1
|
Farkas D, Proctor K, Kim B, Avignone Rossa C, Kasprzyk-Hordern B, Di Lorenzo M. Assessing the impact of soil microbial fuel cells on atrazine removal in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135473. [PMID: 39151358 DOI: 10.1016/j.jhazmat.2024.135473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Widespread pesticide use in agriculture is a major source of soil pollution, driving biodiversity loss and posing serious threads to human health. The recalcitrant nature of most of these pesticides demands for effective remediation strategies. In this study, we assess the ability of soil microbial fuel cell (SMFC) technology to bioremediate soil polluted by the model pesticide atrazine. To elucidate the degradation mechanism and consequently define effective implementation strategies, we provide the first comprehensive investigation of the SMFC performance, in which the monitoring of the electrochemical performance of the system is combined with Quadrupole Time-of-Flight (QTOF) mass spectrometry and microbial analyses. Our results show that, while both SMFC and natural attenuation lead to a reduction on atrazine levels, the SMFC modulates the activity of different microbial pathways. As a result, atrazine degradation by natural attenuation leads to high levels of deisoproylatrazine (DIPA), a very toxic degradation metabolite, while DIPA levels in soil treated by SMFC remain comparatively low. The beta diversity and differential abundance analyses revealed how the microbial community evolves over time in the SMFCs degrading atrazine, demonstrating the enrichment of electroactive taxa on the anode, and the enrichment of a mixture of electroactive and atrazine-degrading taxa at the cathode. The detection and taxonomic classification of peripheral atrazine degrading genes, atzA, atzB and atzC, was carried out in combination with the differential abundance analysis. Results revealed that these genes are likely harboured by members of the order Rhizobiales enriched at the cathode, thus promoting atrazine degradation via the conversion of hydroxyatrazine (HA) into N-isopropylammelide (NIPA), as confirmed by mass spectrometry data. Overall, the comprehensive approach adopted in this work, provides fundamental insights into the degradation pathways of atrazine in soil by SMFC technology, which is critical for practical applications, thus suggesting an effective approach to advance research in the field.
Collapse
Affiliation(s)
- Daniel Farkas
- Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Kathryn Proctor
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Bongkyu Kim
- Department of Chemical Engineering and Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath BA2 7AY, UK; SELS Center, Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | | | | | - Mirella Di Lorenzo
- Department of Chemical Engineering and Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
2
|
AbuQamar SF, El-Saadony MT, Alkafaas SS, Elsalahaty MI, Elkafas SS, Mathew BT, Aljasmi AN, Alhammadi HS, Salem HM, Abd El-Mageed TA, Zaghloul RA, Mosa WFA, Ahmed AE, Elrys AS, Saad AM, Alsaeed FA, El-Tarabily KA. Ecological impacts and management strategies of pesticide pollution on aquatic life and human beings. MARINE POLLUTION BULLETIN 2024; 206:116613. [PMID: 39053258 DOI: 10.1016/j.marpolbul.2024.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024]
Abstract
Pesticide contamination has become a global concern. Pesticides can sorb onto suspended particles and deposit into the sedimentary layers of aquatic environments, resulting in ecosystem degradation, pollution, and diseases. Pesticides impact the behavior of aquatic environments by contaminating organic matter in water, which serves as the primary food source for aquatic food webs. Pesticide residues can increase ammonium, nitrite, nitrate, and sulfate in aquatic systems; thus, threatening ecological environment and human health. Several physical, chemical, and biological methodologies have been implemented to effectively remove pesticide traces from aquatic environments. The present review highlights the potential consequences of pesticide exposure on fish and humans, focusing on the (epi)genetic alterations affecting growth, behavior, and immune system. Mitigation strategies (e.g., bioremediation) to prevent/minimize the detrimental impacts of pesticides are also discussed. This review aims to shed light on the awareness in reducing the risk of water pollution for safe and sustainable pesticide management.
Collapse
Affiliation(s)
- Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samar S Alkafaas
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed I Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara S Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menoufia University, Shebin El Kom, Menofia, 32511, Egypt; Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Betty T Mathew
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Amal N Aljasmi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Hajar S Alhammadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Taia A Abd El-Mageed
- Department of Soil and Water, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Rashed A Zaghloul
- Department Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Ahmed S Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Fatimah A Alsaeed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
3
|
Iwegbue CMA, Ossai CJ, Ogwu IF, Olisah C, Ujam OT, Nwajei GE, Martincigh BS. Organochlorine pesticide contamination of soils and dust from an urban environment in the Niger Delta of Nigeria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:172959. [PMID: 38705302 DOI: 10.1016/j.scitotenv.2024.172959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
The concentrations, sources, and risk of twenty organochlorine pesticides (OCPs) in soils and dusts from a typical urban setting in the Niger Delta of Nigeria were examined. The Σ20 OCP concentrations (ng g-1) varied from 4.49 to 150 with an average value of 32.6 for soil, 4.67 to 21.5 with an average of 11.7 for indoor dust, and 1.6 to 96.7 with an average value of 23.5 for outdoor dust. The Σ20 OCP concentrations in these media were in the order: soil > outdoor dust > indoor dust, which was in contrast with the order of the detection frequency, i.e., indoor dust (95 to 100 %) > soil (60 to 90 %) > outdoor dust (30 to 80 %). The concentrations of the different OCP classes in these media followed the order: aldrin + dieldrin + endrin and its isomers (Drins) > chlordanes > dichlorodiphenyltrichloroethane (DDTs) > hexachlorocyclohexane (HCHs) > endosulfans for outdoor dust and soil, while that of the indoor dust followed the order: Drins > chlordanes > endosulfans > DDTs > HCHs. The cancer risk values for human exposure to OCPs in these sites exceeded 10-6 which indicates possible carcinogenic risks. The sources of OCPs in these media reflected both past use and recent inputs.
Collapse
Affiliation(s)
| | - Chinedu J Ossai
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Ijeoma F Ogwu
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Chijioke Olisah
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic; Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha 6031, South Africa
| | - Oguejiofo T Ujam
- Department of Pure and Applied Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Godwin E Nwajei
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
4
|
Huang Y, Zhang X, Li Z. Analysis of nationwide soil pesticide pollution: Insights from China. ENVIRONMENTAL RESEARCH 2024; 252:118988. [PMID: 38663666 DOI: 10.1016/j.envres.2024.118988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024]
Abstract
China is a typical agricultural country that heavily relies on pesticides. Some pesticides can remain in the soil after application and thus pose a significant threat to human health. In order to characterize the status and hazards of nationwide soil contamination, this study extracted concentration data from published literature and analyzed them by a scoring approach, standard comparison and health risk assessment. For the soil pollution score, northern regions got the highest values, such as Henan (0.63), Liaoning (0.55), Heilongjiang (0.54) and Jilin (0.53), which implies high soil pesticide residues in these provinces. In contrast, Qinghai (-0.77), Guizhou (-0.64) and Tibet (-0.63) had lower scores. China's soil pesticide standards cover only 16 pesticides, and these pesticide concentrations were all below the corresponding standards. Direct exposure to soil pesticides in this study generally posed a negligible risk to children. Furthermore, pesticide dissipation and usage intensity in each province were analyzed as they were possible influences on pollution. The result showed that soil in the northern regions could accumulate more pesticides than those in the southern regions, and this geographic pattern was basically consistent with the distribution of soil pollution. However, the relationship between agricultural activities and soil pollution was less well characterized. It is recommended to establish a long-term monitoring database for pesticides and include more pesticides in regulatory frameworks. Additionally, efforts to accelerate pesticide degradation and shift the planting structure to reduce pesticide usage can help alleviate the pressure on soil from pesticides. This study can serve as a critical reference for policymakers and stakeholders in the field of agriculture.
Collapse
Affiliation(s)
- Yabi Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
5
|
Osuala FI, Humphrey OF, Igwo-Ezikpe MN, Udoh AG, Adegbuyi I, Fasasi M, Agada P, Jimoh A, Okubamowo O. Occurrence and seasonal variation of organochlorine pesticides in selected vegetable farmlands in Lagos State, Nigeria. Environ Anal Health Toxicol 2024; 39:e2024013-0. [PMID: 39054827 PMCID: PMC11294668 DOI: 10.5620/eaht.2024013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 07/27/2024] Open
Abstract
Pest infestation in crop production have increased farmers' interest in pesticides use with short and long term consequences. This study investigated the occurrence and seasonal variations of organochlorine pesticide residues in vegetable farms in selected areas of Lagos State. Non carcinogenic and carcinogenic risk assessment was also evaluated. Soil samples were collected during the wet and dry seasons at soil depth of 0-30 cm. Gas chromatography coupled with an Agilent mass spectrometer was used to analyse organochlorine residues (alpha-lindane,lindane, delta.-lindane, aldrin, heptachlor epoxide, alpha.-endosulfan, p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), endrin, endosulfan, m,p'-dichlorodiphenyldichloroethane (m,p'-DDD), endosulfan sulfate, o,p'-dichlorodiphenyltrichloroethane (o,p'-DDT) and endrin ketone) in soil. Heptachlor epoxide showed maximum concentration of 43.03 mg/kg in Station 19 in Western zone during the dry season while m,p'-DDD and endosulfan had minimum value of 0.004 mg/kg in Station 2 and Station 5 respectively during the wet season in the Far eastern zone. The concentrations of organochlorine residues were intermediate in the Eastern zone in both seasons. There was significant (p < 0.05) increase in dry season concentrations when compared to wet season. The risk assessment indicated Hazard Quotient (HQ) > 1 for non-cancer risk and cancer risk > 10-6. Thus a need for stringent monitoring programs for pesticides.
Collapse
Affiliation(s)
| | | | - Miriam Nwana Igwo-Ezikpe
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Arnold Godfrey Udoh
- Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Iyanuoluwa Adegbuyi
- Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Mojeed Fasasi
- Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Precious Agada
- Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Azeemah Jimoh
- Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Olufunke Okubamowo
- Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| |
Collapse
|
6
|
Khalil MM, Aboueldahab SM, Abdel-Raheem KHM, Ahmed M, Ahmed MS, Abdelhady AA. Mixed agricultural, industrial, and domestic drainage water discharge poses a massive strain on freshwater ecosystems: a case from the Nile River in Upper Egypt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122642-122662. [PMID: 37973780 DOI: 10.1007/s11356-023-30994-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Heavy metal and pesticide pollution of freshwater ecosystems, i.e., rivers, raises significant concerns worldwide, where practical solutions to reduce the threats become urgent need. Heavy metals and pesticides are top of the list of environmental toxicants endangering nature; therefore, pesticides and heavy metals were measured at 10 stations along the Al-Zennar agricultural drain and the Nile River at Assiut city in Upper Egypt, to assess potential negative impact on the water/sediment's quality. The sediment of the streambed is a sink for pesticides and heavy metals, where both water and sediments have higher contamination factor (CF) for Cd, Pb, Cr, Cu, and Zn. In addition, the Nile water is highly contaminated by PCBs. The distance to the point source and hydrodynamics (flow rate and stream gradient) has major influences in pollutant concentrations as indicated by regression models. Dilution effect and rapid sedimentation may comment on the lower concentrations of the pollutants in the Nile comparatively to the drain and on the water comparatively to the sediments. The physiochemistry of the stations has minor effect on the metal/pesticide concentration, where the variable importance of projection (VIP) of the partial least square model indicated that total dissolved solids (TDS), total suspended solids (TSS), SO42-, and BOD/TOC/COD are the main contributors to the metal/pesticide concentration. Concentrations were not correlated between water and sediment suggesting a historical accumulation in sediments and temporal variation in the pollution load in the Al-Zennar drain. Bray-Curtis clustering confirmed that heavy metals have the same anthropogenic source in contrast to natural source of both Mn and Fe.
Collapse
Affiliation(s)
- Mahmoud M Khalil
- Geology Department, Faculty of Science, Minia University, Al-Minya, 61519, Egypt.
| | - Sherif M Aboueldahab
- Environmental Quality Management, Egyptian Environmental Affairs Agency (EEAA), Assiut, Egypt
| | | | - Mohamed Ahmed
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX, 78412, USA
| | - Mohamed S Ahmed
- Geology and Geophysics Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ahmed A Abdelhady
- Geology Department, Faculty of Science, Minia University, Al-Minya, 61519, Egypt
| |
Collapse
|
7
|
Tsiantas P, Karasali H, Pavlidis G, Kavasilis S, Doula M. The status of organochlorine pesticide contamination in Greek agricultural soils: the ghost of traditional agricultural history. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117654-117675. [PMID: 37872334 DOI: 10.1007/s11356-023-30447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Inadequate information regarding pesticide contamination in Greek agricultural soils is currently available, while national soil monitoring programs have not been initiated yet. The aim of the present study was to assess the levels, compositions, and distribution of thirty three organochlorine pesticides (OCPs) in Greek agricultural soils, due to the environmental threat posed by these compounds, even after decades from their abrogation from the market. Determination of the organochlorine pesticides was achieved using gas-chromatography-mass spectrometry, following a QuEChERS sample preparation method. A total of 60 soil samples, from two soil horizons (up to 60 cm), were obtained from agricultural lands in Greece throughout 2019-2020. The major findings presented DDTs, γ-HCH, alachlor, and 4,4- DCBP in the examined soil samples, with DDTs being the major compounds with their maximum cumulative concentration (ΣDDTs) reaching 1273.4 μg kg-1 d.w. Compositional profile and diagnostic ratios suggested that the occurrence of DDT residues was due to historical inputs. Most of the samples did not exceed the target values set by the Netherlands and Canadian guidelines for DDTs in soil; however, there was one exception in the case of Aegina Island. Finally, based on the environmental exposure assessment conducted, the vast majority of the analytes presented lower concentrations compared to the predicted environmental concentrations, with an exemption for DDE metabolite where the measured and predicted concentrations were almost equal.
Collapse
Affiliation(s)
- Petros Tsiantas
- Benaki Phytopathological Institute, Scientific Directorate of Pesticides' Control & Phytopharmacy, Laboratory of Chemical Control of Pesticides, Kifissia, 14561, Athens, Greece
| | - Helen Karasali
- Benaki Phytopathological Institute, Scientific Directorate of Pesticides' Control & Phytopharmacy, Laboratory of Chemical Control of Pesticides, Kifissia, 14561, Athens, Greece.
| | - George Pavlidis
- Centre for the Assessment of Natural Hazards and Proactive Planning & Laboratory of Reclamation Works and Water Resources Management, School of Rural and Surveying Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., 15780, Zographou, Athens, Greece
| | - Stamatis Kavasilis
- Benaki Phytopathological Institute, Scientific Directorate of Phytopathology, Laboratory of Non-Parasitic Diseases, Soil Resources and Geoinformatics, Kifissia, 14561, Athens, Greece
| | - Maria Doula
- Benaki Phytopathological Institute, Scientific Directorate of Phytopathology, Laboratory of Non-Parasitic Diseases, Soil Resources and Geoinformatics, Kifissia, 14561, Athens, Greece
| |
Collapse
|
8
|
Zhu Y, Chai Y, Xu C, Guo F. Status, sources, and human health risk assessment of DDT pesticide residues in river sediments in a highly developed agricultural region in the upper Yangtze River in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27405-3. [PMID: 37160518 DOI: 10.1007/s11356-023-27405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/29/2023] [Indexed: 05/11/2023]
Abstract
The concentrations of DDT and its metabolites in 19 sediment samples from a highly developed agricultural region in the upper reaches of the Yangtze River were measured. Non-carcinogenic hazard quotient for different age groups was evaluated using reference doses provided by the USEPA, and the excess lifetime cancer risk due to eating fish was assessed based on the local eating habits. The results showed that this region had a high level of residual DDT (12.84 ± 8.97 ng/g), which mainly came from the historically used technical DDT in agriculture. The non-carcinogenic risk was just acceptable in the region, but 11 of the 19 sites showed an unacceptable carcinogenic risk. Although DDT has been banned for decades, there were still notable health risks, especially for children. Special attention should be given to the potential health risks in historically developed agricultural regions.
Collapse
Affiliation(s)
- Yutong Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- School of Environment, Liaoning University, Shenyang, 110036, China
| | - Yongzhen Chai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chengbin Xu
- School of Environment, Liaoning University, Shenyang, 110036, China
| | - Fei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
9
|
Wang L, Zhang ZF, Liu LY, Zhu FJ, Ma WL. National-scale monitoring of historic used organochlorine pesticides (OCPs) and current used pesticides (CUPs) in Chinese surface soil: Old topic and new story. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130285. [PMID: 36335903 DOI: 10.1016/j.jhazmat.2022.130285] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Along with the restriction and prohibition of historic used organochlorine pesticides (OCPs), current used pesticides (CUPs) were widely used as alternatives. In order to investigate the pollution characteristics of pesticides, the levels and spatial distributions of OCPs and CUPs in 154 surface soil across China were comprehensively compared. Totally, 107 target pesticides were screened, and 20 OCPs and 34 CUPs were detected. The numbers of co-occurred pesticides in single soil sample were from 17 to 36 indicating the diversity and complexity of pesticides pollution. The concentrations of OCPs in urban soils were higher than rural soils, while rural > urban for CUPs. Furthermore, obviously different spatial distribution patterns were found for OCPs and CUPs. For OCPs, the secondary distribution pattern was dominant. For CUPs, the primary distribution pattern was obviously observed due to their current extensive usage. In addition, higher concentrations of both CUPs and OCPs were accumulated in the Northeast China Plain due to long-range atmospheric transport and deposition. Along with the old topic of OCPs, the study pointed out the preliminary understanding of CUPs pollution characteristic in surface soil of China, which provided a new story with the deep understanding of their environmental fate in both China and the world.
Collapse
Affiliation(s)
- Liang Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Fu-Jie Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
10
|
Shah ZU, Parveen S. Distribution and risk assessment of pesticide residues in sediment samples from river Ganga, India. PLoS One 2023; 18:e0279993. [PMID: 36730256 PMCID: PMC9894440 DOI: 10.1371/journal.pone.0279993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023] Open
Abstract
Indiscriminate use of pesticides leads to their entry in to the bottom sediments, where they are absorbed in the sediment's particle and thus, may become the consistent source of aquatic pollution. The present work was carried out to evaluate pesticide residues in the sediment samples and associated human health risk of commonly used pesticides along the basin of river Ganga. Total of 16 pesticides were analyzed along three stretches of river Ganga. The concentration of pesticides in the upper stretch ranged from ND to 0.103 μg/kg, in the middle stretch ND to 0.112 μg/kg, and in the lower stretch ND to 0.105 μg/kg. Strong positive correlation was found between total organic carbon and total pesticide residues in sediment samples. Carcinogenic and non-carcinogenic values were estimated below the threshold limit suggesting no associated risk. Risks associated with the inhalation route of exposure were found to be higher than the dermal and ingestion routes. Children were found at higher risk at each site from multiple routes of exposure than adult population groups. Toxic unit values were found to be below the threshold value suggesting no risk associated with exposure of pesticides from sediments. However, long term effects on ecological quality due to consistent pesticide exposure must not be ignored. Therefore, the present study focuses on concrete efforts like lowering the irrational used of pesticides, tapping of agricultural and domestic drains, advice to farmers for appropriate use of pesticide doses, to reduce the threat of pesticide pollution in the river system and possible human health risk.
Collapse
Affiliation(s)
- Zeshan Umar Shah
- Department of Zoology, Limnology Research Laboratory, Aligarh Muslim University, Aligarh, India
- * E-mail:
| | - Saltanat Parveen
- Department of Zoology, Limnology Research Laboratory, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
11
|
Jia Z, Yuan L, Jiang Y, He R, Ding W. Status, distribution, source, and risk of polychlorinated biphenyl levels in soils of five cities from the Hexi Corridor, Northwest China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:282. [PMID: 36622457 DOI: 10.1007/s10661-022-10891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Few studies have been performed on the persistent organic pollutant contamination in soil from the plateau and remote areas, particularly the mid-latitude arid and semi-arid regions of Northwest China. The occurrence, spatial distribution, source, and potential risk of 12 polychlorinated biphenyls (PCBs) were investigated in soil collected from five Hexi Corridor cities in Northwest China. All of the PCBs were detected individually in the soil samples. The concentration of Σ12PCBs in the Hexi Corridor ranged from 2.0 to 148.5 ng/g, with an average of 21.3 ng/g. The tetra-CBs and hexa-CBs were the dominant PCB components in the soil. Higher PCB levels were found in the industrial city of Jiuquan, and the fewest PCBs were detected at Jinchang. Source analysis by principal component analysis showed that the dominant sources of PCBs were automobile exhaust, paint additives, insulation materials, and other industrial products. The carcinogenic health risk of PCBs in the Hexi Corridor soil was within acceptable levels, but the exposure risk of PCBs in soil for children was higher than that for adults.
Collapse
Affiliation(s)
- Zhanrong Jia
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Longmiao Yuan
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Oil and Gas Research Center, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
| | - Yufeng Jiang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Rui He
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Wenxuan Ding
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
12
|
Marcolin LC, de Oliveira Arias JL, Kupski L, Barbosa SC, Primel EG. Polycyclic Aromatic Hydrocarbons (PAHs) in honey from stingless bees (Meliponinae) in southern Brazil. Food Chem 2022; 405:134944. [DOI: 10.1016/j.foodchem.2022.134944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
13
|
Zhang Y, Guo R, Li Y, Qin M, Zhu J, Ma Z, Ren Y. Concentrations, distribution, and risk assessment of endosulfan residues in the cotton fields of northern Xinjiang, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4063-4075. [PMID: 34981269 DOI: 10.1007/s10653-021-01111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/22/2021] [Indexed: 06/14/2023]
Abstract
In the current study, surface soil samples were collected from cotton fields in Shawan and Shihezi areas in northern Xinjiang and tested for endosulfan residues using gas chromatography-mass spectrometry. Results showed endosulfan sulfate was the predominant compound in the surface soil studied, followed by β-endosulfan and α-endosulfan with detection rates of 86.9%, 55.7%, and 49.2%, respectively, for the 61 soil samples collected. The average concentrations of endosulfan sulfate, α-endosulfan, and β-endosulfan were 0.743, 0.166, and 0.073 µg/kg, respectively. The ratios of α-/β-endosulfan were below 2.33 in all samples tested, suggesting no new endosulfan was added to the soil and the presence of endosulfan residues in this region was due to historical application in the past. According to the health risk assessment model recommended by the USA Environmental Protection Agency, the health risk of endosulfan residues in the studied area was low, and the maximum values of noncarcinogenic risks for children and adults were 2.30 × 10-5 and 2.70 × 10-6, respectively. Folsomia candida was the most sensitive organism to total endosulfan residues, with 38% of the total sampling sites classified as high risk. For earthworms, the proportion of high risk site was 13%. Lactuca sativa was the most tolerant organism to ∑ESs, with all sampling sites identified as negligible risk. This study provided current status of endosulfan residues and related risk in cotton fields, which could be used to support decision makers to prepare relevant regulations.
Collapse
Affiliation(s)
- Yang Zhang
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100035, China
| | - Rong Guo
- National Agro-Tech Extension and Service Center, Beijing, 100125, China
| | - Yang Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing, 100097, China
| | - Mingyu Qin
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100035, China
| | - Jingquan Zhu
- National Agro-Tech Extension and Service Center, Beijing, 100125, China
| | - Zhihong Ma
- Beijing Research Center for Agricultural Standards and Testing, Beijing, 100097, China
| | - Yong Ren
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100035, China.
| |
Collapse
|
14
|
Adenuga AA, Ore OT, Amos OD, Onibudo AO, Ayinuola O, Oyekunle JAO. Organochlorine pesticides in therapeutic teas and human health risk assessment. FOOD ADDITIVES & CONTAMINANTS: PART B 2022; 15:301-309. [DOI: 10.1080/19393210.2022.2127157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | - Olawole Ayinuola
- Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
- W. M. Keck Centre for Transgene Research, University of Notre Dame, South Bend, IN, USA
| | | |
Collapse
|
15
|
Rezania S, Talaiekhozani A, Oryani B, Cho J, Barghi M, Rupani PF, Kamali M. Occurrence of persistent organic pollutants (POPs) in the atmosphere of South Korea: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119586. [PMID: 35680069 DOI: 10.1016/j.envpol.2022.119586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Numerous studies found the presence of persistent organic pollutants (POPs) in various environmental compartments, including air, water, and soil. POPs have been discovered in various industrial and agricultural products with severe environmental and human health consequences. According to the data, South Korea is a hotspot for POP pollution in the southern part of Asia; hence, South Korea has implemented the Stockholm Convention's National Implementation Plan (NIP) to address this worldwide issue. The purpose of this review is to assess the distribution pattern of POPs pollution in South Korea's atmosphere. According to findings, PAHs, PCBs, BFRs, and PBDEs significantly polluted the atmosphere of South Korea; however, assessing their exposure nationwide is difficult due to a shortage of data. The POPs temporal trend and meta-analysis disclosed no proof of a decrease in PAHs and BFRs residues in the atmosphere. However, POP pollution in South Korea tends to decrease compared to contamination levels in neighboring countries like Japan and China.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Amirreza Talaiekhozani
- Department of Civil Engineering, Jami Institute of Technology, Isfahan, 84919-63395, Iran
| | - Bahareh Oryani
- Technology Management, Economics and Policy Program, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | | | - Parveen Fatemeh Rupani
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Mohammadreza Kamali
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|
16
|
Assessment of Total Petroleum Hydrocarbon Contamination of the Red Sea with Endemic Fish from Jeddah (Saudi Arabia) as Bioindicator of Aquatic Environmental Pollution. WATER 2022. [DOI: 10.3390/w14111706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The aim of this study was to determine whether endemic coral fish commonly consumed by Jeddah residents could serve as bioindicators of oil contamination. In addition, we planned to investigate the relationship between amino acid changes and hydrocarbon concentrations in fish tissue. The composition of amino acids was analyzed using high-pressure liquid chromatography with precolumn derivatization. An analytical study of the polycyclic aromatic hydrocarbons and total petroleum hydrocarbons was conducted by combining gas chromatography with gas chromatography/mass spectrometry. Multivariate statistical analysis was applied using Statgraphics software to determine the impact of the polycyclic aromatic hydrocarbons and total petroleum hydrocarbons on the amino acid profile of three species of fish. In addition, the bioconcentration factor was estimated in the studied species and was used to validate the results obtained from the multivariate analysis. Based on the results of the study, the sum of polycyclic aromatic hydrocarbons with two cycles, and with five to six cycles, is in reverse order in Plectropomus pessuliferus with respect to Epinephelus tauvina and Cephalopholis argus. The factor analysis showed high factor scores for aspartic acid, glutamic acid, tyrosine, chrysene, and total petroleum hydrocarbons, and for lipids and benzo(g,h,i)perylene, which could be explained by bioaccumulation. It was concluded that the high proportions of glutamic acid (8.32–11.10%) and aspartic acid (6.06–8.27%) in the muscles of the studied species are a sign of contamination with petroleum hydrocarbons. The incremental lifetime cancer risk values for the three endemic fish exceeded the limit value (>10−5), indicating a high potential cancer risk for the Saudi population.
Collapse
|
17
|
Ajeh EA, Kayode OO, Omoregie IP. Comparative analysis of groundwater quality statuses and associated health risk indices of metals and total hydrocarbons at locations of tank farm in Delta State, Nigeria. Toxicol Rep 2022; 9:404-421. [PMID: 35299872 PMCID: PMC8920876 DOI: 10.1016/j.toxrep.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022] Open
Abstract
The study aimed at assessing the groundwater quality and the associated health implications of oil storage tank farms in Asaba, Oghara, Warri, and Koko towns, in Delta State, Nigeria. Fe, Cr, Cd, Ni, Pb, and V concentrations in the groundwater samples were determined using Atomic Absorption Spectrophotometry (AAS), while total hydrocarbons (THC) concentrations were determined using gas chromatography coupled with a flame ionization detector (GC-FID). The quality index of Warri groundwater was 66.38; being within the range of 51-75 was considered poor quality. The water quality indices (WQI) of Oghara, Koko, and Asaba were 163.79, 161.43, and 129.95 respectively, which were all > 100, hence amounting to very poor water quality status. Results indicated that children in Oghara who are orally exposed to chromium are at risk of cancer. Both adults and children orally exposed to THC in Oghara are also at risk of cancer. Furthermore, THC posed an oral route cancer risk to the children in Koko town. The study showed that chromium posed carcinogenic threats to children in Oghara, while THC posed carcinogenic threats to adults and children in Oghara and children alone in Koko. These risks are liable to be mediated through ingestion of the groundwater of Oghara and Koko by the susceptible groups.
Collapse
Key Words
- CDI, Chronic daily intake
- CRI, Cancer risk index
- Carcinogenic
- DACR, Dermal-associated cancer risk
- Groundwater
- HQ, Harzard quotient
- Health risk
- IACR, Ingestion-associated cancer risk
- LOD, Limit of detection
- LOQ, Limit of quantification
- ORCR, Oral route cancer risk
- Oil exploration
- PCA, Principal component analysis
- SF, Slope factor
- THC, Total hydrocarbons
- Water quality index
Collapse
Affiliation(s)
- Enuneku Alex Ajeh
- Department of Environmental Management and Toxicology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, Nigeria
| | - Odeniyi Olalere Kayode
- Ecotoxicology and Environmental Forensics Laboratory, University of Benin, PMB 1154, Benin City, Nigeria
| | - Isibor Patrick Omoregie
- Department of Biological Sciences, College of Science and Technology, Covenant University, PMB 1023, Ota, Ogun State, Nigeria
| |
Collapse
|
18
|
Ara T, Nisa WU, Aziz R, Rafiq MT, Gill RA, Hayat MT, Afridi U. Health risk assessment of hexachlorocyclohexane in soil, water and plants in the agricultural area of Potohar region, Punjab, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1-17. [PMID: 33624225 DOI: 10.1007/s10653-021-00847-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
In this study analysis of soil, water and plant residue samples is presented to evaluate the contamination levels and possible health risks. Hexachlorocyclohexane (HCH) is a persistent organic pollutant used as a pesticide in agricultural sector for pest control in order to obtain higher productivity. For analysis soil, water and crop residue samples were collected from different agricultural areas of the northern Punjab region of Pakistan. The investigation of the samples shows significant levels of HCH residues in all types of samples. Gas chromatography-mass spectrometry analysis was used to assess the higher residue levels of HCH in the samples. The concentration of HCH residues detected in samples ranged from 2.43 to 8.88 µg/g in soil, nd -5.87 µg/l in water and nd - 4.87 µg/g in plants. The presence of HCH residues in soil, water and plant samples was beyond the recommended quality guidelines. Human health risk was evaluated for cancer and non-cancer risks through dietary and non-dietary exposure routes. The hazard index was HI > 1 in children and HI < 1 in adults, while the non-dietary incremental lifetime cancer risks (ILCR) were beyond the internationally acceptable limit of 1 × 10-5. Hence, results of the present investigation concluded the presence of high levels of HCH residues in samples and pose high health risk to the inhabitants. These findings are alarming and apprise the concerned departments for the remediation of contamination and proper implementation of environmental laws in the area.
Collapse
Affiliation(s)
- Talat Ara
- Department of Environmental Science, International Islamic University, Islamabad, 44000, Pakistan
| | - Waqar-Un Nisa
- Center for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan.
| | - Rukhsanda Aziz
- Department of Environmental Science, International Islamic University, Islamabad, 44000, Pakistan.
| | - Muhammad Tariq Rafiq
- Center for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Rafaqat Ali Gill
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Malik Tahir Hayat
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Uzma Afridi
- Department of Environmental Science, International Islamic University, Islamabad, 44000, Pakistan
| |
Collapse
|
19
|
Yu Z, Li XF, Wang S, Liu LY, Zeng EY. The human and ecological risks of neonicotinoid insecticides in soils of an agricultural zone within the Pearl River Delta, South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117358. [PMID: 34062434 DOI: 10.1016/j.envpol.2021.117358] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoid insecticides (NIIs) are extensively used worldwide and frequently detected in the environment. The human and ecological risks associated with the occurrence of NIIs in agricultural zones are of high importance. The present study highlights the regional occurrence and human exposure risks of NIIs in agricultural soil within the Pearl River Delta (PRD), South China. Six neonicotinoids, i.e., imidacloprid, clothianidin, acetamiprid, imidaclothiz, dinotefuran, and flonicamid, were measured in 351 soil samples from Zengcheng, a typical agricultural zone. The soil samples were categorized into three groups based on cultivated plants: vegetables, rice, and fruits. At least one of these neonicotinoid insecticides was detected in 95% of the soil samples. The levels of ∑6NII (range (median)) were 0.26-390 (23), 0.26-280 (6.1), and 0.26-120 (5.0) ng g-1 dry weight in soil samples from vegetable farms, rice paddies, and fruit farms, respectively. Neonicotinoids were detected more frequently and at statistically higher concentrations in vegetable farms than in both rice paddies and fruit farms. This is likely ascribed to higher application frequencies of NIIs in vegetable farms due to higher planting frequencies. The hazard index values for human exposure to NIIs in the agricultural soils were all below 1, suggesting negligible non-cancer risks. The current residual levels of NIIs in the soils could however pose sub-lethal or acute effects to non-target terrestrial organisms such as earthworms. The present study suggests that more information is needed regarding NIIs contamination in soils from agricultural regions of South China to ensure that human and ecological risk from exposure to these compounds can be fully addressed.
Collapse
Affiliation(s)
- Zimin Yu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xue-Fang Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Shaorui Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Research Center of Low Carbon Economy for Guangzhou Region, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
20
|
Health risk indices and zooplankton-based assessment of a tropical rainforest river contaminated with iron, lead, cadmium, and chromium. Sci Rep 2020; 10:16896. [PMID: 33037243 PMCID: PMC7547017 DOI: 10.1038/s41598-020-72526-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/28/2020] [Indexed: 11/29/2022] Open
Abstract
Oil exploration’s devastation on health and the environment may far outweigh its economic benefits. An oil spill occurred at Egbokodo River in Delta State, Nigeria, thereby polluting the land and water bodies. The study was therefore aimed at evaluating the impacts of iron, lead, cadmium, and chromium on the zooplankton community structure of Egbokodo River and the potential health risks. Zooplankton and surface water samples were collected to investigate the concentrations of trace metals and zooplankton abundance. The associated carcinogenic and non-carcinogenic effects of the metals in the water were analyzed. Trace metal concentrations in the surface water were determined using atomic absorption spectroscopy (Philips model PU 9100) and zooplankton samples were collected using a hydrobios plankton net (mesh size 25 µm). Total petroleum hydrocarbons (TPH) and oil and grease (OG) were determined using Agilent 7890B gas chromatography coupled to flame ionization detector (GC-FID) and volumetric analysis respectively. The trend of the abundance of zooplanktons cross the river was 18 individuals (Station A) < 100 individuals (Station B) < 155 individuals (Station C). Cyclopoida proved to be the most resilient to the impacts of the oil spill. On a taxa basis, the order of abundance among Calanoida, Cyclopoida, Cladoceran, and Harpacticoida was Station C > Station B > Station A, except in Amphipoda where Station B > Station C > Station A was observed. Iron and lead posed significant carcinogenic risks that are liable to be inflicted by the ingestion of the water. The cumulative non-carcinogenic health risk in the male was the only significant (> 1) among the age groups. Total petroleum hydrocarbons (TPH), oil and grease (OG), iron, and lead had notable impacts on the general abundance of zooplankton in the aquatic habitat. The dominance of the Cyclopoida in the river buttressed the impact of the oil spill which warrants a prompt remediation measure. The pollution had notable ecological impacts on the zooplankton community structure of the aquatic habitat. The adults in the nearby human populations are liable to elicit carcinogenic health challenges associated with lead and iron ingestion. The males are at risk of non-carcinogenic illnesses which are associated with the combined toxicity effects of all the metals. The study suggests that the pollution in Egbokodo River was validated by the dominance of the Cyclopoida in the aquatic habitat. The study confers bioindicator reputation on the Cyclopoida for future biomonitoring studies.
Collapse
|
21
|
Kim L, Jeon JW, Son JY, Kim CS, Ye J, Kim HJ, Lee CH, Hwang SM, Choi SD. Nationwide levels and distribution of endosulfan in air, soil, water, and sediment in South Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115035. [PMID: 32806455 DOI: 10.1016/j.envpol.2020.115035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
We investigated the levels and distribution patterns of α- and β-endosulfan and endosulfan sulfate in air, soil, water, and sediment samples collected from the South Korean persistent organic pollutants (POPs) monitoring networks. In the air samples, the highest concentrations of the total (Σ3) endosulfan (50.3-611 pg/m3, mean: 274 pg/m3) were observed during summer. Spearman analysis revealed a good correlation between agricultural land area and atmospheric concentrations of Σ3 endosulfan except during winter. Regardless of the season, the ratio of the two isomers (α/β) was 3.6-4.9 in the air samples, higher than that observed in technical mixtures (2.0-2.3), possibly due to the higher volatility of α-endosulfan, compared to β-endosulfan. Concentrations of Σ3 endosulfan in the soil samples (n.d.-13.4 ng/g, mean: 0.8 ng/g) were not significantly different except at some stations adjacent to large areas of farmland. The average levels of Σ3 endosulfan in the water and sediment samples were 2.1 ng/L and 0.1 ng/g dw, respectively. In analyzing the four largest rivers, it was observed that a few water stations during spring and fall and sediment stations in fall had high concentrations of the two isomers and endosulfan sulfate, particularly around the Yeoungsan and Nakdong Rivers near large areas of agricultural land. Endosulfan sulfate was dominant at most water and sediment sampling stations. This study demonstrates that the endosulfan found in most environmental compartments most probably derives from agricultural areas despite its ban as a pesticide. On the other hand, given that it was also detected in industrial and urban areas, in which pesticide application does not occur, it can be conjectured that endosulfan is aerially transported at higher temperatures and continuously circulates within the environment.
Collapse
Affiliation(s)
- Leesun Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jin-Woo Jeon
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ji-Young Son
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Chul-Su Kim
- UNIST Environmental Analysis Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jin Ye
- UNIST Environmental Analysis Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ho-Joong Kim
- POPs Monitoring Division, Korea Environment Corporation, Incheon, 22689, Republic of Korea; Department of Environmental Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Chang-Ho Lee
- POPs Monitoring Division, Korea Environment Corporation, Incheon, 22689, Republic of Korea
| | - Seung-Man Hwang
- POPs Monitoring Division, Korea Environment Corporation, Incheon, 22689, Republic of Korea
| | - Sung-Deuk Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; UNIST Environmental Analysis Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
22
|
Li L, Zhang Y, Wang J, Lu S, Cao Y, Tang C, Yan Z, Zheng L. History traces of HCHs and DDTs by groundwater dating and their behaviours and ecological risk in northeast China. CHEMOSPHERE 2020; 257:127212. [PMID: 32534294 DOI: 10.1016/j.chemosphere.2020.127212] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/08/2020] [Accepted: 05/23/2020] [Indexed: 05/13/2023]
Abstract
Organochlorine pesticides legacies, such as hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT), remained in sediments or soils due to their difficulty in decomposition, especially in the agricultural areas where pesticides were widely used historically. Different from the little disturbed depositional environment of lake, it was difficult for rivers to explore the timing of DDT and HCH inputs through dating sediment cores as records. Based on groundwater dating, this study ascertained the historic pollution of DDT and HCH in Taizi River basin. HCH and DDT residues in groundwater were consistent with the historical production and usage, which increased from the 1950s to the 1980s and declined from the 1980s to the 1990s. Moreover, the partitioning behaviours of HCHs and DDTs in surface water and suspended particulate matter were discussed. It was revealed that β-HCH and o,p'-DDT were more likely to attach to suspended particulate matter than other isomers. Furthermore, species sensitivity distribution curves were generated using 54 toxicity data records to assess the risk of HCHs and DDTs in water and suspended particulate matter. These results indicated that p,p'-DDT in surface water posed a high risk to 95% of the aquatic life in the long run.
Collapse
Affiliation(s)
- Linlin Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Science, Beijing Normal University, Beijing, 100875, PR China
| | - Yizhang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Taian, 250000, PR China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yingjie Cao
- School of Environmental Science and Engineering, Sun Yat Sen University, Guangzhou, 510006, PR China
| | - Changyuan Tang
- School of Environmental Science and Engineering, Sun Yat Sen University, Guangzhou, 510006, PR China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lei Zheng
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, PR China
| |
Collapse
|
23
|
|
24
|
Yu H, Liu Y, Shu X, Ma L, Pan Y. Assessment of the spatial distribution of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in urban soil of China. CHEMOSPHERE 2020; 243:125392. [PMID: 31995868 DOI: 10.1016/j.chemosphere.2019.125392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 05/21/2023]
Abstract
Long-term (2004-2018) persistent organic pollutants (POPs) data were collected for urban soils of China. The dataset included concentrations of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in soils, comprising a range of different compounds. Understanding the source of OCP and PCB pollution is an important step in controlling and reducing pollution levels in the environment. This study aimed to analyze the spatio-temporal distribution, pollution sources, and potential health risks of OCPs and PCBs in urban soils in different regions of China. It was found that the total OCP concentrations ranged from 7.6 to 37331 μg/kg with a mean value of 2861 μg/kg, and PCBs concentrations ranged from 0.3 to 123467 μg/kg with a mean value of 4984 μg/kg. The highest OCP concentrations were observed in Beijing and Hebei, whereas the highest PCB concentrations were found in the Zhejiang province. The geographical distribution showed that the total mean concentration of POPs of urban soil was much higher in East China than in West China. According to the isomer ratios, about 64% of provinces and cities showed new sources of dichlorodiphenyltrichloroethane (DDT) input and dicofol input was found in 30% of China. Hexachlorocyclohexane (HCH) in urban soils was mainly derived from fresh usage of lindane (γ-HCH) in most regions of China. Lifetime carcinogenic and non-carcinogenic risks of OCPs and PCBs through ingestion, inhalation, and dermal contact indicated that PCBs in urban soils of China often exceeded safe levels. The total lifetime carcinogenic risk values of PCBs were higher than the individual lifetime acceptable risk level (10-4) in 64% of the studied regions and the non-carcinogenic risk values exceeded the target risk level (10-1) in 53% of the regions. The improved knowledge of the distribution and main pollution sources of POPs in urban soil of China as a result of this study can contribute to better decision-making support for soil pollution control and monitoring.
Collapse
Affiliation(s)
- Haiyan Yu
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yongfeng Liu
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xingquan Shu
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Limin Ma
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
25
|
Moslen M, Miebaka C, Boisa N. Bioaccumulation of Polycyclic Aromatic Hydrocarbon (PAH) in a bivalve ( Arca senilis- blood cockles) and health risk assessment. Toxicol Rep 2019; 6:990-997. [PMID: 32426237 PMCID: PMC7225597 DOI: 10.1016/j.toxrep.2019.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/04/2019] [Accepted: 09/20/2019] [Indexed: 11/24/2022] Open
Abstract
Concentration of PAH in bivalves (Arca senilis) and human health risks due to consumption was examined in samples collected from southern Nigeria and analysed using gas chromatography. Mean PAH concentration (ngkg-1) ranged from 12.0 ± 5.0-5500.0 ± 1000 with a significant difference (p < 0.001) while total PAH ranged from 3000.0-16,000.0. Concentrations (ngkg-1) of PAH4 varied from 250 to 15268.0 while concentrations of PAH8 ranged from 542.0 to 15620.7 with significant difference (p < 0.001). Diagnostic ratios for PAH source distinction suggested mixture of petrogenic and pyrogenic sources. Dietary daily intake-DDI (ng/kg/day) of individual PAHs ranged from 1.04 to 9.86 while DDI for PAH4 and PAH8 were 340.8 and 379.8 respectively. Carcinogenic potencies (ngkg-1) varied from 0.012 to 900.0 for individual PAH while carcinogenic toxic equivalent (TEQs) values were 1916.2, 572.49 and 1914.4 for total PAH, PAH4 and PAH8 respectively. The Excess cancer risk (ECR) for individual PAHs, PAH4 and PAH8 were all <10-6. DDI and ECR values obtained were below USEPA threshold concentration/limits indicating minimal health risk concerns while PAH4 and PAH8 concentrations were also below the EU regulatory limits (30 μg kg-1) for PAH4. The margin of exposures were above the 10,000 critical limit proposed by EFSA while incremental life cancer risk (ILCR) value (10-5 - 10-9) also suggests low potential health risk for consumers of the sea food. The screening value (SV) was 0.095 but lower than observed TEQs values indicating potential health concerns. The study concluded that consumers of bivalves (Arca senilis) in southern Nigeria generally have minimal health risk concern via consumption but regular monitoring is required to detect changes.
Collapse
Affiliation(s)
- M. Moslen
- Department of Animal and Environmental Biology, Rivers State University, Port Harcourt, Nigeria
| | - C.A. Miebaka
- Institute of Pollution Studies, Rivers State University, Port Harcourt, Nigeria
| | - N. Boisa
- Department of Chemistry, Rivers State University, Port Harcourt, Nigeria
| |
Collapse
|
26
|
Ogbeide O, Uhunamure G, Okundaye F, Ejeomo C. First report on probabilistic risk assessment of pesticide residues in a riverine ecosystem in South-South Nigeria. CHEMOSPHERE 2019; 231:546-561. [PMID: 31151015 DOI: 10.1016/j.chemosphere.2019.05.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
The present study evaluated the ecological and human health risk associated with concentrations of legacy organochlorine pesticide residues in Ikpoba River, a major River in the heart of Benin City, a Nigerian urban town located in Edo State. Standard methods were used to collect, extract and analyze samples, while risk assessment was carried out using standard models and indices. Results showed varying pesticide concentrations in both sediment and water samples with α-HCH (0.24 ± 0.11 μg L-l), predominant in water, whereas dieldrin (0.99 ± 0.33 μg kg-l) was the highest concentration in sediment. Compared to the Sediment Quality Guidelines (SQGs), this study concentrations of pesticides in sediments were below the values of effect range medium, effect range low, probable effect level and threshold effects level, suggesting low environmental hazard to benthic organisms. However, on exposure to contaminated sediments, probabilistic ecological risk assessment using Monte Carlo techniques showed potential risk to algae, daphnid and fish. Human health risk estimates using dermal and ingestion exposure deterministic and probabilistic routes revealed a potential risk to adults and children exposed to contaminated water and sediment. Estimates for detected pesticides exceeded the threshold level, indicating potential cancer effects for both children and adults who rely on the resources of the river. This study highlights the need for concerted efforts to curb the threat of pesticides and other contaminants in the aquatic environment by all relevant stakeholders in Nigeria and Africa as a whole.
Collapse
Affiliation(s)
- Ozekeke Ogbeide
- Department of Zoology and Entomology, University of the Free State. (Qwa Qwa campus), Free State, South Africa; Afromountane Research Unit (ARU) University of the Free State. (Qwa Qwa campus), Free State, South Africa; Department of Environmental Management and Toxicology. Faculty of Life Sciences. University of Benin. Benin City, Nigeria.
| | - Grace Uhunamure
- Department of Environmental Management and Toxicology. Faculty of Life Sciences. University of Benin. Benin City, Nigeria
| | - Fabulous Okundaye
- Department of Environmental Management and Toxicology. Faculty of Life Sciences. University of Benin. Benin City, Nigeria
| | | |
Collapse
|
27
|
Ali N, Khan S, Khan MA, Waqas M, Yao H. Endocrine disrupting pesticides in soil and their health risk through ingestion of vegetables grown in Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8808-8820. [PMID: 30712208 DOI: 10.1007/s11356-019-04287-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/16/2019] [Indexed: 04/16/2023]
Abstract
A comprehensive study was conducted to appraise the concentrations of 30 endocrine disrupting pesticides (EDPs) in soil and vegetable samples collected from Khyber Pakhtunkhwa, Pakistan. The sum of 30 EDPs (Σ30EDPs) ranged from 192 to 2148 μg kg-1 in the collected soils. The selected EDP concentrations exceeded their respective limits in most of the tested soils and showed great variation from site to site. Similarly, high variations in Σ30EDP concentrations were also observed in vegetables with the highest mean concentration in lettuce (28.9 μg kg-1), followed by radish (26.6 μg kg-1), spinach (25.7 μg kg-1), onion (16.2 μg kg-1), turnip (15.6 μg kg-1), and garlic (14.7 μg kg-1). However, EDP levels in all studied vegetables were within FAO/WHO limits. The mean bioconcentration factor values were observed < 1 for all the studied vegetables. The health risk assessment revealed that the incremental lifetime cancer risk (ILCR) of Σ30EDPs associated with vegetable ingestion was below the acceptable risk level (1 × 10-6), showing no cancer risk to local inhabitants. However, exposure to endocrine disruptor and probable carcinogen heptachlor epoxide poses a potential non-cancer risk (hazard quotient (HQ > 1)) to children through vegetable consumption. The presence of banned EDPs in soils and vegetables of the study area indicates the stability of these legacy chemicals in the environment from over usage in the past or illegal current application for agricultural purposes. Graphical abstract.
Collapse
Affiliation(s)
- Neelum Ali
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
- Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Muhammad Amjad Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Muhammad Waqas
- Department of Environmental and Conservation Sciences, University of Swat, Mingora, Pakistan
| | - Huaiying Yao
- Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China
| |
Collapse
|
28
|
Osman BE, Khalik WMAWM. Data on organochlorine concentration levels in soil of lowland paddy field, Kelantan, Malaysia. Data Brief 2018; 20:999-1003. [PMID: 30225314 PMCID: PMC6138989 DOI: 10.1016/j.dib.2018.08.178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/06/2018] [Accepted: 08/28/2018] [Indexed: 11/24/2022] Open
Abstract
The main goal of this research work is to measure the concentration levels of organochlorine residue in soil. The potential health risk of this pollutant on human was also determined. 10 samples were taken from a lowland paddy field situated in Kelantan, Malaysia. Physical parameters namely soil pH, organic carbon content, water content and particle size were identified to evaluate the quality of soil from the agriculture site. Soxhlet extraction and florisil clean-up process were applied to isolate 10 targeted organochlorine compounds prior to the final determination using a gas chromatography-electron capture detector. Soil from the lowland has characteristics such as slightly acidic, low organic carbon content, high water content and texture dominated by the sandy type. Concentration levels of six detected organochlorine pesticides were calculated in µg/kg. Hazard quotient value in all samples was less than the acceptable risk level HQ ≤ 1, thus reflecting the status of soil in the subjected area as unlikely to pose any adverse health effects.
Collapse
Affiliation(s)
- Bibie Evana Osman
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wan Mohd Afiq Wan Mohd Khalik
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.,Centre for Water Research and Analysis, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
29
|
Arıkan K, Arıkan ZY, Turan SL. Persistent Organochlorine Contaminant Residues in Tissues of Hedgehogs from Turkey. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:361-368. [PMID: 29333580 DOI: 10.1007/s00128-018-2272-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
The residues of persistent organochlorinated pollutants (POPs), namely polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) (HCHs, CHLs, HCCPs, DDTs, and dicofol congeners) were investigated in the hair and muscle of road-killed Erinaceus roumanicus and E. concolor in Turkey. Mean residue levels were as follows: in hair, PCBs = 7.43 ± 4.88 ng/g and OCPs = 9.21 ± 1.27 ng/g; in muscle, PCBs = 30.73 ± 2.51 ng/g and OCPs = 145.04 ± 16.59 ng/g. There was no significant difference between species and sex, while there was significant difference between habitats and regions in terms of either total PCB and OCP levels, or POP levels (p < 0.05). Age was a determinative factor for the bio-accumulation of POPs. The contaminant levels were high in the species, sample areas, and habitats. The data also showed that tissues of hedgehogs are suitable for monitoring and evaluating the bioaccumulation of POP levels in Turkey.
Collapse
Affiliation(s)
- Kalender Arıkan
- Pesticide Research and References Laboratory, Department of Biology Education, Faculty of Education, Hacettepe University, Beytepe Campus, Ankara, Turkey.
| | - Zeynep Yaşar Arıkan
- Department of Biology, Faculty of Science, Ankara University, Tandoğan Campus, Ankara, Turkey
| | - Salih Levent Turan
- Pesticide Research and References Laboratory, Department of Biology Education, Faculty of Education, Hacettepe University, Beytepe Campus, Ankara, Turkey
| |
Collapse
|
30
|
Zhang C, Liu L, Ma Y, Li F. Using Isomeric and Metabolic Ratios of DDT To Identify the Sources and Fate of DDT in Chinese Agricultural Topsoil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1990-1996. [PMID: 29345919 DOI: 10.1021/acs.est.7b05877] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The metabolic ratio of (p,p'-DDE + p,p'-DDD)/p,p'-DDT or p,p'-DDE/p,p'-DDT has been used previously to estimate the approximate half-life of p,p'-DDT, with a relatively unclear concept of "old" and "new" sources of p,p'-DDT and without paying attention to the influence by dicofol-type DDT contributed from the more recent usage of dicofol. Based on the isomeric ratio of o,p'-DDT/p,p'-DDT to distinguish the sources of DDT, this study used the corrected metabolic ratio of (p,p'-DDE + p,p'-DDD)/p,p'-DDT to estimate a more accurate half-life of p,p'-DDT using a model-based approach. This indicates the average half-life of p,p'-DDT in Chinese topsoils was 14.2 ± 0.9 years with dicofol-type DDT input considered. In deeper soil, the half-life was >30 years and the metabolic pathway of p,p'-DDT was significantly different with topsoil's. Further analysis on the fraction of DDT from technical DDT suggested that a region that had been sprayed with technical DDT was likely to have been sprayed with dicofol as well, but the monitoring residues of DDT in topsoil mainly derive from historical use of technical DDT.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
| | - Li Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
| | - Yan Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
| | - Fasheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
| |
Collapse
|
31
|
Sun J, Pan L, Tsang DCW, Zhan Y, Zhu L, Li X. Organic contamination and remediation in the agricultural soils of China: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:724-740. [PMID: 29017123 DOI: 10.1016/j.scitotenv.2017.09.271] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 05/21/2023]
Abstract
Soil pollution is a global problem in both developed and developing countries. Countries with rapidly developing economies such as China are faced with significant soil pollution problems due to accelerated industrialization and urbanization over the last decades. This paper provides an overview of published scientific data on soil pollution across China with particular focus on organic contamination in agricultural soils. Based on the related peer-reviewed papers published since 2000 (n=203), we evaluated the priority organic contaminants across China, revealed their spatial and temporal distributions at the national scale, identified their possible sources and fates in soil, assessed their potential environmental risks, and presented the challenges in current remediation technologies regarding the combined organic pollution of agricultural soils. The primary pollutants in Northeast China were polycyclic aromatic hydrocarbons (PAHs) due to intensive fossil fuel combustion. The concentrations of organochlorine pesticides (OCPs) and phthalic acid esters (PAEs) were higher in North and Central China owing to concentrated agricultural activities. The levels of polychlorinated biphenyls (PCBs) were higher in East and South China primarily because of past industrial operations and improper electronic waste processing. The co-existence of organic contaminants was severe in the Yangtze River Delta, Pearl River Delta, and Beijing-Tianjin-Hebei Region, which are the most populated and industrialized regions in China. Integrated biological-chemical remediation technologies, such as surfactant-enhanced bioremediation, have potential uses in the remediation of soil contaminated by multiple contaminants. This critical review highlighted several future research directions including combined pollution, interfacial interactions, food safety, bioavailability, ecological effects, and integrated remediation methods for combined organic pollution in soil.
Collapse
Affiliation(s)
- Jianteng Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lili Pan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yu Zhan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
32
|
Zhu S, Niu L, Aamir M, Zhou Y, Xu C, Liu W. Spatial and seasonal variations in air-soil exchange, enantiomeric signatures and associated health risks of hexachlorocyclohexanes (HCHs) in a megacity Hangzhou in the Yangtze River Delta region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:264-272. [PMID: 28477483 DOI: 10.1016/j.scitotenv.2017.04.181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/23/2017] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
Large amounts of hexachlorocyclohexanes (HCHs) have been historically applied in the Yangtze River Delta (YRD) region, China. Estimating the air-soil exchange of HCHs after >30years of restricted use is important for understanding their cycling in the environment. In this study, air and soil samples were concurrently collected in two seasons at agricultural and industrial sites from a megacity in the YRD region. The concentrations of HCH isomers and the enantiomeric fractions of chiral α-HCH were determined. The mean concentrations of ∑HCHs in soils from an agricultural area (AA) and an eco-industrial park (EIP) were 1.74ng/g and 0.652ng/g, respectively, in winter, and 0.723ng/g and 0.350ng/g, respectively, in summer. The mean concentrations of ∑HCHs in the air from the AA and the EIP were 31.2pg/m3 and 47.7pg/m3, respectively, in winter, and 45.0pg/m3 and 50.0pg/m3, respectively, in summer. The variations in spatial and seasonal distributions might be related to diverse geographical factors, soil properties and meteorological conditions. Source identification demonstrated that HCHs in most samples were residues from past use, which was further evidenced by the enantiomeric signatures of chiral α-HCH. A preferential degradation of (-)-α-HCH was showed in soils and summer air, while a preferential depletion of (+)-α-HCH was displayed in winter air. The values of the fugacity fraction (ff) of HCHs suggest a net volatilization from soils to air, but long-range transport may also partly contribute to the atmospheric HCHs according to the results from enantiomeric analysis. The human health risk assessments indicated an absence of noncarcinogenic risks and very low carcinogenic risks for HCHs in both soils and air to human health. Results from this study provide valuable data for assessing the fate and health risks of HCHs in the YRD region.
Collapse
Affiliation(s)
- Siyu Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lili Niu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Muhammad Aamir
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuting Zhou
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Weiping Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
33
|
Sánchez MC, Alvarez Sedó C, Chaufan GR, Romanato M, Da Cuña R, Lo Nostro F, Calvo JC, Fontana V. In vitro effects of endosulfan-based insecticides on mammalian sperm. Toxicol Res (Camb) 2017; 7:117-126. [PMID: 30090568 DOI: 10.1039/c7tx00251c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022] Open
Abstract
Endosulfan is an organochloride insecticide extensively used in several countries to protect crops from pests. As several studies indicate that endosulfan can affect human and animal development, the aim of this study was to analyse whether sperm parameters and the process of chromatin decondensation could be altered by endosulfan in mice sperm. Spermatozoa from cauda epididymis were obtained from mature male mice and incubated in the presence of two commercial formulations (CFs) of endosulfan (Master® and Zebra Ciagro®) or the active ingredient (AI) alone. A significant decrease in the percentage motility and viability of spermatozoa with respect to controls was found. In vitro decondensation was performed in the presence of glutathione and heparin. Spermatozoa incubated with the AI, endosulfan Master® and endosulfan Zebra Ciagro® showed an increase in chromatin decondensation. In addition, the TUNEL assay showed that DNA fragmentation was significantly higher when sperm were incubated with either one of the CFs when compared to the AI or controls. The ultrastructure analysis of sperm cells showed evident changes in the structure of the plasma and acrosome membranes of sperm incubated with endosulfan AI or the CFs. These results suggest that endosulfan can affect sperm integrity and in vitro chromatin decondensation as well as DNA fragmentation.
Collapse
Affiliation(s)
- M C Sánchez
- Instituto de Biología y Medicina Experimental (IByME-CONICET) , Buenos Aires , Argentina . ; ; Tel: +54 11 47832869 ext 234
| | - C Alvarez Sedó
- Centro de estudios en Genética y Reproducción (CEGyR) , Armenia
| | - G R Chaufan
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Departamento de Química Biológica, Laboratorio de Enzimología, Estrés y Metabolismo (LEEM), CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) , Buenos Aires , Argentina
| | - M Romanato
- Instituto de Biología y Medicina Experimental (IByME-CONICET) , Buenos Aires , Argentina . ; ; Tel: +54 11 47832869 ext 234
| | - R Da Cuña
- Universidad de Buenos Aires , Facultad de Ciencias Exactas y Naturales , Departamento de Biodiversidad y Biología Experimental. Laboratorio de Ecotoxicología Acuática , Buenos Aires , Argentina.,CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA). Buenos Aires , Argentina
| | - F Lo Nostro
- Universidad de Buenos Aires , Facultad de Ciencias Exactas y Naturales , Departamento de Biodiversidad y Biología Experimental. Laboratorio de Ecotoxicología Acuática , Buenos Aires , Argentina.,CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA). Buenos Aires , Argentina
| | - J C Calvo
- Instituto de Biología y Medicina Experimental (IByME-CONICET) , Buenos Aires , Argentina . ; ; Tel: +54 11 47832869 ext 234.,Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Laboratorio de Quimica de Proteoglicanos y Matriz Extracelular. Buenos Aires , Argentina
| | - V Fontana
- Instituto de Biología y Medicina Experimental (IByME-CONICET) , Buenos Aires , Argentina . ; ; Tel: +54 11 47832869 ext 234.,Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Laboratorio de Quimica de Proteoglicanos y Matriz Extracelular. Buenos Aires , Argentina
| |
Collapse
|
34
|
Tongo I, Ezemonye L, Akpeh K. Distribution, characterization, and human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in Ovia River, Southern Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:247. [PMID: 28466449 DOI: 10.1007/s10661-017-5931-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
The levels and distribution of polycyclic aromatic hydrocarbons (PAHs) in surface water, sediment, and fish (Clarias gariepinus) samples from Ovia River, Southern Nigeria, were evaluated, to assess the contamination profile, dietary intake, and human health risks associated with exposure. Results showed that naphthalene, acenaphthylene, and fluoranthene were the most dominant contaminant in water, sediment, and fish, respectively, with mean concentrations (μg/L) of 3.08, 45.4, and 90.7. Spatial distribution showed high occurrence of PAHs in Ekenwan, the downstream station, for all the matrices. Source identification using multivariate analysis revealed mixed patterns of pyrogenic and petrogenic origins. Estimated daily intake (EDI) of PAHs through fish consumption ranged from 2.18 × 10-7 to 5.23 × 10-5 mg/kg/day; values were however lower than the reference dose (RfD) indicating low risk. Estimated values for hazard quotients (HQs) and hazard index (HI) for both non-carcinogenic and carcinogenic risks were below 1 indicating low risk through dietary and non-dietary exposure to water, sediment, and fish from Ovia River. However, estimated HI values for direct ingestion of sediment were above 1, indicating the possibility of non-carcinogenic health risk from exposure. Carcinogenic risk indices also indicated low risk from fish consumption. In spite of the assessed low risk from exposure, continuous monitoring of PAH levels in this water body is imperative to prevent future human health effects.
Collapse
Affiliation(s)
- Isioma Tongo
- Laboratory of Ecotoxicology and Environmental Forensics, Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, Benin, Nigeria.
| | - Lawrence Ezemonye
- Laboratory of Ecotoxicology and Environmental Forensics, Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, Benin, Nigeria
| | - Kingsley Akpeh
- Laboratory of Ecotoxicology and Environmental Forensics, Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, Benin, Nigeria
| |
Collapse
|
35
|
Liu Q, Wang Q, Xu C, Shao W, Zhang C, Liu H, Jiang Z, Gu A. Organochloride pesticides impaired mitochondrial function in hepatocytes and aggravated disorders of fatty acid metabolism. Sci Rep 2017; 7:46339. [PMID: 28397872 PMCID: PMC5387717 DOI: 10.1038/srep46339] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/16/2017] [Indexed: 11/09/2022] Open
Abstract
p,p'-dichlorodiphenyldichloroethylene (p, p'-DDE) and β-hexachlorocyclohexane (β-HCH) were two predominant organochlorine pesticides (OCPs) metabolites in human body associated with disorders of fatty acid metabolism. However, the underlying mechanisms have not been fully clarified. In this study, adult male C57BL/6 mice were exposed to low dose of p, p'-DDE and β-HCH for 8 wk. OCPs accumulation in organs, hepatic fatty acid composition, tricarboxylic acid cycle (TCA) metabolites and other metabolite profiles were analyzed. Expression levels of genes involved in hepatic lipogenesis and β-oxidation were measured. Mitochondrial function was evaluated in HepG2 cells exposed to OCPs. High accumulation of p, p'-DDE and β-HCH was found in liver and damaged mitochondria was observed under electron microscopy. Expression of genes in fatty acid synthesis increased and that in mitochondrial fatty acid β-oxidation decreased in OCPs treatment groups. OCPs changed metabolite profiles in liver tissues, varied hepatic fatty acid compositions and levels of several TCA cycle metabolites. Furthermore, MitoTracker Green fluorescence, ATP levels, mitochondrial membrane potential and OCR decreased in HepG2 cells exposed to OCPs. In conclusion, chronic exposure to OCPs at doses equivalent to internal exposures in humans impaired mitochondrial function, decreased fatty acid β-oxidation and aggravated disorders of fatty acid metabolism.
Collapse
Affiliation(s)
- Qian Liu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai, 201200, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qihan Wang
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wentao Shao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunlan Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hui Liu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhaoyan Jiang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai, 201200, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Sruthi SN, Shyleshchandran MS, Mathew SP, Ramasamy EV. Contamination from organochlorine pesticides (OCPs) in agricultural soils of Kuttanad agroecosystem in India and related potential health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:969-978. [PMID: 27761868 DOI: 10.1007/s11356-016-7834-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
The presence and distribution of a few organochlorine pesticides (OCPs) in the paddy fields of the Kuttanad agroecosystem (KAE) was examined in the present study. Kuttanad forms a part of the Vembanad wetland system which is a Ramsar site of international importance in the state of Kerala. This study, to the best of our knowledge, is the first report on the occurrence of OCP residues in KAE. Pesticide residue analysis was done with gas chromatograph (GC-ECD). Twenty-one soil samples were collected for the multiresidual analysis of OCPs. Sixteen OCP residues with a notable concentration were observed from the study area. α-BHC; β-BHC; γ-BHC; δ-BHC; α-chlordane; γ-chlordane; heptachlor; 4,4-DDT; 4,4-DDE; 4,4-DDD; α-endosulfan; β-endosulfan; aldrin; dieldrin; endrin aldehyde; and endrin ketone were the residues observed. The percentage-wise occurrence of OCP residues in the soil samples analysed (total of 63 samples from 21 sites, three samples per site) exhibits the following order: Σ BHC˃ Σ chlordane ˃ Σ dieldrin ˃ Σ aldrin ˃ Σ endrin˃ Σ heptachlor = endosulfan˃ Σ DDT. All pesticides detected from KAE are in the list of priority pollutants of US Environmental Protection Agency (USEPA). The distribution pattern of OCPs in the KAE soils revealed their origin as both historical and recent application of pesticides. Health risk assessment of OCP residues on human population was also conducted. The findings indicated that the concentrations of OCPs were within the permissible limits of USEPA, thus, the human population in the study area was safe.
Collapse
Affiliation(s)
- S N Sruthi
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - M S Shyleshchandran
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Sunil Paul Mathew
- School of Environmental Sciences and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - E V Ramasamy
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| |
Collapse
|
37
|
Cui L, Wei L, Wang J. Residues of organochlorine pesticides in surface water of a megacity in central China: seasonal-spatial distribution and fate in Wuhan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1975-1986. [PMID: 27798806 DOI: 10.1007/s11356-016-7956-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
Surface water quality closely correlating with human health suffered increasing organochlorine pesticide (OCP) pollution due to the intensive anthropogenic activities in megacities. In the present study, 112 water samples collected from 14 lakes and 11 drinking water source sites in Wuhan were detected for the residues of OCPs in November 2013 and July 2014, respectively. The ΣOCPs ranged from 5.61 to 13.62 ng L-1 in summer with the maximum value in Yezhi Lake and 3.18 to 7.73 ng L-1 in winter with the highest concentration in Yandong Lake. Except dichlorodiphenyltrichloroethanes (DDTs), OCP concentrations in summer were significantly higher than those in winter mostly due to the non-point source pollution including land runoff in summer. Source apportionment of hexachlorocyclohexanes (HCHs) and DDTs revealed the historical use of technical HCH and lindane and the new input of DDT, respectively. The spatial distribution of OCPs was not uniform in the surface water of Wuhan because of the significant influence of land development and fishery. The risk assessments showed the heptachlor, and heptachlor epoxide in most sampling sites exceeded the threshold set by the European Union, indicating the possible adverse effects for aquatic lives. Negligible non-carcinogenic risks for drinking and bathing as well as carcinogenic risks for bathing were found in the surface water. However, the total carcinogenic risks of all OCPs (∑Rs) caused by drinking in summer were higher than the safe level of 10-7 in all sampling sites. It was implied that the surface water in Wuhan was not safe for directly drinking without effective purification.
Collapse
Affiliation(s)
- Lili Cui
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangfu Wei
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
38
|
Human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in smoked fish species from markets in Southern Nigeria. Toxicol Rep 2016; 4:55-61. [PMID: 28959625 PMCID: PMC5615098 DOI: 10.1016/j.toxrep.2016.12.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/19/2016] [Accepted: 12/26/2016] [Indexed: 12/04/2022] Open
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) levels in four commonly consumed smoked fish species from markets in Southern Nigeria were assessed to evaluate possible human health risks associated with consumption. Varying levels of PAH congeners were observed in the fish tissues with the highest total concentration of PAHs in Scomber scombrus. High concentrations of benzo(a)pyrene was observed in Clarias gariepinus and Ethmalosa fimbriata with values above the guideline value of 0.05 mg/kg. The Dietary Daily Intake (DDI) value for total PAHs (∑PAHs) was highest for S. scombrus while the DDI value for the total carcinogenic PAHs (∑CPAHs) was highest for E. fimbriata. Carcinogenic human health risk assessment using carcinogenic toxic equivalents (TEQ), indicated that consumption of E. fimbriata has a higher potential to cause carcinogenic risks. TEQ values for all the fish species were however, below the estimated screening value (SV) of 3.556 mg/kg, while the estimated cumulative excess cancer risk (ECR) for E. fimbriata and C. gariepinus and PAH4 index for all the assessed fish species exceeded threshold values indicating potential carcinogenic risk from consumption.
Collapse
|
39
|
Wu J, Lu J, Luo Y, Duan D, Zhang Z, Wen X, Min X, Guo X, Boman BJ. An overview on the organic pollution around the Qinghai-Tibet plateau: The thought-provoking situation. ENVIRONMENT INTERNATIONAL 2016; 97:264-272. [PMID: 27692924 DOI: 10.1016/j.envint.2016.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 06/06/2023]
Abstract
The Qinghai-Tibet Plateau plays an important role in the ecological safety and human health of the surroundings due to its unique geographical position and function. Therefore, it is necessary to study the pollution status and potential risk in this area. This study summarizes the distribution of different organic pollutants in biota and environmental media of the Qinghai-Tibet Plateau. Moreover, it also pays attention to the potential health risks of these organic pollutants. Organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) were the most frequently detected in different matrices. In general, the carcinogenic risks of organic pollutants were ranked in the very-low to moderate range for both children and adults. The carcinogenic risks of organic pollutants in fish, food, and water for children were 1-2 times higher than those for adults, while risks of organic pollutants in soil/sediment and in air for children were generally 10.6-16.5 and 2.6-2.8 times higher than those for adults, respectively. The maximal hazard quotient for non-carcinogenic risk was 0.95 (potential risk for children posed by organic pollutants in yak milk of Ruoergai), almost reaching an unacceptable level. Therefore, the potential health risks could not be neglected, especially for children who were more likely to be affected by the pollutants.
Collapse
Affiliation(s)
- Jun Wu
- Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, People's Republic of China
| | - Jian Lu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, People's Republic of China.
| | - Yongming Luo
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, People's Republic of China
| | - Dongping Duan
- Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, People's Republic of China
| | - Zhenhua Zhang
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong 264025, People's Republic of China
| | - Xiaohu Wen
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, People's Republic of China
| | - Xiuyun Min
- Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, People's Republic of China
| | - Xiaoying Guo
- Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, People's Republic of China
| | - Brian J Boman
- Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945-3138, USA
| |
Collapse
|
40
|
Niu L, Xu C, Zhu S, Liu W. Residue patterns of currently, historically and never-used organochlorine pesticides in agricultural soils across China and associated health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:315-322. [PMID: 27814548 DOI: 10.1016/j.envpol.2016.10.060] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Organochlorine pesticides (OCPs) with different usage states, such as currently, historically or never used, may show different behaviors and potential risks in the environment. It is essential to identify their distribution patterns and fates and to assess their associated health risks to humans. In this study, based on a nationwide sampling campaign across China, we determined the concentrations of currently (endosulfan), historically (chlordane and heptachlor) and never-used (aldrin, dieldrin and endrin) OCPs in agricultural soils. The total residue inventories of ∑Endosulfans, ∑Chlordanes, heptachlor and ∑Drins in soils were 260, 64.3, 54.2 and 88.6 t, respectively. The residues of endosulfan were influenced by current usage, showing a latitude transect trend. Drins were mainly from long-range transport, but the illegal usage in China still affected their residues. This finding indicates that endosulfan and drins in Chinese agricultural soils mainly follow the primary and secondary distribution pattern, respectively. Both primary and secondary distribution have a great impact on the distribution pattern of chlordane, which had been banned for only 4 years at the time we sampled. The health risks of these OCPs were estimated based on their concentrations. There were 0.813% and 1.63% of samples that exceeded the target values for chlordane and endrin according to the Netherlands guideline for unpolluted soil. Their residues in most of the samples posed no or few non-carcinogenic and carcinogenic risks to human beings. The results from this study will provide powerful support for pollution control and management.
Collapse
Affiliation(s)
- Lili Niu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Siyu Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiping Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
41
|
Bajwa A, Ali U, Mahmood A, Chaudhry MJI, Syed JH, Li J, Zhang G, Jones KC, Malik RN. Organochlorine pesticides (OCPs) in the Indus River catchment area, Pakistan: Status, soil-air exchange and black carbon mediated distribution. CHEMOSPHERE 2016; 152:292-300. [PMID: 26978705 DOI: 10.1016/j.chemosphere.2016.01.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/08/2015] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
Organochlorine pesticides (OCPs) were investigated in passive air and soil samples from the catchment area of the Indus River, Pakistan. ∑15OCPs ranged between 0.68 and 13.47 ng g(-1) in soil and 375.1-1975 pg m-(3) in air. HCHs and DDTs were more prevalent in soil and air compartments. Composition profile indicated that β-HCH and p,p'-DDE were the dominant of all metabolites among HCHs and DDTs respectively. Moreover, fBC and fTOC were assessed and evaluated their potential role in the distribution status of OCPs. The fTOC and fBC ranged between 0.77 and 2.43 and 0.04-0.30% respectively in soil. Regression analysis showed the strong influence of fBC than fTOC on the distribution of OCPs in the Indus River catchment area soil. Equilibrium status was observed for β-HCH, δ-HCH, p,p'-DDD, o,p'-DDT, TC, HCB and Heptachlor with ff ranged between 0.3 and 0.59 while assessing the soil-air exchange of OCPs.
Collapse
Affiliation(s)
- Anam Bajwa
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Usman Ali
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Adeel Mahmood
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, P.O. 45550, Pakistan
| | | | - Jabir Hussain Syed
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Kevin C Jones
- Centre for Chemicals Management, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
42
|
Ogbeide O, Tongo I, Ezemonye L. Assessing the distribution and human health risk of organochlorine pesticide residues in sediments from selected rivers. CHEMOSPHERE 2016; 144:1319-1326. [PMID: 26476770 DOI: 10.1016/j.chemosphere.2015.09.108] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
Sediment samples from major agricultural producing areas in Edo state Nigeria were analysed for α-HCH, γ-HCH, β-HCH and ∑DDT with the aim of elucidating contamination profiles, distribution characteristics, carcinogenic and non-carcinogenic risk of these compounds in these regions. Analysis was done using a gas chromatography (GC) equipped with electron capture detector (ECD), while health risk assessment was carried out using the Incremental Lifetime Cancer Risk (ILCR) and the chronic daily intake (CDI). Results showed varying concentrations of α-HCH, γ-HCH, β-HCH and ∑DDT pesticides in sediment samples with hexachlorocyclohexane (∑HCHs) (4.6 µg/g/dw) being the dominant contaminants as it was widely detected in all samples and stations. Source identification revealed that the current levels of HCHs and DDT in sediments were attributed to both historical use and fresh usage of these pesticides. Risk estimates using ILCR and CDI showed that the risk of cancer and non-cancer effects was highest when exposure route was through ingestion. Furthermore, model projections highlights children as high risk population groups for non-dietary exposure to OCPs. These findings suggests the need for increased monitoring programmes, with a wider scope for both currently used pesticides and legacy/banned pesticides.
Collapse
Affiliation(s)
- Ozekeke Ogbeide
- Laboratory for Ecotoxicology and Environmental Forensics, University of Benin, Benin City, Nigeria; Department of Environmental Management and Toxicology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria.
| | - Isioma Tongo
- Laboratory for Ecotoxicology and Environmental Forensics, University of Benin, Benin City, Nigeria; Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria.
| | - Lawrence Ezemonye
- Laboratory for Ecotoxicology and Environmental Forensics, University of Benin, Benin City, Nigeria; Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria.
| |
Collapse
|