1
|
Amjad M, Kousar R, Naeem MA, Imran M, Nadeem M, Abbas G, Khalid MS, Qaisrani SA, Azhar S, Murtaza B. An interplay of salt and Ni stress on contrasting tomato ( Solanum lycopersicum L.) genotypes: a physiological and biochemical insight. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-13. [PMID: 39670648 DOI: 10.1080/15226514.2024.2438772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The concurrently occurring multiple abiotic stresses like salinity and heavy metals (Nickel) pose a serious threat to plant survival and food security worldwide, especially in the face of climate change. Therefore, it is imperative to continuously test and study the plant's physiological changes under combinations of abiotic stresses to ensure sustainability and food security. An experiment was conducted to study the interactive effects of salinity (0, 7.5, and 15 dS m-1) and Ni toxicity (0, 10, 20, and 40 mg kg-1) on a tolerant (Naqeeb) and a sensitive (Nadir) Solanum lycopersicum L. physiology and fruit quality in the soil. At maturity (50% fruit ripening), the plant growth and physiological characteristics were measured, revealing that the tolerant genotype exhibited the higher values for plant height, dry weight, potassium, membrane stability index (MSI), and antioxidant enzymes (superoxide dismutase; SOD, catalase; CAT, ascorbate peroxidase; APX, and glutathione reductase; GR). Additionally, it showed enhancement in fruit yield, size, and quality. Conversely, the tolerant genotypes showed a lower reduction in terms of plant height (25.4%) and plant dry weight (41.9%) compared to sensitive genotype (30.1 and 51.4%, respectively). Additionally, the tolerant genotype demonstrated lower values of Ni and Na+ concentration and MDA accumulation under the combined stress of salt and Ni, compared to the sensitive genotype. Furthermore, the study indicated that Ni at a concentration of 10 mg kg-1 significantly influenced tomato plant growth by enhancing its nutritional efficiency and competing with Na+. However, Ni at concentrations of 20 and 40 mg kg-1 had toxic effects on the plants, leading to a decrease in plant growth and physiological processes. Moreover, a negative relationship was observed between Ni uptake and Na+ uptake, while a positive relationship was observed between Ni and K+ uptake. Overall, this study provides valuable insights into the interaction between salinity, heavy metal toxicity, and tomato plant physiology, contributing to the development of sustainable agricultural practices.
Collapse
Affiliation(s)
- Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Rukhshinda Kousar
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Muhammad Nadeem
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Ghulam Abbas
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Shafique Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Saeed Ahmad Qaisrani
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Sajida Azhar
- Pesticide Quality Control Laboratory, Ayyub Agricultural Research Institute, Faisalabad, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| |
Collapse
|
2
|
Yankauskas A, Larionova N, Shatrov A, Toporova A. The Effect of Radionuclide and Chemical Contamination on Morphological and Anatomical Parameters of Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2860. [PMID: 39458806 PMCID: PMC11510755 DOI: 10.3390/plants13202860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/28/2024]
Abstract
This article presents the results of a study of the influence of radionuclide and chemical pollution on the morphological and anatomical parameters of Calamagróstis epigéjos plants growing in the territory of "Degelen" at the Semipalatinsk Test Site (STS). Quantitative data of morphological and anatomical parameters are given, and the content of radionuclides and toxic elements in samples of plants obtained. Statistical processing of the obtained data was conducted. The results revealed that elevated concentrations of radionuclides 137Cs and 90Sr, and the calculated absorbed dose, do not have effects on plants. Changes in the anatomical parameters of leaves and stems were observed at elevated concentrations of the elements: for leaves-Al, Pb, Sr, U, Ni, Rb, Sm; for stems-Al, Cr, Cd, U, Cu, Be, Ni, Sm, Fe. The mesophyll of the leaves and the epidermis of the stems were the most exposed to toxic elements. The data of the anatomical parameters are recommended to be used as indicative parameters of plants grown in chemically contaminated areas.
Collapse
Affiliation(s)
| | - Natalya Larionova
- Institute of Radiation Safety and Ecology, National Nuclear Center of the Republic of Kazakhstan, Kurchatov City 180010, Kazakhstan; (A.Y.); (A.S.); (A.T.)
| | | | | |
Collapse
|
3
|
Rasouli F, Jalalian S, Hayati F, Hassanpouraghdam MB, Asadi M, Ebrahimzadeh A, Puglisi I, Baglieri A. Salicylic acid foliar application meliorates Portulaca oleraceae L. growth responses under Pb and Ni over-availability while keeping reliable phytoremediation potential. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1787-1801. [PMID: 38819100 DOI: 10.1080/15226514.2024.2357634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The efficacy of SA foliar use on Pb and Ni-induced stress tolerance and phytoremediation potential by Portulaca oleraceae L. were assayed as a factorial trial based on a completely randomized design with four repetitions. The factors included; SA foliar application (0 and 100 µM) and HMs application of Pb [0, 150, and 225 mg kg-1 soil Lead (II) nitrate] and Ni [0, 220, and 330 mg kg-1 soil Nickel (II) nitrate]. Plant height, stem diameter, shoot and root fresh and dry weight, photosynthetic pigments, total soluble proteins, palmitic acid, stearic acid, arachidic acid, and some macro- and micro-elements contents were reduced facing the HMs stress, but SA foliar application ameliorated these traits. HMs stress increased malondialdehyde content, total antioxidant activity, total flavonoids, phenolics, and linolenic acid content, while SA foliar application declined the mentioned parameters. Moreover, shoot and root Pb and Ni content enhanced in the purslane plants supplemented by SA under the HMs stress. The results propose SA foliar application as a reliable methodology to recover purslane growth characters and fatty acid profiles in the soil contaminated with the HMs. The idea is that SA would be potentially effective in alleviating HMs contamination while keeping reasonable phytoremediation potential.
Collapse
Affiliation(s)
- Farzad Rasouli
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Sahar Jalalian
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Faezeh Hayati
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | | | - Mohammad Asadi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Asghar Ebrahimzadeh
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Ivana Puglisi
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Andrea Baglieri
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| |
Collapse
|
4
|
El-Sappah AH, Zhu Y, Huang Q, Chen B, Soaud SA, Abd Elhamid MA, Yan K, Li J, El-Tarabily KA. Plants' molecular behavior to heavy metals: from criticality to toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1423625. [PMID: 39280950 PMCID: PMC11392792 DOI: 10.3389/fpls.2024.1423625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 09/18/2024]
Abstract
The contamination of soil and water with high levels of heavy metals (HMs) has emerged as a significant obstacle to agricultural productivity and overall crop quality. Certain HMs, although serving as essential micronutrients, are required in smaller quantities for plant growth. However, when present in higher concentrations, they become very toxic. Several studies have shown that to balance out the harmful effects of HMs, complex systems are needed at the molecular, physiological, biochemical, cellular, tissue, and whole plant levels. This could lead to more crops being grown. Our review focused on HMs' resources, occurrences, and agricultural implications. This review will also look at how plants react to HMs and how they affect seed performance as well as the benefits that HMs provide for plants. Furthermore, the review examines HMs' transport genes in plants and their molecular, biochemical, and metabolic responses to HMs. We have also examined the obstacles and potential for HMs in plants and their management strategies.
Collapse
Affiliation(s)
- Ahmed H El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yumin Zhu
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Bo Chen
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Salma A Soaud
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Kuan Yan
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Liu H, An X, Liu X, Yang S, Liu Y, Wei X, Li X, Chen Q, Wang J. Molecular mechanism of salinity and waterlogging tolerance in mangrove Kandelia obovata. FRONTIERS IN PLANT SCIENCE 2024; 15:1354249. [PMID: 38384752 PMCID: PMC10879410 DOI: 10.3389/fpls.2024.1354249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Mangrove forests are colloquially referred to as "Earth's kidneys" and serve many important ecological and commercial functions. Salinity and waterlogging stress are the most important abiotic stressors restricting the growth and development of mangroves. Kandelia obovata (K. obovata) is the greatest latitudinally-distributed salt mangrove species in China.Here, morphology and transcriptomics were used to study the response of K. obovata to salt and waterlogging stress. In addition, weighted gene co-expression network analysis of the combined gene expression and phenotypic datasets was used to identify core salinity- and waterlogging-responsive modules. In this study, we observed that both high salinity and waterlogging significantly inhibited growth and development in K. obovata. Notably, growth was negatively correlated with salt concentration and positively correlated with waterlogging duration, and high salinity was significantly more inhibitive than waterlogging. A total of 7, 591 salt-responsive and 228 waterlogging-responsive differentially expressed genes were identified by RNA sequencing. Long-term salt stress was highly correlated with the measured physiological parameters while long-term waterlogging was poorly correlated with these traits. At the same time, 45 salinity-responsive and 16 waterlogging-responsive core genes were identified. All 61 core genes were mainly involved in metabolic and biosynthesis of secondary metabolites pathways. This study provides valuable insight into the molecular mechanisms of salinity and waterlogging tolerance in K. obovata, as well as a useful genetic resource for the improvement of mangrove stress tolerance using molecular breeding techniques.
Collapse
Affiliation(s)
- Huizi Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xia An
- Zhejiang Xiaoshan Institute of Cotton and Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xing Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Sheng Yang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Yu Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xin Wei
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xiaowen Li
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Qiuxia Chen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Jinwang Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| |
Collapse
|
6
|
Muthusamy M, Lee SI. Abiotic stress-induced secondary metabolite production in Brassica: opportunities and challenges. FRONTIERS IN PLANT SCIENCE 2024; 14:1323085. [PMID: 38239210 PMCID: PMC10794482 DOI: 10.3389/fpls.2023.1323085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024]
Abstract
Over the decades, extensive research efforts have been undertaken to understand how secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Understanding the genetic basis of stress-response metabolite biosynthesis is crucial for sustainable agriculture production amidst frequent occurrence of climatic anomalies. Although it is known that environmental factors influence phytochemical profiles and their content, studies of plant compounds in relation to stress mitigation are only emerging and largely hindered by phytochemical diversities and technical shortcomings in measurement techniques. Despite these challenges, considerable success has been achieved in profiling of secondary metabolites such as glucosinolates, flavonoids, carotenoids, phenolic acids and alkaloids. In this study, we aimed to understand the roles of glucosinolates, flavonoids, carotenoids, phenolic acids and alkaloids in relation to their abiotic stress response, with a focus on the developing of stress-resilient crops. The focal genus is the Brassica since it (i) possesses variety of specialized phytochemicals that are important for its plant defense against major abiotic stresses, and (ii) hosts many economically important crops that are sensitive to adverse growth conditions. We summarize that augmented levels of specialized metabolites in Brassica primarily function as stress mitigators against oxidative stress, which is a secondary stressor in many abiotic stresses. Furthermore, it is clear that functional characterization of stress-response metabolites or their genetic pathways describing biosynthesis is essential for developing stress-resilient Brassica crops.
Collapse
Affiliation(s)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
7
|
Bożym M, Rybak J. In vitro chronic phytotoxicity of heavy metals and metalloids to Lepidium sativum (garden cress). ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:94-103. [PMID: 38227083 DOI: 10.1007/s10646-024-02729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
The paper presents the results of studies on the influence of selected concentrations (10-100 mg L-1) of heavy metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Zn) and metalloids (As, Sb, Se) on the germination and root elongation of garden cress (Lepidium sativum L). There are not many studies on phytotoxicity of heavy metals and metalloids with the complex use of single plant species so far. On the basis of the germination index (GI) and inhibition concentration IC50, the following order of phytotoxicity of the tested elements was determined: Se> As> Hg> Sb > Mo > Cd> Co > Zn > Ni. The other metals showed no phytotoxicity or even stimulating effect. In our study the stimulating effect of the majority of Pb concentrations and the lowest concentrations of Cd and Hg has been revealed. These metals do not play any role in living organisms, however some authors confirm their stimulating effect on plants at low concentrations. Toxic concentration of metals and metalloids calculated as IC50 are lower than the concentration calculated as GI (not phytotoxic). It is well known that seeds are more independent and tolerant to toxicants when they contain reserve substances which are used during the germination period. On the basis of conducted research, high tolerance of L. sativum to heavy metals and metalloids was found, which may indicate its usefulness for phytotoxicity assessment of leachate from contaminated soil or waste (e.g. foundry waste) and its application for bioremediation to manage heavy metal pollution of soils or foundry wastes containing heavy metals and metalloids. The understanding of heavy metal and metalloids toxicity will facilitate bioremediation.
Collapse
Affiliation(s)
- Marta Bożym
- Opole University of Technology, Prószkowska 76, 45-271, Opole, Poland
| | - Justyna Rybak
- Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50- 370, Wrocław, Poland.
| |
Collapse
|
8
|
Moy A, Czajka K, Michael P, Nkongolo K. Transcriptome Analysis Reveals Changes in Whole Gene Expression, Biological Process, and Molecular Functions Induced by Nickel in Jack Pine ( Pinus banksiana). PLANTS (BASEL, SWITZERLAND) 2023; 12:2889. [PMID: 37571042 PMCID: PMC10421529 DOI: 10.3390/plants12152889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Understanding the genetic response of plants to nickel stress is a necessary step to improving the utility of plants in environmental remediation and restoration. The main objective of this study was to generate whole genome expression profiles of P. banksiana exposed to nickel ion toxicity compared to reference genotypes. Pinus banksiana seedlings were screened in a growth chamber setting using a high concentration of 1600 mg of nickel per 1 kg of soil. RNA was extracted and sequenced using the Illumina platform, followed by de novo transcriptome assembly. Overall, 25,552 transcripts were assigned gene ontology. The biological processes in water-treated samples were analyzed, and 55% of transcripts were distributed among five categories: DNA metabolic process (19.3%), response to stress (13.3%), response to chemical stimuli (8.7%), signal transduction (7.7%) and response to biotic stimulus (6.0%). For molecular function, the highest percentages of genes were involved in nucleotide binding (27.6%), nuclease activity (27.3%) and kinase activity (10.3%). Sixty-two percent of genes were associated with cellular compartments. Of these genes, 21.7% were found in the plasma membrane, 16.1% in the cytosol, 12.4% with the chloroplast and 11.9% in the extracellular region. Nickel ions induced changes in gene expression, resulting in the emergence of differentially regulated categories. Overall, there were significant changes in gene expression with a total 4128 genes upregulated and 3754 downregulated genes detected in nickel-treated genotypes compared to water-treated control plants. For biological processes, the highest percentage of upregulated genes in plants exposed to nickel were associated with the response to stress (15%), the response to chemicals (11,1%), carbohydrate metabolic processes (7.4%) and catabolic processes (7.4%). The largest proportions of downregulated genes were associated with the biosynthetic process (21%), carbohydrate metabolic process (14.3%), response to biotic stimulus (10.7%) and response to stress (10.7%). For molecular function, genes encoding for enzyme regulatory and hydrolase activities represented the highest proportion (61%) of upregulated gene. The majority of downregulated genes were involved in the biosynthetic processes. Overall, 58% of upregulated genes were located in the extracellular region and the nucleus, while 42% of downregulated genes were localized to the plasma membrane and 33% to the extracellular region. This study represents the first report of a transcriptome from a conifer species treated with nickel.
Collapse
Affiliation(s)
| | | | | | - Kabwe Nkongolo
- Biomolecular Sciences Program and Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (A.M.); (K.C.); (P.M.)
| |
Collapse
|
9
|
Islam S, Mohammad F, Siddiqui MH, Kalaji HM. Salicylic acid and trehalose attenuate salt toxicity in Brassica juncea L. by activating the stress defense mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121467. [PMID: 36963453 DOI: 10.1016/j.envpol.2023.121467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/26/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Two significant soil degradation processes that pose a hazard to our ecosystems are soil salinization and sodification. The information on potential of salicylic acid (SA) and trehalose (Tre) to induce abiotic stress signaling and triggers physio-biochemical responses in crop plants is limited. Therefore, the present study was aimed to investigate the efficacy of 5 μM SA and/or 10 mM Tre in improving the growth, photosynthesis, ion homeostasis, nutrient acquisition, antioxidant defense system and yield of mustard plants growing under sodium chloride (NaCl) stress (0, 50, 100 and 150 mM NaCl). The data showed that increasing NaCl stress concentration decreased growth, photosynthesis, membrane permeability, ion homeostasis and yield in a dose-dependent manner while increasing considerably enzymatic antioxidant enzyme activities, compatible solute accumulation, sodium ion and oxidative stress biomarkers linearly with increasing NaCl stress concentration. The spray of SA, Tre, and SA + Tre played diversified roles in enhancing NaCl stress tolerance in mustard at morpho-physiological and biochemical levels. The combined SA + Tre application proved best and completely neutralized the NaCl stress-induced suppression in growth, photosynthesis, ion homeostasis, nutrient acquisition and yield by significantly enhancing the activities of enzymatic antioxidants, compatible solutes accumulation, water status and membrane permeability, while reducing considerably osmotic stress, reactive oxygen species generation, lipid peroxidation, cell death and sodium uptake in mustard. The SA + Tre application enhanced relative water content by 23%, net photosynthetic rate by 48%, superoxide dismutase activity by 51% and seed yield per plant by 64%, while decreased superoxide anion content by 26%, sodium ion content by 36% and malondialdehyde content by 25% over 0 mM NaCl treatment. Our findings indicate that the co-application of SA + Tre can be a suitable approach to palliate the ill effect of NaCl stress in mustard plants.
Collapse
Affiliation(s)
- Shaistul Islam
- Advanced Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Firoz Mohammad
- Advanced Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
10
|
Fekih I, Hamila S, Bchir S, Mansour HB. Reuse of treated urban wastewater on the growth and physiology of Medicago sativa L. cv. Gea and Petroselinum crispum L. cv. Commun: correlation with oxydative stress and DNA damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59449-59469. [PMID: 37012559 DOI: 10.1007/s11356-023-26474-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
The freshwater scarcity is one of the major environmental problems, which is why the water reuse has become a possible remedy to cope with the shortage of water needed for agriculture irrigation. This study focuses on the evaluation of the irrigation effect with treated effluent from wastewater treatment plant in Tunisia on parsley (Petroselinum crispum L. cv. Commun) used as human food and alfalfa (Medicago sativa L. cv. Gea) as animal food. In vitro germination test was conducted at different dilution levels of wastewater as rejected into the environment (25, 50, and 100%) and wastewater with further treatment (TWW). Results have shown that wastewater with dilution of 25% as well as TWW positively affected the physiological parameters in comparison with the dilutions 50 and 100%. However, the tap water (TW) applied as control treatment has shown the best effects. Oxidative stress evaluated by malondialdehyde (MDA) content was in agreement with the physiological results and showed that the most stressed seeds were those treated with the dilutions 50 and 100%. A pot trial was also conducted to evaluate the suitability of WW and TWW in comparison to TW. Results have shown that TWW is more adapted than WW for irrigation as an improvement of growth and physiological parameters was recorded. Oxidative stress assessed with MDA and proline content has shown that plants irrigated with WW significantly accumulate MDA and proline compared to TWW. The TW has shown the lowest values. DNA damage was evaluated by extraction and agarose gel electrophoresis. It has revealed degradation of DNA for plants irrigated with WW. According to these results, it can be concluded that TWW can be used for irrigation of plants destined for human or animal foods. So, it can be a hydric alternative to resolve the problem of water deficit in semi-arid countries.
Collapse
Affiliation(s)
- Imene Fekih
- Research Unit of Analysis and Process Applied On the Environment (UR17ES32), Higher Institute of Applied Sciences and Technology, Mahdia, University of Monastir, Monastir, Tunisia
| | - Sana Hamila
- Research Unit of Analysis and Process Applied On the Environment (UR17ES32), Higher Institute of Applied Sciences and Technology, Mahdia, University of Monastir, Monastir, Tunisia
| | - Sarra Bchir
- Research Unit of Analysis and Process Applied On the Environment (UR17ES32), Higher Institute of Applied Sciences and Technology, Mahdia, University of Monastir, Monastir, Tunisia
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied On the Environment (UR17ES32), Higher Institute of Applied Sciences and Technology, Mahdia, University of Monastir, Monastir, Tunisia.
| |
Collapse
|
11
|
Guo K, Yan L, He Y, Li H, Lam SS, Peng W, Sonne C. Phytoremediation as a potential technique for vehicle hazardous pollutants around highways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121130. [PMID: 36693585 DOI: 10.1016/j.envpol.2023.121130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
With the synchronous development of highway construction and the urban economy, automobiles have entered thousands of households as essential means of transportation. This paper reviews the latest research progress in using phytoremediation technology to remediate the environmental pollution caused by automobile exhaust in recent years, including the prospects for stereoscopic forestry. Currently, most automobiles on the global market are internal combustion vehicles using fossil energy sources as the primary fuel, such as gasoline, diesel, and liquid or compressed natural gas. The composition of vehicle exhaust is relatively complex. When it enters the atmosphere, it is prone to a series of chemical reactions to generate various secondary pollutants, which are very harmful to human beings, plants, animals, and the eco-environment. Despite improving the automobile fuel quality and installing exhaust gas purification devices, helping to reduce air pollution, the treatment costs of these approaches are expensive and cannot achieve zero emissions of automobile exhaust pollutants. The purification of vehicle exhaust by plants is a crucial way to remediate the environmental pollution caused by automobile exhaust and improve the environment along the highway by utilizing the ecosystem's self-regulating ability. Therefore, it has become a global trend to use phytoremediation technology to restore the automobile exhaust pollution. Now, there is no scientific report or systematic review about how plants absorb vehicle pollutants. The screening and configuration of suitable plant species is the most crucial aspect of successful phytoremediation. The mechanisms of plant adsorption, metabolism, and detoxification are reviewed in this paper to address the problem of automobile exhaust pollution.
Collapse
Affiliation(s)
- Kang Guo
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lijun Yan
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yifeng He
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hanyin Li
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
12
|
Islam S, Shah SH, Corpas FJ, Alamri S, Mohammad F. Plant growth regulators mediated mitigation of salt-induced toxicities in mustard (Brassica juncea L.) by modifying the inherent defense system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:1002-1018. [PMID: 36898213 DOI: 10.1016/j.plaphy.2023.02.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Salt stress is one of the common environmental threats to crop growth, development, and productivity. Plant growth regulators (PGRs) are natural messengers and are known to play pivotal roles at different stages of the growth and development of plants under various environmental conditions. Keeping in mind the importance of PGRs in stress management, a factorial randomized pot experiment was conducted to evaluate the efficiency of three selected PGRs, namely gibberellic acid (GA3), salicylic acid (SA) and triacontanol (Tria) for the amelioration of NaCl stress in mustard. Plants were subjected to four concentrations of NaCl (0, 50, 100 and 150 mM). Two foliar sprays of PGRs (GA3, SA and Tria), each at 5 μM were applied to the foliage of plants using a hand sprayer. The increasing levels of NaCl decreased growth, physio-biochemical, histochemical and yield parameters in a dose-dependent manner while increasing activities of antioxidant enzymes, contents of osmolytes and oxidative stress biomarkers linearly with increasing levels of NaCl. The spray of GA3, SA and Tria under stressed-free and stressed conditions improved the aforesaid attributes while decreasing the generation of stress biomarkers. Of sprayed PGRs, SA proved to be the best for alleviating the adverse effect of NaCl stress. Furthermore, it provides experimental data for its possible biotechnological applications in mustard crops exposed to high concentrations of salinity and possibly to other environmental stresses which have associated oxidative stress.
Collapse
Affiliation(s)
- Shaistul Islam
- Advanced Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Sajad Hussain Shah
- Advanced Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008, Granada, Spain
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Firoz Mohammad
- Advanced Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
13
|
Thapar Kapoor R, Ingo Hefft D, Ahmad A. Nitric oxide and spermidine alleviate arsenic-incited oxidative damage in Cicer arietinum by modulating glyoxalase and antioxidant defense system. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:108-120. [PMID: 34794540 DOI: 10.1071/fp21196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic activities such as mining, fossil fuel combustion, fertilisers and pesticides utilisation in agriculture, metallurgic processes and disposal of industrial wastes have contributed an exponential rise in arsenic content in environment. The present paper deals with arsenate (AsV) incited stress in chickpea (Cicer arietinum L.) plants and its alleviation through the application of nitric oxide (NO) and spermidine (SPD). The exposure of C. arietinum to AsV reduced seedling length, biomass, relative water content and biochemical constituents. All the above-mentioned parameters were escalated when sodium nitroprusside (SNP) or SPD were utilised alone or in combination with AsV. The electrolyte leakage and malondialdehyde content were increased in chickpea treated with AsV, but reduced in combine treatment (As+SNP+SPD). In chickpea seedlings, 89.4, 248.4 and 333.3% stimulation were recorded in sugar, proline and glycine betaine contents, respectively, with As+SNP+SPD treatment in comparison to control. SNP and SPD modulated function of glyoxalase enzymes by which methylglyoxal (MG) was significantly detoxified in C. arietinum . Maximum reduction 45.2% was observed in MG content in SNP+SPD treatment over AsV stress. Hence, synergistic application of NO and SPD protected chickpea plants against AsV-generated stress by strengthening the antioxidant defence and glyoxalase system, which helped in regulation of biochemical pathways.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Plant Physiology Laboratory, Amity Institute of Biotechnology, Amity University, Noida 201313, Uttar Pradesh, India
| | - Daniel Ingo Hefft
- University Centre Reaseheath, Food and Agricultural Sciences, Reaseheath College, Nantwich CW5 6DF, UK
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Sahraei F, Solgi M, Taghizadeh M. The application of methyl jasmonate in combination with ascorbic acid on morphological traits and some biochemical parameters in red willow. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:185-193. [PMID: 36875731 PMCID: PMC9981849 DOI: 10.1007/s12298-023-01284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/21/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Red willow, an economically important ornamental shrub in Iran, is characterized mainly by its red stems, making it a valuable ornamental plant in flower markets. This study aimed to investigate the effect of foliar application of methyl jasmonate (MeJA) and ascorbic acid on the morphological and biochemical characteristics of red willow. The experiment was conducted as a completely randomized design with two factors and three replications. Juvenile willow shrubs (3 to 4-year-old red) were cultivated in Hossein Abad village, Markazi province, Iran. The experimental treatments consisted of MeJA (0, 100 and 200 mgL-1) and ascorbic acid (0, 100 and 200 mgL-1). Several traits were evaluated such as the longest branch and two nearest heights, total shrub diameter, the longest branch diameter (at lower, middle and upper parts), total anthocyanin content of the longest branch, salicin content, leaf chlorophyll (a, b and a + b) content, and carotenoid content. In addition, the number, length and width of leaves from the longest branch, fresh and dry weight of branches were analyzed. Results revealed that the application of MeJA and ascorbic acid significantly increased growth characteristics (height, leaf number, total shrub diameter, branch diameter, fresh and dry weight and total anthocyanin content) of red willow shrubs. Furthermore, it was found that 200 mgL-1 treatments of these two substances produced the best results. Red willow shrub growth parameters and yield were also improved by the interaction of these two factors. Additionally, a significant correlation was found between total anthocyanin content and leaf number of the longest branch, total shrub diameter, the height of nearest branch 2 and the plant fresh weight.
Collapse
Affiliation(s)
- Fatemeh Sahraei
- Department of Horticultural Science and Engineering, Faculty of Agriculture and Envrionmental Sciences, Arak University, Arak, 38156-8-8349 Iran
| | - Mousa Solgi
- Department of Horticultural Science and Engineering, Faculty of Agriculture and Envrionmental Sciences, Arak University, Arak, 38156-8-8349 Iran
| | - Mina Taghizadeh
- Department of Horticultural Science and Engineering, Faculty of Agriculture and Envrionmental Sciences, Arak University, Arak, 38156-8-8349 Iran
| |
Collapse
|
15
|
Shomali A, Das S, Arif N, Sarraf M, Zahra N, Yadav V, Aliniaeifard S, Chauhan DK, Hasanuzzaman M. Diverse Physiological Roles of Flavonoids in Plant Environmental Stress Responses and Tolerance. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223158. [PMID: 36432887 PMCID: PMC9699315 DOI: 10.3390/plants11223158] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 05/27/2023]
Abstract
Flavonoids are characterized as the low molecular weight polyphenolic compounds universally distributed in planta. They are a chemically varied group of secondary metabolites with a broad range of biological activity. The increasing amount of evidence has demonstrated the various physiological functions of flavonoids in stress response. In this paper, we provide a brief introduction to flavonoids' biochemistry and biosynthesis. Then, we review the recent findings on the alternation of flavonoid content under different stress conditions to come up with an overall picture of the mechanism of involvement of flavonoids in plants' response to various abiotic stresses. The participation of flavonoids in antioxidant systems, flavonoid-mediated response to different abiotic stresses, the involvement of flavonoids in stress signaling networks, and the physiological response of plants under stress conditions are discussed in this review. Moreover, molecular and genetic approaches to tailoring flavonoid biosynthesis and regulation under abiotic stress are addressed in this review.
Collapse
Affiliation(s)
- Aida Shomali
- Photosynthesis Laboratory, Department of Horticulture, University of Tehran, Tehran 33916-53755, Iran
| | - Susmita Das
- Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Namira Arif
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
- Faculty of Environmental Studies, Dehli School of Journalism, University of Delhi, Delhi 110007, India
| | - Mohammad Sarraf
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran
| | - Noreen Zahra
- Department of Botany, Government College for Women University, Faisalabad 38000, Pakistan
| | - Vaishali Yadav
- Department of Botany, Multanimal Modi College Modinagar, Ghaziabad 201204, India
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, University of Tehran, Tehran 33916-53755, Iran
| | - Devendra Kumar Chauhan
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| |
Collapse
|
16
|
Naseer H, Shaukat K, Zahra N, Hafeez MB, Raza A, Nizar M, Qazi MA, Ali Q, A. Al-Huqail A, Siddiqui MH, Ali HM. Appraisal of foliar spray of iron and salicylic acid under artificial magnetism on morpho-physiological attributes of pea (Pisum sativum L.) plants. PLoS One 2022; 17:e0265654. [PMID: 35421099 PMCID: PMC9009661 DOI: 10.1371/journal.pone.0265654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/04/2022] [Indexed: 11/20/2022] Open
Abstract
The appraisal of foliar treatment of iron (Fe) and salicylic acid (SA) on plant under artificial magnetism is very crucial in understanding its impact on growth and development of plants. The present study was designed to document the potential role of Fe and SA on pea (Pisum sativum L.) Matore variety exposed to different magnetism treatments (geomagnetism and artificial magnetism). Thus a pot experiment was conducted using Completely Randomized Design under factorial with three replicates. Various artificial magnetic treatment were applied in pots prior to sowing. Further, 15 days germinated pea seedlings were foliarly supplemented with 250 ppm Fe and 250μM SA, moreover after 20 days of foliar fertilization plants were harvested to analyze and record various morpho-physiological attributes. Data elucidate significant variations in pea plants among different treatments. Artificial magnetism treatments in combination with foliar application of Fe and SA significantly improved various growth attributes (root and shoot length, fresh and dry weights of root and shoot, leaf area), photosynthetic pigments (Chl a, b and carotenoids) and the contents of soluble sugars. However, oxidative stress (H2O2 and MDA) enhanced under different magnetism treatment but foliar application of Fe and SA hampered the production of reactive oxygen species thereby limiting the concentration of H2O2 and MDA in plant tissues. Furthermore the accumulation of nutrients (iron, potassium and nitrate) profoundly increased under artificial magnetism treatment specifically under Fe and SA foliar treatment excluding nitrate where Fe foliar treatment tend to limit nitrate in plant. Consequently, the present research interestingly highlights progressive role of Fe and SA foliar treatment on pea plants under artificial magnetism. Thus, foliar supplementation may be suggested for better growth and development of plants combined with magnetic treatments.
Collapse
Affiliation(s)
- Hassan Naseer
- Department of Botany, University of Balochistan, Quetta, Pakistan
| | - Kanval Shaukat
- Department of Botany, University of Balochistan, Quetta, Pakistan
| | - Noreen Zahra
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | | | - Ali Raza
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Mereen Nizar
- Department of Botany, University of Balochistan, Quetta, Pakistan
| | | | - Qasim Ali
- Institute of Food and Agriculture Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Asma A. Al-Huqail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manzar H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Shahzad B, Rehman A, Tanveer M, Wang L, Park SK, Ali A. Salt Stress in Brassica: Effects, Tolerance Mechanisms, and Management. JOURNAL OF PLANT GROWTH REGULATION 2022. [PMID: 0 DOI: 10.1007/s00344-021-10338-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
18
|
Molina L, Segura A. Biochemical and Metabolic Plant Responses toward Polycyclic Aromatic Hydrocarbons and Heavy Metals Present in Atmospheric Pollution. PLANTS (BASEL, SWITZERLAND) 2021; 10:2305. [PMID: 34834668 PMCID: PMC8622723 DOI: 10.3390/plants10112305] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 05/17/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are toxic components of atmospheric particles. These pollutants induce a wide variety of responses in plants, leading to tolerance or toxicity. Their effects on plants depend on many different environmental conditions, not only the type and concentration of contaminant, temperature or soil pH, but also on the physiological or genetic status of the plant. The main detoxification process in plants is the accumulation of the contaminant in vacuoles or cell walls. PAHs are normally transformed by enzymatic plant machinery prior to conjugation and immobilization; heavy metals are frequently chelated by some molecules, with glutathione, phytochelatins and metallothioneins being the main players in heavy metal detoxification. Besides these detoxification mechanisms, the presence of contaminants leads to the production of the reactive oxygen species (ROS) and the dynamic of ROS production and detoxification renders different outcomes in different scenarios, from cellular death to the induction of stress resistances. ROS responses have been extensively studied; the complexity of the ROS response and the subsequent cascade of effects on phytohormones and metabolic changes, which depend on local concentrations in different organelles and on the lifetime of each ROS species, allow the plant to modulate its responses to different environmental clues. Basic knowledge of plant responses toward pollutants is key to improving phytoremediation technologies.
Collapse
Affiliation(s)
- Lázaro Molina
- Department of Environmental Protection, Estación Experimental del Zaidín, C.S.I.C., Calle Profesor Albareda 1, 18008 Granada, Spain;
| | | |
Collapse
|
19
|
Faizan M, Sehar S, Rajput VD, Faraz A, Afzal S, Minkina T, Sushkova S, Adil MF, Yu F, Alatar AA, Akhter F, Faisal M. Modulation of Cellular Redox Status and Antioxidant Defense System after Synergistic Application of Zinc Oxide Nanoparticles and Salicylic Acid in Rice ( Oryza sativa) Plant under Arsenic Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112254. [PMID: 34834617 PMCID: PMC8618137 DOI: 10.3390/plants10112254] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 05/14/2023]
Abstract
The objective of this research was to determine the effect of zinc oxide nanoparticles (ZnONPs) and/or salicylic acid (SA) under arsenic (As) stress on rice (Oryza sativa). ZnONPs are analyzed for various techniques viz., X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). All of these tests established that ZnONPs are pure with no internal defects, and can be potentially used in plant applications. Hence, we further investigated for better understanding of the underlying mechanisms and the extent of ZnONPs and SA induced oxidative stress damages. More restricted plant growth, gas exchange indices, significant reduction in the SPAD index and maximum quantum yield (Fv/Fm) and brutal decline in protein content were noticed in As-applied plants. In contrast, foliar fertigation of ZnONPs and/or SA to As-stressed rice plants lessens the oxidative stress, as exposed by subordinate levels of reactive oxygen species (ROS) synthesis. Improved enzymatic activities of catalase (CAT), peroxidase (POX), and superoxide dismutase (SOD), proline and total soluble protein contents under ZnONPs and SA treatment plays an excellent role in the regulation of various transcriptional pathways participated in oxidative stress tolerance. Higher content of nitrogen (N; 13%), phosphorus (P; 10%), potassium (K; 13%), zinc (Zn; 68%), manganese (Mn; 14%), and iron (Fe; 19) in ZnONPs and SA treated plants under As-stress, thus hampered growth and photosynthetic efficiency of rice plants. Our findings suggest that toxicity of As was conquering by the application of ZnONPs and SA in rice plants.
Collapse
Affiliation(s)
- Mohammad Faizan
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China; (M.F.); (F.Y.)
| | - Shafaque Sehar
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (S.S.); (M.F.A.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.D.R.); (T.M.); (S.S.)
| | - Ahmad Faraz
- School of Life Sciences, Glocal University, Saharanpur 247121, India;
| | - Shadma Afzal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Pryagraj 211004, India;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.D.R.); (T.M.); (S.S.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.D.R.); (T.M.); (S.S.)
| | - Muhammad Faheem Adil
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (S.S.); (M.F.A.)
| | - Fangyuan Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China; (M.F.); (F.Y.)
| | - Abdulrahman A. Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Firoz Akhter
- Department of Biomedical Engineering, Stony Brook University, New York, NY 11794-5281, USA;
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Correspondence: ; Tel.: +966-(011)-4675877
| |
Collapse
|
20
|
Saini S, Kaur N, Pati PK. Phytohormones: Key players in the modulation of heavy metal stress tolerance in plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112578. [PMID: 34352573 DOI: 10.1016/j.ecoenv.2021.112578] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 05/07/2023]
Abstract
Heavy metal (HM) stress in plants has received considerable global attention as it threatens sustainable growth in agriculture worldwide. Hence, desperate efforts have been undertaken for combating the effects of this stress in plants. Interestingly, the use of phytohormones in reducing the impact of HM toxicity has gained much momentum in the recent past. Phytohormones act as chemical messengers that improve the HM stress resistance in plants, thus allowing them to retain their growth and developmental plasticity. Their exogenous application as well as manipulation of endogenous levels through precise targeting of their biosynthesis/signaling components is a promising approach for providing a protective shield against HM stress in plants. However, for the successful use of phytohormones for field plants exposed to HM toxicity, in-depth knowledge of the key pathways regulated by them is of prime importance. Hence, the present review mainly summarizes the key conceptual developments on the involvement of phytohormones in the mitigation of HM stress in plants. The role of various genes, proteins, and signaling components involved in phytohormones associated HM stress tolerance and their modulation has also been discussed. Thus, this update will pave the way for improving HM stress tolerance in plants with the advent of phytohormones for sustainable agriculture growth in the future.
Collapse
Affiliation(s)
- Shivani Saini
- Department of Botany, GGDSD College, Sector-32C, Chandigarh, India.
| | - Navdeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Centre for Agricultural Research and Innovation, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Centre for Agricultural Research and Innovation, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
21
|
Effect of Lead and Copper on Photosynthetic Apparatus in Citrus ( Citrus aurantium L.) Plants. The Role of Antioxidants in Oxidative Damage as a Response to Heavy Metal Stress. PLANTS 2021; 10:plants10010155. [PMID: 33466929 PMCID: PMC7830311 DOI: 10.3390/plants10010155] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 01/07/2023]
Abstract
Photosynthetic changes and antioxidant activity to oxidative stress were evaluated in sour orange (Citrus aurantium L.) leaves subjected to lead (Pb), copper (Cu) and also Pb + Cu toxicity treatments, in order to elucidate the mechanisms involved in heavy metal tolerance. The simultaneous effect of Pb- and Cu on growth, concentration of malondialdehyde (MDA), hydrogen peroxide (H2O2), chlorophylls, flavonoids, carotenoids, phenolics, chlorophyll fluorescence and photosynthetic parameters were examined in leaves of Citrus aurantium L. plants. Exogenous application of Pb and Cu resulted in an increase in leaf H2O2 and lipid peroxidation (MDA). Toxicity symptoms of both Pb and Cu treated plants were stunted growth and decreased pigments concentration. Furthermore, photosynthetic activity of treated plants exhibited a significant decline. The inhibition of growth in Pb and Cu-treated plants was accompanied by oxidative stress, as indicated by the enhanced lipid peroxidation and the high H2O2 concentration. Furthermore, antioxidants in citrus plants after exposure to high Pb and Cu concentrations were significantly increased compared to control and low Pb and Cu treatments. In conclusion, this study indicates that Pb and Cu promote lipid peroxidation, disrupt membrane integrity, reduces growth and photosynthesis and inhibit mineral nutrition. Considering the potential for adverse human health effects associated with high concentrations of Pb and Cu contained in edible parts of citrus plants the study signals that it is important to conduct further research into the accessibility and uptake of the tested heavy metals in the soil and whether they pose risks to humans.
Collapse
|
22
|
Shah AN, Tanveer M, Abbas A, Fahad S, Baloch MS, Ahmad MI, Saud S, Song Y. Targeting salt stress coping mechanisms for stress tolerance in Brassica: A research perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:53-64. [PMID: 33296846 DOI: 10.1016/j.plaphy.2020.11.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/18/2020] [Indexed: 05/02/2023]
Abstract
Brassica genus comprises numerous cultivated brassica species with various economic importance. Salt stress is an overwhelming problem causing serious losses in Brassica species (e.g. B. napus, B. rapa, B. oleracea, B. juncea) growth and grain yield production by inducing ionic and ROS toxicity. Given that a significant variation exists in salt tolerance level in Brassica genus, Brassica species exhibited numerous salt tolerance mechanisms which were either overlooked or given less importance to improve and understand innate salt stress tolerance mechanism in Brassica species. In this review, we tried to highlight the importance and recent findings relating to some overlooked and potential mechanisms such as role of neurotransmitters, and role of cytosolic Ca2+ and ROS as signaling elements to enhance salt stress tolerance. Studies revealed that salt tolerant brassica species retained more K+ in leaf mesophyll which confers overall salinity tolerance in salt tolerance brassica species. Neurotransmitter such as melatonin, dopamiane and eATP regulates K+ and Ca2+ permeable ion channels and plays a very crucial role in ionic homeostasis under salinity stress in brassica. At the end, the numerous possible salt stress agronomic strategies were also discussed to mitigate the severity of the salt stress in Brassica species.
Collapse
Affiliation(s)
- Adnan Noor Shah
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China; Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan
| | - Mohammad Safdar Baloch
- Department of Agronomy, Faculty of Agriculture, Gomal University, Dera Ismail Khan, 29050, KPK, Pakistan
| | | | - Shah Saud
- Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
23
|
Chen L, Hu WF, Long C, Wang D. Exogenous plant growth regulator alleviate the adverse effects of U and Cd stress in sunflower (Helianthus annuus L.) and improve the efficacy of U and Cd remediation. CHEMOSPHERE 2021; 262:127809. [PMID: 32781331 DOI: 10.1016/j.chemosphere.2020.127809] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 05/22/2023]
Abstract
Plant growth regulators (PGRs) are widely used in agricultural activities and have the potential to improve plant growth and plant tolerance against metal stress. PGR-assisted phytoextraction is now an effective and inexpensive method for enhancing the plant removal of toxic metals from soil. In this study, we conducted experiments to determine the effects of PGR treatments on soil uranium (U) and cadmium (Cd) removal by sunflowers as well as their stress response to U and Cd contamination. We found that the plant growth was inhibited by combined U and Cd stress in sunflowers compared with that of the control; however, the application of exogenous PGR had reduced the combined U and Cd stress by stimulating photosynthesis, decreasing the levels of active oxygen and lipid peroxidation, and enhancing the activity of the antioxidant defence systems. Exogenous PGR also increased the uptake of U and Cd by sunflowers and therefore, improved their U and Cd remediation efficiency. Moreover, indoleacetic acid (IAA) was the most effective PGR at removing U and Cd in the soil; the U and Cd removal efficiency was 484.21% and 238.85% higher in the 500 mg L-1 IAA application compared with that of the control without PGR application, respectively. Furthermore, none of the PGR treatments significantly influenced the available U and Cd contents in soil. Our results, therefore, may provide some detailed understanding on the technologies for the sustainable remediation of U and Cd contaminated soil by the combination of PGR treatments and phytoextraction.
Collapse
Affiliation(s)
- Li Chen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China; College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Wei-Fang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, Guangdong, People's Republic of China.
| | - Chan Long
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China.
| | - Dan Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China.
| |
Collapse
|
24
|
Kebrom TH, Douglas R, Bandara S, Woldesenbet S, Carson L, Kidane N. Identification of Phytotoxic Levels of Copper and Nickel in Commercial Organic Soil Amendments Recycled from Poultry Farms and Municipal Wastes. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:921-926. [PMID: 33104817 DOI: 10.1007/s00128-020-03030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Commercial-scale recycling of agricultural and municipal wastes into organic soil amendments facilitates safe disposal of waste and reduces environmental contamination. However, phytotoxicity of commercial organic amendments to crops is a major concern to farmers. Consistent with this, commercial chicken manure and Milorganite (recycled from municipal waste) were found to be phytotoxic. Chicken manure aqueous extract contains 10.8 ppm Cu and 0.7 ppm Ni. The level of Cu and Ni in Milorganite is lower. The current study identified an aqueous solution containing 5 ppm Cu, lower than in chicken manure aqueous extract, was highly phytotoxic to mustard seeds germination. Therefore, phytotoxicity of chicken manure is in part due to Cu. An aqueous solution containing 1 ppm Ni was not phytotoxic; whereas 0.125 ppm Ni was phytotoxic when 62.5 ppm Na, which is nontoxic, was added to the solution. Therefore, synergistic effects of chemicals in the organic amendments may induce phytotoxicity.
Collapse
Affiliation(s)
- Tesfamichael H Kebrom
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, 77446, USA.
- Center for Computational Systems Biology, College of Engineering, Prairie View A&M University, Prairie View, TX, 77446, USA.
| | - Robert Douglas
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Subhani Bandara
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Selamawit Woldesenbet
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Laura Carson
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Negusse Kidane
- Department of Agriculture, Nutrition, and Human Ecology, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, 77446, USA
| |
Collapse
|
25
|
Kidwai M, Ahmad IZ, Chakrabarty D. Class III peroxidase: an indispensable enzyme for biotic/abiotic stress tolerance and a potent candidate for crop improvement. PLANT CELL REPORTS 2020; 39:1381-1393. [PMID: 32886139 DOI: 10.1007/s00299-020-02588-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/26/2020] [Indexed: 05/24/2023]
Abstract
Class III peroxidases are secretory enzymes which belong to a ubiquitous multigene family in higher plants and have been identified to play role in a broad range of physiological and developmental processes. Potentially, it is involved in generation and detoxification of hydrogen peroxide (H2O2), and their subcellular localization reflects through three different cycles, namely peroxidative cycle, oxidative and hydroxylic cycles to maintain the ROS level inside the cell. Being an antioxidant, class III peroxidases are an important initial defence adapted by plants to cope with biotic and abiotic stresses. Both these stresses have become a major concern in the field of agriculture due to their devastating effect on plant growth and development. Despite numerous studies on plant defence against both the stresses, only a handful role of class III peroxidases have been uncovered by its functional characterization. This review will cover our current understanding on class III peroxidases and the signalling involved in their regulation under both types of stresses. The review will give a view of class III peroxidases and highlights their indispensable role under stress conditions. Its future application will be discussed to showcase their importance in crop improvement by genetic manipulation and by transcriptome analysis.
Collapse
Affiliation(s)
- Maria Kidwai
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
- Integral University, Uttar Pradesh, Kursi road, Lucknow, 226001, India
| | | | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
26
|
Kulbat-Warycha K, Georgiadou EC, Mańkowska D, Smolińska B, Fotopoulos V, Leszczyńska J. Response to stress and allergen production caused by metal ions (Ni, Cu and Zn) in oregano (Origanum vulgare L.) plants. J Biotechnol 2020; 324:171-182. [PMID: 33132171 DOI: 10.1016/j.jbiotec.2020.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 01/26/2023]
Abstract
Heavy metals are the cause of one of the most significant biosphere contamination problems worldwide, as they can be highly reactive and toxic according to their oxidation levels. Their toxic effects are correlated with the elevated production of reactive oxygen species (ROS) and oxidative cellular damage occurring in plants. The aim of the present study was the investigation of the effects of three heavy metals (Ni, Cu, Zn) applied to the soil in biochemical defense-related responses and allergen production in the aromatic plant oregano (Origanum vulgare L.) from the Lamiaceae family. The concentrations of the three heavy metals used, were based on the 2002 Regulation of the Polish Ministry of the Environment on Soil Quality Standards [(i) agricultural land (group B): Ni 100 ppm, Ni 210 ppm, Cu 200 ppm, Cu 500 ppm, Zn 720 ppm and (ii) industrial land (group C): Ni 500 ppm, Cu 1000 ppm, Zn 1500 ppm, Zn 3000 ppm]. The investigated plants accumulated heavy metal ions in aerial parts to a variable extent. For plants grown in soil contaminated with Zn, phenotypic representation of the growth and development were strongly limited and dependent on zinc concentration. Phenotypic representation of plants grown in soil contaminated with Ni and Cu were characterized by normal growth, slightly lower or equal to that of the control plants. All tested metals (Ni, Cu, Zn) caused a concentration-dependent decrease in photosynthetic pigments especially in total chlorophyll content. Highest cellular damage levels were observed in plants treated with Cu and Zn. Increasing concentration of these metals (especially Zn) caused a further increase in cellular damage. 3000 ppm Zn caused highest increase in the concentration of proline compared with control plants, suggesting osmotic stress imposition. Treatment with 1000 ppm Cu led to increased concentration of the allergenic protein profilin in relation to control plants by profilin ELISA analysis, while increasing concentrations of Cu and Zn led to a decrease in the concentration of phenolic compounds and total antioxidant capacity. On the basis of these findings, Ni stress in oregano plants appears to be less damaging (in relation to Cu and Zn) and with lower allergenic potential, compared with 1000 ppm Cu. The present study provides novel biochemical insight in the defense and allergenic response of aromatic plants to metal ions present in the rhizosphere; however, more comprehensive research under realistic field conditions is needed to fully decipher this interaction.
Collapse
Affiliation(s)
- Kamila Kulbat-Warycha
- Institute of Technology and Food Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Egli C Georgiadou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Dorota Mańkowska
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Beata Smolińska
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Joanna Leszczyńska
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| |
Collapse
|
27
|
Okereafor U, Makhatha M, Mekuto L, Uche-Okereafor N, Sebola T, Mavumengwana V. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072204. [PMID: 32218329 PMCID: PMC7178168 DOI: 10.3390/ijerph17072204] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 12/29/2022]
Abstract
The problem of environmental pollution is a global concern as it affects the entire ecosystem. There is a cyclic revolution of pollutants from industrial waste or anthropogenic sources into the environment, farmlands, plants, livestock and subsequently humans through the food chain. Most of the toxic metal cases in Africa and other developing nations are a result of industrialization coupled with poor effluent disposal and management. Due to widespread mining activities in South Africa, pollution is a common site with devastating consequences on the health of animals and humans likewise. In recent years, talks on toxic metal pollution had taken center stage in most scientific symposiums as a serious health concern. Very high levels of toxic metals have been reported in most parts of South African soils, plants, animals and water bodies due to pollution. Toxic metals such as Zinc (Zn), Lead (Pb), Aluminium (Al), Cadmium (Cd), Nickel (Ni), Iron (Fe), Manganese (Mn) and Arsenic (As) are major mining effluents from tailings which contaminate both the surface and underground water, soil and food, thus affecting biological function, endocrine systems and growth. Environmental toxicity in livestock is traceable to pesticides, agrochemicals and toxic metals. In this review, concerted efforts were made to condense the information contained in literature regarding toxic metal pollution and its implications in soil, water, plants, animals, marine life and human health.
Collapse
Affiliation(s)
- Uchenna Okereafor
- Department of Metallurgy, School of Mining, Metallurgy and Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Auckland Park 2006, South Africa;
- Correspondence: ; Tel.: +27-7475-16904
| | - Mamookho Makhatha
- Department of Metallurgy, School of Mining, Metallurgy and Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Auckland Park 2006, South Africa;
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Auckland Park 2006, South Africa;
| | - Nkemdinma Uche-Okereafor
- Department of Biotechnology & Food Technology, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa; (N.U.-O.); (T.S.)
| | - Tendani Sebola
- Department of Biotechnology & Food Technology, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa; (N.U.-O.); (T.S.)
| | - Vuyo Mavumengwana
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
28
|
Sharma A, Soares C, Sousa B, Martins M, Kumar V, Shahzad B, Sidhu GPS, Bali AS, Asgher M, Bhardwaj R, Thukral AK, Fidalgo F, Zheng B. Nitric oxide-mediated regulation of oxidative stress in plants under metal stress: a review on molecular and biochemical aspects. PHYSIOLOGIA PLANTARUM 2020; 168:318-344. [PMID: 31240720 DOI: 10.1111/ppl.13004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 05/07/2023]
Abstract
Given their sessile nature, plants continuously face unfavorable conditions throughout their life cycle, including water scarcity, extreme temperatures and soil pollution. Among all, metal(loid)s are one of the main classes of contaminants worldwide, posing a serious threat to plant growth and development. When in excess, metals which include both essential and non-essential elements, quickly become phytotoxic, inducing the occurrence of oxidative stress. In this way, in order to ensure food production and safety, attempts to enhance plant tolerance to metal(loid)s are urgently needed. Nitric oxide (NO) is recognized as a signaling molecule, highly involved in multiple physiological events, like the response of plants to abiotic stress. Thus, substantial efforts have been made to assess NO potential in alleviating metal-induced oxidative stress in plants. In this review, an updated overview of NO-mediated protection against metal toxicity is provided. After carefully reviewing NO biosynthetic pathways, focus was given to the interaction between NO and the redox homeostasis followed by photosynthetic performance of plants under metal excess.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Cristiano Soares
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Porto, 4169-007, Portugal
| | - Bruno Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Porto, 4169-007, Portugal
| | - Maria Martins
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Porto, 4169-007, Portugal
| | - Vinod Kumar
- Department of Botany, DAV University, Jalandhar, 144012, India
| | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, TAS, Australia
| | - Gagan P S Sidhu
- Department of Environment Education, Government College of Commerce and Business Administration, Chandigarh, 160047, India
| | - Aditi S Bali
- Department of Botany, M.C.M.D.A.V. College for Women, Chandigarh, India
| | - Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, India
| | - Renu Bhardwaj
- Plant Stress Physiology Laboratory, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Ashwani K Thukral
- Plant Stress Physiology Laboratory, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Fernanda Fidalgo
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Porto, 4169-007, Portugal
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| |
Collapse
|
29
|
Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M. The Role of Salicylic Acid in Plants Exposed to Heavy Metals. Molecules 2020; 25:540. [PMID: 31991931 PMCID: PMC7037467 DOI: 10.3390/molecules25030540,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Salicylic acid (SA) is a very simple phenolic compound (a C7H6O3 compound composed of an aromatic ring, one carboxylic and a hydroxyl group) and this simplicity contrasts with its high versatility and the involvement of SA in several plant processes either in optimal conditions or in plants facing environmental cues, including heavy metal (HM) stress. Nowadays, a huge body of evidence has unveiled that SA plays a pivotal role as plant growth regulator and influences intra- and inter-plant communication attributable to its methyl ester form, methyl salicylate, which is highly volatile. Under stress, including HM stress, SA interacts with other plant hormones (e.g., auxins, abscisic acid, gibberellin) and promotes the stimulation of antioxidant compounds and enzymes thereby alerting HM-treated plants and helping in counteracting HM stress. The present literature survey reviews recent literature concerning the roles of SA in plants suffering from HM stress with the aim of providing a comprehensive picture about SA and HM, in order to orientate the direction of future research on this topic.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (A.S.); (F.A.); (M.L.)
| | - Gagan Preet Singh Sidhu
- Department of Environment Education, Government College of Commerce and Business Administration, Chandigarh 160047, India;
| | - Fabrizio Araniti
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, RC, Italy
- Correspondence: (A.S.); (F.A.); (M.L.)
| | | | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida 201313, India;
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy
- CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, I-56124 Pisa, Italy
- Correspondence: (A.S.); (F.A.); (M.L.)
| |
Collapse
|
30
|
Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M. The Role of Salicylic Acid in Plants Exposed to Heavy Metals. Molecules 2020; 25:E540. [PMID: 31991931 PMCID: PMC7037467 DOI: 10.3390/molecules25030540] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/18/2022] Open
Abstract
Salicylic acid (SA) is a very simple phenolic compound (a C7H6O3 compound composed of an aromatic ring, one carboxylic and a hydroxyl group) and this simplicity contrasts with its high versatility and the involvement of SA in several plant processes either in optimal conditions or in plants facing environmental cues, including heavy metal (HM) stress. Nowadays, a huge body of evidence has unveiled that SA plays a pivotal role as plant growth regulator and influences intra- and inter-plant communication attributable to its methyl ester form, methyl salicylate, which is highly volatile. Under stress, including HM stress, SA interacts with other plant hormones (e.g., auxins, abscisic acid, gibberellin) and promotes the stimulation of antioxidant compounds and enzymes thereby alerting HM-treated plants and helping in counteracting HM stress. The present literature survey reviews recent literature concerning the roles of SA in plants suffering from HM stress with the aim of providing a comprehensive picture about SA and HM, in order to orientate the direction of future research on this topic.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Gagan Preet Singh Sidhu
- Department of Environment Education, Government College of Commerce and Business Administration, Chandigarh 160047, India;
| | - Fabrizio Araniti
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, RC, Italy
| | | | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida 201313, India;
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy
- CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, I-56124 Pisa, Italy
| |
Collapse
|
31
|
Zaid A, Mohammad F, Wani SH, Siddique KMH. Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:575-587. [PMID: 31129436 DOI: 10.1016/j.ecoenv.2019.05.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/21/2019] [Accepted: 05/13/2019] [Indexed: 05/07/2023]
Abstract
The present study identified inverse relationships between nickel (Ni) levels and growth, photosynthesis and physio-biochemical attributes, but increasing levels of Ni stress enhanced methylglyoxal, electrolyte leakage, hydrogen peroxide, and lipid peroxidation content. Exogenous application of salicylic acid (SA) (10-5 M) ameliorated the ill-effects of Ni by restoring growth, photosynthesis and physio-biochemical attributes and increasing the activities of enzymes associated with antioxidant systems, especially the ascorbate-glutathione (AsA-GSH) cycle and glyoxalase system. In addition, SA application to Ni-stressed plants had an additive effect on the activities of the ascorbate and glutathione pools, and the AsA-GSH cycle enzymes (ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase), superoxide dismutase, catalase, glutathione S-transferase, and osmolyte biosynthesis). This trend also follows in glyoxalase system viz. glyoxalase I and glyoxalase II enzymes. Nevertheless, exogenous SA supplementation restored mineral nutrient contents. Principal component analysis showed that growth, photosynthesis, and mineral nutrient parameters were positively correlated with each other and negatively correlated with antioxidant enzymes and oxidative stress biomarkers. Hence, SA is an alternative compound with potential application in the phytoremediation of Ni.
Collapse
Affiliation(s)
- Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Firoz Mohammad
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani Anantnag, 192101, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, J&K, India
| | - Kadambot M H Siddique
- The UWA Institute of Agriculture, The University of Western Australia, LB 5005, Perth, WA, 6001, Australia
| |
Collapse
|
32
|
Fang H, Dong Y, Yue X, Hu J, Jiang S, Xu H, Wang Y, Su M, Zhang J, Zhang Z, Wang N, Chen X. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. PLANT, CELL & ENVIRONMENT 2019; 42:1503-1512. [PMID: 30919454 DOI: 10.1111/pce.13499] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 11/12/2018] [Accepted: 12/02/2018] [Indexed: 05/18/2023]
Abstract
Ultraviolet-B (UV-B) radiation and low temperature promote the accumulation of anthocyanins, which give apple skins their red colour. Although many transcription regulators have been characterized in the UV-B and low-temperature pathways, their interregulation and synergistic effects are not well understood. Here, a B-box transcription factor gene, MdBBX20, was characterized in apple and identified to promote anthocyanin biosynthesis under UV-B conditions in field experiments and when overexpressed in transgenic apple calli. The transcript level of MdBBX20 was significantly induced by UV-B. Specific G-box elements in the promoters of target genes were identified as interaction sites for MdBBX20. Further experimental interrogation of the UV-B signalling pathways showed that MdBBX20 could interact with MdHY5 in vitro and in vivo and that this interaction was required to significantly enhance the promoter activity of MdMYB1. MdBBX20 also responded to low temperature (14°C) with the participation of MdbHLH3, which directly bound a low temperature-response cis elements in the MdBBX20 promoter. These findings demonstrate the molecular mechanism by which MdBBX20 integrates low-temperature- and UV-B-induced anthocyanin accumulation in apple skin.
Collapse
Affiliation(s)
- Hongcheng Fang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yuhui Dong
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xuanxuan Yue
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jiafei Hu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shenghui Jiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haifeng Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Mengyu Su
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
33
|
Bhagyawant SS, Narvekar DT, Gupta N, Bhadkaria A, Koul KK, Srivastava N. Variations in the antioxidant and free radical scavenging under induced heavy metal stress expressed as proline content in chickpea. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:683-696. [PMID: 31168232 PMCID: PMC6522589 DOI: 10.1007/s12298-019-00667-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/22/2019] [Accepted: 04/02/2019] [Indexed: 05/13/2023]
Abstract
This study pertains to the effects of heavy metal salts viz., copper (Cu), manganese (Mn), lead (Pb) and zinc (Zn) on the chickpea accession ICC-4812. The salts were given as treatments to the chickpea seeds at various ascending levels of doses till proving toxic. The treatment of 24 h soaked and swollen seeds were then extended to 7 days duration from the date of treatment. Atomic absorption spectrophotometric analysis of bioassay tissue Cicer, showed maximum uptake of 9.41 mg/g and minimum of 1.65 mg/g tissue dry weight for Pb and Zn respectively. The study reveals that enhanced antioxidant responses are associated with substantial proline accumulation indicating induced stress. Ferric reducing antioxidant power assay measuring antioxidant activity was highest in the chickpea seedling treated with Zn, whereas, free radical scavenging activity was highest in the treatments with Mn. The total phenolic and flavonoid contents ranged between 0.24-0.97 and 0.27-1.00 mg/g of dry matter content respectively. Higher Pb and Zn doses seem to elicit higher proline levels therefore, suggesting an extreme condition of induced abiotic stress. Dose dependent protein oxidation coupled with DNA degradation was observed in all treatments, depicting genotoxicity. Unweighted pair-group method arithmetic average analysis presented similarity coefficients between the treatments.
Collapse
Affiliation(s)
| | | | - Neha Gupta
- School of Studies in Biotechnology, Jiwaji University, Gwalior, India
| | - Amita Bhadkaria
- School of Studies in Biotechnology, Jiwaji University, Gwalior, India
| | | | - Nidhi Srivastava
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|
34
|
Kebrom TH, Woldesenbet S, Bayabil HK, Garcia M, Gao M, Ampim P, Awal R, Fares A. Evaluation of phytotoxicity of three organic amendments to collard greens using the seed germination bioassay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5454-5462. [PMID: 30610580 PMCID: PMC6407736 DOI: 10.1007/s11356-018-3928-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/04/2018] [Indexed: 05/29/2023]
Abstract
Small-scale vegetable and fruit crop producers in the USA use locally available commercial organic fertilizers and soil amendments recycled from municipal and agricultural wastes. Organic soil amendments provide crops with their nutrient needs and maintain soil health by modifying its physical, chemical, and biological properties. However, organic soil amendments might add unwanted elements such as toxic heavy metals or salts, which might inhibit crop growth and reduce yield. Therefore, the objective of this study was to evaluate phytotoxicity of three commercial organic amendments, chicken manure, milorganite, and dairy manure, to collard greens using the seed germination bioassay and chemical analysis of the organic amendments. The seed germination bioassay was conducted by incubating collard greens seeds to germinate in 1:10 (w/v) organic amendment aqueous extracts. Results of this work identified phytotoxic effects of chicken manure and milorganite, but not dairy manure, to collard greens. Potentially phytotoxic chemicals such as copper, zinc, nickel, and salts were also higher in chicken manure and milorganite compared to dairy manure. In particular, nickel in chicken manure and milorganite aqueous extracts was 28-fold and 21-fold, respectively, higher than previously reported toxic levels to wheat seedlings. The results demonstrate the need for more research on phytotoxicity of commercial organic soil amendments to ensure their safe use in vegetable and fruit crop production systems.
Collapse
Affiliation(s)
- Tesfamichael H Kebrom
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Selamawit Woldesenbet
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Haimanote K Bayabil
- Agricultural and Biological Engineering, Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, FL, 33031, USA
| | - Monique Garcia
- Department of Biology, College of Science and Arts, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Ming Gao
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Peter Ampim
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Ripendra Awal
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Ali Fares
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, 77446, USA.
| |
Collapse
|
35
|
Najafi Kakavand S, Karimi N, Ghasempour HR. Salicylic acid and jasmonic acid restrains nickel toxicity by ameliorating antioxidant defense system in shoots of metallicolous and non-metallicolous Alyssum inflatum Náyr. Populations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:450-459. [PMID: 30497973 DOI: 10.1016/j.plaphy.2018.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 05/21/2023]
Abstract
The presence of heavy metals in the soils is undoubtedly one of the prime abiotic stresses in the world. There are a considerable amount of plant yield losses because of heavy metal stress. The goal of this study was to assess the morphological, physiological and biochemical changes in Alyssum inflatum Nyár. populations upon exposure to different levels of nickel (Ni) (0, 100, 200, 400) μM, salicylic acid (SA) (0, 50, 200) μM and jasmonic acid (JA) (0, 5, 10) μM. Results showed that there were no considerable interpopulation differences, including the shoot Ni concentrations. Reversing the effects of Ni, SA and JA decreased due to Ni accumulation in both populations. By increasing the levels of Ni stress, the fresh weight (FW) of shoot decreased, whereas the application of SA + JA elevated the FW of the shoot in NM plants. Also, SA + JA mitigated Ni oxidative effects by reducing H2O2 concentration in both populations. The results revealed that the exposure of both M and NM plants to high Ni concentration increased superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities compared to control in both populations. Conversely, APX activity was inhibited in NM plants. Furthermore, SA and JA treatments reversed the detrimental effects of Ni on carotenoid content and reduced the content of proline in plants exposed to Ni stress. All the above suggests that SA and JA confer tolerance to Ni stress in two population of A. inflatum via several mechanisms.
Collapse
Affiliation(s)
- Shiva Najafi Kakavand
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Naser Karimi
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Hamid-Reza Ghasempour
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
36
|
Antioxidant metabolism and performance index of photosystem II in maize seedlings exposed to high concentration of salicylic acid. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40502-018-0376-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Alleviation of nickel toxicity in finger millet ( Eleusine coracana L.) germinating seedlings by exogenous application of salicylic acid and nitric oxide. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2016.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Chandrakar V, Naithani SC, Keshavkant S. Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: A review. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0052] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Patel A, Pandey V, Patra DD. Metal absorption properties of Mentha spicata grown under tannery sludge amended soil-its effect on antioxidant system and oil quality. CHEMOSPHERE 2016; 147:67-73. [PMID: 26761599 DOI: 10.1016/j.chemosphere.2015.12.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 10/29/2015] [Accepted: 12/23/2015] [Indexed: 05/06/2023]
Abstract
Tannery sludge (TS) is hazardous to environment and its disposal in an ecofriendly manner is a major challenge. An experiment was conducted to investigate the metal absorption properties of Mentha spicata grown under different levels of TS amended soil (soil: sludge in 100:0, 75:25, 50:50, 25:75 and 0:100 ratio) and its effect on the antioxidant system and oil quality. At 75:25 ratio of sludge and soil, metal translocation factor was ≥0.5 for Cr, Cd, and Co and for Ni and for Pb ≥ 1. Carvone, limonene, dihydrocarvone and other oil constituents along with biomass were maximum in 75:25 ratio of sludge and soil. Superoxide dismutase (SOD), CAT (Catalases), POD (Peroxidases), MDA (Malondialdehyde) and proline play a major role in detoxification of reactive oxygen species generated due to TS (heavy metal stress). Antioxidant (SOD, CAT and POD), MDA and proline showed an increasing trend as the concentration of TS increased with the treatments. To test the relationship between 23 character principal component analysis (PCA) was performed. PC-I contributed 56% of total variance while PC-II contributed 37% of total variance. The results concluded that M. spicata performed well in terms of oil yield and multiple metal translocations in 75:25 sludge and soil ratio.
Collapse
Affiliation(s)
- Anju Patel
- Agronomy and Soil Science, CSIR-CIMAP, Lucknow, India.
| | | | - D D Patra
- Agronomy and Soil Science, CSIR-CIMAP, Lucknow, India.
| |
Collapse
|
40
|
Singh S, Parihar P, Singh R, Singh VP, Prasad SM. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. FRONTIERS IN PLANT SCIENCE 2016; 6:1143. [PMID: 26904030 PMCID: PMC4744854 DOI: 10.3389/fpls.2015.01143] [Citation(s) in RCA: 448] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/02/2015] [Indexed: 05/18/2023]
Abstract
Heavy metal contamination of soil and water causing toxicity/stress has become one important constraint to crop productivity and quality. This situation has further worsened by the increasing population growth and inherent food demand. It has been reported in several studies that counterbalancing toxicity due to heavy metal requires complex mechanisms at molecular, biochemical, physiological, cellular, tissue, and whole plant level, which might manifest in terms of improved crop productivity. Recent advances in various disciplines of biological sciences such as metabolomics, transcriptomics, proteomics, etc., have assisted in the characterization of metabolites, transcription factors, and stress-inducible proteins involved in heavy metal tolerance, which in turn can be utilized for generating heavy metal-tolerant crops. This review summarizes various tolerance strategies of plants under heavy metal toxicity covering the role of metabolites (metabolomics), trace elements (ionomics), transcription factors (transcriptomics), various stress-inducible proteins (proteomics) as well as the role of plant hormones. We also provide a glance of some strategies adopted by metal-accumulating plants, also known as "metallophytes."
Collapse
Affiliation(s)
- Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Vijay P. Singh
- Department of Botany, Government Ramanuj Pratap Singhdev Post Graduate College, Sarguja UniversityBaikunthpur, India
| | - Sheo M. Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| |
Collapse
|
41
|
Islam E, Khan MT, Irem S. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:126-33. [PMID: 25637747 DOI: 10.1016/j.ecoenv.2015.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 12/29/2014] [Accepted: 01/19/2015] [Indexed: 05/08/2023]
Abstract
Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security.
Collapse
Affiliation(s)
- Ejazul Islam
- Soil & Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan.
| | - Muhammad Tahir Khan
- Soil & Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Samra Irem
- Soil & Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| |
Collapse
|
42
|
Singh AP, Dixit G, Mishra S, Dwivedi S, Tiwari M, Mallick S, Pandey V, Trivedi PK, Chakrabarty D, Tripathi RD. Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2015; 6:340. [PMID: 26042132 PMCID: PMC4434920 DOI: 10.3389/fpls.2015.00340] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/29/2015] [Indexed: 05/04/2023]
Abstract
Arsenic (As) is posing serious health concerns in South East Asia where rice, an efficient accumulator of As, is prominent crop. Salicylic acid (SA) is an important signaling molecule and plays a crucial role in resistance against biotic and abiotic stress in plants. In present study, ameliorative effect of SA against arsenate (As(V)) toxicity has been investigated in rice (Oryza sativa L.). Arsenate stress hampered the plant growth in terms of root, shoots length, and biomass as well as it enhanced the level of H2O2 and MDA in dose dependent manner in shoot. Exogenous application of SA, reverted the growth, and oxidative stress caused by As(V) and significantly decreased As translocation to the shoots. Level of As in shoot was positively correlated with the expression of OsLsi2, efflux transporter responsible for root to shoot translocation of As in the form of arsenite (As(III)). SA also overcame As(V) induced oxidative stress and modulated the activities of antioxidant enzymes in a differential manner in shoots. As treatment hampered the translocation of Fe in the shoot which was compensated by the SA treatment. The level of Fe in root and shoot was positively correlated with the transcript level of transporters responsible for the accumulation of Fe, OsNRAMP5, and OsFRDL1, in the root and shoot, respectively. Co-application of SA was more effective than pre-treatment for reducing As accumulation as well as imposed toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Rudra D. Tripathi
- *Correspondence: Rudra D. Tripathi, Division of Plant Ecology and Environmental Science, Department of Environmental Science, Council of Scientific and Industrial Research – National Botanical Research Institute, KN Kaul Block, Lucknow, 226 001 UP, India ;
| |
Collapse
|
43
|
Pietrini F, Iori V, Cheremisina A, Shevyakova NI, Radyukina N, Kuznetsov VV, Zacchini M. Evaluation of nickel tolerance in Amaranthus paniculatus L. plants by measuring photosynthesis, oxidative status, antioxidative response and metal-binding molecule content. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:482-94. [PMID: 25081005 DOI: 10.1007/s11356-014-3349-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 07/17/2014] [Indexed: 05/04/2023]
Abstract
Among metals, Ni has been indicated as one of the most dangerous for the environment, and plants exposed to this metal are frequently reported to undergo a severe stress condition. In this work, the tolerance responses to different Ni concentrations at physiological and biochemical levels were evaluated in Amaranthus paniculatus L., a plant species previously characterised for their ability to phytoremove Ni from metal-spiked water. Results indicated a good metal tolerance of this plant species at environmentally relevant Ni concentrations, while clear symptoms of oxidative damages were detected at higher Ni concentrations, both in roots and leaves, by measuring lipid peroxide content. At the photosynthetic level, pigment content determination, chlorophyll fluorescence image analysis and gas-exchange parameter measurements revealed a progressive impairment of the photosynthetic machinery at increasing Ni concentrations in the solution. Regarding biochemical mechanisms involved in antioxidative defence and metal binding, antioxidative enzyme (ascorbate peroxidase, APX; catalase, CAT; guaiacol peroxidase, GPX; superoxide dismutase, SOD) activity, polyamine (PA) content, polyamine oxidase (PAO) activity and organic acid (OA) content were differently affected by Ni concentration in the growth solution. A role for GPX, SOD, PAs, and oxalic and citric acid in Ni detoxification is suggested. These results can contribute to elucidate the tolerance mechanisms carried out by plants when facing environmentally relevant Ni concentrations and to identify some traits characterising the physiological and biochemical responses of Amaranthus plants to the presence and bioaccumulation of Ni.
Collapse
Affiliation(s)
- Fabrizio Pietrini
- Institute of Agro-environmental and Forest Biology, National Research Council of Italy, Via Salaria Km 29,300, 00015, Monterotondo Scalo, RM, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Parashar A, Yusuf M, Fariduddin Q, Ahmad A. Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese. Int J Biol Macromol 2014; 70:551-8. [PMID: 25036598 DOI: 10.1016/j.ijbiomac.2014.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/21/2014] [Accepted: 07/05/2014] [Indexed: 10/25/2022]
Abstract
The aim was to explore the responses of varied doses of manganese in mustard plants and also to test the proposition that salicylic acid induced up-regulation of antioxidant system which protect photosynthetic apparatus. Seeds were sown in pots and allowed to germinate under natural environmental conditions. At 10 days stage, soils in the pots were enriched with different levels (0, 3, 6, or 9 mM) of Mn for three days and allowed to grow till 30 day stage. At 31st day, foliage of plants was sprayed with 10 μM of salicylic acid (SA) and then allowed to grow till 45 days. Then plants were harvested to assess various growth, leaf gas exchange traits and biochemical parameters. Mn-treated plants had diminished growth, water relations and photosynthetic attributes along with carbonic anhydrase activity whereas; the level of lipid peroxidation, electrolyte leakage, accumulation of H2O2 along with proline accumulation and antioxidant enzymes increased in a concentration dependent manner. Follow-up application of SA to the Mn-stressed plants improved growth, water relations and photosynthetic traits, accelerated the activity of antioxidant enzymes and also the accumulation of proline. SA mediated tolerance to Mn-stressed plants could have due to up-regulation of antioxidant enzymes and proline accumulation.
Collapse
Affiliation(s)
- Akshaya Parashar
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Yusuf
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| | - Aqil Ahmad
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
45
|
Abstract
With the expansion of the world population, the environmental pollution and toxicity by chemicals raises concern. Rapid industrialization and urbanization processes has led to the incorporation of pollutants such as pesticides, petroleum products, acids and heavy metals in the natural resources like soil, water and air thus degrading not only the quality of the environment, but also affecting both plants and animals. Heavy metals including lead, nickel, cadmium, copper, cobalt, chromium and mercury are important environmental pollutants that cause toxic effects to plants; thus, lessening productivity and posing dangerous threats to the agro-ecosystems. They act as stress to plants and affect the plant physiology. In this review, we have summarized the effects of heavy metals on seeds of different plants affecting the germination process. Although reports exist on mechanisms by which the heavy metals act as stress and how plants have learnt to overcome, the future scope of this review remains in excavating the signaling mechanisms in germinating seeds in response to heavy metal stress.
Collapse
Affiliation(s)
- Sunil Kumar Sethy
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | | |
Collapse
|
46
|
Liang C, Wang W. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8182-91. [PMID: 23653318 DOI: 10.1007/s11356-013-1776-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/25/2013] [Indexed: 06/02/2023]
Abstract
Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L(-1)) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L(-1)) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L(-1)) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L(-1)) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress.
Collapse
Affiliation(s)
- Chanjuan Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China,
| | | |
Collapse
|
47
|
Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. ACTA PHYSIOLOGIAE PLANTARUM 2013. [PMID: 0 DOI: 10.1007/s11738-012-1169-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
48
|
Turan S, Tripathy BC. Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. PROTOPLASMA 2013; 250:209-222. [PMID: 22434153 DOI: 10.1007/s00709-012-0395-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/28/2012] [Indexed: 05/31/2023]
Abstract
Crop yield is severely affected by soil salinity, as salt levels that are harmful to plant growth occur in large terrestrial areas of the world. The present investigation describes the studies of enzymatic activities, in-gel assays, gene expression of some of the major antioxidative enzymes, tocopherol accumulation, lipid peroxidation, ascorbate and dehydroascorbate contents in a salt-sensitive rice genotype PB1, and a relatively salt-tolerant cultivar CSR10 in response to 200 mM NaCl. Salt solution was added to the roots of hydroponically grown 5-day-old etiolated rice seedlings, 12 h prior to transfer to cool white fluorescent + incandescent light (100 μmol photons m(-2) s(-1)). Total tocopherol and ascorbate contents declined in salt-stressed rice seedlings. Among antioxidative enzymes, an increase in the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2), and their gene expression was observed in both cultivars in response to salt stress. The salt-tolerant cultivar CSR10 resisted stress due to its early preparedness to combat oxidative stress via upregulation of gene expression and enzymatic activities of antioxidative enzymes and a higher redox status of the antioxidant ascorbate even in a non-stressed environment.
Collapse
Affiliation(s)
- Satpal Turan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | |
Collapse
|