1
|
Mohsen M, Ismail S, Yuan X, Yu Z, Lin C, Yang H. Sea cucumber physiological response to abiotic stress: Emergent contaminants and climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172208. [PMID: 38583632 DOI: 10.1016/j.scitotenv.2024.172208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The ocean is facing a multitude of abiotic stresses due to factors such as climate change and pollution. Understanding how organisms in the ocean respond to these global changes is vital to better predicting consequences. Sea cucumbers are popular echinoderms with multiple ecological, nutritional, and pharmaceutical benefits. Here, we reviewed the effects of environmental change on an ecologically important echinoderm of the ocean, aiming to understand their response better, which could facilitate healthy culture programs under environmental changes and draw attention to knowledge gaps. After screening articles from the databases, 142 studies were included on the influence of emergent contaminants and climate variation on the early developmental stages and adults of sea cucumbers. We outlined the potential mechanism underlying the physiological response of sea cucumbers to emerging contaminants and climate change. It can be concluded that the physiological response of sea cucumbers to emergent contaminants differs from their response to climate change. Sea cucumbers could accumulate pollutants in their organs but are aestivated when exposed to extreme climate change. Research showed that the physiological response of sea cucumbers to pollutants indicates that these pollutants impair critical physiological processes, particularly during the more susceptible early phases of development compared to adults, and the accumulation of these pollutants in adults is often observed. For climate change, sea cucumbers showed gradual adaptation to the slight variation. However, sea cucumbers undergo aestivation under extreme conditions. Based on this review, critical suggestions for future research are presented, and we call for more efforts focusing on the co-occurrence of different stressors to extend the knowledge regarding the effects of environmental changes on these economically and ecologically important species.
Collapse
Affiliation(s)
- Mohamed Mohsen
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, Fujian 361021, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Fish Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Sherif Ismail
- Environmental Engineering Department, Zagazig University, Zagazig City, 44519, Egypt; Civil and Environmental Engineering Department, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Xiutang Yuan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zonghe Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
2
|
Li X, Niu H, Huang Z, Zhang M, Xing M, Chen Z, Wu L, Xu P. Deciphering the Role of the Gut Microbiota in Exposure to Emerging Contaminants and Diabetes: A Review. Metabolites 2024; 14:108. [PMID: 38393000 PMCID: PMC10890638 DOI: 10.3390/metabo14020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Emerging pollutants, a category of compounds currently not regulated or inadequately regulated by law, have recently become a focal point of research due to their potential toxic effects on human health. The gut microbiota plays a pivotal role in human health; it is particularly susceptible to disruption and alteration upon exposure to a range of toxic environmental chemicals, including emerging contaminants. The disturbance of the gut microbiome caused by environmental pollutants may represent a mechanism through which environmental chemicals exert their toxic effects, a mechanism that is garnering increasing attention. However, the discussion on the toxic link between emerging pollutants and glucose metabolism remains insufficiently explored. This review aims to establish a connection between emerging pollutants and glucose metabolism through the gut microbiota, delving into the toxic impacts of these pollutants on glucose metabolism and the potential role played by the gut microbiota.
Collapse
Affiliation(s)
- Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Huixia Niu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Zhengliang Huang
- Disease Prevention and Control Center of Jingning She Autonomous County, Lishui 323500, China
| | - Man Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| |
Collapse
|
3
|
Niu H, Xu M, Tu P, Xu Y, Li X, Xing M, Chen Z, Wang X, Lou X, Wu L, Sun S. Emerging Contaminants: An Emerging Risk Factor for Diabetes Mellitus. TOXICS 2024; 12:47. [PMID: 38251002 PMCID: PMC10819641 DOI: 10.3390/toxics12010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024]
Abstract
Emerging contaminants have been increasingly recognized as critical determinants in global public health outcomes. However, the intricate relationship between these contaminants and glucose metabolism remains to be fully elucidated. The paucity of comprehensive clinical data, coupled with the need for in-depth mechanistic investigations, underscores the urgency to decipher the precise molecular and cellular pathways through which these contaminants potentially mediate the initiation and progression of diabetes mellitus. A profound understanding of the epidemiological impact of these emerging contaminants, as well as the elucidation of the underlying mechanistic pathways, is indispensable for the formulation of evidence-based policy and preventive interventions. This review systematically aggregates contemporary findings from epidemiological investigations and delves into the mechanistic correlates that tether exposure to emerging contaminants, including endocrine disruptors, perfluorinated compounds, microplastics, and antibiotics, to glycemic dysregulation. A nuanced exploration is undertaken focusing on potential dietary sources and the consequential role of the gut microbiome in their toxic effects. This review endeavors to provide a foundational reference for future investigations into the complex interplay between emerging contaminants and diabetes mellitus.
Collapse
Affiliation(s)
- Huixia Niu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Manjin Xu
- School of Public Health, Xiamen University, Xiang’an South Road, Xiang’an District, Xiamen 361102, China; (M.X.); (Y.X.)
| | - Pengcheng Tu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Yunfeng Xu
- School of Public Health, Xiamen University, Xiang’an South Road, Xiang’an District, Xiamen 361102, China; (M.X.); (Y.X.)
| | - Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
4
|
Mostafa A, Elsamadony M, Khalil TE, Elhusseiny AF, Tawfik A, Fujii M, El-Dissouky A, Pant D. Bioelectrochemical system for enhancing anaerobic digestion of pharmaceutical-containing domestic wastewater. CHEMOSPHERE 2023; 339:139766. [PMID: 37562503 DOI: 10.1016/j.chemosphere.2023.139766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The unprecedented recent expansion in usage of paracetamol (AAP) has increased the need for suitable wastewater treatment technology. Furthermore, direct interspecies electron transfer promotion (DIET) offers simple and efficient approach for enhancing anaerobic digestion (AD). In this work, using AAP-containing domestic wastewater as feed, control AD reactor (RC) was operated, besides three DIET-promoted AD reactors (REV, RMC and REVMC, referring to electrical voltage "EV"-applied, nFe3O4-multiwall carbon nanotube (MCNT)-supplemented, and "EV applied + MCNT supplemented" reactor, respectively). Maximal treatable organic loading rates by RC, REV, RMC and REVMC were 3.9, 3.9, 7.8 and 15.6 g COD/L/d, corresponding to AAP loading rate of 26, 78, 156 and 312 μg/L/d, respectively. Methane production rate generated by RC, REV, RMC and REVMC reached 0.80 ± 0.01, 0.86 ± 0.04, 1.40 ± 0.07, and 3.01 ± 0.17 L/L/d, respectively. AAP expectedly followed hydroquinone degradation pathway, causing AD failure by acetate accumulation. However, this performance deterioration could be mitigated by DIET-promoted microbes with higher methanogenic activity and advanced electric conductivity. Economic evaluation revealed the favourability of MCNT addition over EV application, since payback periods for RC, REV, RMC and REVMC were 6.2, 7.7, 4.2 and 5.0 yr, respectively.
Collapse
Affiliation(s)
- Alsayed Mostafa
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Mohamed Elsamadony
- Civil and Environmental Engineering Department, Tokyo Institute of Technology, Meguro-Ku, Tokyo, 152-8552, Japan; Department of Public Works Engineering, Faculty of Engineering, Tanta University, 31521, Tanta, Egypt
| | - Tarek E Khalil
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amel F Elhusseiny
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, 12622, Dokki, Cairo, Egypt
| | - Manabu Fujii
- Civil and Environmental Engineering Department, Tokyo Institute of Technology, Meguro-Ku, Tokyo, 152-8552, Japan
| | - Ali El-Dissouky
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| |
Collapse
|
5
|
Pozzebon EA, Seifert L. Emerging environmental health risks associated with the land application of biosolids: a scoping review. Environ Health 2023; 22:57. [PMID: 37599358 PMCID: PMC10440945 DOI: 10.1186/s12940-023-01008-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Over 40% of the six million dry metric tons of sewage sludge, often referred to as biosolids, produced annually in the United States is land applied. Biosolids serve as a sink for emerging pollutants which can be toxic and persist in the environment, yet their fate after land application and their impacts on human health have not been well studied. These gaps in our understanding are exacerbated by the absence of systematic monitoring programs and defined standards for human health protection. METHODS The purpose of this paper is to call critical attention to the knowledge gaps that currently exist regarding emerging pollutants in biosolids and to underscore the need for evidence-based testing standards and regulatory frameworks for human health protection when biosolids are land applied. A scoping review methodology was used to identify research conducted within the last decade, current regulatory standards, and government publications regarding emerging pollutants in land applied biosolids. RESULTS Current research indicates that persistent organic compounds, or emerging pollutants, found in pharmaceuticals and personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS) have the potential to contaminate ground and surface water, and the uptake of these substances from soil amended by the land application of biosolids can result in contamination of food sources. Advanced technologies to remove these contaminants from wastewater treatment plant influent, effluent, and biosolids destined for land application along with tools to detect and quantify emerging pollutants are critical for human health protection. CONCLUSIONS To address these current risks, there needs to be a significant investment in ongoing research and infrastructure support for advancements in wastewater treatment; expanded manufacture and use of sustainable products; increased public communication of the risks associated with overuse of pharmaceuticals and plastics; and development and implementation of regulations that are protective of health and the environment.
Collapse
Affiliation(s)
- Elizabeth A Pozzebon
- California Conference of Directors of Environmental Health, P.O. Box 2017, Cameron Park, CA, 95682-2017, USA
| | - Lars Seifert
- California Conference of Directors of Environmental Health, P.O. Box 2017, Cameron Park, CA, 95682-2017, USA.
| |
Collapse
|
6
|
Wang Q, Xu Y, Du W, Yin Y, Wu X, Sun F, Ji R, Guo H. Divergence in the distribution of di(2-ethylhexyl) phthalate (DEHP) in two soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80154-80161. [PMID: 37294490 DOI: 10.1007/s11356-023-27815-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
Understanding the distribution of di(2-ethylhexyl) phthalate (DEHP) is necessary for future risk evaluation of DEHP in agricultural soils. This study used 14C-labeled DEHP to examine its volatilization, mineralization, extractable residues, and non-extractable residues (NERs) incubated in Chinese typical red and black soil with/without Brassica chinensis L. Results showed that after incubated for 60 days, 46.3% and 95.4% of DEHP were mineralized or transformed into NERs in red and black soil, respectively. The distribution of DEHP in humic substances as NER descended in order: humin > fulvic acids > humic acids. DEHP in black soil was more bioavailable, with 6.8% of initial applied radioactivity left as extractable residues at the end of incubation when compared with red soil (54.5%). Planting restrained the mineralization of DEHP by 18.5% and promoted the extractable residues of DEHP by 1.5% for black soil, but no such restrain was observed in red soil. These findings provide valuable information for understanding the distribution of DEHP in different soils and develop the understanding for the risk assessments of PAEs in typical soils.
Collapse
Affiliation(s)
- Qiutang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yanwen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Xuan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Feifei Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
7
|
Ariyani M, Yusiasih R, Sri Endah E, Gustini Koesmawati T, Susanto Ridwan Y, Rohman O, Wulan DR, Bachri Amran M, Margaret Pitoi M. Pyrethroid residues in Indonesian river Citarum: A simple analytical method applied for an ecological and human health risk assessment. CHEMOSPHERE 2023:139067. [PMID: 37279820 DOI: 10.1016/j.chemosphere.2023.139067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/20/2023] [Accepted: 05/27/2023] [Indexed: 06/08/2023]
Abstract
Pyrethroid residues in the Citarum River, Indonesia, was first investigated based on their occurrences, water assimilative capacity, and risk assessment. In this paper, first, a relatively simple and efficient method was built and validated for analysis of seven pyrethroids in river water matrix: bifenthrin, fenpropathrin, permethrin, β-cyfluthrin, cypermethrin, fenvalerate, and deltamethrin. Next, the validated method was used to analyze pyrethroids in the Citarum River. Three pyrethroids, β-cyfluthrin, cypermethrin, and deltamethrin, were detected in some sampling points with concentration up to 0.01 mg/L. Water assimilative capacity evaluation shows that β-cyfluthrin and deltamethrin pollution exceed the Citarum river water capacity. However, due to hydrophobicity properties of pyrethroids, removal through binding to sediments are expected. Ecotoxicity risk assessment shows that β-cyfluthrin, cypermethrin and deltamethrin pose risks to the aquatic organisms in the Citarum River and its tributaries through bioaccumulation in food chain. Based on bioconcentration factors of the detected pyrethroids, β-cyfluthrin poses the highest adverse effect to humans while cypermethrin is the safest. Human risk assessment based on hazard index suggests that acute non-carcinogenic risk associated to consuming fish from the study location polluted with β-cyfluthrin, cypermethrin and deltamethrin is unlikely. However, hazard quotient shows that chronic non-carcinogenic risk associated to consuming fish from the study location polluted with β-cyfluthrin is likely. However, since the risk assessment was performed separately for each pyrethroid, further assessment on the impact of mixture pyrethroid to aquatic organisms and humans should be performed to explore the real impact of pyrethroids to the river system.
Collapse
Affiliation(s)
- Miranti Ariyani
- National Research and Innovation Agency Indonesian - Research Center for Environmental and Clean Technology, KST Samaun Samadikun, Jl. Sangkuriang, Bandung, 40135, Indonesia; Water System and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, Netherlands
| | - Retno Yusiasih
- National Research and Innovation Agency Indonesian - Research Center for Environmental and Clean Technology, KST Samaun Samadikun, Jl. Sangkuriang, Bandung, 40135, Indonesia
| | - Een Sri Endah
- National Research and Innovation Agency Indonesian - Research Center for Applied Microbiology, KST Samaun Samadikun, Jl. Sangkuriang, Bandung, 40135, Indonesia
| | - Tiny Gustini Koesmawati
- National Research and Innovation Agency Indonesian - Research Center for Environmental and Clean Technology, KST Samaun Samadikun, Jl. Sangkuriang, Bandung, 40135, Indonesia
| | - Yohanes Susanto Ridwan
- National Research and Innovation Agency Indonesian - Research Center for Environmental and Clean Technology, KST Samaun Samadikun, Jl. Sangkuriang, Bandung, 40135, Indonesia
| | - Oman Rohman
- National Research and Innovation Agency Indonesian - Research Center for Environmental and Clean Technology, KST Samaun Samadikun, Jl. Sangkuriang, Bandung, 40135, Indonesia
| | - Diana Rahayuning Wulan
- National Research and Innovation Agency Indonesian - Research Center for Environmental and Clean Technology, KST Samaun Samadikun, Jl. Sangkuriang, Bandung, 40135, Indonesia
| | | | - Mariska Margaret Pitoi
- National Research and Innovation Agency Indonesian - Research Center for Environmental and Clean Technology, KST Samaun Samadikun, Jl. Sangkuriang, Bandung, 40135, Indonesia; Analytical Chemistry Research Group, Institut Teknologi Bandung, Bandung, Indonesia.
| |
Collapse
|
8
|
Long Y, Song L, Shu Y, Li B, Peijnenburg W, Zheng C. Evaluating the spatial and temporal distribution of emerging contaminants in the Pearl River Basin for regulating purposes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114918. [PMID: 37086620 DOI: 10.1016/j.ecoenv.2023.114918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Little information is available on how the types, concentrations, and distribution of chemicals have evolved over the years. The objective of the present study is therefore to review the spatial and temporal distribution profile of emerging contaminants with limited toxicology data in the pearl river basin over the years to build up the emerging contaminants database in this region for risk assessment and regulatory purposes. The result revealed that seven groups of emerging contaminants were abundant in this region, and many emerging contaminants had been detected at much higher concentrations before 2011. Specifically, antibiotics, phenolic compounds, and acidic pharmaceuticals were the most abundant emerging contaminants detected in the aquatic compartment, while phenolic compounds were of the most profound concern in soil. Flame retardants and plastics were the most frequently studied chemicals in organisms. The abundance of the field concentrations and frequencies varied considerably over the years, and currently available data can hardly be used for regulation purposes. It is suggested that watershed management should establish a regular monitoring scheme and comprehensive database to monitor the distribution of emerging contaminants considering the highly condensed population in this region. The priority monitoring list should be formed in consideration of historical abundance, potential toxic effects of emerging contaminants as well as the distribution of heavily polluting industries in the region.
Collapse
Affiliation(s)
- Ying Long
- Shenzhen Institute of Sustainable Development, Southern University of Science and Technology, Shenzhen 518055, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lan Song
- Shenzhen Institute of Sustainable Development, Southern University of Science and Technology, Shenzhen 518055, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yaqing Shu
- School of Navigation, Wuhan University of Technology, Wuhan 430063, China
| | - Bing Li
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Willie Peijnenburg
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Institute of Environmental Sciences (CML), Leiden University, Leiden RA 2300, the Netherlands
| | - Chunmiao Zheng
- Shenzhen Institute of Sustainable Development, Southern University of Science and Technology, Shenzhen 518055, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Yuan Y, Jia H, Xu D, Wang J. Novel method in emerging environmental contaminants detection: Fiber optic sensors based on microfluidic chips. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159563. [PMID: 36265627 DOI: 10.1016/j.scitotenv.2022.159563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Recently, human industrial practices and certain activities have caused the widespread spread of emerging contaminants throughout the environmental matrix, even in trace amounts, which constitute a serious threat to human health and environmental ecology, and have therefore attracted the attention of research scholars. Different traditional techniques are used to monitor water pollutants, However, they still have some disadvantages such as high costs, ecological problems and treatment times, and require technicians and researchers to operate them effectively. There is therefore an urgent need to develop simple, inexpensive and highly sensitive methods to sense and detect these toxic environmental contaminants. Optical fiber microfluidic coupled sensors offer different advantages over other detection technologies, allowing manipulation of light through controlled microfluidics, precise detection results and good stability, and have therefore become a logical device for screening and identifying environmental contaminants. This paper reviews the application of fiber optic microfluidic sensors in emerging environmental contaminant detection, focusing on the characteristics of different emerging contaminant types, different types of fiber optic microfluidic sensors, methodological principles of detection, and specific emerging contaminant detection applications. The optical detection methods in fiber optic microfluidic chips and their respective advantages and disadvantages are analyzed in the discussion. The applications of fiber optic biochemical sensors in microfluidic chips, especially for the detection of emerging contaminants in the aqueous environment, such as personal care products, endocrine disruptors, and perfluorinated compounds, are reviewed. Finally, the prospects of fiber optic microfluidic coupled sensors in environmental detection and related fields are foreseen.
Collapse
Affiliation(s)
- Yang Yuan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - DanYu Xu
- Tianjin Academy of Eco-enviromental Sciences, Tianjin 300191, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
10
|
Xing H, Yu X, Huang J, Du X, Wang M, Sun J, Lu G, Tao X. Characteristics and Health Risks of Phthalate Ester Contamination in Soil and Plants in Coastal Areas of South China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159516. [PMID: 35954873 PMCID: PMC9367859 DOI: 10.3390/ijerph19159516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023]
Abstract
Phthalate esters (PAEs) are widely used as plasticizers in industrial and commercial products, and are classified as endocrine-disrupting compounds. In this study, we investigated the contamination characteristics and health risks of PAEs in the soil–plant system in coastal areas of South China. PAEs were detected in soil and plant samples at all 37 sampling sites. The total concentration of the 15 PAEs in soil samples ranged from 0.445 to 4.437 mg/kg, and the mean concentration was 1.582 ± 0.937 mg/kg. The total concentration of the 15 PAEs in plant samples ranged from 2.176 to 30.276 mg/kg, and the mean concentration was 8.712 ± 5.840 mg/kg. Di(2-Ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) were the major PAEs compounds in all samples. The selected contaminants exhibited completely different spatial distributions within the study area. Notably, higher concentrations of PAEs were found in the coastal Guangdong Province of South China. The average noncarcinogenic risks of Σ6 PAEs were at acceptable levels via dietary and nondietary routes. However, the noncarcinogenic risks posed by DEHP and DBP at some sampling sites were relatively high. Furthermore, dietary and nondietary carcinogenic risks were very low for BBP, but carcinogenic risks posed by DEHP via diet. The results suggest that PAEs in the coastal soil–plant system in South China, through human risk assessment, will induce some adverse effects on human health, especially in children. This study provides an important basis for risk management of PAEs in agriculture, and safety in coastal areas of South China.
Collapse
Affiliation(s)
- Huanhuan Xing
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; (H.X.); (X.D.); (M.W.)
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (X.Y.); (J.H.)
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (X.Y.); (J.H.)
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (X.Y.); (J.H.)
| | - Xiaodong Du
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; (H.X.); (X.D.); (M.W.)
| | - Mengting Wang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; (H.X.); (X.D.); (M.W.)
| | - Jianteng Sun
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; (H.X.); (X.D.); (M.W.)
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (X.Y.); (J.H.)
- Correspondence: (J.S.); (G.L.)
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; (H.X.); (X.D.); (M.W.)
- Correspondence: (J.S.); (G.L.)
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| |
Collapse
|
11
|
Khan S, Naushad M, Govarthanan M, Iqbal J, Alfadul SM. Emerging contaminants of high concern for the environment: Current trends and future research. ENVIRONMENTAL RESEARCH 2022; 207:112609. [PMID: 34968428 DOI: 10.1016/j.envres.2021.112609] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 05/11/2023]
Abstract
Wastewater is contaminated water that must be treated before it may be transferred into other rivers and lakes in order to prevent further groundwater pollution. Over the last decade, research has been conducted on a wide variety of contaminants, but the emerging contaminants are those caused primarily by micropollutants, endocrine disruptors (EDs), pesticides, pharmaceuticals, hormones, and toxins, as well as industrially-related synthetic dyes and dye-containing hazardous pollutants. Most emerging pollutants did not have established guidelines, but even at low concentrations they could have harmful effects on humans and aquatic organisms. In order to combat the above ecological threats, huge efforts have been done with a view to boosting the effectiveness of remediation procedures or developing new techniques for the detection, quantification and efficiency of the samples. The increase of interest in biotechnology and environmental engineering gives an opportunity for the development of more innovative ways to water treatment remediation. The purpose of this article is to provide an overview of emerging sources of contaminants, detection technologies, and treatment strategies. The goal of this review is to evaluate adsorption as a method for treating emerging pollutants, as well as sophisticated and cost-effective approaches for treating emerging contaminants.
Collapse
Affiliation(s)
- Shamshad Khan
- School of Geography and Resources Science, Neijiang Normal University, Neijiang, 641100, China.
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| | - Sulaiman M Alfadul
- King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| |
Collapse
|
12
|
Luo Y, Li J, Gao W, Gao L, Ke R, Yang C, Wang Y, Gao Y, Wang Y, Jiang G. Exposure to short-, medium-, and long-chain chlorinated paraffins for infant via cow infant formula, goat infant formula and baby food. Food Chem Toxicol 2022; 165:113178. [DOI: 10.1016/j.fct.2022.113178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/26/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022]
|
13
|
Dürig W, Alygizakis NA, Wiberg K, Ahrens L. Application of a novel prioritisation strategy using non-target screening for evaluation of temporal trends (1969-2017) of contaminants of emerging concern (CECs) in archived lynx muscle tissue samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153035. [PMID: 35026275 DOI: 10.1016/j.scitotenv.2022.153035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Most environmental monitoring studies of contaminants of emerging concern (CECs) focus on aquatic species and target specific classes of CECs. Even with wide-scope target screening methods, relevant CECs may be missed. In this study, non-target screening (NTS) was used for tentative identification of potential CECs in muscle tissue of the terrestrial top predator Eurasian lynx (Lynx lynx). Temporal trend analysis was applied as a prioritisation tool for archived samples, using univariate statistical tests (Mann-Kendall and Spearman rank). Pooled lynx muscle tissue collected from 1969 to 2017 was analysed with an eight-point time series using a previously validated screening workflow. Following peak detection, peak alignment, and blank subtraction, 12,941 features were considered for statistical analysis. Prioritisation by time-trend analysis detected 104 and 61 features with statistically significant increasing and decreasing trends, respectively. Following probable molecular formula assignment and elucidation with MetFrag, two compounds with increasing trends, and one with a decreasing trend, were tentatively identified. These results show that, despite low expected concentration levels and high matrix effects in terrestrial species, it is possible to prioritise CECs in archived lynx samples using NTS and univariate statistical approaches.
Collapse
Affiliation(s)
- Wiebke Dürig
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Nikiforos A Alygizakis
- Environmental Institute, Okruzná 784/42, 97241 Koš, Slovak Republic; Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Greece.
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
14
|
Akram R, Iqbal R, Hussain R, Ali M. Effects of bisphenol a on hematological, serum biochemical, and histopathological biomarkers in bighead carp (Aristichthys nobilis) under long-term exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21380-21395. [PMID: 34757555 DOI: 10.1007/s11356-021-17329-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) is one of the highest volume chemicals produced in the world and is frequently used in dental sealants, water bottles, food, and beverage packaging. Due to persistent applications, BPA has become a potential threat to a variety of organisms including public health. In this study, a total of 80 bighead carps were randomly placed in different four groups (A-D). Fish in groups B, C, and D were exposed to BPA @500, 1000, and 1500 μg/L, respectively for 60 days. Fish in group A served as an untreated control group. The body weight was significantly decreased while the absolute and relative weight of different visceral organs increased significantly (p < 0.05) in fish exposed to higher concentration (1500 μg/L) of BPA. Results on proximate analysis showed significantly lower values of crude proteins, lipids, and moisture contents while increased contents of ash in muscles of treated fish. The erythrocyte counts, hemoglobin concentration, lymphocytes, and monocytes significantly decreased while total leukocyte and neutrophil counts significantly increased in treated fish. Results exhibited that different serum biochemistry parameters like serum albumin and total proteins decreased significantly (p < 0.05) while alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), urea, creatinine, glucose, cholesterol, and lactate dehydrogenase (LDH) increased significantly (p < 0.05) in treated fish. Histopathological ailments like pyknosis, degeneration of glomeruli, increased Bowman's space, ceroid formation in kidneys while ceroid formation, hemorrhages, pyknosis, karyorrhexis, karyolysis, nuclear hypertrophy, and eccentric nuclei were observed in the liver of treated fish. Histological observation of different sections of the brain of treated fish exhibited degeneration of neurons in the cerebellum, lipofuscin deposition, microgliosis, necrotic neurons, inflammatory cells, and hemorrhage. Results on light microscopic observation of different sections of the heart of bighead carp revealed necrosis, inflammatory reaction, neutrophilic myocarditis, and hemorrhages. In conclusion, it is suggested that BPA induces adverse effects on physical, blood-biochemical parameters, and histopathological changes in multiple visceral tissues of exposed fish.
Collapse
Affiliation(s)
- Rabia Akram
- Institute of Pure and Applied Biology, Zoology Division, Bhauddin Zakariya University, Multan, Pakistan
| | - Rehana Iqbal
- Institute of Pure and Applied Biology, Zoology Division, Bhauddin Zakariya University, Multan, Pakistan.
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary Sciences, Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Muhammad Ali
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| |
Collapse
|
15
|
Quality Control of Different Types of Honey and Propolis Collected from Romanian Accredited Beekeepers and Consumer’s Risk Assessment. CRYSTALS 2022. [DOI: 10.3390/cryst12010087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Honey is a natural product recognized and appreciated for its nutritional value and therapeutic potential. However, the quality of bee honey is essential because various contaminants can seriously affect consumers’ health. In the experimental part of the work, we analyzed different types of honey (linden, black locust, rapeseed and multifloral honey) and propolis, which were collected from Romanian accredited beekeepers who placed beehives in two areas characterized by different industrial activity: area 1 (A1) is an area with intense industrial activity, with other industries existing nearby, including a refinery, while area 2 (A2) is entirely devoid of industrial activity, but with moderate agricultural activity. A total of 144 samples were collected, twelve samples for each variety of honey, propolis and soil, corresponding to each area analyzed. In addition, seven heavy metals and three pesticides were tested for in the samples collected. Finally, the correlation between the degree of contamination with soil pollutants and the contamination of the bee products harvested from the analyzed areas was studied. Cadmium, lead, copper, zinc and the sum of DDT metabolites exceeded the maximum allowable levels in honey samples, with differences between different types of honey.
Collapse
|
16
|
Prakruthi K, Ujwal MP, Yashas SR, Mahesh B, Kumara Swamy N, Shivaraju HP. Recent advances in photocatalytic remediation of emerging organic pollutants using semiconducting metal oxides: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4930-4957. [PMID: 34797548 DOI: 10.1007/s11356-021-17361-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Many untreated and partly treated wastewater from the home and commercial resources is being discharged into the aquatic environment these days, which contains numerous unknown and complex natural and inorganic compounds. These compounds tend to persist, initiating severe environmental problems, which affect human health. Conventionally, physicochemical treatment methods were adopted to remove such complex organic chemicals, but they suffer from critical limitations. Over time, photocatalysis, an advanced oxidation process, has gained its position for its efficient and fair performance against emerging organic pollutant decontamination. Typically, photocatalysis is a green technology to decompose organics under UV/visible light at ambient conditions. Semiconducting nanometal oxides have emerged as pioneering photocatalysts because of large active surface sites, flexible oxidation states, various morphologies, and easy preparation. The current review presents an overview of emerging organic pollutants and their effects, advanced oxidation processes, photocatalytic mechanism, types of photocatalysts, photocatalyst support materials, and methods for improving photodegradation efficiency on the degradation of complex emerging organic pollutants. In addition, the recent reports of metal-oxide-driven photocatalytic remediation of emerging organic pollutants are presented in brief. This review is anticipated to reach a broader scientific community to understand the first principles of photocatalysis and review the recent advancements in this field.
Collapse
Affiliation(s)
- Komargoud Prakruthi
- Department of Environmental Engineering, JSS Science and Technology University, Mysuru , 570006, India
| | | | - Shivamurthy Ravindra Yashas
- Department of Environmental Science, Faculty of Natural Science, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Basavaraju Mahesh
- Department of Chemistry, JSS Academy of Technical Education, Dr. Vishnuvardhan Road, Bengaluru, 560060, India
| | - Ningappa Kumara Swamy
- Department of Chemistry, JSS Science and Technology University, Mysuru, 570006, India.
| | | |
Collapse
|
17
|
Luo X, Shu S, Feng H, Zou H, Zhang Y. Seasonal distribution and ecological risks of phthalic acid esters in surface water of Taihu Lake, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144517. [PMID: 33454488 DOI: 10.1016/j.scitotenv.2020.144517] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Phthalic acid esters (PAEs) are endocrine-disrupting compounds that are ubiquitous in surface water. However, early studies on PAEs only focused on six species on the priority contaminant list, and the seasonal variation in the PAE distribution in Taihu Lake, China is unclear. The present study investigated the occurrence, spatial distribution, and ecological risks of 16 PAEs in Taihu Lake during the dry, normal, and wet seasons. The results showed that dibutyl phthalate, diethylhexyl phthalate (DEHP), and diisobutyl phthalate (DIBP) were the major species detected in the surface water of Taihu Lake. The summed concentration of the six priority PAEs accounted for less than 50% of the total, indicating that the contamination of the other PAE congeners was non-negligible. Significant seasonal effects were observed that the total PAE concentration was higher in the wet season than in the dry season, and there were significant positive correlations between the total PAE concentration and rainfall, the water reserve, and the water level. In the dry season, a relatively high PAE level was detected in the area close to the inflow river estuary and the tourist island in the lake. The concentrations of PAEs in the lakeshore area were higher than those in the lake center in the normal season, and were generally high in the wet season. DEHP posed high risks for fish regardless of the season, while butyl benzyl phthalate, DIBP, dihexyl phthalate, and diphenyl phthalate also showed high risks in the normal and wet seasons. These results suggest that the contamination and risks of congeners other than the priority PAEs are also of necessary concern, and seasonal variation should be considered for a comprehensive understanding of PAE contamination in surface water.
Collapse
Affiliation(s)
- Xin Luo
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Shu Shu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hui Feng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China.
| | - Yun Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
18
|
Rathi BS, Kumar PS, Show PL. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124413. [PMID: 33183841 DOI: 10.1016/j.jhazmat.2020.124413] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/16/2020] [Accepted: 10/24/2020] [Indexed: 05/17/2023]
Abstract
Wastewater is water that has already been contaminated by domestic, industrial and commercial activity that needs to be treated before it could be discharged into some other water bodies to avoid even more groundwater contamination supplies. It consists of various contaminants like heavy metals, organic pollutants, inorganic pollutants and Emerging contaminants. Research has been doing on all types of contaminates more than a decade, but this emerging contaminants is the contaminants which arises mostly from pharmaceuticals, personal care products, hormones and fertilizer industries. The majority of emerging contaminants did not have standardized guidelines, but may have adverse effects on human and marine organisms, even at smaller concentrations. Typically, extremely low doses of emerging contaminants are found in the marine environment and cause a potential risk to the aquatic animals living there. When contaminants emerge in the marine world, they are potentially toxic and pose many risks to the health of both man and livestock. The aim of this article is to review the Emerging contaminate sources, detection methods and treatment methods. The purpose of this study is to consider the adsorption as a beneficial treatment of emerging contaminants also advanced and cost effective emerging contaminates treatment methods.
Collapse
Affiliation(s)
- B Senthil Rathi
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai 600119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; SSN-Centre for Radiation, Environmental Science and Technology (SSN-CREST), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Malaysia
| |
Collapse
|
19
|
Moghiseh Z, Rezaee A. Removal of aspirin from aqueous solution using electroactive bacteria induced by alternating current. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25327-25338. [PMID: 33453025 DOI: 10.1007/s11356-020-11365-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
This study aims to improve bacterial laccase enzyme activity (LEA) and dehydrogenase activity (DHA) affecting acetylsalicylic acid (ASA) biodegradation using an alternating current (AC). A microbial consortium was inoculated in an electroactive bioreactor supplied with an AC by a function generator under operating conditions of amplitude (AMPL) = 2-10 peak-to-peak voltage (Vpp), optical fiber splice tray (OFST) = 0.1 V, and sine wave frequency = 10 Hz. The obtained results revealed that at an applied voltage of 8 Vpp and an OFST of 0.1 for 12 h, the maximum bacterial LEA and DHA were 30.6 U/mL and 75.5 micro grTF/cm2.gr biomass; respectively. Cell viability and permeability were equal to 95.7% and 0.3%; respectively, at the voltage of 8 Vpp. Moreover, liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) analyses showed that by-products had lower intensity at 8 Vpp compared with that of 2 Vpp voltage. Finally, the results demonstrated an optimum applied voltage of the AC, which could stimulate and promote bacterial LEA and DHA. Therefore, an electroactive bioreactor supplied with an AC can be a novel system for stimulation of enzyme activities in the process of ASA biodegradation.
Collapse
Affiliation(s)
- Zohreh Moghiseh
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Rezaee
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
20
|
Trichoderma Strains and Metabolites Selectively Increase the Production of Volatile Organic Compounds (VOCs) in Olive Trees. Metabolites 2021; 11:metabo11040213. [PMID: 33807300 PMCID: PMC8066342 DOI: 10.3390/metabo11040213] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Plants emit volatile organic compounds (VOCs) that induce metabolomic, transcriptomic, and behavioral reactions in receiver organisms, including insect pollinators and herbivores. VOCs’ composition and concentration may influence plant-insect or plant-plant interactions and affect soil microbes that may interfere in plant-plant communication. Many Trichoderma fungi act as biocontrol agents of phytopathogens and plant growth promoters. Moreover, they can stimulate plant defense mechanisms against insect pests. This study evaluated VOCs’ emission by olive trees (Olea europaea L.) when selected Trichoderma fungi or metabolites were used as soil treatments. Trichoderma harzianum strains M10, T22, and TH1, T. asperellum strain KV906, T. virens strain GV41, and their secondary metabolites harzianic acid (HA), and 6-pentyl-α-pyrone (6PP) were applied to olive trees. Charcoal cartridges were employed to adsorb olive VOCs, and gas chromatography mass spectrometry (GC-MS) analysis allowed their identification and quantification. A total of 45 volatile compounds were detected, and among these, twenty-five represented environmental pollutants and nineteen compounds were related to olive plant emission. Trichoderma strains and metabolites differentially enhanced VOCs production, affecting three biosynthetic pathways: methylerythritol 1-phosphate (MEP), lipid-signaling, and shikimate pathways. Multivariate analysis models showed a characteristic fingerprint of each plant-fungus/metabolite relationship, reflecting a different emission of VOCs by the treated plants. Specifically, strain M10 and the metabolites 6PP and HA enhanced the monoterpene syntheses by controlling the MEP pathway. Strains GV41, KV906, and the metabolite HA stimulated the hydrocarbon aldehyde formation (nonanal) by regulating the lipid-signaling pathway. Finally, Trichoderma strains GV41, M10, T22, TH1, and the metabolites HA and 6PP improve aromatic syntheses at different steps of the shikimate pathway.
Collapse
|
21
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Rose M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of hexabromocyclododecanes (HBCDDs) in food. EFSA J 2021; 19:e06421. [PMID: 33732387 PMCID: PMC7938899 DOI: 10.2903/j.efsa.2021.6421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on hexabromocyclododecanes (HBCDDs) in food. HBCDDs, predominantly mixtures of the stereoisomers α-, β- and γ-HBCDD, were widely used additive flame retardants. Concern has been raised because of the occurrence of HBCDDs in the environment, food and in humans. Main targets for toxicity are neurodevelopment, the liver, thyroid hormone homeostasis and the reproductive and immune systems. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour in mice can be considered the critical effects. Based on effects on spontaneous behaviour in mice, the Panel identified a lowest observed adverse effect level (LOAEL) of 0.9 mg/kg body weight (bw) as the Reference Point, corresponding to a body burden of 0.75 mg/kg bw. The chronic intake that would lead to the same body burden in humans was calculated to be 2.35 μg/kg bw per day. The derivation of a health-based guidance value (HBGV) was not considered appropriate. Instead, the margin of exposure (MOE) approach was applied to assess possible health concerns. Over 6,000 analytical results for HBCDDs in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary LB exposure to HBCDDs were fish meat, eggs, livestock meat and poultry. The CONTAM Panel concluded that the resulting MOE values support the conclusion that current dietary exposure to HBCDDs across European countries does not raise a health concern. An exception is breastfed infants with high milk consumption, for which the lowest MOE values may raise a health concern.
Collapse
|
22
|
Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal. WATER 2021. [DOI: 10.3390/w13020181] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging pollutants (EPs) are chemicals known to cause major impacts on the terrestrial, aquatic life and human health as a result of their chronic and acute toxicity. Although lots of studies on EPs behavior in the aquatic environment are currently available in literature, an urgent requirement exists to complete toxicological studies and develop and implement efficient and ecological methods for their removal. This paper raises some relevant problems related to water environment pollution with EPs, the risks they can generate for aquatic life and humans and opportunities to reduce the effects of pollution by EPs removal. Categories of emerging chemicals of concern in the environment, their sources, fate and impacts, with some examples are discussed. Organic UV filters are shortly presented as a relative new EPs category, with a focus on the need to develop extensive experimental studies on their environmental occurrence, fate and removal. Furthermore, sources for the aquatic environment resulting from discharging EPs directly into rivers from wastewater treatment plants are examined. The incidence of environmental and human health risks related to EPs is also considered. The removal of EPs from the environment as a solution to risk mitigation is addressed, with emphasis on several non-conventional processes involving biological removal of EPs. The paper provides a critical look at the current challenges posed by the presence of emerging pollutants in the aquatic environment, with critical comments and recommendations for further research to reduce the impact of EPs on water and human health and improve the performance of developed methods for their removal.
Collapse
|
23
|
Ren W, Wang Y, Huang Y, Liu F, Teng Y. Uptake, translocation and metabolism of di-n-butyl phthalate in alfalfa (Medicago sativa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138974. [PMID: 32413654 DOI: 10.1016/j.scitotenv.2020.138974] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 05/22/2023]
Abstract
Uptake and metabolism by plants are important biotransformation processes of organic pollutants in ecosystems. However, very limited information is currently available on the metabolism of phthalic acid esters (PAEs) in plants. In this study, alfalfa, highly efficient in phytoremediation of PAE contaminated soil, was chosen as the model to understand the fate of di-n-butyl phthalate (DnBP) in remediation plant. The results of hydroponic experiments indicated that DnBP accumulated mainly in alfalfa roots and adsorption to root epidermis might be the primary uptake mechanism. A large proportion of DnBP was subjected to apparent metabolism. De-esterification could be specified to be the predominant metabolism pathway. Mono-n-butyl phthalate (MnBP) and phthalic acid (PA) were detected as DnBP metabolites in all alfalfa roots and shoots throughout the entire exposure period. Around >90% of MnBP were distributed in cell soluble components and organelles, and MnBP gradually transferred from organelles and cell walls to soluble components as the exposure time extended. Similar to MnBP, PA located mainly in soluble components and organelles as well, while no PA existed in alfalfa cell walls. Exposure to DnBP ultimately resulted in the coexistence of DnBP and MnBP for a long term in interior plants, raising concerns on their combined potential toxicity on plant health or even ecosystem.
Collapse
Affiliation(s)
- Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuting Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025,China
| | - Yiwen Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; School of Environment and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Fang Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025,China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
24
|
Nassar AM, Salim YM, Eid KS, Shaheen HM, Saati AA, Hetta HF, Elmistekawy A, Batiha GES. Ameliorative Effects of Honey, Propolis, Pollen, and Royal Jelly Mixture against Chronic Toxicity of Sumithion Insecticide in White Albino Rats. Molecules 2020; 25:molecules25112633. [PMID: 32517066 PMCID: PMC7321238 DOI: 10.3390/molecules25112633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022] Open
Abstract
Sumithion (Fenitrothion) (SUM) is an organophosphorus insecticide used to combat a wide variety of plant pests. Exposure to SUM causes significant toxicity to the brain, liver, kidney, and reproductive organs through, for example, binding to DNA, and it induces DNA damage, which ends with oxidative stress. Therefore, the present study aimed to examine the protective role of bee products: a mixture of honey, propolis, palm pollen, and royal jelly (HPPJ) against SUM-induced toxicity. Twenty-four male albino rats (Rattus norvegicus) were classified into four groups, each containing six rats: control (corn oil), SUM (85 mg/kg; 1/20 LD50), HPPJ, and SUM + HPPJ once daily for 28 consecutive days. Blood samples were gently collected in sterilized ethylenediaminetetraacetic acid (EDTA) tubes for blood picture analyses and tubes without anticoagulant for serum isolation. Serum was used for assays of enzymatic and biochemical characteristics. The results revealed that SUM increased the weights of the liver, kidney, and brain as well as the enzymatic activity of glutathione peroxidase (GP), serum superoxide dismutase (SOD), and glutathione-S-transferase (GST). Additionally, SUM significantly increased the activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and γ-glutamyltransferase (γ-GT) and glucose, uric acid, and creatinine contents, while decreasing the acetylcholine esterase (AChE) activity and total lipids and total protein content. Furthermore, because of the inclusion of phenolic, flavonoids, terpenoids, and sugars, the HPPJ mixture counteracted the hematological, renal, and hepatic toxicity of SUM exposure.
Collapse
Affiliation(s)
- Atef M.K. Nassar
- Plant Protection Department, Faculty of Agriculture, Damanhour University, Damanhour 22511, AlBeheira, Egypt; (Y.M.M.S.); (K.S.A.E.)
- Correspondence: (A.M.K.N.); (G.E.-S.B.)
| | - Yehia M.M. Salim
- Plant Protection Department, Faculty of Agriculture, Damanhour University, Damanhour 22511, AlBeheira, Egypt; (Y.M.M.S.); (K.S.A.E.)
| | - Khalid S.A. Eid
- Plant Protection Department, Faculty of Agriculture, Damanhour University, Damanhour 22511, AlBeheira, Egypt; (Y.M.M.S.); (K.S.A.E.)
| | - Hazem M. Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
| | - Abdullah A. Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
- Departmentof Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Amr Elmistekawy
- Department of Internal Medicine, Gastroenterology Division, Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
- Correspondence: (A.M.K.N.); (G.E.-S.B.)
| |
Collapse
|
25
|
Sohrabi SS, Sohrabi SM, Rashidipour M, Mohammadi M, Khalili Fard J, Mirzaei Najafgholi H. Identification of common key regulators in rat hepatocyte cell lines under exposure of different pesticides. Gene 2020; 739:144508. [DOI: 10.1016/j.gene.2020.144508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/15/2019] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
|
26
|
Chiapella AM, Grabowski ZJ, Rozance MA, Denton AD, Alattar MA, Granek EF. Toxic Chemical Governance Failure in the United States: Key Lessons and Paths Forward. Bioscience 2019. [DOI: 10.1093/biosci/biz065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AbstractOver 40 years of regulations in the United States have failed to protect human and environmental health. We contend that these failures result from the flawed governance over the continued production, use, and disposal of toxic chemicals. To address this failure, we need to identify the broader social, political, and technological processes producing, knowing, and regulating toxic chemicals, collectively referred to as toxic chemical governance. To do so, we create a conceptual framework covering five key domains of governance: knowledge production, policy design, monitoring and enforcement, evaluation, and adjudication. Within each domain, social actors of varying power negotiate what constitutes acceptable risk, creating longer-term path dependencies in how they are addressed (or not). Using existing literature and five case studies, we discuss four paths for improving governance: evolving paradigms of harm, addressing bias in the knowledge base, making governance more equitable, and overcoming path dependency.
Collapse
Affiliation(s)
- Ariana M Chiapella
- Department of Environmental Science and Management, Portland State University, Portland, Oregon
| | - Zbigniew J Grabowski
- Cary Institute of Ecosystem Studies, Millbrook, New York, and with the Urban Systems Lab, at The New School, New York, New York
| | - Mary Ann Rozance
- College of the Environment at the University of Washington, Seattle
| | - Ashlie D Denton
- Hatfield School of Government, at Portland State University, Portland, Oregon
| | - Manar A Alattar
- Department of Biology at Portland Community College, Portland, Oregon
| | - Elise F Granek
- Department of Environmental Science and Management, Portland State University, Portland, Oregon
| |
Collapse
|
27
|
Wang R, Gao L, Zheng M, Li J, Zhang L, Wu Y, Wang G, Xiong L, Ding D, Lu D, Qiao L, Cui L, Xu C. Characterization of short- and medium-chain chlorinated paraffins in cereals and legumes from 19 Chinese provinces. CHEMOSPHERE 2019; 226:282-289. [PMID: 30933737 DOI: 10.1016/j.chemosphere.2019.03.148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) were added to the Stockholm Convention Annex A in May 2017. China is the largest producer of chlorinated paraffins (CPs). CPs in the environment can be transferred to foodstuffs directly and through bioaccumulation and then ingested by humans. Cereals and legumes are important components of Chinese diets, so the risks posed by CPs in cereals and legumes should be of concern. 1710 cereal samples and 1710 legume samples from 19 Chinese provinces were pooled by type and province (giving 19 pooled cereal and 19 pooled legume samples). The SCCP and medium-chain chlorinated paraffin (MCCP) concentrations in the samples were determined by comprehensive two-dimensional gas chromatography tandem time-of-flight mass spectrometry (GC × GC-TOFMS). The mean SCCP concentrations in the cereal and legume samples were 343 and 328 ng g-1 wet weight (ww), respectively, and the mean MCCP concentrations were 213 and 184 ng g-1 ww, respectively. The dominant SCCP congener groups were C10Cl6-7 in cereals and C10Cl5-6 in legumes. The MCCP congener groups C14Cl6-7 were dominant in both cereals and legumes. The CP concentrations were higher in samples from eastern China than in samples from other regions. Risk assessments indicated that SCCPs and MCCPs in cereals and legumes do not pose strong risks to Chinese residents.
Collapse
Affiliation(s)
- Runhua Wang
- Division of Chemical Toxicity Test, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China.
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China.
| | - Lei Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Guoquan Wang
- Division of Chemical Toxicity Test, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Lipei Xiong
- Division of Chemical Toxicity Test, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Danting Ding
- Division of Chemical Toxicity Test, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Dasheng Lu
- Division of Chemical Toxicity Test, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Lili Cui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Chi Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
28
|
Groh KJ, Backhaus T, Carney-Almroth B, Geueke B, Inostroza PA, Lennquist A, Leslie HA, Maffini M, Slunge D, Trasande L, Warhurst AM, Muncke J. Overview of known plastic packaging-associated chemicals and their hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:3253-3268. [PMID: 30463173 DOI: 10.1016/j.scitotenv.2018.10.015] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/11/2018] [Accepted: 10/01/2018] [Indexed: 04/14/2023]
Abstract
Global plastics production has reached 380 million metric tons in 2015, with around 40% used for packaging. Plastic packaging is diverse and made of multiple polymers and numerous additives, along with other components, such as adhesives or coatings. Further, packaging can contain residues from substances used during manufacturing, such as solvents, along with non-intentionally added substances (NIAS), such as impurities, oligomers, or degradation products. To characterize risks from chemicals potentially released during manufacturing, use, disposal, and/or recycling of packaging, comprehensive information on all chemicals involved is needed. Here, we present a database of Chemicals associated with Plastic Packaging (CPPdb), which includes chemicals used during manufacturing and/or present in final packaging articles. The CPPdb lists 906 chemicals likely associated with plastic packaging and 3377 substances that are possibly associated. Of the 906 chemicals likely associated with plastic packaging, 63 rank highest for human health hazards and 68 for environmental hazards according to the harmonized hazard classifications assigned by the European Chemicals Agency within the Classification, Labeling and Packaging (CLP) regulation implementing the United Nations' Globally Harmonized System (GHS). Further, 7 of the 906 substances are classified in the European Union as persistent, bioaccumulative, and toxic (PBT), or very persistent, very bioaccumulative (vPvB), and 15 as endocrine disrupting chemicals (EDC). Thirty-four of the 906 chemicals are also recognized as EDC or potential EDC in the recent EDC report by the United Nations Environment Programme. The identified hazardous chemicals are used in plastics as monomers, intermediates, solvents, surfactants, plasticizers, stabilizers, biocides, flame retardants, accelerators, and colorants, among other functions. Our work was challenged by a lack of transparency and incompleteness of publicly available information on both the use and toxicity of numerous substances. The most hazardous chemicals identified here should be assessed in detail as potential candidates for substitution.
Collapse
Affiliation(s)
- Ksenia J Groh
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Bethanie Carney-Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Pedro A Inostroza
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anna Lennquist
- International Chemical Secretariat (ChemSec), Gothenburg, Sweden
| | - Heather A Leslie
- Department of Environment & Health, Vrije Universiteit Amsterdam, the Netherlands
| | | | - Daniel Slunge
- Centre for Sustainable Development (GMV), University of Gothenburg, Gothenburg, Sweden
| | | | | | - Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland
| |
Collapse
|
29
|
Pandit AA, Gandham RK, Mukhopadhyay CS, Verma R, Sethi RS. Transcriptome analysis reveals the role of the PCP pathway in fipronil and endotoxin-induced lung damage. Respir Res 2019; 20:24. [PMID: 30709343 PMCID: PMC6359862 DOI: 10.1186/s12931-019-0986-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Arif Ahmad Pandit
- Department of Animal Biotechnology, School of Animal Biotechnology, Guru Angad Dev Veterinary and Animals Sciences University, Ludhiana, Punjab, 141004, India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India. National Institute of Animal Biotechnology, Hyderabad, India
| | - C S Mukhopadhyay
- Department of Animal Biotechnology, School of Animal Biotechnology, Guru Angad Dev Veterinary and Animals Sciences University, Ludhiana, Punjab, 141004, India
| | - Ramneek Verma
- Department of Animal Biotechnology, School of Animal Biotechnology, Guru Angad Dev Veterinary and Animals Sciences University, Ludhiana, Punjab, 141004, India
| | - R S Sethi
- Department of Animal Biotechnology, School of Animal Biotechnology, Guru Angad Dev Veterinary and Animals Sciences University, Ludhiana, Punjab, 141004, India.
| |
Collapse
|
30
|
Dreyer A, Neugebauer F, Rüdel H, Klein R, Lohmann N, Rauert C, Koschorreck J. Halogenated flame retardants in tree samples applied as bioindicators for atmospheric pollution. CHEMOSPHERE 2018; 208:233-240. [PMID: 29879556 DOI: 10.1016/j.chemosphere.2018.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 06/08/2023]
Abstract
Coniferous shoots and deciduous tree leaf samples from 10 sites in Germany were taken in 2015 or 2016 within the German Environmental Specimen Bank sampling program and analysed for 24 polybrominated biphenyl ethers (PBDEs) and 19 additional halogenated flame retardants (HFRs). At one site, additional historic samples dating back till 2003 were also investigated. Samples were Soxhlet-extracted, cleaned-up by a non-destructive multi-step procedure involving gel permeation chromatography, and detected by GC-API-MS/MS as well as GC-MS. Besides PBDEs as classical HFRs, emerging HFRs such as Dechlorane Plus, DPTE, DBDPE, or ATE were region-wide observed demonstrating their widespread occurrence in the atmosphere. Highest concentrations in recent samples were found for DBDPE (<230-2760 pg g-1 dry weight (dw)) followed by DPTE (91-1540 pg g-1 dw), BDE209 (<156-461 pg g-1 dw), and BDE47 (<27-505 pg g-1 dw) or DP (31-122 pg g-1 dw). The overall uniform and widespread distribution as well as similar HFR levels and composition profiles observed in recent conifer shoots and corresponding deciduous tree leaves from the same area indicate a prolonged medium to long-range transport as sources. Furthermore, it is demonstrated that both tree types are generally suitable bioindicators for atmospheric pollution with HFRs, although accumulation may vary depending on HFR properties and accumulation period. The historic samples showed decreasing PBDE levels whereas no clear trend could be observed for other investigated HFRs at this site.
Collapse
Affiliation(s)
| | | | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), Schmallenberg, Germany
| | | | | | | | | |
Collapse
|
31
|
Castro M, Breitholtz M, Yuan B, Athanassiadis I, Asplund L, Sobek A. Partitioning of Chlorinated Paraffins (CPs) to Daphnia magna Overlaps between Restricted and in-Use Categories. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9713-9721. [PMID: 30074385 DOI: 10.1021/acs.est.8b00865] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chlorinated paraffins (CPs) are high-production volume industrial chemicals consisting of n-alkanes (with 10 to 30 carbon atoms in the chain) with chlorine content from 30 to 70% of weight. In Europe, the use of short chain chlorinated paraffins (SCCPs) has been restricted by the Stockholm Convention on POPs due to their PBT (persistent, bioaccumulative and toxic) properties. Medium (MCCPs) and long chain (LCCPs) chlorinated paraffins are used as substitution products. In this work we studied the partitioning behavior of five different CP technical mixtures from the established categories (2 SCCPs, 1 MCCP, 1 LCCP and 1 CP technical mixture covering all categories) using passive dosing, by determining the partitioning coefficient of CP technical mixtures between silicone and water ( Ksilicone-water) as well as between organic matter and water ( Koc-water). We show that both silicone-water and organic carbon-water partition coefficients overlap between different categories of CP technical mixtures. These results indicate that in-use MCCPs and LCCPs may be equally or more bioaccumulative than restricted SCCPs. For the tested mixtures, both chlorine content and carbon chain length showed a significant correlation with both Ksilicone-water and Koc-water.
Collapse
Affiliation(s)
- Mafalda Castro
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 106-91 Stockholm , Sweden
| | - Magnus Breitholtz
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 106-91 Stockholm , Sweden
| | - Bo Yuan
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 106-91 Stockholm , Sweden
| | - Ioannis Athanassiadis
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 106-91 Stockholm , Sweden
| | - Lillemor Asplund
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 106-91 Stockholm , Sweden
| | - Anna Sobek
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 106-91 Stockholm , Sweden
| |
Collapse
|
32
|
Ruan Y, Lam JCW, Zhang X, Lam PKS. Temporal Changes and Stereoisomeric Compositions of 1,2,5,6,9,10-Hexabromocyclododecane and 1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane in Marine Mammals from the South China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2517-2526. [PMID: 29397695 DOI: 10.1021/acs.est.7b05387] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Stereoisomeric compositions of 1,2,5,6,9,10-hexabromocyclododecane (HBCD) and 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH) were investigated in the blubber of two species of marine mammals, finless porpoises ( Neophocaena phocaenoides) and Indo-Pacific humpback dolphins ( Sousa chinensis), from the South China Sea between 2005 and 2015. The concentrations of ΣHBCD in samples of porpoise ( n = 59) and dolphin ( n = 32) ranged from 97.2 to 6,260 ng/g lipid weight (lw) and from 447 to 45,800 ng/g lw, respectively, while those of ΣTBECH were both roughly 2 orders of magnitude lower. A significant increasing trend of ΣHBCD was found in dolphin blubber over the past decade. The diastereomeric profiles exhibited an absolute predominance of α-HBCD (mostly >90%), while the proportions of four TBECH diastereomers in the samples appeared similar. A preferential enrichment of the (-)-enantiomers of α-, β-, and γ-HBCD was found in most blubber samples. Interestingly, the body lengths of porpoises showed a significant negative correlation with the enantiomer fractions of α-HBCD. Significant racemic deviations were also observed for α-, γ-, and δ-TBECH enantiomeric pairs. This is the first report of the presence of TBECH enantiomers in the environment. The estimated hazard quotient indicates that there is a potential risk to dolphins due to HBCD exposure.
Collapse
Affiliation(s)
- Yuefei Ruan
- State Key Laboratory in Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity , City University of Hong Kong , Hong Kong SAR , China
| | - James C W Lam
- State Key Laboratory in Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity , City University of Hong Kong , Hong Kong SAR , China
- Department of Science and Environmental Studies , The Education University of Hong Kong , Hong Kong SAR , China
| | - Xiaohua Zhang
- Department of Science and Environmental Studies , The Education University of Hong Kong , Hong Kong SAR , China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity , City University of Hong Kong , Hong Kong SAR , China
- Department of Chemistry , City University of Hong Kong , Hong Kong SAR , China
| |
Collapse
|
33
|
Al-Attar AM, Elnaggar MH, Almalki EA. Protective effect of some plant oils on diazinon induced hepatorenal toxicity in male rats. Saudi J Biol Sci 2017; 24:1162-1171. [PMID: 28855808 PMCID: PMC5562457 DOI: 10.1016/j.sjbs.2016.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 12/16/2022] Open
Abstract
Environmental pollution and exposure to environmental pollutants are still some of the major global health issues. Pesticides have been linked to a wide range of health hazards. The toxicity of pesticides depends on several factors such as its chemical properties, doses, exposure period, exposure methods, gender, genetics, age, nutritional status and physiological case of exposed individuals. Medicinal plants, natural products and nutrition continue to play a central role in the healthcare system of large proportions of the world's population. Alternative medicine plays an important role in health services around the world. The aim of this study was to investigate the effect of olive, sesame and black seed oils on hepatorenal toxicity induced by diazinon (DZN) in male rats. The experimental animals were divided into nine groups. The first group served as control. The second group was exposed to DZN. The third group was treated with olive oil and DZN. Rats of the fourth group were subjected to sesame oil and DZN. Rats of the fifth group were exposed to black seed oil and DZN. The sixth, seventh and eighth groups were supplemented with olive, sesame and black seed oils respectively. Rats of the ninth group were treated with corn oil. Levels of serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma glutamyl transferase, total bilirubin, creatinine, blood urea nitrogen and malondialdehyde were significantly increased in rats exposed to DZN. Moreover, levels of serum glutathione and superoxide dismutase were significantly decreased. Several histopathological changes were observed in the structures of liver and kidney due to DZN exposure. This study showed that these oils attenuated the physiological disturbances and histopathological alterations induced by DZN intoxication. Moreover, the antioxidant properties of these oils support the bioactive roles of its protective effects on DZN toxicity. This study therefore suggests that these oils could be used as preventive factors against the toxicity of DZN due to its antioxidant properties.
Collapse
Affiliation(s)
- Atef M. Al-Attar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 139109, Jeddah 21323, Saudi Arabia
| | | | | |
Collapse
|
34
|
Gomes AR, Justino C, Rocha-Santos T, Freitas AC, Duarte AC, Pereira R. Review of the ecotoxicological effects of emerging contaminants to soil biota. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:992-1007. [PMID: 28598770 DOI: 10.1080/10934529.2017.1328946] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In recent years, emerging contaminants (e.g. pesticides and their metabolites, pharmaceuticals, personal and house care products, life-style compounds, food additives, industrial products and wastes, as well as nanomaterials) have become a problem to the environment. In fact, the cumulative use of a panoply of chemical substances in agriculture, industrial activities, in our homes and in health care services has led to their recent appearance in detectable levels in soils, surface, and groundwater resources, with unpredictable consequences for these ecosystems. Few data exist regarding the toxicity and potential for bioaccumulation in biota. When available, data were obtained only for some representatives of the main groups of chemical substances, and for a limited number of species, following non-standard protocols. This makes difficult the calculation of predicted no effect concentrations (PNEC) and the existence of sufficient data to set limits for their release into the environment. This is particularly concerning for the soil compartment, since only recently the scientific community, regulators, and the public have realised the importance of protecting this natural resource and its services to guarantee the sustainability of terrestrial ecosystems and human well-being. In this context, this review paper aims to identify the major groups of soil emerging contaminants, their sources, pathways and receptors, and in parallel to analyse existing ecotoxicological data for soil biota.
Collapse
Affiliation(s)
- Ana R Gomes
- a Department of Chemistry , University of Aveiro , Aveiro , Portugal
| | - Celine Justino
- a Department of Chemistry , University of Aveiro , Aveiro , Portugal
- b CESAM - Centre for Environmental and Marine Studies , Aveiro , Portugal
- c ISEIT/Viseu, Piaget Institute , Viseu , Portugal
| | - Teresa Rocha-Santos
- a Department of Chemistry , University of Aveiro , Aveiro , Portugal
- b CESAM - Centre for Environmental and Marine Studies , Aveiro , Portugal
| | - Ana C Freitas
- d Catholic University of Portugal , CBQF - Centre of Biotechnology and Fine Chemistry - Associated Laboratory, Faculty of Biotechnology , Porto , Portugal
| | - Armando C Duarte
- a Department of Chemistry , University of Aveiro , Aveiro , Portugal
- b CESAM - Centre for Environmental and Marine Studies , Aveiro , Portugal
| | - Ruth Pereira
- e Department of Biology, Faculty of Sciences , University of Porto , Porto , Portugal
- f Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/UP) , University of Porto , Porto , Portugal
| |
Collapse
|
35
|
Gui D, Karczmarski L, Yu RQ, Plön S, Chen L, Tu Q, Cliff G, Wu Y. Profiling and Spatial Variation Analysis of Persistent Organic Pollutants in South African Delphinids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4008-4017. [PMID: 26967261 DOI: 10.1021/acs.est.5b06009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The continuous disposal of persistent organic pollutants (POPs) in South Africa (SA) warrants concern about their detrimental effects on humans and wildlife. We surveyed six dolphin species (n = 90) incidentally captured in shark net installations or stranded off the SA east and south coast from 2005 to 2009 to study the POP exposure. Sousa plumbea, an inshore and estuarine species, was found to be the most contaminated by total POPs (21 100 ng g(-1) lw) of all the dolphins off SA, followed by Tursiops aduncus (19 800 ng g(-1) lw), Lagenodelphis hosei (13 600 ng g(-1) lw), and Delphinus capensis (5500 ng g(-1) lw), whereas POP levels in the offshore or pelagic delphinids were much lower. In all delphinids, dominant pollutants were dichlorodiphenyltrichloroethanes (DDTs), which represented more than 60% of the total concentration of total POPs, followed by polychlorinated biphenyls (PCBs, 30%). Concentrations of DDTs in S. plumbea and T. aduncus off SA were among the highest levels reported in delphinids globally. Approximately half of the adult T. aduncus had PCB concentrations above the effect threshold for impairment of immune functions. The concentrations of Mirex and Dieldrin in SA delphinids were higher than those found in species from other regions of the Southern Hemisphere.
Collapse
Affiliation(s)
- Duan Gui
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, Guangdong 510275, China
| | - Leszek Karczmarski
- The Swire Institute of Marine Sciences, School of Biological Sciences, The University of Hong Kong , Cape d'Aguilar Road, Shek O, Hong Kong
| | - Ri-Qing Yu
- Department of Biology, University of Texas at Tyler , Tyler, Texas 75799, United States
| | - Stephanie Plön
- Coastal and Marine Research Institute, Nelson Mandela Metropolitan University , PO Box 77000, Port Elizabeth, Eastern Cape 6031, South Africa
| | - Laiguo Chen
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou, Guangdong 510655, China
| | - Qin Tu
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, Guangdong 510275, China
| | - Geremy Cliff
- KwaZulu-Natal Sharks Board, Private Bag 2, Umhlanga Rocks 4320, KwaZulu-Natal, South Africa and Biomedical Resource Unit, University of KwaZulu-Natal , Durban, KwaZulu-Natal 4001, South Africa
| | - Yuping Wu
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, Guangdong 510275, China
| |
Collapse
|
36
|
Miraji H, Othman OC, Ngassapa FN, Mureithi EW. Research Trends in Emerging Contaminants on the Aquatic Environments of Tanzania. SCIENTIFICA 2016; 2016:3769690. [PMID: 26998381 PMCID: PMC4779846 DOI: 10.1155/2016/3769690] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
The continuity for discovery and production of new chemicals, allied products, and uses has currently resulted into generation of recent form of contaminants known as Emerging Contaminants (ECs). Once in the aquatic environment ECs are carcinogenic and cause other threats to both human's and animals' health. Due to their effects this study was aimed at investigating research trends of ECs in Tanzania. Findings revealed that USA and EU countries were leading in ECs researches, little followed by Asia, South Africa, and then Zambia. Only few guidelines from USA-EPA, WHO, Canada, and Australia existed. Neither published guidelines nor regulations for ECs existed in Tanzania; rather only the occurrence of some disinfection by-products and antibiotics was, respectively, reported in Arusha and Dar es Salaam, Tanzania. As these reports had a limited coverage of ECs, henceforth, these findings constitute the first-line reference materials for ECs research in Tanzania which shall be useful for future monitoring and regulation planning.
Collapse
Affiliation(s)
- H. Miraji
- Chemistry Department, School of Physical Sciences, College of Natural and Mathematical Sciences, University of Dodoma, P.O. Box 338, Dodoma, Tanzania
| | - O. C. Othman
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - F. N. Ngassapa
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - E. W. Mureithi
- Mathematics Department, College of Natural and Applied Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania
| |
Collapse
|
37
|
Iwata M, Imaoka T, Nishiyama T, Fujii T. Re-characterization of mono-2-ethylhexyl phthalate hydrolase belonging to the serine hydrolase family. J Biosci Bioeng 2016; 122:140-5. [PMID: 26868518 DOI: 10.1016/j.jbiosc.2016.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 11/25/2022]
Abstract
A novel bacterium assimilating di-2-ethylhexyl phthalate as a sole carbon source was isolated, and identified as a Rhodococcus species and the strain was named EG-5. The strain has a mono-2-ethylhexyl phthalate (MEHP) hydrolase (EG-5 MehpH), which exhibits some different enzymatic features when compared with the previously reported MEHP hydrolase (P8219 MehpH) from Gordonia sp. These differences include different pH optimum activity, maximal reaction temperature and heat stability. The Km and Vmax values of EG-5 MehpH were significantly higher than those of P8219 MehpH. The primary structure of EG-5 MehpH showed the highest sequence identity to that of P8219 MehpH (39%) among hydrolases. The phylogenetic tree suggested that EG-5 MehpH and P8219 MehpH were categorized in different groups of the novel MEHP hydrolase family. Mutation of a conserved R(109) residue of EG-5 MehpH to a hydrophobic residue resulted in a dramatic reduction in the Vmax value towards MEHP without affecting the Km value. These results indicate that this residue may neutralize the negative charge of a carboxylate anion of MEHP, and thus inhibit the catalytic nucleophile from attacking the ester bond. In other words, the R residue blocks inhibition from the carboxylate anion of MEHP. Recently, registered hypothetical proteins exhibiting 98% or 99% identities for EG-5 MehpH or for P8219 MehpH were found from some pathogens belonging to Actinomycetes. The protein may have other activities besides MEHP hydrolysis and function in other physiological reactions in some Actinomycetes.
Collapse
Affiliation(s)
- Makoto Iwata
- IMB Co., Ltd., 1070-10 Hitotsugi, Asakura City, Fukuoka 838-0065, Japan
| | - Takuya Imaoka
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Takashi Nishiyama
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Takao Fujii
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan.
| |
Collapse
|
38
|
Farmers' Exposure to Pesticides: Toxicity Types and Ways of Prevention. TOXICS 2016; 4:toxics4010001. [PMID: 29051407 PMCID: PMC5606636 DOI: 10.3390/toxics4010001] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/28/2015] [Accepted: 01/05/2016] [Indexed: 11/17/2022]
Abstract
Synthetic pesticides are extensively used in agriculture to control harmful pests and prevent crop yield losses or product damage. Because of high biological activity and, in certain cases, long persistence in the environment, pesticides may cause undesirable effects to human health and to the environment. Farmers are routinely exposed to high levels of pesticides, usually much greater than those of consumers. Farmers’ exposure mainly occurs during the preparation and application of the pesticide spray solutions and during the cleaning-up of spraying equipment. Farmers who mix, load, and spray pesticides can be exposed to these chemicals due to spills and splashes, direct spray contact as a result of faulty or missing protective equipment, or even drift. However, farmers can be also exposed to pesticides even when performing activities not directly related to pesticide use. Farmers who perform manual labor in areas treated with pesticides can face major exposure from direct spray, drift from neighboring fields, or by contact with pesticide residues on the crop or soil. This kind of exposure is often underestimated. The dermal and inhalation routes of entry are typically the most common routes of farmers’ exposure to pesticides. Dermal exposure during usual pesticide handling takes place in body areas that remain uncovered by protective clothing, such as the face and the hands. Farmers’ exposure to pesticides can be reduced through less use of pesticides and through the correct use of the appropriate type of personal protective equipment in all stages of pesticide handling.
Collapse
|
39
|
Guerrero-Bosagna C, Jensen P. Globalization, climate change, and transgenerational epigenetic inheritance: will our descendants be at risk? Clin Epigenetics 2015; 7:8. [PMID: 25628767 PMCID: PMC4307899 DOI: 10.1186/s13148-014-0043-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 12/26/2014] [Indexed: 12/14/2022] Open
Abstract
Transgenerational epigenetic inheritance has gained increased attention due to the possibility that exposure to environmental contaminants induce diseases that propagate across generations through epigenomic alterations in gametes. In laboratory animals, exposure to environmental toxicants such as fungicides, pesticides, or plastic compounds has been shown to produce abnormal reproductive or metabolic phenotypes that are transgenerationally transmitted. Human exposures to environmental toxicants have increased due to industrialization and globalization, as well as the incidence of diseases shown to be transgenerationally transmitted in animal models. This new knowledge poses an urgent call to study transgenerational consequences of current human exposures to environmental toxicants.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Avian Behavioral Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, 58 183 Sweden
| | - Per Jensen
- Avian Behavioral Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, 58 183 Sweden
| |
Collapse
|