye caused a decrease in both gene expression and enzyme activity of CAT and GPx. Moreover, the same dose of dye treatment decreased AChE activity, GSH level, and mtDNA copy number. CONCLUSIONS As a result, Brilliant Black PN dye can trigger toxicity by altering the level and activity of oxidative stress-related biomarkers in a dose-dependent manner. Therefore, more comprehensive studies are needed to elucidate the side effect mechanism and toxicity of this dye.
Collapse
Affiliation(s)
- Melike Karaman
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
4
|
Kanwal A, Rehman R, Imran M, Samin G, Jahangir MM, Ali S. Phytoremediative adsorption methodologies to decontaminate water from dyes and organic pollutants. RSC Adv 2023; 13:26455-26474. [PMID: 37674490 PMCID: PMC10478504 DOI: 10.1039/d3ra02104a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Persistent organic pollutants and dyes cause major problems during ecofriendly wastewater treatment. To overcome this huge problem, several techniques have been considered and in practice for the safe disposal of organic pollutants in recent years; some of them are discussed and compared herein. This review focuses on new trends for wastewater treatment and compares them with certain other techniques alongside their pros and cons; adsorption is considered the safest among them. Adsorbents derived from agri-wastes have good capacity for the removal of these contaminants owing to their great sorption capacity, high reusability, easy operation, etc. Sometimes they need some modifications for the removal of dyes, which are also discussed in this review. This capacity of adsorbents to chelate dye molecules can be affected by factors, such as pH, the concentration of dyes and adsorbents, and temperature of the system. pH has direct influence on the ionization potential and charge on the outer surface of adsorbents. The findings on isotherms, kinetics, and desorption of plant waste-based biomaterials that are safe for the ecosystem and user friendly and are used for hazardous contaminant removal from water are summarized in this review. Finally, conclusions and future perspectives are presented, and some other materials, such as CNTs and MOFs, are also discussed as efficient adsorbents for eliminating dyes from wastewater. Finally, it is predicted that the adsorption of dyes is a more feasible solution for this dye pollution problem.
Collapse
Affiliation(s)
- Ayesha Kanwal
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Quaid-e-Azam Campus Lahore-54590 Pakistan
| | - Rabia Rehman
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Quaid-e-Azam Campus Lahore-54590 Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Quaid-e-Azam Campus Lahore-54590 Pakistan
| | - Ghufrana Samin
- Department of Basic Sciences and Humanities, University of Engineering and Technology (Lahore) Faisalabad Campus Pakistan
| | | | - Saadat Ali
- University of Engineering and Technology Taxila Pakistan
| |
Collapse
|
5
|
Kumari H, Sonia, Suman, Ranga R, Chahal S, Devi S, Sharma S, Kumar S, Kumar P, Kumar S, Kumar A, Parmar R. A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. WATER, AIR, AND SOIL POLLUTION 2023; 234:349. [PMID: 37275322 PMCID: PMC10212744 DOI: 10.1007/s11270-023-06359-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Water pollution is a global issue as a consequence of rapid industrialization and urbanization. Organic compounds which are generated from various industries produce problematic pollutants in water. Recently, metal oxide (TiO2, SnO2, CeO2, ZrO2, WO3, and ZnO)-based semiconductors have been explored as excellent photocatalysts in order to degrade organic pollutants in wastewater. However, their photocatalytic performance is limited due to their high band gap (UV range) and recombination time of photogenerated electron-hole pairs. Strategies for improving the performance of these metal oxides in the fields of photocatalysis are discussed. To improve their photocatalytic activity, researchers have investigated the concept of doping, formation of nanocomposites and core-shell nanostructures of metal oxides. Rare-earth doped metal oxides have the advantage of interacting with functional groups quickly because of the 4f empty orbitals. More precisely, in this review, in-depth procedures for synthesizing rare earth doped metal oxides and nonocomposites, their efficiency towards organic pollutants degradation and sources have been discussed. The major goal of this review article is to propose high-performing, cost-effective combined tactics with prospective benefits for future industrial applications solutions.
Collapse
Affiliation(s)
- Harita Kumari
- Present Address: Department of Physics, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| | - Sonia
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Suman
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Rohit Ranga
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Surjeet Chahal
- Materials and Nano Engineering Research Laboratory, Department of Physics, School of Physical Sciences, DIT University, Dehradun, 248009 India
| | - Seema Devi
- Department of Physics, Netaji Subhas University of Technology, New Delhi, 110078 India
| | - Sourabh Sharma
- Department of Physics, Netaji Subhas University of Technology, New Delhi, 110078 India
| | - Sandeep Kumar
- J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006 Haryana India
| | - Parmod Kumar
- J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006 Haryana India
| | - Suresh Kumar
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Ashok Kumar
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Rajesh Parmar
- Present Address: Department of Physics, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| |
Collapse
|
6
|
Dasgupta Mandal D, Majumdar S. Bacteria as biofactory of pigments: Evolution beyond therapeutics and biotechnological advancements. J Biosci Bioeng 2023; 135:349-358. [PMID: 36872147 DOI: 10.1016/j.jbiosc.2023.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 03/06/2023]
Abstract
Bacterial pigments are the wonder molecules of nature that have attracted the attention of industries in recent years. To date, various synthetic pigments have been in use in food, cosmetics, and textile industries that have not only shown a notoriously toxic nature but also posed threat to the ecosystem. Moreover, nutraceuticals, fisheries, and animal husbandry were highly dependent on plant sources for products that aid in disease prevention and improve stock health. In this context, the use of bacterial pigments as new-generation colorants, food fortifiers, and supplements can hold great prospects as low-cost, healthy, and eco-friendly alternatives. The majority of studies on these compounds were restricted to antimicrobial, antioxidant, and anticancer potentials to date. Each of these can be highly beneficial for the development of new-generation drugs, but their other potential niche in various industries that pose health and environmental risks needs to be explored. Recent advances in novel strategies of metabolic engineering, advancements in optimization tools for the fermentation process, and the design of appropriate delivery systems will greatly expand the market of bacterial pigments in industries. This review summarizes the current technologies for enhancing production, recovery, stability, and appreciable use of bacterial pigments in industries apart from therapeutics with proper financial aspects. The toxicity perspectives have been focused to emphasize that these wonder molecules are the need of the hour and their future prospects have been highlighted. Extensive literature has been studied to include the challenges of bacterial pigments from environmental and health risk perspectives.
Collapse
Affiliation(s)
- Dalia Dasgupta Mandal
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India.
| | - Subhasree Majumdar
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India; Department of Zoology, Sonamukhi College, Sonamukhi, Bankura 722207, West Bengal, India
| |
Collapse
|
7
|
Islam T, Repon MR, Islam T, Sarwar Z, Rahman MM. Impact of textile dyes on health and ecosystem: a review of structure, causes, and potential solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9207-9242. [PMID: 36459315 DOI: 10.1007/s11356-022-24398-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The rapid growth of population and industrialization have intensified the problem of water pollution globally. To meet the challenge of industrialization, the use of synthetic dyes in the textile industry, dyeing and printing industry, tannery and paint industry, paper and pulp industry, cosmetic and food industry, dye manufacturing industry, and pharmaceutical industry has increased exponentially. Among these industries, the textile industry is prominent for the water pollution due to the hefty consumption of water and discharge of coloring materials in the effluent. The discharge of this effluent into the aquatic reservoir affects its biochemical oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids (TDS), total suspended solids (TSS), and pH. The release of the effluents without any remedial treatment will generate a gigantic peril to the aquatic ecosystem and human health. The ecological-friendly treatment of the dye-containing wastewater to minimize the detrimental effect on human health and the environment is the need of the hour. The purpose of this review is to evaluate the catastrophic effects of textile dyes on human health and the environment. This review provides a comprehensive insight into the dyes and chemicals used in the textile industry, focusing on the typical treatment processes for their removal from industrial wastewaters, including chemical, biological, physical, and hybrid techniques.
Collapse
Affiliation(s)
- Tarekul Islam
- Department of Textile Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
| | - Md Reazuddin Repon
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh.
- Department of Textile Engineering, Khwaja Yunus Ali University, Sirajgang, 6751, Bangladesh.
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų 56, 51424, Kaunas, Lithuania.
| | - Tarikul Islam
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
- Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Zahid Sarwar
- School of Engineering and Technology, National Textile University, Faisalabad, Pakistan
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) &, Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
8
|
Khan AA, Gul J, Naqvi SR, Ali I, Farooq W, Liaqat R, AlMohamadi H, Štěpanec L, Juchelková D. Recent progress in microalgae-derived biochar for the treatment of textile industry wastewater. CHEMOSPHERE 2022; 306:135565. [PMID: 35793745 DOI: 10.1016/j.chemosphere.2022.135565] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/12/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Textile industry utilize a massive amount of dyes for coloring. The dye-containing effluent is released into wastewater along with heavy metals that are part of dye structure. The treatment of textile industry wastewater using conventional techniques (coagulation, membrane technique, electrolysis ion exchange, etc.) is uneconomical and less efficient (for a low concentration of pollutants). Moreover, most of these techniques produce toxic sludge, making them less environmentally friendly. Algae base industry is growing for food, cosmetics and energy needs. Algae biomass in unique compared to lignocellulosic biomass due to presence of various functional group on its surface and presence of various cations. These two characteristics are unique for biochar as a tool for environmental decontamination. Algae biomass contain functional groups and cations that can be effective for removal of organic contaminants (dyes) and heavy metals. Algae can be micro and macro and both have entirely different biomass composition which will lead to a synthesis of different biochar even under same synthesis process. This study reviews the recent progress in the development of an economically viable and eco-friendly approach for textile industry wastewater using algae biomass-derived absorbents. The strategy employed microalgal biochar to remove organic pollutants (dyes) and heavy metals from textile effluents by biosorption. This article discusses different methods for preparing algal biochar (pyrolysis, hydrothermal carbonization and torrefaction), and the adsorption capacity of biochar for dyes and heavy metals. Work on hydrothermal carbonization and torrefaction of microalgal biomass for biochar is limited. Variation in structural and functional groups changes on biochar compared to original microalgal biomass are profound in contract with lignocellulosic biomass. Existing Challenges, future goals, and the development of these technologies at the pilot level are also discussed.
Collapse
Affiliation(s)
- Abdul Ahad Khan
- School of Chemical and Materials Engineering, National University of Science & Technology, H-12, Islamabad, Pakistan.
| | - Jawad Gul
- School of Chemical and Materials Engineering, National University of Science & Technology, H-12, Islamabad, Pakistan
| | - Salman Raza Naqvi
- School of Chemical and Materials Engineering, National University of Science & Technology, H-12, Islamabad, Pakistan.
| | - Imtiaz Ali
- Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Wasif Farooq
- Department of Chemical Engineering, King Fahd University of Petroleum, and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Rabia Liaqat
- U.S.-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia
| | - Libor Štěpanec
- Department of Electronics, Faculty of Electrical Engineering and Computer Science, VŠB - Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava-Poruba, 708 00, Czech Republic
| | - Dagmar Juchelková
- Department of Electronics, Faculty of Electrical Engineering and Computer Science, VŠB - Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
9
|
Recent Literature Review of Significance of Polypyrrole and Its Biocomposites in Adsorption of Dyes from Aqueous Solution. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/7047832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The usage of dyes has been tremendously augmented due to industrialization and human’s intrinsic fascination with colors. Owing to their excessive usage in industries like textiles, food, cosmetics, paints, printing etc., it is indisputably a contributing factor in aquatic pollution. Dyes effluents have emerged as a burgeoning challenge. Owing to issues such as toxicity, mutagenicity, and disturbed photosynthesis associated with dye contamination, it is crucial to look for an explication to deal with this challenge. Polypyrrole-based biocomposites have been reported as good adsorbents for textile wastewater treatment. In the last decade, numerous studies have stated the effective removal of dyes via Polypyrrole-based biocomposites. This review concentrates on the implication of different Polypyrrole-based biocomposites for decontamination of dyes and synthesis methods, characteristics, and mechanism of dyes degradation by these biocomposites from wastewater.
Collapse
|
10
|
Monga D, Kaur P, Singh B. Microbe mediated remediation of dyes, explosive waste and polyaromatic hydrocarbons, pesticides and pharmaceuticals. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100092. [PMID: 35005657 PMCID: PMC8717453 DOI: 10.1016/j.crmicr.2021.100092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 01/30/2023] Open
Abstract
Environmental pollutants dyes, pesticides, pharmaceuticals, explosive waste and polyaromatic hydrocarbons. Environmental pollutants toxicity. Possible microbial biodegradation pathways of environmental pollutants.
Industrialization and human activities have led to serious effects on environment. With the progress taking place in the biodegradation field, it is important to summarize the latest advancement. In this review, we intend to provide insights on the recent progress on the biodegradation of environmental contaminants such as dyes, pesticides, pharmaceuticals, explosive waste and polyaromatic hydrocarbons by microorganisms. Along with the biodegradation of environmental contaminants, toxicity effects have also been discussed.
Collapse
|
11
|
Oloye O, Riches JD, O'Mullane AP. Liquid metal assisted sonocatalytic degradation of organic azo dyes to solid carbon particles. Chem Commun (Camb) 2021; 57:9296-9299. [PMID: 34519305 DOI: 10.1039/d1cc03235f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Room temperature liquid metals are an emerging class of materials for a variety of heterogeneous catalytic reactions. In this work we explore the use of Ga based liquid metals as a sonochemical catalyst for the degradation of organic azo dyes such as methyl orange, congo red and eriochrome black T. Rapid degradation to non toxic solid carbon particles was achieved over a large dye concentration range to produce differently sized particles via both bath and probe sonication which could be repeated multiple times with the same catalyst.
Collapse
Affiliation(s)
- Olawale Oloye
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia. .,Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - James D Riches
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia.,Central Analytical Research Facility (CARF), Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia. .,Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| |
Collapse
|
12
|
Javaid R, Qazi UY, Ikhlaq A, Zahid M, Alazmi A. Subcritical and supercritical water oxidation for dye decomposition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112605. [PMID: 33894487 DOI: 10.1016/j.jenvman.2021.112605] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
The total annual output of synthetic dyes exceeds 7 × 105 tons. About 1,000 tons of non-biodegradable synthetic dyes are released every year into the natural streams and water sources from textile wastes. The release of these colored wastewater exerts negative impact on aquatic ecology and human beings because of the poisonous and carcinogenic repercussions of dyes involved in coloration production. Therefore, with a growing interest in the environment, efficient technologies need to be developed to eliminate dyes from local and industrial wastewater. Supercritical water oxidation as a promising wastewater treatment technology has many advantages, such as a rapid reaction and pollution-free products. However, due to corrosion, salt precipitation and operational problems, supercritical water oxidation process did not gain expected industrial development. These technical difficulties can be overcome by application of non-corrosive subcritical water as a reaction medium. This work summarizes the negative impacts of dyes and role of subcritical and supercritical water and their efficiencies in dye oxidation processes.
Collapse
Affiliation(s)
- Rahat Javaid
- Renewable Energy Research Center, Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, AIST, 2-2-9 Machiikedai, Koriyama, Fukushima, 963-0298, Japan.
| | - Umair Yaqub Qazi
- Department of Chemistry, College of Science, University of Hafr Al Batin, P.O Box 1803, Hafr Al Batin, 39524, Saudi Arabia; Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Amir Ikhlaq
- Institute of Environmental Engineering and Research, University of Engineering and Technology, GT Road, 54890, Lahore, Punjab, Pakistan
| | - Muhammad Zahid
- Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Amira Alazmi
- Department of Chemistry, University Colleges at Nairiyah, University of Hafr Al Batin. P.O Box 1803 Hafr Al Batin 39524, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Varjani S, Rakholiya P, Ng HY, You S, Teixeira JA. Microbial degradation of dyes: An overview. BIORESOURCE TECHNOLOGY 2020; 314:123728. [PMID: 32665105 DOI: 10.1016/j.biortech.2020.123728] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 05/21/2023]
Abstract
Industrialization increases use of dyes due to its high demand in paper, cosmetic, textile, leather and food industries. This in turn would increase wastewater generation from dye industrial activities. Various dyes and its structural compounds present in dye industrial wastewater have harmful effects on plants, animals and humans. Synthetic dyes are more resistant than natural dyes to physical and chemical methods for remediation which makes them more difficult to get decolorize. Microbial degradation has been researched and reviewed largely for quicker dye degradation. Genetically engineered microorganisms (GEMs) play important role in achieving complete dye degradation. This paper provides scientific and technical information about dyes & dye intermediates and biodegradation of azo dye. It also compiles information about factors affecting dye(s) biodegradation, role of genetically modified organisms (GMOs) in process of dye(s) degradation and perspectives in this field of research.
Collapse
Affiliation(s)
- Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| | - Parita Rakholiya
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India; Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat 382015, India
| | - How Yong Ng
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jose A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710057 Braga, Portugal
| |
Collapse
|
14
|
Goud BS, Cha HL, Koyyada G, Kim JH. Augmented Biodegradation of Textile Azo Dye Effluents by Plant Endophytes: A Sustainable, Eco-Friendly Alternative. Curr Microbiol 2020; 77:3240-3255. [PMID: 32951066 DOI: 10.1007/s00284-020-02202-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/04/2020] [Indexed: 01/02/2023]
Abstract
Textile industry consumes a large proportion of available water and releases huge amounts of toxic azo dye effluents, leading to an inevitable situation of acute environmental pollution that has been a significant threat to mankind. Decolorization or detoxification of harmful azo dyes has become a global priority to overcome the disastrous consequences and salvage the ecosystem. Biodegradation of textile azo dyes by endophytes stands to be a lucrative and viable alternative over conventional physico-chemical methods, owing to their eco-friendliness, cost-competitive and non-toxic nature. Especially, plant endophytic microbes exhibit promising biodegradation potential which has wired up the effective removal of textile azo dyes, attributing to their ability to produce dye degrading enzymes, laccases, peroxidases and azoreductases. Although both bacterial and fungal endophytes have been tried for azo dye degradation, endophytic fungi find broader application over bacteria. Despite of the advancements made in microbe-mediated biodegradation, there is still a need to fill the gap in lab to in situ translation of biodegradation research. This review concisely accentuates the xenobiotics of textile azo dyes and microbial mechanisms of biodegradation of textile azo dyes, positing plant endophytic community, especially bacterial and fungal endophytes as the potential dye degraders, highlighting currently reported dye degrading endophytic species.
Collapse
Affiliation(s)
- Burragoni Sravanthi Goud
- Department of Biotechnology, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea.
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea.
| | - Ha Lim Cha
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea
| | - Ganesh Koyyada
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea.
| | - Jae Hong Kim
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea.
| |
Collapse
|
15
|
Advanced oxidation processes applied for color removal of textile effluent using a home-made peroxidase from rice bran. Bioprocess Biosyst Eng 2019; 43:261-272. [PMID: 31578604 DOI: 10.1007/s00449-019-02222-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/22/2019] [Indexed: 02/04/2023]
Abstract
Enzymes are becoming tools in industrial processes because of several advantages, including activity in mild environmental conditions, and high specificity. Peroxidase, for one, stably oxidizes several substrates. The present study aimed to develop advanced oxidation processes (AOP), using non-commercial rice bran peroxidase to remove color and toxicity of synthetic textile wastewater. Using a microwave and shaker system, we obtained 38.9% and 100% of effluent color removal after peroxidase treatment, respectively. In addition, the shaker system decants residual dye particles through filtration, providing the textile industry with an economical and environmentally viable alternative to effluent treatment. In toxicity tests results, both treatment systems damaged the used genetic material. This damage occurs because of industrial discharge of wastewater into water bodies; effluent dilution reduced this damage. The data suggest that peroxidase as a textile effluent treatment has potential uses in industrial processes, because rice bran peroxidase has demonstrated affinity with dyes.
Collapse
|
16
|
Javaid R, Qazi UY. Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2066. [PMID: 31212717 PMCID: PMC6603921 DOI: 10.3390/ijerph16112066] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023]
Abstract
Dyes are used in various industries as coloring agents. The discharge of dyes, specifically synthetic dyes, in wastewater represents a serious environmental problem and causes public health concerns. The implementation of regulations for wastewater discharge has forced research towards either the development of new processes or the improvement of available techniques to attain efficient degradation of dyes. Catalytic oxidation is one of the advanced oxidation processes (AOPs), based on the active radicals produced during the reaction in the presence of a catalyst. This paper reviews the problems of dyes and hydroxyl radical-based oxidation processes, including Fenton's process, non-iron metal catalysts, and the application of thin metal catalyst-coated tubular reactors in detail. In addition, the sulfate radical-based catalytic oxidation technique has also been described. This study also includes the effects of various operating parameters such as pH, temperature, the concentration of the oxidant, the initial concentration of dyes, and reaction time on the catalytic decomposition of dyes. Moreover, this paper analyzes the recent studies on catalytic oxidation processes. From the present study, it can be concluded that catalytic oxidation processes are very active and environmentally friendly methods for dye removal.
Collapse
Affiliation(s)
- Rahat Javaid
- Renewable Energy Research Center, Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, AIST, 2-2-9 Machiikedai, Koriyama, Fukushima 963-0298, Japan.
| | - Umair Yaqub Qazi
- Chemistry Department, College of Science, University of Hafr Al Batin, P.O Box 1803 Hafr Al Batin 31991, Saudi Arabia.
| |
Collapse
|
17
|
Sreedharan V, Bhaskara Rao KV. Biodegradation of Textile Azo Dyes. NANOSCIENCE AND BIOTECHNOLOGY FOR ENVIRONMENTAL APPLICATIONS 2019. [DOI: 10.1007/978-3-319-97922-9_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Azonaphthalene dyes decolorization and detoxification by laccase from Trametes versicolor. NOVA BIOTECHNOLOGICA ET CHIMICA 2018. [DOI: 10.2478/nbec-2018-0018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe aim of the present study was to investigate the dye decolorization ability of laccase from Trametes versicolor. Five azonaphthalene dyes (Acid Violet 7, Acid Red 1, Allura Red AC, Orange G and Sunset Yellow FCF) were used to evaluate dye decolorization. Laccase from T. versicolor is capable of decolorizing dyes, namely Acid Violet 7 (53.7±2.3 %) and Orange G (46.0±2.2 %). The less effective ability of laccase was observed at the decolorization of other selected dyes (6.9 - 18.6 %). The presence of redox mediator (1-hydroxybenzotriazole) increased decolorization percentage for all tested dyes (≥ 90.5 %). Toxic effect of azo dyes and their degradation products after laccase treatment was observed on the growth of selected bacteria (Micrococcus luteus, Bacillus subtilis, Pseudomonas syringae and Escherichia coli), yeasts (Candida parapsilosis and Saccharomyces cerevisiae) and algae (Chlorella vulgaris and Microcystis aeruginosa). It was confirmed that degradation products showed lower inhibition effect compared to initial dyes. These findings suggest that laccase from T. versicolor are able to decolorize and detoxify selected azonaphthalene dyes.
Collapse
|
19
|
Jadhav I, Vasniwal R, Shrivastav D, Jadhav K. Microorganism-Based Treatment of Azo Dyes. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/jest.2016.188.197] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
|
21
|
Aksu O, Yildirim NC, Yildirim N, Danabas D, Danabas S. Biochemical response of crayfish Astacus leptodactylus exposed to textile wastewater treated by indigenous white rot fungus Coriolus versicolor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2987-2993. [PMID: 25226834 DOI: 10.1007/s11356-014-3550-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
The discharge of textile effluents into the environment without appropriate treatment poses a serious threat for the aquatic organisms. The present study was undertaken to investigate biochemical response of crayfish Astacus leptodactylus exposed to textile wastewater (TW) treated by indigenous white rot fungus Coriolus versicolor. Glutathione S-transferase (GST), cytochrome P450 1A1 (CYP1A1), and acetylcholinesterase (AchE) levels in hepatopancreas and abdomen tissues of crayfish exposed to untreated, treated, and diluted rates (1/10) in both TW during 24 and 96 h were tested. Physiochemical parameters (electrical conductivity (EC), chemical oxygen demand (COD), pH, and total dissolved solid (TDS)) of TW were determined before and after treatment. Physiochemical parameters of TW decreased after treatment. The GST activity and AchE were generally increased, but CYP1A1 activity was decreased in hepatopancreas tissue of crayfish exposed to different kinds of untreated TW. After treatment by indigenous white rot fungus (C. versicolor), GST and CYP1A1 activities were returned to control values, while AchE activities were increasing further. In this study, only GST and CYP1A1 activities of A. leptodactylus confirmed the efficiency of TW treatment with C. versicolor.
Collapse
Affiliation(s)
- Onder Aksu
- Fisheries Faculty, Tunceli University, 62000, Tunceli, Turkey
| | | | | | | | | |
Collapse
|
22
|
Ayadi I, Monteiro SM, Regaya I, Coimbra A, Fernandes F, Oliveira MM, Peixoto F, Mnif W. Biochemical and histological changes in the liver and gills of Nile tilapia Oreochromis niloticus exposed to Red 195 dye. RSC Adv 2015. [DOI: 10.1039/c5ra13127h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study investigates the biochemical and morphological responses induced in the liver and gills of Nile tilapia Oreochromis niloticus by exposure to various Red 195 dye concentrations (0.05, 0.1 and 0.2 mg L−1) for various durations (7, 14 and 21 days).
Collapse
Affiliation(s)
- Insaf Ayadi
- LR11-ES31 Laboratory of Biotechnology and Valorisation of Bio-Geo Resources
- Higher Institute of Biotechnology of Sidi Thabet
- BiotechPole of Sidi Thabet
- University of Manouba
- Tunisia
| | - Sandra Mariza Monteiro
- Center for the Research and Technology of Agro-Environmental and Biological Sciences
- University of Trás-os-Montes and Alto Douro
- Portugal
| | - Imed Regaya
- Higher Institute of Environment Sciences and Technologies of BorjCédria
- University of Carthage
- Tunisia
| | - Ana Coimbra
- Center for the Research and Technology of Agro-Environmental and Biological Sciences
- University of Trás-os-Montes and Alto Douro
- Portugal
| | - Fontainhas Fernandes
- Center for the Research and Technology of Agro-Environmental and Biological Sciences
- University of Trás-os-Montes and Alto Douro
- Portugal
| | | | - Francisco Peixoto
- Center for the Research and Technology of Agro-Environmental and Biological Sciences
- University of Trás-os-Montes and Alto Douro
- Portugal
| | - Wissem Mnif
- LR11-ES31 Laboratory of Biotechnology and Valorisation of Bio-Geo Resources
- Higher Institute of Biotechnology of Sidi Thabet
- BiotechPole of Sidi Thabet
- University of Manouba
- Tunisia
| |
Collapse
|
23
|
Kaur S, Kaur A. Variability in antioxidant/detoxification enzymes of Labeo rohita exposed to an azo dye, acid black (AB). Comp Biochem Physiol C Toxicol Pharmacol 2015; 167:108-16. [PMID: 25277676 DOI: 10.1016/j.cbpc.2014.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 11/20/2022]
Abstract
The aim of the present study was to evaluate effect of a highly toxic azo dye, acid black (AB) (CI: 20470, 96 h LC50=10 mg/L) on the biochemical responses of Labeo rohita. Antioxidant/detoxification enzymes such as glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), acetylcholinesterase (AChE), lactate dehydrogenase (LDH), succinate dehydrogenase (SDH), acid phosphatase (AcP), alkaline phosphatase (AKP), alanine transaminase (ALT) and aspartate transaminase (AST) were determined in liver, kidney, gill, muscle and brain of L. rohita after 96 h exposure to 6 mg/L (LC10), 8 mg/L (LC30) and 10 mg/L (LC50) of dye with an aim to find out the target tissue and biomarker enzyme for AB. The fish were then kept for a recovery period of 90 days, and activity of the selected enzymes was determined at the end of this period. Present dye altered the activities of all these enzymes in the selected tissues of the experimental fish in a dose-dependent manner. SOD was the maximally affected enzyme, and liver was the most affected tissue. The results indicate that AB is very toxic to L. rohita as there was a significant effect of even 6 mg/L dose of the dye and the toxicity prolonged for a long time because the fish was not able to recover from the stress even 90 days after the exposure. The study suggests that SOD can be used as a biomarker enzyme and liver is the target tissue for AB.
Collapse
Affiliation(s)
- Satinder Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Arvinder Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| |
Collapse
|
24
|
Djelal H, Tahrani L, Fathallah S, Cabrol A, Mansour HB. Treatment process and toxicities assessment of wastewater issued from anaerobic digestion of household wastes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2437-2447. [PMID: 24072641 DOI: 10.1007/s11356-013-2158-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/10/2013] [Indexed: 06/02/2023]
Abstract
Modern society grapples with large amounts of household waste. The anaerobic digestion of this waste offers a promising source for energy-rich biogas production but generates high toxic effluents that require treatment before reuse or disposal into the environment. This study aimed to investigate three techniques, namely coagulation/flocculation, electro-coagulation, and activated sludge, in terms of efficiency in the treatment of these effluents. It also aimed to assess their toxicity effects on the germination and growth of durum wheat Triticum aestivum L. seeds before and after 6 days of treatment. Activated sludge was most efficient in reducing chemical oxygen demand, turbidity, and conductivity (95.7 %, 15.8 %, and 37.5 %, respectively). The effluent treated with this technique induced a marked delay in germination (low mean time of germination) and a significant reduction in the percentages of seed germination and root and leaf growths. It was also noted to strongly induce lipid peroxidation in roots and leaves, which presumably explained the germination/growth inhibition of the wheat seeds. The effluent also induced marked lipid peroxidation effects and strongly inhibited the activities of butyrylcholinesterase in mice bone marrows. The effluent shows a high ability to inhibit the growth of three microalgae; these endpoints are useful tools to biomonitor the physico-chemical quality of this wastewater. Overall, while no significant alterations were observed in terms of animal and vegetable toxicities when the effluent was treated by coagulation/flocculation, activated sludge treatment proved efficient in reducing the toxicities induced by the untreated effluents. The results indicate that the application of this technique is promising with regards to attaining efficient, eco-friendly, and cost-effective strategies for the management and treatment of household waste.
Collapse
Affiliation(s)
- Hayet Djelal
- Ecole des Métiers de l'Environnement, Campus de Ker Lann, 35170, Bruz, France
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Jadhav SB, Surwase SN, Kalyani DC, Gurav RG, Jadhav JP. Biodecolorization of Azo Dye Remazol Orange by Pseudomonas aeruginosa BCH and Toxicity (Oxidative Stress) Reduction in Allium cepa Root Cells. Appl Biochem Biotechnol 2012; 168:1319-34. [DOI: 10.1007/s12010-012-9860-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/21/2012] [Indexed: 11/30/2022]
|
27
|
Mansour HB, Mosrati R, Barillier D, Ghedira K, Chekir-Ghedira L. Bioremediation of industrial pharmaceutical drugs. Drug Chem Toxicol 2012; 35:235-40. [DOI: 10.3109/01480545.2011.591799] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Mansour HB, Boughzala O, Dridi D, Barillier D, Chekir-Ghedira L, Mosrati R. Les colorants textiles sources de contamination de l’eau : CRIBLAGE de la toxicité et des méthodes de traitement. ACTA ACUST UNITED AC 2011. [DOI: 10.7202/1006453ar] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Les colorants sont largement utilisés dans les imprimeries, les produits alimentaires, cosmétiques et cliniques, mais en particulier dans les industries textiles pour leur stabilité chimique et la facilité de leur synthèse et leur variété de couleurs. Cependant, ces colorants sont à l’origine de la pollution une fois évacués dans l’environnement. La production mondiale des colorants est estimée à plus de 800 000 t•an-1et les colorants azoïques sont majoritaires et représentent 60-70 %. Compte tenu de la composition très hétérogène de ces derniers, leur dégradation conduit souvent à la conception d’une chaîne de traitement physique-chimique et biologique assurant l’élimination des différents polluants par étapes successives. Dés études ont montré que plusieurs colorants azoïques sont toxiques et mutagènes et le traitement biologique de ces colorants semble présenter un intérêt scientifique majeur. Les traitements physico-chimiques communs (adsorption, coagulation/floculation, précipitation etc.) sont couramment utilisés pour les effluents industriels. Malgré leur rapidité, ces méthodes se sont avérées peu efficaces compte tenu des normes exigées sur ces rejets. Le traitement biologique constitue une alternative fiable; en effet, plusieurs microorganismes sont capables de transformer les colorants azoïques en sous-produits incolores. Les bactéries dégradent les colorants azoïques en deux étapes : un clivage de liaison azo, par l’intermédiaire de l’azoréductase, suivi d’une oxydation des amines aromatiques formées lors de la première étape. L’azoréduction constitue alors une étape clé du traitement des effluents chargés de ces colorants.
Collapse
Affiliation(s)
- Hedi Ben Mansour
- Équipe de Recherche en Physico-Chimie et Biotechnologie (ERPCB – EA3914), IUT-UFR Sciences, Université de Caen, Basse Normandie, France, Laboratoire de Biologie Cellulaire, Faculté de Médicine Dentaire, Rue Avicenne, 5000 Monastir, Tunisie, Institut Supérieur de Biotechnologie Technopole Sidi Thabet, Université Manouba, Manouba, Tunisie, Téléphone: 00216 97 367 568, T.élécopieur: 00216 73 461 830
| | - Oualid Boughzala
- Équipe de Recherche en Physico-Chimie et Biotechnologie (ERPCB – EA3914), IUT-UFR Sciences, Université de Caen, Basse Normandie, France
| | - dorra Dridi
- Institut Supérieur de Biotechnologie Technopole Sidi Thabet, Université Manouba, Manouba, Tunisie
| | - Daniel Barillier
- Équipe de Recherche en Physico-Chimie et Biotechnologie (ERPCB – EA3914), IUT-UFR Sciences, Université de Caen, Basse Normandie, France
| | - Leila Chekir-Ghedira
- Laboratoire de Biologie Cellulaire, Faculté de Médicine Dentaire, Rue Avicenne, 5000 Monastir, Tunisie
| | - Ridha Mosrati
- Équipe de Recherche en Physico-Chimie et Biotechnologie (ERPCB – EA3914), IUT-UFR Sciences, Université de Caen, Basse Normandie, France
| |
Collapse
|
29
|
Ben Mansour H, Houas I, Montassar F, Ghedira K, Barillier D, Mosrati R, Chekir-Ghedira L. Alteration of in vitro and acute in vivo toxicity of textile dyeing wastewater after chemical and biological remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 19:2634-2643. [PMID: 22351353 DOI: 10.1007/s11356-012-0802-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 01/30/2012] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Textile industry is one of the most common and essential sectors in Tunisia. However, the treatment of textile effluents becomes a university because of their toxic impacts on waters, soils, flora, and fauna. MATERIALS AND METHODS The aim of this work was to evaluate the ability of Pseudomonas putida mt-2 to decolorize a textile wastewater and to compare the biologic decolorization process to the chemical one currently used by the textile industry. RESULTS P. putida exhibited a high decolorizing capacity of the studied effluent, compared to the coagulation-flocculation method with decolorization percentage of 86% and 34.5%, respectively. Genotoxicity of the studied effluent, before and after decolorization by P. putida mt-2, was evaluated in vitro, using the SOS chromotest, and in vivo, in mouse bone marrow, by assessing the percentage of cells bearing different chromosome aberrations compared to not treated mice. In addition, textile effluent statistically significant influenced acetylcholinesterase and butyrylcholinesterase activities and lipid peroxidation (p < 0.01) when compared to not-treated mice. Coagulation-flocculation treatment process used by industry was revealed to be ineffective. Indeed toxicities persisted after treatment and the effluent did not show any statistically significant decrease in toxicities compared to non-treated effluent. Our results indicate that P. putida is a promising and improved alternative to treating industrial scale effluent compared to current chemical decolorization procedures used by the Tunisian textile industry.
Collapse
Affiliation(s)
- Hedi Ben Mansour
- Equipe de Recherche en Physico-chimie et Biotechnologie (E.R.P.C.B-EA3914), IUT-UFR Sciences, Université de Caen-Basse, Normandie, France
| | | | | | | | | | | | | |
Collapse
|